1
|
Xiao Y, Yang D, Zhang SB, Mo YX, Dong YY, Wang KF, He LY, Dong B, Dossa GGO, Zhang JL. Nitrogen-fixing and non-nitrogen-fixing legume plants differ in leaf nutrient concentrations and relationships between photosynthetic and hydraulic traits. TREE PHYSIOLOGY 2024; 44:tpae048. [PMID: 38691446 DOI: 10.1093/treephys/tpae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen (N)-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P)-use efficiency, leaf N, and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N-use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared with non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared with non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex RH17 6TN, UK
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yi-Yi Dong
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Ke-Fei Wang
- School of Biological and Chemical Sciences, Puer University, Puer, Yunnan 665000, China
| | - Ling-Yun He
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bing Dong
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
2
|
Zhang X, Hu H, Li F, Huang L, Bao W. Within leaf nitrogen allocation regulates the photosynthetic behavior of xerophytes in response to increased soil rock fragment content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107753. [PMID: 37243998 DOI: 10.1016/j.plaphy.2023.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
There is limited information on how plant functional traits vary with soil rock fragment content (RFC), especially for xerophytes growing in stony soils. We examined leaf functional traits of three xerophytes (Sophora davidii; Cotinus szechuanensi; and Artemisia vestita) grown under an RFC gradient in a heavy loamy soil. Our results show that photosynthetic capacity increased linearly with RFC in S. davidii, whereas unimodal patterns were observed for the other two species. The RFC that maximized photosynthetic capacity (Asat) and photosynthetic N use efficiency (PNUE) were achieved by allocating more N to photosynthetic apparatus at the expense of cell walls. For C. szechuanensis, the increased fraction of photosynthetic N allocated to carboxylation (PC) bioenergetics (PB), and thylakoid light-harvesting components (PL) together contributed to the higher Asat and PNUE values. As for S. davidii, both PC and PB mainly contributed to higher Asat and PNUE, whereas for A. vestita only PB was the main contributor. Our results suggest that increased non-capillary porosity of high RFC soil conditions through promoting the root growth of S. davidii and C. szechuanensis ensures sufficient water and N supply for photosynthetic capacity. In shallow-rooted species A. vestita, low RFC soil maintained higher nitrate N in the topsoil, enhancing leaf photosynthetic capacity. We conclude that rock fragments promoted leaf photosynthetic capacity in the studied loamy soil system, but the promoting effect was species-specific. The results highlight the relevance of consideration of soil rock fraction in evaluation of photosynthetic behavior of xerophytes in heterogeneous rocky soils.
Collapse
Affiliation(s)
- Xiulong Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Hui Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanglan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Long Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weikai Bao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Li J, Chen X, Wu P, Niklas KJ, Lu Y, Zhong Q, Hu D, Cheng L, Cheng D. The fern economics spectrum is unaffected by the environment. PLANT, CELL & ENVIRONMENT 2022; 45:3205-3218. [PMID: 36029253 DOI: 10.1111/pce.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The plant economics spectrum describes the trade-off between plant resource acquisition and storage, and sheds light on plant responses to environmental changes. However, the data used to construct the plant economics spectrum comes mainly from seed plants, thereby neglecting vascular non-seed plant lineages such as the ferns. To address this omission, we evaluated whether a fern economics spectrum exists using leaf and root traits of 23 fern species living under three subtropical forest conditions differing in light intensity and nutrient gradients. The fern leaf and root traits were found to be highly correlated and formed a plant economics spectrum. Specific leaf mass and root tissue density were found to be on one side of the spectrum (conservative strategy), whereas photosynthesis rate, specific root area, and specific root length were on the other side of the spectrum (acquisitive strategy). Ferns had higher photosynthesis and respiration rates, and photosynthetic nitrogen-use efficiency under high light conditions and higher specific root area and lower root tissue density in high nutrient environments. However, environmental changes did not significantly affect their resource acquisition strategies. Thus, the plant economics spectrum can be broadened to include ferns, which expands its phylogenetic and ecological implications and utility.
Collapse
Affiliation(s)
- Jinlong Li
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaoping Chen
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Plant Physiology and Ecology in Fujian Province, Fujian Normal University, Fuzhou, China
| | - Panpan Wu
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yimiao Lu
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Quanlin Zhong
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Dandan Hu
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lin Cheng
- Jiangxi Wuyishan National Nature Reserve Administration Bureau, Wuyishan National Nature Reserve, Shangrao, Jiangxi, China
| | - Dongliang Cheng
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Plant Physiology and Ecology in Fujian Province, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Zhang B, Zhou L, Zhou X, Bai Y, Zhan M, Chen J, Xu C. Differential responses of leaf photosynthesis to insect and pathogen outbreaks: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155052. [PMID: 35395301 DOI: 10.1016/j.scitotenv.2022.155052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Outbreak of insects or pathogens (referred to as biotic disturbance), which is projected to continually increase in a warmer climate, may profoundly affect plant photosynthesis and production. However, the response of plant photosynthesis to biotic disturbance remains unclear, especially differences in response between insects and pathogens, which hinders the prediction of plant productivity in future climate. In this study, a meta-analysis approach was used to examine effects of insects and pathogens on photosynthetic rate per unit leaf area (Pn) and the associated characteristics from 115 studies. Our results showed that biotic disturbance significantly decreased Pn by 34.8% but increased Rd by 26.2%. Most of parameters associated with Pn were significantly reduced by biotic disturbance, including gs, Tr, photosynthetic pigments (e.g., a+b, a, and b), and chlorophyll fluorescence properties (Fv/Fm, qp). The disturbance type (insects vs pathogens) was the most important factor affecting the response of Pn, with a greater decrease in Pn by pathogens (-37.5%) than insects (-28.0%). The response ratio of Pn was positively correlated with that of gs and Tr for both insects and pathogens, while negatively with Ci and positively with Chl a+b, ΦPSII, and qp for only pathogens. In addition, the higher sensitivity of Pn to biotic disturbance in crop than non-crop plants poses a great challenge to agricultural system in the future. The weighted response ratio of Pn and relationships of Pn with other associated paramerters under insect and pathogen disturbance will facilitate vegetation models to integrate the effects of biotic disturbance on primary production, improving predicition of the ecosystem carbon cyling in combining with leaf area measurement.
Collapse
Affiliation(s)
- Baocheng Zhang
- Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Xuhui Zhou
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China..
