1
|
Zhuang T, Wang X, Wang Z, Gu L, Yue D, Wang Z, Li X, Yang L, Huang W, Ding L. Biological functions and pharmacological behaviors of bile acids in metabolic diseases. J Adv Res 2024:S2090-1232(24)00495-8. [PMID: 39522690 DOI: 10.1016/j.jare.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Bile acids, synthesized endogenously from cholesterol, play a central role in metabolic regulation within the enterohepatic circulatory system. Traditionally known as emulsifying agents that facilitate the intestinal absorption of vitamins and lipids, recent research reveals their function as multifaceted signal modulators involved in various physiological processes. These molecules are now recognized as key regulators of chronic metabolic diseases and immune dysfunction. Despite progress in understanding their roles, their structural diversity and the specific functions of individual bile acids remain underexplored. AIM OF REVIEW This study categorizes the bile acids based on their chemical structures and their roles as signaling molecules in physiological processes. It consolidates current knowledge and provides a comprehensive overview of the current research. The review also includes natural and semisynthetic variants that have demonstrated potential in regulating metabolic processes in animal models or clinical contexts. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acids circulate primarily within the enterohepatic circulation, where they help maintain a healthy digestive system. Disruptions in their balance are linked to metabolic disorders, hepatobiliary diseases and intestinal inflammation. Through receptor-mediated pathways, bile acids influence the progression of metabolic diseases by regulating glucose and lipid metabolism, immune function, and energy expenditure. This review aims to provide a comprehensive, systematic foundation to for understanding their physiological roles and supporting future therapeutic developments for metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Zixuan Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihua Gu
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Dawei Yue
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200163, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Wendong Huang
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
2
|
Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo X, Tong X, Lin Z, Sun C, Wang K, He Y, Zhang Y, Xu H, Wang J, Zuo J, Ding Q, He S, Gonzalez FJ, Xie C. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell Stem Cell 2022; 29:1366-1381.e9. [PMID: 36055192 PMCID: PMC10673678 DOI: 10.1016/j.stem.2022.08.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
Although disrupted bile acid (BA) homeostasis is implicated in inflammatory bowel disease (IBD), the role of hepatic BA metabolism in the pathogenesis of colitis is poorly understood. Here, we found that cholic acid (CA) levels were increased in patients and mice. Cytochrome P450 8B1 (CYP8B1), which synthesizes CA, was induced in livers of colitic mice. CA-treated or liver Cyp8b1-overexpressing mice developed more severe colitis with compromised repair of the mucosal barrier, whereas Cyp8b1-knockout mice were resistant to colitis. Mechanistically, CA inhibited peroxisome proliferator-activated receptor alpha (PPARα), resulting in impeded fatty acid oxidation (FAO) and impaired Lgr5+ intestinal stem cell (ISC) renewal. A PPARα agonist restored FAO and improved Lgr5+ ISC function. Activation of the farnesoid X receptor (FXR) suppressed liver CYP8B1 expression and ameliorated colitis in mice. This study reveals a connection between the hepatic CYP8B1-CA axis and colitis via regulating intestinal epithelial regeneration, suggesting that BA-based strategies might be beneficial in IBD treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China; Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jue Wang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xiao Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zemin Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Chuying Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Yifan He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Hualing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Jianping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Shijun He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
3
|
Adenine-Induced Nephropathy Reduces Atherosclerosis in ApoE Knockout Mice. Biomolecules 2022; 12:biom12081147. [PMID: 36009040 PMCID: PMC9405644 DOI: 10.3390/biom12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Cardiovascular events are the main cause of death in patients with chronic kidney disease. We hypothesize that the protective effects of renal cholesterol and vitamin D3 metabolism are lost under this condition. Nephropathy was induced by adenine in Apolipoprotein E knockout mice. The atherosclerotic phenotype was compared to mice with normal renal function. Methods: Mice were fed a western diet ±0.15% adenine. Urine and feces were collected to assess renal function and fecal output. Atherosclerosis, serum lipoprotein composition and functionality, hepatic lipids, and expression of genes involved in lipid metabolism, vitamin D3 and Na+ homeostasis, were assessed. Bones were analyzed by microCT. Results: Mice fed with adenine showed enhanced urinary Na+, Ca2+, and Pi excretion, reduced urinary pH, UreaUrine/UreaSerum, and CreatinineUrine/CreatinineSerum ratios. They developed less atherosclerosis. Lipoproteins in serum and hepatic lipids remained unchanged. Cholesterol efflux increased. Fecal output of cholesteryl ester and triglycerides increased. In the liver, mRNA levels of Cyp27a1, Cyp7a1, and Scarb1 increased; in the kidneys, Slc9a3, Slc12a3, Vdr, and Cyp24a1 decreased. Adenine increased cholesterol efflux in vitro. Tibias were shorter. Conclusion: Adenine induced tubular damage and was athero-protective because of enhanced cholesterol efflux and lipids elimination in feces. Bone growth was also affected.
Collapse
|
4
|
Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR, Jin Y, Gu H, Guo GL. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J Fungi (Basel) 2021; 7:jof7121030. [PMID: 34947012 PMCID: PMC8708873 DOI: 10.3390/jof7121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (CA), a commensal and opportunistic eukaryotic organism, frequently inhabits the gastrointestinal (GI) tract and causes life-threatening infections. Antibiotic-induced gut dysbiosis is a major risk factor for increased CA colonization and dissemination from the GI tract. We identified a significant increase of taurocholic acid (TCA), a major bile acid in antibiotic-treated mice susceptible to CA infection. In vivo findings indicate that administration of TCA through drinking water is sufficient to induce colonization and dissemination of CA in wild-type and immunosuppressed mice. Treatment with TCA significantly reduced mRNA expression of immune genes ang4 and Cxcr3 in the colon. In addition, TCA significantly decreased the relative abundance of three culturable species of commensal bacteria, Turicibacter sanguinis, Lactobacillus johnsonii, and Clostridium celatum, in both cecal contents and mucosal scrapings from the colon. Taken together, our results indicate that TCA promotes fungal colonization and dissemination of CA from the GI tract by controlling the host defense system and intestinal microbiota that play a critical role in regulating CA in the intestine.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
- Correspondence: ; Tel.: +1-765-494-0763
| | - Ross Monasky
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Jung Keun Lee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Vijay Antharam
- Department of Chemistry, College of Arts, Humanities and Sciences, Methodist University, Fayetteville, NC 28311, USA;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA;
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
- Center for Translational Science, Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL 33199, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
5
|
Zhang Y, Lan X, Cai C, Li R, Gao Y, Yang L, Wu C, Dong H, Pang X, Bai D, Zeng G. Associations between Maternal Lipid Profiles and Pregnancy Complications: A Prospective Population-Based Study. Am J Perinatol 2021; 38:834-840. [PMID: 31891957 DOI: 10.1055/s-0039-3402724] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether plasma lipid profiles are independently associated with pregnancy complications including gestational diabetes mellitus (GDM), hypertensive disorder complicating pregnancy (HDCP), and intrahepatic cholestasis of pregnancy (ICP). STUDY DESIGN A prospective study was conducted among 1,704 pregnant women at three medical institutions in Chengdu, China. The concentrations of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured at gestational weeks 12 ± 1, 24 ± 1, and 34 ± 1. Logistic regression models were used to estimate the association between lipid profiles and pregnancy complications. Receiver operating characteristic analysis was performed to determine the value of lipid profiles to predict GDM and HDCP. RESULTS After adjusting for potential confounders, TG, TC, and LDL-C in the first trimester were independently associated with GDM (TG: odds ratio [OR] =2.00, 95% confidence interval [CI]: 1.57-2.56; TC: OR = 1.38, 95% CI: 1.16-1.64; LDL-C: OR = 1.43, 95% CI: 1.14-1.79) and HDCP (TG: OR = 2.42, 95% CI: 1.56-3.78, TC: OR = 1.64, 95% CI: 1.04-2.57; LDL-C: OR = 1.87, 95% CI: 1.07-3.25). The TC concentration during the whole pregnancy (first trimester: OR = 1.53, 95% CI: 1.13-2.08; second trimester: OR = 1.31, 95% CI: 1.06-1.61; third trimester: OR = 1.39, 95% CI: 1.17-2.04) and LDL-C in the last two trimesters (second trimester: OR = 1.62, 95% CI: 1.30-2.04; third trimester: OR = 1.56, 95% CI: 1.29-1.88) were positively associated with ICP. HDL-C in the third trimester was negatively associated with the risk of ICP (OR = 0.46, 95% CI: 0.22-0.98). Combining lipid profiles in the first trimester with the other common predictors to predict GDM or HDCP owned stronger predictive power with the largest area under the curve (GDM: 0.643 [95% CI: 0.613-0.673], HDCP: 0.707 [95% CI: 0.610-0.804]) than either indicator alone. CONCLUSION Maternal lipid profiles during the whole pregnancy are significantly associated with GDM, HDCP, and ICP. Combining lipid profiles in the first trimester with the other common predictors could effectively improve the power of predicting GDM and HDCP.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Lan