| | - Yanfen Bai
- College of Life Sciences, Zunyi Normal University, Zunyi 563002, China
| | - Maokui Zhan
- Zunyi Institute of Forestry Science, Zunyi 563002, China; Key Laboratory of Forest Protection of the State Forestry Bureau, Forest Ecological Environment and Protection Research Institute of Chinese Academy of forestry, Beijing 100091, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Chengyuan Xu
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
5
|
Ren L, Huang Y, Pan Y, Xiang X, Huo J, Meng D, Wang Y, Yu C. Differential Investment Strategies in Leaf Economic Traits Across Climate Regions Worldwide. FRONTIERS IN PLANT SCIENCE 2022; 13:798035. [PMID: 35356106 PMCID: PMC8959930 DOI: 10.3389/fpls.2022.798035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The leaf economics spectrum (LES) is the leading theory of plant ecological strategies based on functional traits, which explains the trade-off between dry matter investment in leaf structure and the potential rate of resource return, revealing general patterns of leaf economic traits investment for different plant growth types, functional types, or biomes. Prior work has revealed the moderating role of different environmental factors on the LES, but whether the leaf trait bivariate relationships are shifted across climate regions or across continental scales requires further verification. Here we use the Köppen-Geiger climate classification, a very widely used and robust criterion, as a basis for classifying climate regions to explore climatic differences in leaf trait relationships. We compiled five leaf economic traits from a global dataset, including leaf dry matter content (LDMC), specific leaf area (SLA), photosynthesis per unit of leaf dry mass (Amass), leaf nitrogen concentration (Nmass), and leaf phosphorus concentration (Pmass). Moreover, we primarily used the standardized major axis (SMA) analysis to establish leaf trait bivariate relationships and to explore differences in trait relationships across climate regions as well as intercontinental differences within the same climate type. Leaf trait relationships were significantly correlated across almost all subgroups (P < 0.001). However, there was no common slope among different climate zones or climate types and the slopes of the groups fluctuated sharply up and down from the global estimates. The range of variation in the SMA slope of each leaf relationship was as follows: LDMC-SLA relationships (from -0.84 to -0.41); Amass-SLA relationships (from 0.83 to 1.97); Amass-Nmass relationships (from 1.33 to 2.25); Nmass-Pmass relationships (from 0.57 to 1.02). In addition, there was significant slope heterogeneity among continents within the Steppe climate (BS) or the Temperate humid climate (Cf). The shifts of leaf trait relationships in different climate regions provide evidence for environmentally driven differential plant investment in leaf economic traits. Understanding these differences helps to better calibrate various plant-climate models and reminds us that smaller-scale studies may need to be carefully compared with global studies.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yongmei Huang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yingping Pan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xiang Xiang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jiaxuan Huo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Dehui Meng
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Cheng Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Lei ZY, Wang H, Wright IJ, Zhu XG, Niinemets Ü, Li ZL, Sun DS, Dong N, Zhang WF, Zhou ZL, Liu F, Zhang YL. Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. PHOTOSYNTHESIS RESEARCH 2021; 150:239-250. [PMID: 34669149 DOI: 10.1007/s11120-021-00872-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Domestication involves dramatic phenotypic and physiological diversifications due to successive selection by breeders toward high yield and quality. Although photosynthetic nitrogen use efficiency (PNUE) is a major trait for understanding leaf nitrogen economy, it is unclear whether PNUE of cotton has been improved under domestication. Here, we investigated the effect of domestication on nitrogen allocation to photosynthetic machinery and PNUE in 25 wild and 37 domesticated cotton genotypes. The results showed that domesticated genotypes had higher nitrogen content per mass (Nm), net photosynthesis under saturated light (Asat), and PNUE but similar nitrogen content per area (Na) compared with wild genotypes. As expected, in both genotypes, PNUE was positively related to Asat but negatively correlated with Na. However, the relative contribution of Asat to PNUE was greater than the contribution from Na. Domesticated genotypes had higher nitrogen allocation to light-harvesting (NL, nitrogen in light-harvesting chlorophyll-protein complex), to bioenergetics (Nb, total nitrogen of cytochrome f, ferredoxin NADP reductase, and the coupling factor), and to Rubisco (Nr) than wild genotypes; however, the two genotype groups did not differ in PNUEp, the ratio of Asat to Np (itself the sum of NL, Nb, and Nr). Our results suggest that more nitrogen allocation to photosynthetic machinery has boosted Asat under cotton domestication. Improving the efficiency of nitrogen use in photosynthetic machinery might be future aim to enhance Asat of cotton.
Collapse
Affiliation(s)
- Zhang-Ying Lei
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Heng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Zi-Liang Li
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Dong-Sheng Sun
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Ning Dong
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Wang-Feng Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Zhong-Li Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China.
| | - Ya-Li Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
7
|
Tang J, Sun B, Cheng R, Shi Z, Luo D, Liu S, Centritto M. The Effect of Low Irradiance on Leaf Nitrogen Allocation and Mesophyll Conductance to CO 2 in Seedlings of Four Tree Species in Subtropical China. PLANTS 2021; 10:plants10102213. [PMID: 34686021 PMCID: PMC8540425 DOI: 10.3390/plants10102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seedlings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula alnoides (non-N-fixing trees) to three irradiance treatments (100%, 40%, and 10% sunlight) to investigate the effects of low irradiance on leaf structure, leaf N allocation strategy, and photosynthetic physiological parameters in the seedlings. Low irradiance decreased the leaf mass per unit area, leaf N content per unit area (Narea), maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), light compensation point, and light saturation point, and increased the N allocation proportion of light-harvesting components in all species. The studied tree seedlings changed their leaf structures, leaf N allocation strategy, and photosynthetic physiological parameters to adapt to low-light environments. N-fixing plants had a higher photosynthesis rate, Narea, Vcmax, and Jmax than non-N-fixing species under low irradiance and had a greater advantage in maintaining their photosynthetic rate under low-radiation conditions, such as under an understory canopy, in a forest gap, or when mixed with other species.
Collapse
Affiliation(s)
- Jingchao Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China; (J.T.); (B.S.)
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China; (J.T.); (B.S.)
| | - Ruimei Cheng
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Pant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy;
- Correspondence: ; Tel.: +86-010-62888308
| | - Da Luo
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Mauro Centritto
- Institute for Sustainable Pant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|
8
|
Li H, Li J, Zhang X, Shi T, Chai X, Hou P, Wang Y. Mesophyll conductance, photoprotective process and optimal N partitioning are essential to the maintenance of photosynthesis at N deficient condition in a wheat yellow-green mutant (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153469. [PMID: 34252704 DOI: 10.1016/j.jplph.2021.153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The major effect of nitrogen (N) deficiency is the inhibition on CO2 assimilation regulated by light energy absorption, transport and conversion, as well as N allocation. In this study, a yellow-green wheat mutant (Jimai5265yg) and its wild type (Jimai5265, WT) were compared between 0 mM N (N0) and 14 mM N (N14) treatments using hydroponic experiments. The mutant exhibited higher photosynthetic efficiency (An) than WT despite low chlorophyll (Chl) content in non-stressed conditions. The photosynthetic advantages of the mutant were maintained under N deficient condition. The quantitative analysis of limitations to photosynthesis revealed that CO2 diffusion associated with mesophyll conductance (gm) was the dominant limitation. Relative easiness to gain CO2 in the chloroplast contributed to the higher An of Jimai5265yg. N deficiency induced the photoinhibition of PSII, but the cyclic electron transport and photochemical activity of PSI was higher in Jimai5265yg compared to Jimai5265, which was a protective mechanism to avoid photodamage. Because of the sharp drop of An, N deficient seedlings had much lower photosynthetic N use efficiency (PNUE). However, N deficiency increased the relative content of photosynthetic N (Npsn) and decreased the relative content of storage N (Nstore). The range of change in N partitioning induced by N deficiency was smaller for Jimai5265yg compared to WT. The less insensitive to N deficiency for the mutant in terms of photosynthetic property and N partitioning suggested that gm, cyclic electron transport around PSI and more optimal N partitioning pattern is necessary to sustain photosynthesis under N deficient condition.
Collapse
Affiliation(s)
- Hongxia Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Junjie Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xuhui Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tingrui Shi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xinyu Chai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peijia Hou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
9
|
Zhang FP, Feng JQ, Huang JL, Huang W, Fu XW, Hu H, Zhang SB. Floral Longevity of Paphiopedilum and Cypripedium Is Associated With Floral Morphology. FRONTIERS IN PLANT SCIENCE 2021; 12:637236. [PMID: 34135917 PMCID: PMC8200665 DOI: 10.3389/fpls.2021.637236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 06/02/2023]
Abstract
Floral longevity (FL) is an important trait influencing plant reproductive success by affecting the chance of insect pollination. However, it is still unclear which factors affect FL, and whether FL is evolutionarily associated with structural traits. Since construction costs and water loss by transpiration play a role in leaf longevity, we speculated that floral structures may affect the maintenance and loss of water in flowers and, therefore, FL. Here, we investigated the slipper orchid Paphiopedilum and Cypripedium, which are closely related, but strongly differ in their FL. To understand the evolutionary association of floral anatomical traits with FL, we used a phylogenetic independent comparative method to examine the relationships between 30 floral anatomical traits and FL in 18 species of Paphiopedilum and Cypripedium. Compared with Paphiopedilum species, Cypripedium species have lower values for floral traits related to drought tolerance and water retention capacity. Long FL was basically accompanied by the thicker epidermal and endodermal tissues of the floral stem, the thicker adaxial and abaxial epidermis of the flower, and low floral vein and stomatal densities. Vein density of the dorsal sepals and synsepals was negatively correlated with stomatal density. Our results supported the hypothesis that there was a correlation between FL and floral anatomical traits in slipper orchids. The ability to retain water in the flowers was associated with FL. These findings provide a new insight into the evolutionary association of floral traits with transpirational water loss for orchids under natural selection.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- Yunnan Key Laboratory of Dai and Yi Medicines, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing-Qiu Feng
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Lin Huang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yuxi Normal University, Yuxi, China
| | - Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xue-Wei Fu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Kitaoka S, Laiye Q, Watanabe Y, Watanabe M, Watanabe T, Koike T. Heterophyllous Shoots of Japanese Larch Trees: The Seasonal and Yearly Variation in CO 2 Assimilation Capacity of the Canopy Top with Changing Environment. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1278. [PMID: 32998352 PMCID: PMC7601333 DOI: 10.3390/plants9101278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/03/2022]
Abstract
Japanese larch (Larix kaempferi = L. leptolepis) is often characterized by its high growth rate with heterophyllous shoots, but the functional differences of heterophyllous shoots still remain unclear. Recently, abrupt high temperature and drought during spring induced high photosynthetic rate via change in leaf morphology of the deciduous habit. In order to reveal the photosynthetic characteristics of both short and long-shoot needles of sunny canopy of the larch trees using a canopy tower, we calculated the seasonal change of gas exchange characters and leaf mass per area (LMA) and foliar nitrogen content (N) of heterophyllous needles: short and long-shoot needles over 3 years. No marked difference in light-saturated photosynthetic rates (Psat) was observed between short and long shoots after leaf maturation to yellowing, although the difference was obvious in a specific year, which only shows that seasonal change in temperature and soil moisture determines the in situ photosynthetic capacity of needles. The large annual and seasonal variations in Psat in both shoots were found to be mainly determined by climatic variations, while shoot types determined the strategy of their photosynthetic N utilization as well as the stomatal regulation.
Collapse
Affiliation(s)
- Satoshi Kitaoka
- Faculty of Earth Environmental Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Qu Laiye
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yoko Watanabe
- Research Facultyof Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (Y.W.); (M.W.); (T.W.)
| | - Makoto Watanabe
- Research Facultyof Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (Y.W.); (M.W.); (T.W.)
- Institute of Agriculture, Tokyo University of Agriculture & Technology, Tokyo 183-8509, Japan
| | - Toshihiro Watanabe
- Research Facultyof Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (Y.W.); (M.W.); (T.W.)
| | - Takayoshi Koike
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Facultyof Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (Y.W.); (M.W.); (T.W.)
| |
Collapse
|
11
|
Flexas J, Carriquí M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant's phylogeny: lessons for improving crop photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:964-978. [PMID: 31833133 DOI: 10.1111/tpj.14651] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Photosynthesis is the basis of all life on Earth. Surprisingly, until very recently, data on photosynthesis, photosynthetic efficiencies, and photosynthesis limitations in terrestrial land plants other than spermatophytes were very scarce. Here we provide an updated data compilation showing that maximum photosynthesis rates (expressed either on an area or dry mass basis) progressively scale along the land plant's phylogeny, from lowest values in bryophytes to largest in angiosperms. Unexpectedly, both photosynthetic water (WUE) and nitrogen (PNUE) use efficiencies also scale positively through the phylogeny, for which it has been commonly reported that these two efficiencies tend to trade-off between them when comparing different genotypes or a single species subject to different environmental conditions. After providing experimental evidence that these observed trends are mostly due to an increased mesophyll conductance to CO2 - associated with specific anatomical changes - along the phylogeny, we discuss how these findings on a large phylogenetic scale can provide useful information to address potential photosynthetic improvements in crops in the near future.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
- School of Biological Sciences, University of Tasmania, Private Bag 51, 7001, Hobart, TAS, Australia
| |
Collapse
|
12
|
Hou W, Tränkner M, Lu J, Yan J, Huang S, Ren T, Cong R, Li X. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC PLANT BIOLOGY 2019; 19:302. [PMID: 31291890 PMCID: PMC6617825 DOI: 10.1186/s12870-019-1894-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/19/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Nitrogen (N) and potassium (K) are two important mineral nutrients in regulating leaf photosynthesis. Studying the interactive effects of N and K on regulating N allocation and photosynthesis (Pn) of rice leaves will be of great significance for further increasing leaf Pn, photosynthetic N use efficiency (PNUE) and grain yield. We measured the gas exchange of rice leaves in a field experiment and tested different kinds of leaf N based on N morphology and function, and calculated the interactive effects of N and K on N allocation and the PNUE. RESULTS Compared with N0 (0 kg N ha- 1) and K0 (0 kg K2O ha- 1) treatments, the Pn was increased by 17.1 and 12.2% with the supply of N and K. Compared with N0K0 (0 kg N and 0 kg K2O ha- 1), N0K120 (0 kg N and 120 kg K2O ha- 1) and N0K180 (0 kg N and 180 kg K2O ha- 1), N supply increased the absolute content of photosynthetic N (Npsn) by 15.1, 15.5 and 10.5% on average, and the storage N (Nstore) was increased by 32.7, 64.9 and 72.7% on average. The relative content of Npsn was decreased by 5.6, 12.1 and 14.5%, while that of Nstore was increased by 8.7, 27.8 and 33.8%. Supply of K promoted the transformation of Nstore to Npsn despite the leaf N content (Na) was indeed decreased. Compared with N0K0, N180K0 (180 kg N and 0 kg K2O ha- 1) and N270K0 (270 kg N and 0 kg K2O ha- 1), K supply increased the relative content of Npsn by 17.7, 8.8 and 7.3%, and decreased the relative content of Nstore by 24.2, 11.4 and 8.7% respectively. CONCLUSIONS This study indicated the mechanism that K supply decreased the Na but increased the Npsn content and then increased leaf Pn and PNUE from a new viewpoint of leaf N allocation. The supply of K promoted the transformation of Nstore to Npsn and increased the PNUE. The decreased Nstore mainly resulted from the decrease of non-protein N. Combined use of N and K could optimize leaf N allocation and maintain a high leaf Npsn content and PNUE.
Collapse
Affiliation(s)
- Wenfeng Hou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 China
| | - Merle Tränkner
- Department of Crop Sciences, Institute of Applied Plant Nutrition (IAPN), Georg-August-University Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Jianwei Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 China
| | - Jinyao Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 China
| | - Siyuan Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 China
| | - Tao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 China
| | - Rihuan Cong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 China
| | - Xiaokun Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 China
| |
Collapse
|
13
|
de Ávila Silva L, Condori-Apfata JA, Marcelino MM, Tavares ACA, Raimundi SCJ, Martino PB, Araújo WL, Zsögön A, Sulpice R, Nunes-Nesi A. Nitrogen differentially modulates photosynthesis, carbon allocation and yield related traits in two contrasting Capsicum chinense cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:224-237. [PMID: 31128692 DOI: 10.1016/j.plantsci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 05/24/2023]
Abstract
Yield-related traits of Capsicum chinense are highly dependent on coordination between vegetative and reproductive growth, since the formation of reproductive tissues occurs iteratively in new sympodial bifurcations. In this study, we used two C. chinense cultivars (Biquinho and Habanero), contrasting for fruit size and fruit set, to investigate the responses of nitrogen (N) deficiency and excess on growth, photosynthesis, carbon (C) and N metabolisms as well as yield-related traits. Both cultivars increased biomass allocation to leaves in conditions of higher N supply and exhibited a parabolic behavior for fruit biomass allocation. Plants growing under N-deficiency produced a lower number of flowers and heavier fruits. Contrarily, plants under high N condition tended to decrease their CO2 assimilation rate, harvest index and fruit weight. Biquinho, the cultivar with lower fruit size and higher fruit set, was initially less affected by excess of N due to its continuous formation of new reproductive sinks in relation to Habanero (which has lower fruit set and higher fruit size). The results suggest that N amount influences sucrose supply to different organs and can differentially affect yield-related traits between Capsicum cultivars with contrasting source-sink relations.