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Congjie Cai
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Run Li
- Department of Clinical Nutrition, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Yan Gao
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Liuqing Yang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongli Dong
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Pang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Bai
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guo Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
High-cholesterol diet during pregnancy induces maternal vascular dysfunction in mice: potential role for oxidized LDL-induced LOX-1 and AT1 receptor activation. Clin Sci (Lond) 2021; 134:2295-2313. [PMID: 32856035 DOI: 10.1042/cs20200764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
The lectin-like oxidized low-density-lipoprotein (oxLDL) receptor-1 (LOX-1) has been shown to induce angiotensin II (AngII) type 1 receptor (AT1) activation, contributing to vascular dysfunction. Preeclampsia is a pregnancy complication characterized by vascular dysfunction and increased LOX-1 and AT1 activation; however, whether LOX-1 and AT1 activity contributes to vascular dysfunction in preeclampsia is unknown. We hypothesized that increased oxLDL levels during pregnancy lead to LOX-1 activation and subsequent AT1 activation, resulting in vascular dysfunction. Pregnant wild-type (WT) and transgenic LOX-1 overexpressing (LOX-1tg) mice were fed a control diet (CD) or high-cholesterol diet (HCD, to impair vascular function) between gestational day (GD) 13.5-GD18.5. On GD18.5, AngII-induced vasoconstriction and methylcholine (MCh)-induced endothelium-dependent vasodilation responses were assessed in aortas and uterine arteries. HCD decreased fetal weight and increased circulating oxLDL/cholesterol levels in WT, but not in LOX-1tg mice. HCD did not alter AngII responsiveness or AT1 expression in both vascular beds; however, AngII responsiveness and AT1 expression were lower in aortas from LOX-1tg compared with WT mice. In aortas from WT-CD mice, acute oxLDL exposure induced AT1-mediated vasoconstriction via LOX-1. HCD impaired endothelium-dependent vasodilation and increased superoxide levels in WT aortas, but not uterine arteries. Moreover, in WT-CD mice oxLDL decreased MCh sensitivity in both vascular beds, partially via LOX-1. In summary, HCD impaired pregnancy outcomes and vascular function, and oxLDL-induced LOX-1 activation may contribute to vascular dysfunction via AT1. Our study suggests that LOX-1 could be a potential target to prevent adverse outcomes associated with vascular dysfunction in preeclampsia.
Collapse
|
7
|
Srivastava RAK, Cefalu AB, Srivastava NS, Averna M. NPC1L1 and ABCG5/8 induction explain synergistic fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α and LXR agonists. Mol Cell Biochem 2020; 473:247-262. [DOI: 10.1007/s11010-020-03826-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
8
|
Rey M, Kruse MS, Magrini-Huamán RN, Coirini H. High-Fat Diets and LXRs Expression in Rat Liver and Hypothalamus. Cell Mol Neurobiol 2019; 39:963-974. [PMID: 31161476 DOI: 10.1007/s10571-019-00692-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/25/2019] [Indexed: 12/25/2022]
Abstract
Disturbances on lipid metabolism are associated with health disorders. High-fat diets (HFDs) consumption promotes cardiovascular and neurodegenerative diseases where cholesterol plays an important role. Among regulators of this steroid homeostasis, the liver X receptors (LXRs) induce genes that protect cells from cholesterol overload. We previously described how both hypothalamic LXRα and LXRβ are sensitive to a high-fructose diet, suggesting that these receptors trigger responses related to control of energy and food intake. The present work's main objective was to study the effect of different HFDs on LXRs expression (in hypothalamus and liver), and lipid profile. Male rats received control diet (CD), HFD1 (CD + bovine fat (BF)), HFD2 (CD + BF + cholic acid (CA)), HFD3 (CD + BF + cholesterol), or HFD4 (CD + BF + CA + cholesterol) for different time periods. Hypothalamic LXRβ, both hepatic LXRs subtypes, and total cholesterol (TC) raised after 2 weeks of HFDs. Four and 8 weeks of HFD3 and HFD4 increased the LXRs subtypes in both tissues and TC levels. Only HFD4 reduced triglycerides (TG) levels after 2 and 8 weeks. The TC and TG values correlated significantly with LXRs expression only in rats fed with HFD4. These data add relevant information about how diet composition can produce different scales of hypercholesterolemia states accompanied with central and peripheral changes in the LXRs expression.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - María Sol Kruse
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Nahimé Magrini-Huamán
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ingenieria, Instituto de Biotecnologia, Universidad Nacional de San Juan, Av. Libertador Gral. San Martín 1109, J5400ARL, San Juan, Argentina
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiologia, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
- Facultad de Ciencias Medicas, Universidad Catolica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, J5400, San Juan, Argentina.
- Departamento de Bioquimica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 5to Piso, C1121ABG, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Lack of Correlation of Plasma HDL With Fecal Cholesterol and Plasma Cholesterol Efflux Capacity Suggests Importance of HDL Functionality in Attenuation of Atherosclerosis. Front Physiol 2018; 9:1222. [PMID: 30271349 PMCID: PMC6142045 DOI: 10.3389/fphys.2018.01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
A number of clinical findings suggested HDL-raising as a plausible approach to treat residual risk of CVD. However, lack of CVD risk reduction by elevated HDL cholesterol (HDL-C) through cholesterol ester transfer protein (CETP) inhibition and enhanced risk reduction in apolipoprotein A-I Milano (apoAI-M) individuals with low HDL-C shifted the focus from HDL-C level to HDL function. In the present study, we investigated correlations between HDL-C, HDL function, fecal cholesterol excretion, and ex vivo plasma cholesterol efflux capacity (CEC) in animal models using two HDL modulators, LXR and PPAR-α agonists. In C57Bl mice, LXR agonist, T1317, raised HDL-C by 30%, while PPAR-α agonist, fenofibrate, reduced HDL-C by 30%, but fecal cholesterol showed twofold increase in both cases. CEC showed a 30–40% increase. Combination of LXR and PPAR-α agonists showed no changes in HDL-C, but, interestingly, fecal cholesterol increased by 4.5-fold, and CEC by 40%, suggesting existence of additional pathway for fecal cholesterol excretion. Regression analysis showed a lack of correlation between HDL-C and fecal cholesterol and CEC, while fecal cholesterol showed significant correlation with CEC, a measure of HDL function. ABCA1 and G1, the two important players in RCT showed greater induction with LXR agonist than PPAR-α agonist. HDL-C increased by 40 and 80% in LXR and PPAR-α treated apoA-I transgenic mice, respectively, with 80% increase in fecal cholesterol. A fivefold increase in fecal cholesterol with no correlation with either plasma HDL-C or CEC following co-treatment with LXR and PPAR-α agonists suggested existence of an HDL-independent pathway for body cholesterol elimination. In hyperlipidemic diabetic ob/ob mice also combination of LXR and PPAR-α agonists showed marked increases in fecal cholesterol content (10–20-fold), while HDL-C rise was only 40%, further suggesting HDL-independent elimination of body cholesterol in mice treated with combination of LXR and PPAR-α agonists. Atherosclerosis attenuation by LXR and PPAR-α agonists in LDLr-deficient mice was associated with increased fecal cholesterol, but not HDL-C. However, fecal cholesterol counts showed inverse correlation with aortic cholesteryl ester content. These data suggest: (a) lack of correlation between HDL-C and fecal or aortic cholesterol content; (b) HDL function (CEC) correlated with fecal cholesterol content; (c) association of reduced aortic lipids in LDLr−/− mice with increased fecal cholesterol, but not with HDL-C, and (d) existence of an HDL-independent pathway for fecal cholesterol excretion following co-treatment with LXR and PPAR-α agonists.
Collapse
Affiliation(s)
- Neelam Srivastava
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Angelo B Cefalu
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | | |
Collapse
|
10
|
Ismawati, Oenzil F, Yanwirasti, Yerizel E. Changes in expression of proteasome in rats at different stages of atherosclerosis. Anat Cell Biol 2016; 49:99-106. [PMID: 27382511 PMCID: PMC4927436 DOI: 10.5115/acb.2016.49.2.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 02/25/2016] [Accepted: 04/06/2016] [Indexed: 01/27/2023] Open
Abstract
It has been suggested that proteasome system has a role in initiation, progression, and complication stages of atherosclerosis. Although there is still controversy, there has been no research that compares the expression of proteasome in tissue and serum at each of these stages. This study aimed to investigated the expression of proteasome at different stages of atherosclerosis using rat model. We measured the expression of aortic proteasome by immunohistochemical analyses and were then analyzed using ImageJ software for percentage of area and integrated density. We used Photoshop version 3.0 to analyze aortic proteasome expression as a comparison. We measured serum proteasome expression by enzyme linked immunosorbents assays. Kruskal-Wallis test was used to compare mean value of percentage of area and serum proteasome. Analysis of variance test was used to compare mean value of integrated density. Correlation test between vascular proteasome expression and serum proteasome expression was made using Spearman test. A P-value of 0.05 was considered statistically significant. Compared with normal, percentage of area was higher in initiation, progression, and complication. Compared with normal, integrated density was higher in initiation and further higher in progression and complication. Data from Image J is similar with data from Photoshop. Serum proteasome expression was higher in initiation compared with normal, and further higher in progression and complication. It was concluded that there were different vascular proteasome expression and serum proteasome expression at the stages of atherosclerosis. These results may be used in research into new marker and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Ismawati
- Department of Biochemistry, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| | - Fadil Oenzil
- Department of Biochemistry, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Yanwirasti
- Department of Anatomy, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Eti Yerizel
- Department of Biochemistry, Faculty of Medicine, Andalas University, Padang, Indonesia
| |
Collapse
|
11
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
12
|
Mooradian AD, Haas MJ. The effect of nutritional supplements on serum high-density lipoprotein cholesterol and apolipoprotein A-I. Am J Cardiovasc Drugs 2014; 14:253-74. [PMID: 24604774 DOI: 10.1007/s40256-014-0068-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the factors contributing to the increased risk of developing premature atherosclerosis is low plasma concentrations of high-density lipoprotein (HDL) cholesterol. Multiple potential mechanisms account for the cardioprotective effects of HDL and its main protein apolipoprotein A-I (apo A-I). Diet has an important role in modulating HDL cholesterol level. The widespread use of nutritional supplements may also alter the biology of HDL. In this review, we discuss the effect of select nutritional supplements on serum HDL cholesterol and apo A-I levels. Some nutritional supplements, such as phytosterols, soy proteins, and black seed extracts, may increase HDL cholesterol levels, while others such as cholic acid and high doses of commonly used antioxidant vitamins may downregulate HDL cholesterol levels and reduce its cardioprotection. Multiple mechanisms are involved in the regulation of HDL levels, so changes in production and clearance of HDL may have different clinical implications. The clinical relevance of the changes in HDL and apo A-I caused by nutrient supplementation needs to be tested in controlled clinical trials.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Department of Medicine, University of Florida College of Medicine, 653-1 West 8th Street, 4th Floor, LRC, Jacksonville, FL, 32209, USA,
| | | |
Collapse
|
13
|
Gautier T, de Haan W, Grober J, Ye D, Bahr MJ, Claudel T, Nijstad N, Van Berkel TJC, Havekes LM, Manns MP, Willems SM, Hogendoorn PCW, Lagrost L, Kuipers F, Van Eck M, Rensen PCN, Tietge UJF. Farnesoid X receptor activation increases cholesteryl ester transfer protein expression in humans and transgenic mice. J Lipid Res 2013; 54:2195-2205. [PMID: 23620138 DOI: 10.1194/jlr.m038141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) activity results in a proatherogenic lipoprotein profile. In cholestatic conditions, farnesoid X receptor (FXR) signaling by bile acids (BA) is activated and plasma HDL cholesterol (HDL-C) levels are low. This study tested the hypothesis that FXR-mediated induction of CETP contributes to this phenotype. Patients with cholestasis and high plasma BA had lower HDL-C levels and higher plasma CETP activity and mass compared with matched controls with low plasma BA (each P < 0.01). BA feeding in APOE3*Leiden transgenic mice expressing the human CETP transgene controlled by its endogenous promoter increased cholesterol within apoB-containing lipoproteins and decreased HDL-C (each P < 0.01), while hepatic CETP mRNA expression and plasma CETP activity and mass increased (each P < 0.01). In vitro studies confirmed that FXR agonists substantially augmented CETP mRNA expression in hepatocytes and macrophages dependent on functional FXR expression (each P < 0.001). These transcriptional effects are likely mediated by an ER8 FXR response element (FXRE) in the first intron. In conclusion, using a translational approach, this study identifies CETP as novel FXR target gene. By increasing CETP expression, FXR activation leads to a proatherogenic lipoprotein profile. These results have clinical relevance, especially when considering FXR agonists as emerging treatment strategy for metabolic disease and atherosclerosis.
Collapse
Affiliation(s)
- Thomas Gautier
- Department of Pediatrics and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Lipides, Nutrition, Cancer - Faculté de Médecine, Université de Bourgogne - INSERM UMR866, Dijon, France
| | - Willeke de Haan
- Department of Endocrinology, and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine and Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Grober
- Lipides, Nutrition, Cancer - Faculté de Médecine, Université de Bourgogne - INSERM UMR866, Dijon, France
| | - Dan Ye
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Matthias J Bahr
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; and
| | - Thierry Claudel
- Department of Pediatrics and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Niels Nijstad
- Department of Pediatrics and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Theo J C Van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Louis M Havekes
- Department of Endocrinology, and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine and Leiden University Medical Center, Leiden, The Netherlands
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; and
| | - Stefan M Willems
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Laurent Lagrost
- Lipides, Nutrition, Cancer - Faculté de Médecine, Université de Bourgogne - INSERM UMR866, Dijon, France
| | - Folkert Kuipers
- Department of Pediatrics and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miranda Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology, and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine and Leiden University Medical Center, Leiden, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Nibourg GAA, Hoekstra R, van der Hoeven TV, Ackermans MT, Hakvoort TBM, van Gulik TM, Chamuleau RAFM. Effects of acute-liver-failure-plasma exposure on hepatic functionality of HepaRG-AMC-bioartificial liver. Liver Int 2013; 33:516-24. [PMID: 23387413 DOI: 10.1111/liv.12090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/05/2012] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS The AMC-bioartificial liver loaded with the human hepatoma cell line HepaRG as biocomponent (HepaRG-AMC-BAL) has recently proven efficacious in rats with acute liver failure (ALF). However, its efficacy may be affected by cytotoxic components of ALF plasma during treatment. In this study, we investigated the effects of ALF-plasma on the HepaRG-AMC-BAL. METHODS HepaRG-AMC-BALs were connected to the blood circulation of rats with total liver ischaemia, either during the first 5 h after induction of ischaemia (mild ALF group), or during the following 10 h (severe ALF group). After disconnection, the BALs were assessed for cell leakage, gene transcript levels, ammonia elimination, urea production, cytochrome P450 3A4 activity, apolipoprotein A 1 production, glucose and amino acid metabolism. RESULTS Cell leakage increased 2.5-fold in the severe ALF group, but remained limited in all groups. Hepatic gene transcript levels decreased (max 40-fold) or remained stable. In contrast, hepatic functions increased slightly or remained stable. Particularly, urea production increased 1.5-fold, with a concurrent increase in arginase 2 transcription and arginine consumption, with a trend towards reduced conversion of ammonia into urea. The amino acid consumption increased, however, the net glucose consumption remained stable. CONCLUSIONS The HepaRG-AMC-BAL retains functionality after both mild and severe exposure to ALF plasma, but urea production may be increasingly derived from arginase 2 activity instead of urea cycle activity. Nevertheless, the increase in cell leakage and decrease in various hepatic transcript levels suggest that a decrease in hepatic functionality may follow upon extended exposure to ALF plasma.
Collapse
Affiliation(s)
- Geert A A Nibourg
- Dept. of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Gardès C, Blum D, Bleicher K, Chaput E, Ebeling M, Hartman P, Handschin C, Richter H, Benson GM. Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-I expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor. J Lipid Res 2011; 52:1188-1199. [PMID: 21464203 DOI: 10.1194/jlr.m012542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is claimed that apoA-I expression is repressed in mice by cholic acid (CA) and its taurine conjugate, taurocholic acid (TCA) via farnesoid X receptor (FXR) activation. We measured apoA-I expression in mice, hamsters, and rats treated with highly potent and selective synthetic FXR agonists or with TCA. All of the synthetic agonists bound to FXR with high affinity in a scintillation proximity assay. However, TCA did not compete with the radioligand up to the highest concentration used (100 μM). The C-site regulatory region of apoA-I, through which FXR has been reported to regulate its expression, is completely conserved across the species investigated. In both male and female human apoA-I-transgenic mice, we reproduced the previously reported strong inhibition of human apoA-I expression upon treatment with the typical supraphysiological dose of TCA used in such studies. However, in contrast to some previous reports, TCA did not repress murine apoA-I expression in the same mice. Also, more-potent and -selective FXR agonists did not affect human or murine apoA-I expression in this model. In LDL receptor-deficient mice and Golden Syrian hamsters, selective FXR agonists did not affect apoA-I expression, whereas in Wistar rats, some even increased apoA-I expression. In conclusion, selective FXR agonists do not repress apoA-I expression in rodents. Repression of human apoA-I expression by TCA in transgenic mice is probably mediated through FXR-independent mechanisms.