Collapse
Affiliation(s)
- Lucas de Ávila Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Mariana Marques Marcelino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ana C Azevedo Tavares
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Sábata C Januário Raimundi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Pedro Brandão Martino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Ryan Institute, Ireland
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Burnett AC, Rogers A, Rees M, Osborne CP. Nutrient sink limitation constrains growth in two barley species with contrasting growth strategies. PLANT DIRECT 2018; 2:e00094. [PMID: 31245695 PMCID: PMC6508780 DOI: 10.1002/pld3.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 05/06/2023]
Abstract
Mineral nutrients exert important limitations on plant growth. Growth is limited by the nutrient source when it is constrained by nutrient availability and uptake, which may simultaneously limit investment in photosynthetic proteins, leading to carbon source limitation. However, growth may also be limited by nutrient utilization in sink tissue. The relative importance of these processes is contested, with crop and vegetation models typically assuming source limitations of carbon and mineral nutrients (especially nitrogen). This study compared the importance of source and sink limitation on growth in a slower-growing wild perennial barley (Hordeum bulbosum) and a faster-growing domesticated annual barley (Hordeum vulgare), by applying a mineral nutrient treatment and measuring nitrogen uptake, growth, allocation, and carbon partitioning. We found that nitrogen uptake, growth, tillering, shoot allocation, and nitrogen storage were restricted by low nutrient treatments. Multiple lines of evidence suggest that low nutrient levels do not limit growth via carbon acquisition: (a) Carbohydrate storage does not increase at high nutrient levels. (b) Ratio of free amino acids to sucrose increases at high nutrient levels. (c) Shoot allocation increases at high nutrient levels. These data indicate that barley productivity is limited by the capacity for nutrient use in growth. Models must explicitly account for sink processes in order to properly simulate this mineral nutrient limitation of growth.
Collapse
Affiliation(s)
- Angela C. Burnett
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
- Present address:
Environmental and Climate Sciences DepartmentBrookhaven National LaboratoryUptonNew York11973
| | - Alistair Rogers
- Environmental and Climate Sciences DepartmentBrookhaven National LaboratoryUptonNew York
| | - Mark Rees
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Colin P. Osborne
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
15
|
Liu N, Wu S, Guo Q, Wang J, Cao C, Wang J. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1026-1034. [PMID: 29801198 DOI: 10.1016/j.scitotenv.2018.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (Amax), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased Amax, PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs.
Collapse
Affiliation(s)
- Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Shuhua Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qinfeng Guo
- USDA FS, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC 27709, USA
| | - Jiaxin Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
16
|
Liu N, Wang J, Guo Q, Wu S, Rao X, Cai X, Lin Z. Alterations in leaf nitrogen metabolism indicated the structural changes of subtropical forest by canopy addition of nitrogen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:134-143. [PMID: 29800880 DOI: 10.1016/j.ecoenv.2018.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Globally, nitrogen deposition increment has caused forest structural changes due to imbalanced plant nitrogen metabolism and subsequent carbon assimilation. Here, a 2 consecutive-year experiment was conducted to reveal the effects of canopy addition of nitrogen (CAN) on nitrogen absorption, assimilation, and allocation in leaves of three subtropical forest woody species (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that CAN altered leaf nitrogen absorption, assimilation and partitioning of different plants in different ways in subtropical forest. It shows that CAN increased maximum photosynthetic rate (Amax), photosynthetic nitrogen use efficiency (PNUE), and metabolic protein content of the two understory species A. quinquegona and B. cochinchinensis. By contrary, for the overstory species, C. henryi, Amax, PNUE, and metabolic protein content were significantly reduced in response to CAN. We found that changes in leaf nitrogen metabolism were mainly due to the differences in enzyme (e.g. Ribulose-1,5-bisphosphate carboxylase, nitrate reductase, nitrite reductase and glutamine synthetase) activities under CAN treatment. Our results indicated that C. henryi may be more susceptible to CAN treatment, and both A. quinquegona and B. cochinchinensis could better adapt to CAN treatment but in different ways. Our findings may partially explain the ongoing degradation of subtropical forest into a community dominated by small trees and shrubs in recent decades. It is possible that persistent high levels of atmospheric nitrogen deposition will lead to the steady replacement of dominant woody species in this subtropical forest.
Collapse
Affiliation(s)
- Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jiaxin Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qinfeng Guo
- USDA FS, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC 27709, USA
| | - Shuhua Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingquan Rao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xi'an Cai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhifang Lin
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
Bahar NHA, Hayes L, Scafaro AP, Atkin OK, Evans JR. Mesophyll conductance does not contribute to greater photosynthetic rate per unit nitrogen in temperate compared with tropical evergreen wet-forest tree leaves. THE NEW PHYTOLOGIST 2018; 218:492-505. [PMID: 29436710 DOI: 10.1111/nph.15031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/23/2017] [Indexed: 05/26/2023]
Abstract
Globally, trees originating from high-rainfall tropical regions typically exhibit lower rates of light-saturated net CO2 assimilation (A) compared with those from high-rainfall temperate environments, when measured at a common temperature. One factor that has been suggested to contribute towards lower rates of A is lower mesophyll conductance. Using a combination of leaf gas exchange and carbon isotope discrimination measurements, we estimated mesophyll conductance (gm ) of several Australian tropical and temperate wet-forest trees, grown in a common environment. Maximum Rubisco carboxylation capacity, Vcmax , was obtained from CO2 response curves. gm and the drawdown of CO2 across the mesophyll were both relatively constant. Vcmax estimated on the basis of intercellular CO2 partial pressure, Ci , was equivalent to that estimated using chloroplastic CO2 partial pressure, Cc , using 'apparent' and 'true' Rubisco Michaelis-Menten constants, respectively Having ruled out gm as a possible factor in distorting variations in A between these tropical and temperate trees, attention now needs to be focused on obtaining more detailed information about Rubisco in these species.
Collapse
Affiliation(s)
- Nur H A Bahar
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Lucy Hayes
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. GLOBAL CHANGE BIOLOGY 2017; 23:3513-3524. [PMID: 27976452 DOI: 10.1111/gcb.13599] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 05/18/2023]
Abstract
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013-2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf ) and canopy structure. Leaf nitrogen (NArea ) was also measured during 2014. Leaf photosynthesis was measured during 2014-2015 using a Li-6400 gas-exchange system, with A-Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C (Vcmax25) and NArea (R2 = 0.62, P < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with Vcmax25 (R2 = 0.78, P < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, P < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of Vcmax25 was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf . TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea -Vcmax25 relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for Vcmax25 and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.
Collapse
Affiliation(s)
- Holly Croft
- University of Toronto, Department of Geography, Toronto, ON, M5S 3G3, Canada
| | - Jing M Chen
- University of Toronto, Department of Geography, Toronto, ON, M5S 3G3, Canada
| | - Xiangzhong Luo
- University of Toronto, Department of Geography, Toronto, ON, M5S 3G3, Canada
| | - Paul Bartlett
- Climate Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Bin Chen
- University of Toronto, Department of Geography, Toronto, ON, M5S 3G3, Canada
- International Institute for Earth System Science, Nanjing University, Nanjing, China
| | - Ralf M Staebler
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada
| |
Collapse
|
19
|
Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. Physiological and structural tradeoffs underlying the leaf economics spectrum. THE NEW PHYTOLOGIST 2017; 214:1447-1463. [PMID: 28295374 DOI: 10.1111/nph.14496] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/23/2017] [Indexed: 05/18/2023]
Abstract
The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18-70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.
Collapse
Affiliation(s)
- Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kaoru Kitajima
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
20
|
Interactive effects of rising CO2 and elevated nitrogen and phosphorus on nitrogen allocation in invasive weeds Mikania micrantha and Chromolaena odorata. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1089-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
He M, Song X, Tian F, Zhang K, Zhang Z, Chen N, Li X. Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert. Sci Rep 2016; 6:20124. [PMID: 26818575 PMCID: PMC4730183 DOI: 10.1038/srep20124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions.
Collapse
Affiliation(s)
- Mingzhu He
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Xin Song
- Department of Environmental Sciences, Centre for Carbon, Water and Food, The University of Sydney, Camden, NSW 2570, Australia
| | - Fuping Tian
- The Lanzhou Scientific Observation and Experiment Field Station of Ministry of Agriculture for Ecological System in the Loess Plateau Area, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Ke Zhang
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Zhishan Zhang
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Ning Chen
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
22
|
Niinemets Ü. Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of Responses. CANOPY PHOTOSYNTHESIS: FROM BASICS TO APPLICATIONS 2016. [DOI: 10.1007/978-94-017-7291-4_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
|
24
|
Singh V, Gupta S, Singh H, Raghubanshi AS. Ecophysiological characteristics of five weeds and a wheat crop in the Indo-Gangetic Plains, India. WEED BIOLOGY AND MANAGEMENT 2015; 15:102-112. [PMID: 32834774 PMCID: PMC7169674 DOI: 10.1111/wbm.12073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 05/04/2015] [Indexed: 06/11/2023]
Abstract
The objective of this research was to compare selected ecophysiological parameters for a wheat crop found in the Indo-Gangetic Plains of India and its five dominant weeds. The dominant and regionally ubiquitous weeds in the wheat field that was selected for the study were Anagallis arvensis, Chenopodium album, Melilotus albus, Phalaris minor and Rumex dentatus. Taller weeds, such as C. album and P. minor, constituted one group along with the crop, with a low photosynthetic rate, specific leaf area, leaf nitrogen mass basis, chlorophyll content, photosynthetic nitrogen-use efficiency and leaf area ratio, in comparison to shorter weeds, such as A. arvensis, M. albus and R. dentatus, which formed another group with a high photosynthetic rate, specific leaf area, leaf nitrogen mass basis, chlorophyll content, photosynthetic nitrogen-use efficiency and leaf area ratio. Interspecific variations in the photosynthetic rate were driven mainly by variability in the specific leaf area and leaf nitrogen content. The taller weeds and the crop had a low specific leaf area later in the season, whereas the smaller weeds had a relatively high specific leaf area, which might be an adaptation to the shaded environment below the canopy. The result indicates that any weed management in the wheat fields of the Indo-Gangetic Plains will need two different approaches because of the different strategies followed by the two weed groups that were identified in the present study.
Collapse
Affiliation(s)
- Vartika Singh
- Ecosystems Analysis LaboratoryBanaras Hindu UniversityVaranasiIndia
| | - Sweta Gupta
- Ecosystems Analysis LaboratoryBanaras Hindu UniversityVaranasiIndia
| | - Hema Singh
- Ecosystems Analysis LaboratoryBanaras Hindu UniversityVaranasiIndia
| | | |
Collapse
|
25
|
Niinemets Ü, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. THE NEW PHYTOLOGIST 2015; 205:973-993. [PMID: 25318596 PMCID: PMC5818144 DOI: 10.1111/nph.13096] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/04/2014] [Indexed: 05/19/2023]
Abstract
Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation.
Collapse
Affiliation(s)
- Ülo Niinemets
- Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
- Corresponding Author, , Tel: +372 53457189
| | - Trevor F. Keenan
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Lea Hallik
- Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
- Tartu Observatory, Tõravere, 61602, Estonia
| |
Collapse
|
26
|
Houter NC, Pons TL. Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement. Oecologia 2014; 175:37-50. [DOI: 10.1007/s00442-014-2887-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/11/2014] [Indexed: 11/24/2022]
|
27
|
Kitao M, Kitaoka S, Komatsu M, Utsugi H, Tobita H, Koike T, Maruyama Y. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. PHYSIOLOGIA PLANTARUM 2012; 146:192-204. [PMID: 22394101 DOI: 10.1111/j.1399-3054.2012.01609.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigated the morphological and physiological acclimation of leaves grown within a canopy of Japanese oak tree (Quercus mongolica var. crispula) in terms of the susceptibility to photoinhibition under various growth light conditions. The maximum rates of photosynthesis (P(max)) and electron transport (ETR(max)) were higher in mature leaves grown under stronger light with higher area-based leaf nitrogen (N) content closely associated with higher leaf mass per area. The net photosynthetic (P(n)) and electron transport (ETR) rates corresponding to the daily peak photosynthetic photon flux density (PPFD(max)) during leaf maturation were almost comparable to P(max) and ETR(max), respectively. Conversely, P(n) and ETR at the daily average PPFD (PPFD(avg)) were substantially low in shade-grown leaves when compared with P(max) and ETR(max). The susceptibility to photoinhibition at PPFD(max), i.e. at sunflecks for the shade-grown leaves, was assessed by the rate of excess energy production. Although sun leaves showed higher rates of electron transport and thermal energy dissipation than shade leaves under PPFD(max) conditions, the rate of excess energy production was almost constant across shade to sun leaves. The shade leaves of the Japanese oak grown within a crown were suggested to adjust their N investment to maintain higher photosynthetic capacities compared with those required to maximize the net carbon gain, which may facilitate the dissipation of the excessive light energy of sunflecks to circumvent photoinhibition in cooperation with thermal energy dissipation.
Collapse
Affiliation(s)
- Mitsutoshi Kitao
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba 305-8687, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Qing H, Cai Y, Xiao Y, Yao Y, An S. Leaf nitrogen partition between photosynthesis and structural defense in invasive and native tall form Spartina alterniflora populations: effects of nitrogen treatments. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0210-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Houter NC, Pons TL. Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement. Oecologia 2011; 169:33-45. [PMID: 22038060 PMCID: PMC3338326 DOI: 10.1007/s00442-011-2175-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 10/11/2011] [Indexed: 11/26/2022]
Abstract
Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species’ gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.
Collapse
Affiliation(s)
- Nico C. Houter
- Department Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3508 CH Utrecht, The Netherlands
| | - Thijs L. Pons
- Department Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3508 CH Utrecht, The Netherlands
| |
Collapse
|
30
|
Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biol Invasions 2011. [DOI: 10.1007/s10530-011-9985-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Yoshimura K. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis. PLANT, CELL & ENVIRONMENT 2010; 33:750-758. [PMID: 20519020 DOI: 10.1111/j.1365-3040.2009.02100.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown-level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) content and light-saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.
Collapse
Affiliation(s)
- Kenichi Yoshimura
- Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
32
|
Nagano S, Nakano T, Hikosaka K, Maruta E. Needle traits of an evergreen, coniferous shrub growing at wind-exposed and protected sites in a mountain region: does Pinus pumila produce needles with greater mass per area under wind-stress conditions? PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11 Suppl 1:94-100. [PMID: 19778373 DOI: 10.1111/j.1438-8677.2009.00253.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Snow depth is one of the most important determinants of vegetation, especially in mountainous regions. In such regions, snow depth tends to be low at wind-exposed sites such as ridges, where stand height and productivity are limited by stressful environmental conditions during winter. Siberian dwarf pine (Pinus pumila Regel) is a dominant species in mountainous regions of Japan. We hypothesized that P. pumila produces needles with greater mass per area at wind-exposed sites than at wind-protected sites because it invests more nitrogen (N) in cell walls at the expense of N investment in the photosynthetic apparatus, resulting in increased photosynthetic N use efficiency (PNUE). Contrary to our hypothesis, plants at wind-exposed site invested less resources in needles, as exhibited by lower biomass, N, Rubisco and cell wall mass per unit area, and had higher photosynthetic capacity, higher PNUE and shorter needle life-span than plants at a wind-protected site. N partitioning was not significantly different between sites. These results suggest that P. pumila at wind-exposed sites produces needles at low cost with high productivity to compensate for a short leaf life-span, which may be imposed by wind stress when needles appear above the snow surface in winter.