Collapse
Affiliation(s)
- Christophe Gardès
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland.
| | - Denise Blum
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | | | - Evelyne Chaput
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Martin Ebeling
- Bio-informatics, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Peter Hartman
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Corinne Handschin
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Hans Richter
- Chemistry, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - G Martin Benson
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| |
Collapse
|
16
|
Differential regulation of human apolipoprotein AI and high-density lipoprotein by fenofibrate in hapoAI and hapoAI-CIII-AIV transgenic mice. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:76-83. [PMID: 21081177 DOI: 10.1016/j.bbalip.2010.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 01/11/2023]
Abstract
Fenofibrate, a PPAR-α agonist, lowers triglycerides (TG) and raises high-density lipoproteins (HDL-C) in humans. While fenofibrate is very effective in lowering TG, it does not raise HDL-C in humans to the same extent as seen in human apoAI transgenic (hAI-Tg) mice. We studied the mechanism of this discordance using the following compounds as tools: cholic acid that down-regulates human apoAI, and fenofibrate, that elevates hapoAI and HDL-C in hAI-Tg mice. We hypothesized that additional sequences, including apoCIII and AIV genes on chromosome 11, not present in the hapoAI transgene may be responsible for the dampened effect of fibrates on HDL-C seen in humans. For this, hAI-Tg mice with 11kb DNA segment and hapoAI-CIII-AIV-Tg mice with 33kb DNA segment harboring apoCIII and AIV genes were employed. These mice were treated with fenofibrate and cholic acid. Fenofibrate increased apoAI and HDL-C levels, and HDL size in the apoAI-Tg mice via up-regulation of the hapoAI mRNA and increased activity and mRNA of PLTP, respectively. Consistent with earlier findings, cholic acid showed similar effects of lowering HDL-C, and elevating LDL-C in hAI-Tg mice as well as in the hAI-CIII-AIV-Tg mice. Fenofibrate decreased TG and increased HDL size in hAI-CIII-AIV-Tg mice as well, but surprisingly, did not elevate serum levels of hapoAI or hepatic AI mRNA, suggesting that additional sequences not present in the hapoAI transgene (11kb) may be partly responsible for the dampened effect on HDL-C seen in hAI-CIII-AIV-Tg mice. Since hAI-CIII-AIV-Tg mouse mimics fenofibrate effects seen in humans, this transgenic mouse could serve as a better predictive model for screening HDL-C raising compounds.
Collapse
|
17
|
Wat E, Tandy S, Kapera E, Kamili A, Chung RW, Brown A, Rowney M, Cohn JS. Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis 2009; 205:144-50. [DOI: 10.1016/j.atherosclerosis.2008.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
|
18
|
Evans MJ, Mahaney PE, Borges-Marcucci L, Lai K, Wang S, Krueger JA, Gardell SJ, Huard C, Martinez R, Vlasuk GP, Harnish DC. A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia. Am J Physiol Gastrointest Liver Physiol 2009; 296:G543-52. [PMID: 19136377 DOI: 10.1152/ajpgi.90585.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nuclear hormone receptor farnesoid X receptor (FXR) plays a critical role in the regulation of bile acid, triglyceride (TG), and cholesterol homeostasis. WAY-362450 (FXR-450/XL335) is a potent synthetic FXR agonist as characterized in luciferase reporter assays and in mediating FXR target gene regulation in primary human and immortalized mouse hepatocytes. In vivo, WAY-362450 dose dependently decreased serum TG levels after 7 days of oral dosing in western diet-fed low-density lipoprotein receptor-/- mice and in the diabetic mouse strains KK-Ay and db/db comparable to that achieved with the peroxisome proliferator activated receptor-alpha agonist, fenofibrate. WAY-362450 treatment also reduced serum cholesterol levels via reductions in LDLc, VLDLc, and HDLc lipoprotein fractions that were not accompanied by hepatic cholesterol accumulation. This cholesterol lowering was dependent on FXR as demonstrated in a hypothyroid-induced hypercholesterolemia setting in FXR-/- mice. In fructose-fed models, WAY-362450 also decreased TG and VLDLc levels in rats and hamsters but significantly increased HDLc levels in rats while reducing HDLc levels in hamsters. The differential effect of WAY-362450 on HDLc is likely due to a murine-specific induction of endothelial lipase and scavenger receptor-BI that does not occur in rats. These studies demonstrate a consistent ability of WAY-362450 to lower both serum TG and cholesterol levels and suggest that synthetic FXR agonists may have clinical utility in the treatment of mixed dyslipidemia.
Collapse
Affiliation(s)
- Mark J Evans
- Department of Cardiovascular and Metabolic Diseases, Wyeth Research, 500 Arcola Rd, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Masson D, Qatanani M, Sberna AL, Xiao R, Pais de Barros JP, Grober J, Deckert V, Athias A, Gambert P, Lagrost L, Moore DD, Assem M. Activation of the constitutive androstane receptor decreases HDL in wild-type and human apoA-I transgenic mice. J Lipid Res 2008; 49:1682-91. [DOI: 10.1194/jlr.m700374-jlr200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Zhou J, Werstuck GH, Lhoták S, Shi YY, Tedesco V, Trigatti B, Dickhout J, Majors AK, DiBello PM, Jacobsen DW, Austin RC. Hyperhomocysteinemia induced by methionine supplementation does not independently cause atherosclerosis in C57BL/6J mice. FASEB J 2008; 22:2569-78. [PMID: 18364397 DOI: 10.1096/fj.07-105353] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A causal relationship between diet-induced hyperhomocysteinemia (HHcy) and accelerated atherosclerosis has been established in apolipoprotein E-deficient (apoE(-/-)) mice. However, it is not known whether the proatherogenic effect of HHcy in apoE(-/-) mice is independent of hyperlipidemia and/or deficiency of apoE. In this study, a comprehensive dietary approach using C57BL/6J mice was used to investigate whether HHcy is an independent risk factor for accelerated atherosclerosis or dependent on additional dietary factors that increase plasma lipids and/or inflammation. C57BL/6J mice at 4 wk of age were divided into 6 dietary groups: chow diet (C), chow diet + methionine (C+M), western-type diet (W), western-type diet + methionine (W+M), atherogenic diet (A), or atherogenic diet + methionine (A+M). After 2, 10, 20, or 40 wk on the diets, mice were sacrificed, and the levels of total plasma homocysteine, cysteine, and glutathione, as well as total plasma cholesterol and triglycerides were analyzed. Aortic root sections were examined for atherosclerotic lesions. HHcy was induced in all groups supplemented with methionine, compared to diet-matched control groups. Plasma total cholesterol was significantly increased in mice fed the W or A diet. However, the W diet increased LDL/IDL and HDL levels, while the A diet significantly elevated plasma VLDL and LDL/IDL levels without increasing HDL. No differences in plasma total cholesterol levels or lipid profiles were observed between methionine-supplemented groups and the diet-matched control groups. Early atherosclerotic lesions containing macrophage foam cells were only observed in mice fed the A or A + M diet. Furthermore, lesion size was significantly larger in the A + M group compared to the A group at 10 and 20 wk; however, mature lesions were never observed even after 40 wk on these diets. The presence of lymphocytes, increased hyaluronan staining, and the expression of endoplasmic reticulum (ER) stress markers were also increased in atherosclerotic lesions from the A + M group. Taken together, these results suggest that HHcy does not independently cause atherosclerosis in C57BL/6J mice even in the presence of increased total plasma lipids induced by the W diet. However, HHcy can accelerate atherosclerotic lesion development under dietary conditions that increase plasma VLDL levels and/or inflammation.