Collapse
Affiliation(s)
- S Nagano
- Faculty of Science, Toho University, Funabashi, Japan.
| | | | | | | |
Collapse
|
33
|
Muller O, Oguchi R, Hirose T, Werger MJA, Hikosaka K. The leaf anatomy of a broad-leaved evergreen allows an increase in leaf nitrogen content in winter. PHYSIOLOGIA PLANTARUM 2009; 136:299-309. [PMID: 19453499 DOI: 10.1111/j.1399-3054.2009.01224.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In temperate regions, evergreen species are exposed to large seasonal changes in air temperature and irradiance. They change photosynthetic characteristics of leaves responding to such environmental changes. Recent studies have suggested that photosynthetic acclimation is strongly constrained by leaf anatomy such as leaf thickness, mesophyll and chloroplast surface facing the intercellular space, and the chloroplast volume. We studied how these parameters of leaf anatomy are related with photosynthetic seasonal acclimation. We evaluated differential effects of winter and summer irradiance on leaf anatomy and photosynthesis. Using a broad-leaved evergreen Aucuba japonica, we performed a transfer experiment in which irradiance regimes were changed at the beginning of autumn and of spring. We found that a vacant space on mesophyll surface in summer enabled chloroplast volume to increase in winter. The leaf nitrogen and Rubisco content were higher in winter than in summer. They were correlated significantly with chloroplast volume and with chloroplast surface area facing the intercellular space. Thus, summer leaves were thicker than needed to accommodate mesophyll surface chloroplasts at this time of year but this allowed for increases in mesophyll surface chloroplasts in the winter. It appears that summer leaf anatomical characteristics help facilitate photosynthetic acclimation to winter conditions. Photosynthetic capacity and photosynthetic nitrogen use efficiency were lower in winter than in summer but it appears that these reductions were partially compensated by higher Rubisco contents and mesophyll surface chloroplast area in winter foliage.
Collapse
Affiliation(s)
- Onno Muller
- Graduate school of Life Sciences, Tohoku University, Aoba Sendai 980-8578, Japan.
| | | | | | | | | |
Collapse
|
34
|
Plant biodiversity in a larch plantation from the view point of photosynthetic nitrogen use efficiency in northeast China. LANDSCAPE AND ECOLOGICAL ENGINEERING 2009. [DOI: 10.1007/s11355-009-0066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Hikosaka K, Shigeno A. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 2009; 160:443-51. [DOI: 10.1007/s00442-009-1315-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 02/18/2009] [Indexed: 11/28/2022]
|
36
|
Harrison MT, Edwards EJ, Farquhar GD, Nicotra AB, Evans JR. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. PLANT, CELL & ENVIRONMENT 2009; 32:259-270. [PMID: 19054350 DOI: 10.1111/j.1365-3040.2008.01918.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photosynthetic rate per unit nitrogen generally declines as leaf mass per unit area (LMA) increases. To determine how much of this decline was associated with allocating a greater proportion of leaf nitrogen into cell wall material, we compared two groups of plants. The first group consisted of two species from each of eight genera, all of which were perennial evergreens growing in the Australian National Botanic Gardens (ANBG). The second group consisted of seven Eucalyptus species growing in a greenhouse. The percentage of leaf biomass in cell walls was independent of variation in LMA within any genus, but varied from 25 to 65% between genera. The nitrogen concentration of cell wall material was 0.4 times leaf nitrogen concentration for all species apart from Eucalyptus, which was 0.6 times leaf nitrogen concentration. Between 10 and 30% of leaf nitrogen was recovered in the cell wall fraction, but this was independent of LMA. No trade-off was observed between nitrogen associated with cell walls and the nitrogen allocated to ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco). Variation in photosynthetic rate per unit nitrogen could not be explained by variation in cell wall nitrogen.
Collapse
Affiliation(s)
- Matthew T Harrison
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
37
|
Mitamura M, Yamamura Y, Nakano T. Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant conifer, Abies veitchii. TREE PHYSIOLOGY 2009; 29:137-145. [PMID: 19203939 DOI: 10.1093/treephys/tpn014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although the environmental change by canopy gap formation in a forest improves the light availability for the saplings on the forest floor, it may result in stresses on the saplings due to high radiation and drought. In large-scale gaps, the photosynthesis of shade-tolerant species may be inhibited by high radiation and drought stress if they lack effective tolerance or avoidance mechanisms for the stresses. We investigated the photosynthetic traits and water relations of Abies veitchii Lindl. saplings in an open habitat created by an avalanche and in a nearby forest floor habitat undisturbed by the avalanche. We analyzed the influence of exposed conditions on sapling photosynthesis. The maximum photosynthetic rate of the saplings in the open habitat was lower than that in the forest habitat. The ratio of variable to maximum chlorophyll fluorescence (F(v)/F(m)) was lower in the open habitat than that in the forest habitat during the late growing season, indicating that the open habitat saplings suffer photoinhibition of photosystem II for a long period. A lower Rubisco concentration in needles in the open habitat indicated the breakdown of this photosynthetic protein because of excess solar energy resulting from serious photoinhibition. The shoot water potential of the saplings in the open habitat at daytime was higher than that of the saplings in the forest habitat because of less transpiration caused by the remarkable stomatal closure in the open habitat. Although these acclimations to high radiation improve the tolerance of A. veitchii saplings to high radiation and drought stress, they would result in low gain of daily carbon and a reduction in growth in the open habitat.
Collapse
Affiliation(s)
- Masako Mitamura
- Laboratory of Ecology, Faculty of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512, Japan.
| | | | | |
Collapse
|
38
|
Mediavilla S, Garcia-Ciudad A, Garcia-Criado B, Escudero A. Testing the correlations between leaf life span and leaf structural reinforcement in 13 species of European Mediterranean woody plants. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01453.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Escudero A, Mediavilla S, Heilmeier H. Leaf longevity and drought: avoidance of the costs and risks of early leaf abscission as inferred from the leaf carbon isotopic composition. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:705-713. [PMID: 32688824 DOI: 10.1071/fp08037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 07/25/2008] [Indexed: 06/11/2023]
Abstract
Plant species with longer leaf longevity tend to maintain lower photosynthetic rates. Among other factors, differences in stomatal limitation have been proposed to explain the negative effects of leaf longevity on photosynthesis, although it is not yet clear why stomatal limitations should be stronger in species with longer leaf longevity. We measured carbon isotopic composition (δ13C) in the fresh leaf litter of several Mediterranean woody species to estimate the mean stomatal limitations during the photosynthetically active part of the leaf life. Interspecific differences in δ13C were best explained by a multiple regression including, as independent variables, the maximum leaf longevity and the annual water deficit. For a similar level of water availability, stomatal limitations were higher in species with longer leaf longevity. We hypothesise that stronger stomatal control of transpiration in longer-living leaves arose as a mechanism to reduce the risk of leaf desiccation and to avoid the high costs for the future C assimilation of anticipated leaf mortality in species with a long leaf life expectancy. This stronger sensitivity to drought should be added to the suite of traits accompanying long leaf longevity and contributes decisively to the overall limitations to C assimilation in long-lived leaves.
Collapse
Affiliation(s)
- Alfonso Escudero
- Departamento de Ecología, Universidad de Salamanca, E-37071 Salamanca, Spain
| | - Sonia Mediavilla
- Departamento de Ecología, Universidad de Salamanca, E-37071 Salamanca, Spain
| | - Hermann Heilmeier
- AG Biologie/Ökologie, Interdisziplinäres Ökologisches Zentrum, TU Bergakademie Freiberg, D-09599 Freiberg, Germany
| |
Collapse
|
40
|
Osone Y, Ishida A, Tateno M. Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. THE NEW PHYTOLOGIST 2008; 179:417-427. [PMID: 19086290 PMCID: PMC7192335 DOI: 10.1111/j.1469-8137.2008.02476.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/15/2008] [Indexed: 05/10/2023]
Abstract
Close correlations between specific leaf area (SLA) and relative growth rate (RGR) have been reported in many studies. However, theoretically, SLA by itself has small net positive effect on RGR because any increase in SLA inevitably causes a decrease in area-based leaf nitrogen concentration (LNCa), another RGR component. It was hypothesized that, for a correlation between SLA and RGR, SLA needs to be associated with specific nitrogen absorption rate of roots (SAR), which counteracts the negative effect of SLA on LNCa. Five trees and six herbs were grown under optimal conditions and relationships between SAR and RGR components were analyzed using a model based on balanced growth hypothesis. SLA varied 1.9-fold between species. Simulations predicted that, if SAR is not associated with SLA, this variation in SLA would cause a47% decrease in LNCa along the SLA gradient, leading to a marginal net positive effect on RGR. In reality, SAR was positively related to SLA, showing a 3.9-fold variation, which largely compensated for the negative effect of SLA on LNCa. Consequently, LNCa values were almost constant across species and a positive SLA-RGR relationship was achieved. These results highlight the importance of leaf-root interactions in understanding interspecific differences in RGR.