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Venteclef N, Haroniti A, Tousaint JJ, Talianidis I, Delerive P. Regulation of anti-atherogenic apolipoprotein M gene expression by the orphan nuclear receptor LRH-1. J Biol Chem 2007; 283:3694-701. [PMID: 17977826 DOI: 10.1074/jbc.m706382200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The orphan nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) has been reported to play a crucial role in early development, in the control of the hepatic inflammatory response, in intestinal cell crypt renewal as well as in bile acid biosynthesis and reverse cholesterol transport (RCT). Here, we report the identification of apolipoprotein M (APOM) as a novel target gene for LRH-1. Using gene-silencing experiments, adenovirus-mediated overexpression, transient transfection, and chromatin immunoprecipitation (ChIP) assays, it is shown that LRH-1 directly regulates human and mouse APOM transcription by binding to an LRH-1 response element located in the proximal APOM promoter region. In addition, we demonstrate that bile acids suppress APOM expression in a SHP-dependent manner in vitro and in vivo by inhibiting LRH-1 transcriptional activity on the APOM promoter as demonstrated by in vivo ChIP assay. Taken together, our results demonstrate that LRH-1 is a novel regulator of APOM transcription and further extend the role of this orphan nuclear receptor in lipoprotein metabolism and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nicolas Venteclef
- Cardiovascular and Urogenital Center of Excellence for Drug Discovery, GlaxoSmithKline, 25 Avenue du Quebec, 91951 Les Ulis, France
| | | | | | | | | |
Collapse
|
22
|
Gilardi F, Mitro N, Godio C, Scotti E, Caruso D, Crestani M, De Fabiani E. The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: from binding resins to chromatin remodelling to reduce plasma cholesterol. Pharmacol Ther 2007; 116:449-72. [PMID: 17959250 DOI: 10.1016/j.pharmthera.2007.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 01/25/2023]
Abstract
Mammals dispose of cholesterol mainly through 7alpha-hydroxylated bile acids, and the enzyme catalyzing the 7alpha-hydroxylation, cholesterol 7alpha-hydroxylase (CYP7A1), has a deep impact on cholesterol homeostasis. In this review, we present the study of regulation of CYP7A1 as a good exemplification of the extraordinary contribution of molecular biology to the advancement of our understanding of metabolic pathways that has taken place in the last 2 decades. Since the cloning of the gene from different species, experimental evidence has accumulated, indicating that the enzyme is mainly regulated at the transcriptional level and that bile acids are the most important physiological inhibitors of CYP7A1 transcription. Multiple mechanisms are involved in the control of CYP7A1 transcription and a variety of transcription factors and nuclear receptors participate in sophisticated regulatory networks. A higher order of transcriptional regulation, stemming from the so-called histone code, also applies to CYP7A1, and recent findings clearly indicate that chromatin remodelling events have profound effects on its expression. CYP7A1 also acts as a sensor of signals coming from the gut, thus representing another line of defence against the toxic effects of bile acids and a downstream target of agents acting at the intestinal level. From the pharmacological point of view, bile acid binding resins were the first primitive approach targeting the negative feed-back regulation of CYP7A1 to reduce plasma cholesterol. In recent years, new drugs have been designed based on recent discoveries of the regulatory network, thus confirming the position of CYP7A1 as a focus for innovative pharmacological intervention.
Collapse
Affiliation(s)
- Federica Gilardi
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev 2007; 58:742-59. [PMID: 17132852 DOI: 10.1124/pr.58.4.6] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nuclear receptors of the NR1H and NR1I subgroups include the constitutive androstane receptor, pregnane X receptor, farnesoid X receptors, liver X receptors, and vitamin D receptor. The newly emerging functions of these related receptors are under the control of metabolic pathways, including metabolism of xenobiotics, bile acids, cholesterol, and calcium. This review summarizes results of structural, pharmacologic, and genetic studies of these receptors.
Collapse
Affiliation(s)
- David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Post SM, Groenendijk M, van der Hoogt CC, Fievet C, Luc G, Hoekstra M, Princen HMG, Staels B, Rensen PCN. Cholesterol 7alpha-hydroxylase deficiency in mice on an APOE*3-Leiden background increases hepatic ABCA1 mRNA expression and HDL-cholesterol. Arterioscler Thromb Vasc Biol 2006; 26:2724-30. [PMID: 17008588 DOI: 10.1161/01.atv.0000247260.42560.e1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High-density lipoprotein (HDL) plays a key role in protection against development of atherosclerosis by reducing inflammation, protecting against LDL oxidation, and promoting reverse cholesterol transport from peripheral tissues to the liver for secretion into bile. Cholesterol 7alpha-hydroxylase (Cyp7a1) catalyzes the rate-limiting step in the intrahepatic conversion of cholesterol to bile acids that may have a role in HDL metabolism. We investigated the effect of Cyp7a1 deficiency on HDL metabolism in APOE*3-Leiden transgenic mice. METHODS AND RESULTS Reduced bile acid biosynthesis in Cyp7a1-/-.APOE*3-Leiden mice versus APOE*3-Leiden mice did not affect total plasma cholesterol levels, but the distribution of cholesterol over various lipoproteins was different. Cholesterol was decreased in apoB-containing lipoproteins (ie, VLDL and IDL/LDL), whereas cholesterol was increased in HDL. The activity of PLTP and LCAT, which play a role in HDL catabolism, were not changed, and neither was HDL clearance. However, the hepatic cholesterol content was 2-fold increased, which was accompanied by a 2-fold elevated expression of hepatic ABCA1 and increased rate of cholesterol efflux from the liver to HDL. CONCLUSIONS Strongly reduced bile acid synthesis in Cyp7a1-/-.APOE*3-Leiden mice leads to increased plasma HDL-cholesterol levels, as related to an increased hepatic expression of ABCA1.
Collapse
Affiliation(s)
- Sabine M Post
- TNO-Quality of Life, Department of Biomedical Research, Gaubius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Dann AT, Kenyon AP, Wierzbicki AS, Seed PT, Shennan AH, Tribe RM. Plasma lipid profiles of women with intrahepatic cholestasis of pregnancy. Obstet Gynecol 2006; 107:106-14. [PMID: 16394047 DOI: 10.1097/01.aog.0000189096.94874.9c] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Intrahepatic cholestasis of pregnancy is associated with dyslipidemia, but the gestational lipid profile in relation to clinical diagnosis of the disease is unknown. The aim of this study was to undertake a detailed analysis of plasma lipids in women presenting with intrahepatic cholestasis of pregnancy and pruritus gravidarum. METHODS Plasma lipid concentrations were assessed in nonfasting blood samples from 63 women with intrahepatic cholestasis of pregnancy (n = 54, recruited at the time of diagnosis, and n = 9, who later developed the disease), 43 women with pruritus gravidarum, and 26 healthy pregnant controls during pregnancy and at 4-6 weeks postpartum. RESULTS Intrahepatic cholestasis of pregnancy was associated with an abnormal lipid profile. Low-density lipoprotein (LDL) cholesterol, apolipoprotein B-100, and total cholesterol concentrations were significantly raised during pregnancy in women with intrahepatic cholestasis of pregnancy compared with pruritus gravidarum and controls, and LDL-cholesterol was raised before clinical diagnosis. High-density lipoprotein cholesterol was lower in women with intrahepatic cholestasis of pregnancy compared with the pruritus gravidarum group. Ursodeoxycholic acid did not alter plasma lipid concentrations. CONCLUSION Intrahepatic cholestasis is associated with dyslipidemia, which may contribute to the pathogenesis of the disease. The elevation of LDL cholesterol and reduction of high-density lipoprotein cholesterol before clinical diagnosis may prove to be a useful biomarker for the early identification of intrahepatic cholestasis of pregnancy and differentiation from pruritus gravidarum. LEVEL OF EVIDENCE II-2.
Collapse
Affiliation(s)
- Anthony T Dann
- Division of Reproductive Health, Endocrinology and Development, King's College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Mooradian AD, Haas MJ, Wong NCW. The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I levels. Endocr Rev 2006; 27:2-16. [PMID: 16243964 DOI: 10.1210/er.2005-0013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the factors contributing to the increased risk of developing premature atherosclerosis is low plasma concentrations of high-density lipoprotein (HDL) cholesterol (HDLc). Multiple potential mechanisms account for the cardioprotective effects of HDL and its main protein apolipoprotein A-I (apo A-I). The low plasma concentrations of HDL could be the result of increased fractional clearance and reduced expression of apo A-I. To this end, nutrients play an important role in modulating the fractional clearance rate, as well as the rate of apo A-I gene expression. Because medical nutrition therapy constitutes the cornerstone of management of dyslipidemias, it is essential to understand the mechanisms underlying the changes in HDL level in response to alterations in dietary intake. In this review, we will discuss the effect of select nutrients on serum HDLc and apo A-I levels. Specifically, we will review the literature on the effect of carbohydrates, fatty acids, and ketones, as well as some of the nutrient-related metabolites, such as glucosamine and the prostanoids, on apo A-I gene expression. Because there are multiple mechanisms involved in the regulation of serum HDLc levels, changes in gene transcription do not necessarily correlate with clinical observations on serum levels of HDLc.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
28
|
Wang J, Einarsson C, Murphy C, Parini P, Björkhem I, Gåfvels M, Eggertsen G. Studies on LXR- and FXR-mediated effects on cholesterol homeostasis in normal and cholic acid-depleted mice. J Lipid Res 2006; 47:421-30. [PMID: 16264196 DOI: 10.1194/jlr.m500441-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As previously reported by us, mice with targeted disruption of the CYP8B1 gene (CYP8B1-/-) fail to produce cholic acid (CA), upregulate their bile acid synthesis, reduce the absorption of dietary cholesterol and, after cholesterol feeding, accumulate less liver cholesterol than wild-type (CYP8B1+/+) mice. In the present study, cholesterol-enriched diet (0.5%) or administration of a synthetic liver X receptor (LXR) agonist strongly upregulated CYP7A1 expression in CYP8B1-/- mice, compared to CYP8B1+/+ mice. Cholesterol-fed CYP8B1-/- mice also showed a significant rise in HDL cholesterol and increased levels of liver ABCA1 mRNA. A combined CA (0.25%)/cholesterol (0.5%) diet enhanced absorption of intestinal cholesterol in both groups of mice, increased their liver cholesterol content, and reduced their expression of CYP7A1 mRNA. The ABCG5/G8 liver mRNA was increased in both groups of mice, but cholesterol crystals were only observed in bile from the CYP8B1+/+ mice. The results demonstrate the cholesterol-sparing effects of CA: enhanced absorption and reduced conversion into bile acids. Farnesoid X receptor (FXR)-mediated suppression of CYP7A1 in mice seems to be a predominant mechanism for regulation of bile acid synthesis under normal conditions and, as confirmed, able to override LXR-mediated mechanisms. Interaction between FXR- and LXR-mediated stimuli might also regulate expression of liver ABCG5/G8.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- Animals
- Apolipoprotein A-I/genetics
- Bile/chemistry
- Bile Acids and Salts/analysis
- Bile Acids and Salts/metabolism
- Cholesterol/biosynthesis
- Cholesterol/blood
- Cholesterol/metabolism
- Cholesterol 7-alpha-Hydroxylase/genetics
- Cholesterol, Dietary/administration & dosage
- Cholesterol, Dietary/pharmacology
- Cholic Acid/deficiency
- Cholic Acid/pharmacology
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/physiology
- Feces/chemistry
- Female
- Gene Expression/drug effects
- Gene Expression/genetics
- Homeostasis/physiology
- Hydroxymethylglutaryl CoA Reductases/genetics
- Isoxazoles/pharmacology
- Lipids/analysis
- Lipoproteins/blood
- Lipoproteins/chemistry
- Lipoproteins/genetics
- Liver/drug effects
- Liver/metabolism
- Liver X Receptors
- Male
- Mice
- Mice, Knockout
- Orphan Nuclear Receptors
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/physiology
- Steroid 12-alpha-Hydroxylase/genetics
- Sterol Regulatory Element Binding Protein 1/genetics
- Sterol Regulatory Element Binding Protein 2/genetics
- Transcription Factors/agonists
- Transcription Factors/physiology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- J Wang
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Liver X receptors (LXRs) and farnesoid X receptor (FXR) are nuclear receptors that function as intracellular sensors for sterols and bile acids, respectively. In response to their ligands, these receptors induce transcriptional responses that maintain a balanced, finely tuned regulation of cholesterol and bile acid metabolism. LXRs also permit the efficient storage of carbohydrate- and fat-derived energy, whereas FXR activation results in an overall decrease in triglyceride levels and modulation of glucose metabolism. The elegant, dual interplay between these two receptor systems suggests that they coevolved to constitute a highly sensitive and efficient system for the maintenance of total body fat and cholesterol homeostasis. Emerging evidence suggests that the tissue-specific action of these receptors is also crucial for the proper function of the cardiovascular, immune, reproductive, endocrine pancreas, renal, and central nervous systems. Together, LXRs and FXR represent potential therapeutic targets for the treatment and prevention of numerous metabolic and lipid-related diseases.
Collapse
Affiliation(s)
- Nada Y Kalaany
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
30
|
Shih DM, Kast-Woelbern HR, Wong J, Xia YR, Edwards PA, Lusis AJ. A role for FXR and human FGF-19 in the repression of paraoxonase-1 gene expression by bile acids. J Lipid Res 2005; 47:384-92. [PMID: 16269825 DOI: 10.1194/jlr.m500378-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Paraoxonase-1 (PON1), an enzyme that metabolizes organophosphate insecticides, is secreted by the liver and transported in the blood complexed to HDL. In humans and mice, low plasma levels of PON1 have also been linked to the development of atherosclerosis. We previously reported that hepatic Pon1 expression was decreased when C57BL/6J mice were fed a high-fat, high-cholesterol diet supplemented with cholic acid (CA). In the current study, we used wild-type and farnesoid X receptor (FXR) null mice to demonstrate that this repression is dependent upon CA and FXR. PON1 mRNA levels were also repressed when HepG2 cells, derived from a human hepatoma, were incubated with natural or highly specific synthetic FXR agonists. In contrast, fibroblast growth factor-19 (FGF-19) mRNA levels were greatly induced by these same FXR agonists. Furthermore, treatment of HepG2 cells with recombinant human FGF-19 significantly decreased PON1 mRNA levels. Finally, deletion studies revealed that the proximal -230 to -96 bp region of the PON1 promoter contains regulatory element(s) necessary for promoter activity and bile acid repression. These data demonstrate that human PON1 expression is repressed by bile acids through the actions of FXR and FGF-19.
Collapse
Affiliation(s)
- Diana M Shih
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Shelness GS, Rudel LL. A Role for the Pregnane X Receptor in High-Density Lipoprotein Metabolism. Arterioscler Thromb Vasc Biol 2005; 25:2016-7. [PMID: 16199756 DOI: 10.1161/01.atv.0000186042.94668.2b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Wang HH, Wang DQH. Reduced susceptibility to cholesterol gallstone formation in mice that do not produce apolipoprotein B48 in the intestine. Hepatology 2005; 42:894-904. [PMID: 16175613 DOI: 10.1002/hep.20867] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been found that polymorphisms in the apolipoprotein (APO)-B gene are associated with cholesterol gallstones in humans. We hypothesized that APO-B plays a major regulatory role in the response of biliary cholesterol secretion to high dietary cholesterol and contributes to cholesterol gallstone formation. In the present study, we investigated whether lack of expression of intestinal Apob48 or Apob100 reduces susceptibility to cholesterol gallstones by decreasing intestinal absorption and biliary secretion of cholesterol in male mice homozygous for an "APO-B48 only" allele (Apob(48/48)), an "APO-B100 only" allele (Apob(100/100)), or a wild-type APO-B allele (Apob+/+) before and during an 8-week lithogenic diet. We found that cholesterol absorption was significantly decreased as a result of the APO-B48 deficiency in Apob(100/100) mice compared with wild-type and Apob(48/48) mice, regardless of whether chow or the lithogenic diet was administered. Consequently, hepatic cholesterol synthesis was significantly increased in Apob(100/100) mice compared with wild-type and Apob(48/48) mice. On chow, the APO-B100 deficiency in Apob(48/48) mice with reduced plasma levels of LDL/VLDL--but not HDL cholesterol--induced relative hyposecretion of biliary bile salts and phospholipids accompanying normal biliary cholesterol secretion. Compared with Apob(48/48) and wild-type mice, lithogenic diet-fed Apob(100/100) mice displayed significantly lower secretion rates of biliary cholesterol, but not phospholipid or bile salts, which results in significant decreases in prevalence rates, numbers, and sizes of gallstones. In conclusion, absence of expression of intestinal Apob48, but not Apob100, reduces biliary cholesterol secretion and cholelithogenesis, possibly by decreasing intestinal absorption and hepatic bioavailability.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Apolipoprotein B-100
- Apolipoprotein B-48
- Apolipoproteins B/genetics
- Apolipoproteins B/metabolism
- Bile Acids and Salts/biosynthesis
- Bile Acids and Salts/metabolism
- Cholesterol, Dietary/blood
- Cholesterol, Dietary/pharmacokinetics
- Disease Susceptibility
- Female
- Gallstones/epidemiology
- Gallstones/genetics
- Gallstones/metabolism
- Intestinal Absorption
- Intestine, Small/metabolism
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Prevalence
- RNA, Messenger/analysis
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA 02215, USA
| | | |
Collapse
|
33
|
Masson D, Lagrost L, Athias A, Gambert P, Brimer-Cline C, Lan L, Schuetz JD, Schuetz EG, Assem M. Expression of the pregnane X receptor in mice antagonizes the cholic acid-mediated changes in plasma lipoprotein profile. Arterioscler Thromb Vasc Biol 2005; 25:2164-9. [PMID: 16123326 DOI: 10.1161/01.atv.0000183674.88817.fb] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Modification of lipoprotein metabolism by bile acids has been mainly explained by activation of the farnesyl X receptor (FXR). The aim of the present study was to determine the relative contribution of the pregnane X receptor (PXR), another bile acid-activated nuclear receptor to changes in plasma lipoprotein profile. METHODS AND RESULTS Wild-type mice, Pxr-deficient mice, and Pxr-null mice expressing human PXR (Pxr-null SXR-Tg mice) were fed a cholic acid-containing diet, and consequences on plasma lipoprotein profiles and target gene expression were assessed. Cholic acid produced significant decreases in high-density lipoprotein (HDL) cholesterol, plasma apolipoprotein (apo)A-I and hepatic apoA-I mRNA in wild-type mice. Interestingly, the effect of cholic acid was significantly more pronounced in Pxr-deficient mice, indicating that PXR contributes to the weakening of the effect of bile acids on lipoprotein metabolism. Reciprocally, changes in HDL/apoA-I profiles were abolished in Pxr-null SXR-Tg mice in which PXR-responsive genes, particularly those involved in bile acid detoxification were readily activated after cholic acid treatment. CONCLUSIONS PXR expression in mice antagonizes the cholic acid-mediated downregulation of plasma HDL cholesterol and apoA-I, and magnification of PXR/SXR-mediated changes may constitute a new mean to counteract the effects of bile acids on plasma lipoproteins.