Collapse
Affiliation(s)
- Yoko Osone
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
- Department of Natural Science, International Christian University, Osawa 3-10-2, Mitaka, Tokyo 181-8585, Japan
| | - Atsushi Ishida
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Masaki Tateno
- Nikko Botanical Garden, Graduate school of science, University of Tokyo, Nikko, Tochigi 321-1435, Japan
| |
Collapse
|
41
|
Matsumoto Y, Oikawa S, Yasumura Y, Hirose T, Hikosaka K. Reproductive yield of individuals competing for light in a dense stand of an annual, Xanthium canadense. Oecologia 2008; 157:185-95. [PMID: 18535841 DOI: 10.1007/s00442-008-1062-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/24/2008] [Indexed: 11/25/2022]
Abstract
In a dense stand, individuals compete with each other for resources, especially for light. Light availability decreases with increasing depth in the canopy, thus light competition becoming stronger with time in the vegetative phase. In the reproductive phase, on the other hand, leaves start senescing, and the light environment, particularly of smaller individuals, will be improved. To study the effect of change in light climate on reproduction of individuals, we established an experimental stand of an annual, Xanthium canadense, and assessed temporal changes in whole plant photosynthesis through the reproductive phase with particular reference to light availability of individuals. At flowering, 83% of individuals were still alive, but only 27% survived to set seeds. Most of the individuals that died in the reproductive phase were smaller than those that produced seeds. Individuals that died at the early stage of the reproductive phase had a lower leaf to stem mass ratio, suggesting that the fate of individuals was determined partly by the pattern of biomass allocation in this period. At the early stage of the reproductive phase, leaf area index (LAI) of the stand was high and larger individuals had higher whole plant photosynthesis than smaller individuals. Although light availability at later stages was improved with reduction in LAI, whole plant photosynthesis was very low in all individuals due to a lower light use efficiency, which was caused by a decrease in photosynthetic N use efficiency. We conclude that light competition was still strong at the early stage of the reproductive phase and that later improvement of light availability did not ameliorate the photosynthesis of smaller individuals.
Collapse
Affiliation(s)
- Yosuke Matsumoto
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | | | | | | | | |
Collapse
|
42
|
Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H. Mesophyll conductance to CO2: current knowledge and future prospects. PLANT, CELL & ENVIRONMENT 2008; 31:602-21. [PMID: 17996013 DOI: 10.1111/j.1365-3040.2007.01757.x] [Citation(s) in RCA: 559] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During photosynthesis, CO2 moves from the atmosphere (C(a)) surrounding the leaf to the sub-stomatal internal cavities (C(i)) through stomata, and from there to the site of carboxylation inside the chloroplast stroma (C(c)) through the leaf mesophyll. The latter CO2 diffusion component is called mesophyll conductance (g(m)), and can be divided in at least three components, that is, conductance through intercellular air spaces (g(ias)), through cell wall (g(w)) and through the liquid phase inside cells (g(liq)). A large body of evidence has accumulated in the past two decades indicating that g(m) is sufficiently small as to significantly decrease C(c) relative to C(i), therefore limiting photosynthesis. Moreover, g(m) is not constant, and it changes among species and in response to environmental factors. In addition, there is now evidence that g(liq) and, in some cases, g(w), are the main determinants of g(m). Mesophyll conductance is very dynamic, changing in response to environmental variables as rapid or even faster than stomatal conductance (i.e. within seconds to minutes). A revision of current knowledge on g(m) is presented. Firstly, a historical perspective is given, highlighting the founding works and methods, followed by a re-examination of the range of variation of g(m) among plant species and functional groups, and a revision of the responses of g(m) to different external (biotic and abiotic) and internal (developmental, structural and metabolic) factors. The possible physiological bases for g(m), including aquaporins and carbonic anhydrases, are discussed. Possible ecological implications for variable g(m) are indicated, and the errors induced by neglecting g(m) when interpreting photosynthesis and carbon isotope discrimination models are highlighted. Finally, a series of research priorities for the near future are proposed.
Collapse
Affiliation(s)
- Jaume Flexas
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain.
| | | | | | | | | |
Collapse
|
43
|
Bai E, Boutton TW, Liu F, Wu XB, Archer SR. Variation in woody plant delta(13)C along a topoedaphic gradient in a subtropical savanna parkland. Oecologia 2008; 156:479-89. [PMID: 18327619 DOI: 10.1007/s00442-008-1003-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
delta(13)C values of C(3) plants are indicators of plant carbon-water relations that integrate plant responses to environmental conditions. However, few studies have quantified spatial variation in plant delta(13)C at the landscape scale. We determined variation in leaf delta(13)C, leaf nitrogen per leaf area (N(area)), and specific leaf area (SLA) in April and August 2005 for all individuals of three common woody species within a 308 x 12-m belt transect spanning an upland-lowland topoedaphic gradient in a subtropical savanna in southern Texas. Clay content, available soil moisture, and soil total N were all negatively correlated with elevation. The delta(13)C values of Prosopis glandulosa (deciduous N(2)-fixing tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) leaves increased 1-4 per thousand with decreasing elevation, with the delta(13)C value of P. glandulosa leaves being 1-3 per thousand higher than those of the two shrub species. Contrary to theory and results from previous studies, delta(13)C values were highest where soil water was most available, suggesting that some other variable was overriding or interacting with water availability. Leaf N(area) was positively correlated with leaf delta(13)C of all species (p < 0.01) and appeared to exert the strongest control over delta(13)C along this topoedaphic gradient. Since leaf N(area) is positively related to photosynthetic capacity, plants with high leaf N(area) are likely to have low p (I)/p (a) ratios and therefore higher delta(13)C values, assuming stomatal conductance is constant. Specific leaf area was not correlated significantly with leaf delta(13)C. Following a progressive growing season drought in July/August, leaf delta(13)C decreased. The lower delta(13)C in August may reflect the accumulation of (13)C-depleted epicuticular leaf wax. We suggest control of leaf delta(13)C along this topoedaphic gradient is mediated by leaf N(area) rather than by stomatal conductance limitations associated with water availability.
Collapse
Affiliation(s)
- Edith Bai
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843-2138, USA.
| | | | | | | | | |
Collapse
|
44
|
Feng YL. Nitrogen allocation and partitioning in invasive and native Eupatorium species. PHYSIOLOGIA PLANTARUM 2008; 132:350-358. [PMID: 18275466 DOI: 10.1111/j.1399-3054.2007.01019.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There is a trade-off between nitrogen (N) allocation to photosynthesis and to defence. Invasive species may reduce N allocation to defence because of the absence of natural enemies. Thus, I hypothesised that invasive species may allocate a higher fraction of total leaf N to photosynthesis and have higher light-saturated photosynthetic rate (P(max)) and photosynthetic N-use efficiency (PNUE) than closely related native species. To test these hypotheses, invasive Eupatorium adenophorum and native E. chinense and E. heterophyllum were compared in a limestone shrub. Unlike expectation, the invader did not allocate a higher fraction of leaf N to photosynthesis than the natives. However, it was more efficient in photosynthetic N partitioning than the natives. It partitioned a higher fraction of the photosynthetic N to carboxylation and showed higher use efficiency of the photosynthetic N, while the natives partitioned a higher fraction of the photosynthetic N to light-harvesting components. Total leaf N content was not significantly different among the three studied invasive and native species. For the invader, the higher fraction of leaf N allocated to carboxylation resulted in the higher N content in carboxylation and in both carboxylation and bioenergetics, which led to higher P(max), and therefore to higher PNUE, water-use efficiency, respiration efficiency and apparent quantum yield. These physiological advantages of the invader and its higher leaf area ratio may contribute to its invasiveness.