Collapse
|
34
|
Sirvent A, Verhoeven AJM, Jansen H, Kosykh V, Darteil RJ, Hum DW, Fruchart JC, Staels B. Farnesoid X receptor represses hepatic lipase gene expression. J Lipid Res 2004; 45:2110-5. [PMID: 15342685 DOI: 10.1194/jlr.m400221-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor that regulates gene expression in response to bile acids (BAs). FXR plays a central role in BA, cholesterol, and lipoprotein metabolism. Here, we identify HL, an enzyme involved in the metabolism of remnant and high density lipoproteins, as a novel FXR-regulated gene. The natural FXR ligand, chenodeoxycholic acid (CDCA), downregulates HL gene expression in a dose- and time-dependent manner in human hepatoma HepG2 cells. The nonsteroidal synthetic FXR agonist GW4064 also decreases HL mRNA levels in HepG2 cells and in primary human hepatocytes. Moreover, the decrease of HL mRNA levels after treatment with FXR agonists was associated with a significant decrease in secreted enzymatic activity. In addition, FXR-specific gene silencing using small interfering RNAs demonstrated that CDCA- and GW4064-mediated downregulation of HL transcript levels occurs via an FXR-dependent mechanism. Finally, using transient transfection experiments, it is shown that FXR represses transcriptional activity of a reporter driven by the -698/+13 bp human HL promoter. Taken together, these results identify HL as a new FXR-regulated gene in human liver cells. In view of the role of HL in plasma lipoprotein metabolism, our results further emphasize the central role of FXR in lipid homeostasis.
Collapse
|
35
|
Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113:1408-18. [PMID: 15146238 PMCID: PMC406532 DOI: 10.1172/jci21025] [Citation(s) in RCA: 1006] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 03/23/2004] [Indexed: 12/11/2022] Open
Abstract
We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) alpha and beta, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXR alpha and LXR beta. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.
Collapse
Affiliation(s)
- Mitsuhiro Watanabe
- Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu JE, Basso F, Shamburek RD, Amar MJA, Vaisman B, Szakacs G, Joyce C, Tansey T, Freeman L, Paigen BJ, Thomas F, Brewer HB, Santamarina-Fojo S. Hepatic ABCG5 and ABCG8 Overexpression Increases Hepatobiliary Sterol Transport but Does Not Alter Aortic Atherosclerosis in Transgenic Mice. J Biol Chem 2004; 279:22913-25. [PMID: 15044450 DOI: 10.1074/jbc.m402838200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.
Collapse
Affiliation(s)
- Justina E Wu
- Molecular Disease Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lyons MA, Korstanje R, Li R, Walsh KA, Churchill GA, Carey MC, Paigen B. Genetic contributors to lipoprotein cholesterol levels in an intercross of 129S1/SvImJ and RIIIS/J inbred mice. Physiol Genomics 2004; 17:114-21. [PMID: 14872007 DOI: 10.1152/physiolgenomics.00168.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the genetic contribution to variation among lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) analyses on an intercross between mouse strains RIIIS/J and 129S1/SvImJ. Male mice of the parental strains and the reciprocal F1and F2populations were fed a high-cholesterol, cholic acid-containing diet for 8–12 wk. At the end of the feeding period, plasma total, high-density lipoprotein (HDL), and non-HDL cholesterol were determined. For HDL cholesterol, we identified three significant QTLs on chromosomes (Chrs) 1 ( D1Mit507, 88 cM, 72–105 cM, 4.8 LOD), 9 ( D11Mit149, 14 cM, 10–25 cM, 9.4 LOD), and 12 ( D12Mit60, 20 cM, 0–50 cM, 5.0 LOD). These QTLs were considered identical to QTLs previously named Hdlq5, Hdlq17, and Hdlq18, respectively, in crosses sharing strain 129. For total cholesterol, we identified two significant QTLs on Chrs 1 and 9, which were named Chol10 ( D1Mit507, 88 cM, 10–105 cM, 3.9 LOD) and Chol11 ( D11Mit149, 14 cM, 0–30 cM, 4.4 LOD), respectively. In addition, for total cholesterol, we identified two suggestive QTLs on Chrs 12 (distal) and 17, which remain unnamed. For non-HDL cholesterol, we identified and named one new QTL on Chr 17, Nhdlq3 ( D17Mit221, 58 cM, 45–60 cM, 3.4 LOD). Nhdlq3 colocalized with orthologous human QTLs for lipoprotein phenotypes, and with Abcg5 and Abcg8. Overall, we detected eight QTLs for lipoprotein cholesterol concentrations on Chrs 1, 9, 12, and 17 (each two per chromosome), including a new QTL for non-HDL cholesterol, Nhdlq3, on Chr 17.
Collapse
|
38
|
Intrarectal administration of deoxycholate selectively reduces small aberrant crypt foci in the rat colorectum. Nutr Res 2003. [DOI: 10.1016/j.nutres.2003.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003; 278:33920-7. [PMID: 12819193 DOI: 10.1074/jbc.m306370200] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ileal apical sodium bile acid cotransporter participates in the enterohepatic circulation of bile acids. In patients with primary bile acid malabsorption, mutations in the ileal bile acid transporter gene (Slc10a2) lead to congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. To elucidate the quantitative role of Slc10a2 in intestinal bile acid absorption, the Slc10a2 gene was disrupted by homologous recombination in mice. Animals heterozygous (Slc10a2+/-) and homozygous (Slc10a2-/-) for this mutation were physically indistinguishable from wild type mice. In the Slc10a2-/- mice, fecal bile acid excretion was elevated 10- to 20-fold and was not further increased by feeding a bile acid binding resin. Despite increased bile acid synthesis, the bile acid pool size was decreased by 80% and selectively enriched in cholic acid in the Slc10a2-/- mice. On a low fat diet, the Slc10a2-/- mice did not have steatorrhea. Fecal neutral sterol excretion was increased only 3-fold, and intestinal cholesterol absorption was reduced only 20%, indicating that the smaller cholic acid-enriched bile acid pool was sufficient to facilitate intestinal lipid absorption. Liver cholesteryl ester content was reduced by 50% in Slc10a2-/- mice, and unexpectedly plasma high density lipoprotein cholesterol levels were slightly elevated. These data indicate that Slc10a2 is essential for efficient intestinal absorption of bile acids and that alternative absorptive mechanisms are unable to compensate for loss of Slc10a2 function.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lyons MA, Wittenburg H, Li R, Walsh KA, Churchill GA, Carey MC, Paigen B. Quantitative trait loci that determine lipoprotein cholesterol levels in DBA/2J and CAST/Ei inbred mice. J Lipid Res 2003; 44:953-67. [PMID: 12588951 DOI: 10.1194/jlr.m300002-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate genetic contributions to individual variations of lipoprotein cholesterol concentrations, we performed quantitative trait locus/loci (QTL) analyses of an intercross of CAST/Ei and DBA/2J inbred mouse strains after feeding a high-cholesterol cholic acid diet for 10 weeks. In total, we identified four QTL for HDL cholesterol. Three of these were novel and were named Hdlq10 [20 centimorgans (cM), chromosome 4], Hdlq11 (48 cM, chromosome 6), and Hdlq12 (68 cM, chromosome 6). The fourth QTL, Hdl1 (48 cM, chromosome 2), confirmed a locus discovered previously using a breeding cross that employed different inbred mouse strains. In addition, we identified one novel QTL for total and non-HDL cholesterol (8 cM, chromosome 9) that we named Chol6. Hdlq10, colocalized with a mutagenesis-induced point mutation (Lch), also affecting HDL. We provide molecular evidence for Abca1 as the gene underlying Hdlq10 and Ldlr as the gene underlying Chol6 that, coupled with evidence generated by other researchers using knockout and transgenic models, causes us to postulate that polymorphisms of these genes, different from the mutations leading to Tangier's disease and familial hypercholesterolemia, respectively, are likely primary genetic determinants of quantitative variation of lipoprotein levels in mice and, by orthology, in the human population.