Collapse
Affiliation(s)
- Yu-Long Feng
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan Province 650223, China.
| |
Collapse
|
45
|
Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. JOURNAL OF TROPICAL ECOLOGY 2008. [DOI: 10.1017/s0266467407004725] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:The relationship between leaf longevity and other leaf traits was compared among different life-form categories (trees, herbs, climbers and epiphytes) of 101 plant species in a tropical montane forest on Mt. Halimun, West Java, Indonesia. We applied the Cox proportional hazards regression to estimate the leaf longevity of each species from 30 mo of census data. We examined whether estimated longevity was explained by either species life-form categories, taxonomic groupings (eudicots, monocots, magnoliids and chloranthales, and ferns) or such leaf traits as leaf area, leaf mass per area (LMA), mass-based leaf nitrogen, penetrometer reading, condensed-tannin-free total phenolics and condensed tannin. There was a wide-ranged interspecific variation in leaf longevity, mostly 10–50 mo, similarly across life-form categories. LMA showed a strong positive influence on leaf longevity. We found that relationships between leaf longevity and some leaf traits were different among various life forms. Trees tended to have high LMA, while climbers tended to have low LMA at the same leaf longevity. We hypothesize that such difference among life forms reflects shoot architecture characteristics. Multi-shoot trees with branching architecture need to have self-supporting leaves, whereas semi-epiphytic climbers can maintain relatively low biomass investment to leaves hanging or relying upon the mechanical support from host plants.
Collapse
|
46
|
Kanemura T, Homma K, Ohsumi A, Shiraiwa T, Horie T. Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. PHOTOSYNTHESIS RESEARCH 2007; 94:23-30. [PMID: 17659450 DOI: 10.1007/s11120-007-9208-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 05/28/2007] [Indexed: 05/08/2023]
Abstract
In order to evaluate genotypic variation, we measured leaf photosynthetic rate (Pn) and its associated factors for the rice diversity research set of germplasm (RDRS) selected from the Genebank in National Institute of Agrobiological Sciences (NIAS). Pn showed large genotypic variation from 11.9 to 32.1 micromol m(-2 )s(-1). The variation in stomatal conductance to CO2 (Gs) explained about 50% of that in Pn, while that in nitrogen concentration (N) in leaves explained about 35%. The genotype group which mainly consists of aus type indica tended to have higher Gs, and the genotype group which corresponds to japonica had a higher nitrogen concentration (N) in leaves. The relationships of Pn with Gs and N were not significantly different among genotype groups, suggesting photosynthetic efficiencies are similar among genotype groups.
Collapse
Affiliation(s)
- Tomomi Kanemura
- Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
47
|
Niinemets U, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F. Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. ANNALS OF BOTANY 2007; 100:283-303. [PMID: 17586597 PMCID: PMC2735320 DOI: 10.1093/aob/mcm107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. METHODS The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. KEY RESULTS For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. CONCLUSIONS These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs.
Collapse
Affiliation(s)
- Ulo Niinemets
- Department of Plant Physiology, University of Tartu, Riia 23, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
48
|
Oguchi R, Hikosaka K, Hiura T, Hirose T. Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia 2006; 149:571-82. [PMID: 16832649 DOI: 10.1007/s00442-006-0485-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
The photosynthetic light acclimation of fully expanded leaves of tree seedlings in response to gap formation was studied with respect to anatomical and photosynthetic characteristics in a natural cool-temperate deciduous forest. Eight woody species of different functional groups were used; two species each from mid-successional canopy species (Kalopanax pictus and Magnolia obovata), from late-successional canopy species (Quercus crispula and Acer mono), from sub-canopy species (Acer japonicum and Fraxinus lanuginosa) and from vine species (Schizophragma hydrangeoides and Hydrangea petiolaris). The light-saturated rate of photosynthesis (Pmax) increased significantly after gap formation in six species other than vine species. Shade leaves of K. pictus, M. obovata and Q. crispula had vacant spaces along cell walls in mesophyll cells, where chloroplasts were absent. The vacant space was filled after the gap formation by increased chloroplast volume, which in turn increased Pmax. In two Acer species, an increase in the area of mesophyll cells facing the intercellular space enabled the leaves to increase Pmax after maturation. The two vine species did not significantly change their anatomical traits. Although the response and the mechanism of acclimation to light improvement varied from species to species, the increase in the area of chloroplast surface facing the intercellular space per unit leaf area accounted for most of the increase in Pmax, demonstrating the importance of leaf anatomy in increasing Pmax.
Collapse
Affiliation(s)
- R Oguchi
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
| | | | | | | |
Collapse
|
49
|
Noguchi K, Terashima I. Responses of spinach leaf mitochondria to low N availability. PLANT, CELL & ENVIRONMENT 2006; 29:710-9. [PMID: 17080620 DOI: 10.1111/j.1365-3040.2005.01457.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Low N availability induces carbohydrate accumulation in leaf cells, which often causes suppression of photosynthesis. Under low N supply, excess carbohydrates would be preferentially respired by the non-phosphorylating pathways, such as the alternative oxidase (AOX) and uncoupling protein (UCP), which would suppress the excessive increase in the ratio of C to N (C/N ratio). In leaves, however, responses of these pathways to the low N stress are still unknown. We examined the mitochondrial respiratory pathways in spinach leaves grown at three different N availabilities to clarify whether the respiratory pathways change depending on the N availabilities. With the decrease in N availability, leaf respiratory rates per leaf area decreased, but the rates on the leaf N basis were comparable. Using fumarase activities of whole leaf extracts and isolated mitochondria, we estimated mitochondrial protein contents per leaf N. The contents increased with the decrease in the N availability, that is, at the low N availability, N was preferentially invested into mitochondria. On the mitochondrial protein basis, capacities of cytochrome pathway (CP) and cytochrome c oxidase (COX) were comparable regardless of the N availabilities, whereas both AOX capacity and the amounts of AOX protein increased with the decrease in the N availability. Some enzymes of tricarboxylic acid (TCA) cycle, especially NAD-dependent malic enzyme (NAD-ME), showed higher capacities under lower N. On the other hand, amounts of UCP did not differ amongst the N availabilities. These results indicated that, under low N stress, AOX will be preferentially up-regulated and will efficiently consume excess carbohydrates, which leads to suppressing the rise in the C/N ratio to a moderate level.
Collapse
Affiliation(s)
- Ko Noguchi
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka, Osaka 560-0043, Japan.
| | | |
Collapse
|
50
|
Warren CR, Adams MA. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. PLANT, CELL & ENVIRONMENT 2006; 29:192-201. [PMID: 17080635 DOI: 10.1111/j.1365-3040.2005.01412.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Central paradigms of ecophysiology are that there are recognizable and even explicit and predictable patterns among species, genera, and life forms in the economics of water and nitrogen use in photosynthesis and in carbon isotope discrimination (delta). However most previous examinations have implicitly assumed an infinite internal conductance (gi) and/or that internal conductance scales with the biochemical capacity for photosynthesis. Examination of published data for 54 species and a detailed examination for three well-characterized species--Eucalyptus globulus, Pseudotsuga menziesii and Phaseolus vulgaris--show these assumptions to be incorrect. The reduction in concentration of CO2 between the substomatal cavity (Ci) and the site of carbon fixation (Cc) varies greatly among species. Photosynthesis does not scale perfectly with gi and there is a general trend for plants with low gi to have a larger draw-down from Ci to Cc, further confounding efforts to scale photosynthesis and other attributes with gi. Variation in the gi-photosynthesis relationship contributes to variation in photosynthetic 'use' efficiency of N (PNUE) and water (WUE). Delta is an information-rich signal, but for many species only about two-thirds of this information relates to A/gs with the remaining one-third related to A/gi. Using data for three well-studied species we demonstrate that at common WUE, delta may vary by up to 3 per thousand. This is as large or larger than is commonly reported in many interspecific comparisons of delta, and adds to previous warnings about simplistic interpretations of WUE based on delta. A priority for future research should be elucidation of relationships between gi and gs and how these vary in response to environmental conditions (e.g. soil water, leaf-to-air vapour pressure deficit, temperature) and among species.
Collapse
Affiliation(s)
- Charles R Warren
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick VIC 3363, Australia.
| | | |
Collapse
|