Collapse
MESH Headings
- Animals
- Cholesterol, Dietary/administration & dosage
- Cholesterol, HDL/blood
- Cholesterol, HDL/drug effects
- Cholic Acid/administration & dosage
- Chromosome Mapping
- Crosses, Genetic
- Dose-Response Relationship, Drug
- Female
- Genotype
- Humans
- Male
- Mice
- Mice, Inbred DBA/genetics
- Mice, Inbred Strains/genetics
- Molecular Sequence Data
- Phenotype
- Polymorphism, Genetic
- Quantitative Trait Loci/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Time Factors
Collapse
|
41
|
Srivastava RAK. Estrogen-induced regulation of the ATP-binding cassette transporter A1 (ABCA1) in mice: a possible mechanism of atheroprotection by estrogen. Mol Cell Biochem 2002; 240:67-73. [PMID: 12487373 DOI: 10.1023/a:1020604610873] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Estrogens are suggested to be antiatherogenic by affecting the vessel wall components. Since ABCA1 was recently shown to be atheroprotective, it was examined if estrogen-induced atheroprotection occurs partly via the regulation of the ABCA1. Since hepatic ABCA1 expression was also suggested to contribute to the bulk HDL levels, regulation of the ABCA1 under conditions of high or low levels of HDL were investigated in mice expressing normal or elevated levels of apoAI. To delineate whether estrogen's effect occurs via estrogen receptor-alpha-mediated pathway, the estrogen receptor-alpha-deficient (ER-alpha)-/- mice were also administered either placebo or beta-estradiol for 5 consecutive days. Estrogen treatments decreased circulating HDL levels by 30%, but increased hepatic and intestinal ABCA1 mRNA by 2- and 1.5-fold, respectively. Hepatic ABCA1 mRNA also increased in the ER-alpha-/- mice by 3-fold. These results suggest that estrogen, despite lowering the levels of HDL, it up-regulated the hepatic ABCA1 mRNA, and in the absence of ER-alpha, ER-beta could compensate for ER-alpha. To study whether HDL levels correlate with the ABCA1 expression, wild-type (WT) and the apoAI transgenic (A1-Tg) mice were fed high fat (HF) diet with or without cholic acid (CA) for 3 weeks. One group of mice was treated with fenofibrate, known to elevate HDL levels. CA without HF decreased HDL levels, while fenofibrate increased HDL levels. However, neither CA nor fenofibrate altered hepatic ABCA1 mRNA levels. HF diet increased the hepatic ABCA1 mRNA 1.8-fold in WT, but lowered ABCA1 mRNA by 2-fold in A1-Tg mice, suggesting that ABCA1 levels did not correlate with circulating HDL levels, while basal levels of HDL influenced ABCA1 expression. These data show for the first time that estrogen's antiatherogenic effects may occur via ABCA1-mediated pathway, and circulating HDL levels may influence expression of ABCA1.
Collapse
|
42
|
Brown BG, Cheung MC, Lee AC, Zhao XQ, Chait A. Antioxidant vitamins and lipid therapy: end of a long romance? Arterioscler Thromb Vasc Biol 2002; 22:1535-46. [PMID: 12377728 DOI: 10.1161/01.atv.0000034706.24149.95] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During the past decade, the perception flourished that lipid and antioxidant therapy were 2 independent avenues for cardiovascular protection. However, studies have shown that commonly used antioxidant vitamin regimens do not prevent cardiovascular events. We found that the addition of antioxidant vitamins to simvastatin-niacin therapy substantially blunts the expected rise in the protective high density lipoprotein (HDL)2 cholesterol and lipoprotein(A-I) subfractions of HDL, with apparent adverse effects on the progression of coronary artery disease. To better understand this effect, 12 apolipoproteins, receptors, or enzymes that contribute to reverse cholesterol transport have been examined in terms of their relationship to HDL2 and lipoprotein(A-I) levels and the potential for antioxidant modulation of their gene expression. Three plausible candidate mechanisms are identified: (1) antioxidant stimulation of cholesteryl ester transfer protein expression/activity, (2) antioxidant suppression of macrophage ATP binding cassette transmembrane transporter A1 expression, and/or (3) antioxidant suppression of hepatic or intestinal apolipoprotein A-I synthesis or increase in apolipoprotein A-I catabolism. In summary, antioxidant vitamins E and C and beta-carotene, alone or in combination, do not protect against cardiovascular disease. Their use for this purpose may create a diversion away from proven therapies. Because these vitamins blunt the protective HDL2 cholesterol response to HDL cholesterol-targeted therapy, they are potentially harmful in this setting. We conclude that they should rarely, if ever, be recommended for cardiovascular protection.
Collapse
Affiliation(s)
- B Greg Brown
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, USA.
| | | | | | | | | |
Collapse
|
43
|
Srivastava N. ATP binding cassette transporter A1--key roles in cellular lipid transport and atherosclerosis. Mol Cell Biochem 2002; 237:155-64. [PMID: 12236582 DOI: 10.1023/a:1016506221047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ATP-binding cassette transporter A1 (ABCA1) was recently recognized as the mutant molecule responsible for Tangier disease with low HDL levels, accumulation of cholesteryl esters in tissues, and increased risk of cardiovascular disease. Extensive studies for the past 2 years have recognized the critical role of ABCA1 in cholesterol and phospholipid trafficking. Since the removal of cholesterol from tissues is a key step in the prevention of atherosclerosis, significant attention has been focused on this molecule. Natural ABCA1 mutations in Tangier disease (TD) patients and WHAM chickens together with induced mutation in ABCA1 knock-out mice unequivocally established the important role of ABCA1 in maintaining circulating HDL levels and promoting cholesterol efflux from the arterial wall. Mice lacking ABCA1 showed similar phenotypes observed in Tangier disease patients with low levels of HDL. Further understanding of the roles of ABCA1 in lipid transport and atherosclerosis became clear from studies with ABCA1 transgenic mice. These mice showed enhanced cholesterol efflux from macrophages and reduced atherosclerotic lesion formation. The promoter of the ABCA1 gene has been mapped to a large extent, with the exception of cAMP response element. The present review summarizes recent developments on the role of ABCA1 in cholesterol efflux and prevention of atherosclerosis. Given the antiatherogenic properties of ABCA1, this molecule can serve as an appropriate target for developing drugs to treat individuals with low levels of HDL.
Collapse
Affiliation(s)
- Neelam Srivastava
- Cardiovascular Molecular Sciences and Technology, Pfizer Global Research & Development, Ann Arbor, MI 48105, USA.
| |
Collapse
|
44
|
Wang DQH, Carey MC. Susceptibility to murine cholesterol gallstone formation is not affected by partial disruption of the HDL receptor SR-BI. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:141-50. [PMID: 12117558 DOI: 10.1016/s1388-1981(02)00194-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
High density lipoprotein (HDL) promotes reverse cholesterol transport from peripheral tissues to the liver where its cholesterol is secreted preferentially into bile. The scavenger receptor class B type I (SR-BI) is believed to play a pivotal role in unloading HDL cholesterol and its ester to hepatocytes. Here, using male SR-BI "att" mice with a dysfunctional mutation in the Sr-b1 promoter, we studied whether approximately 50% of normal SR-BI expression influences gallstone susceptibility in these mice fed a lithogenic diet containing 1% cholesterol, 0.5% cholic acid and 15% butterfat. Our results showed that the disruption of SR-BI expression reduced cholesterol secretion by 37% in the chow-fed state and 10% on the lithogenic diet, and while delaying incidence slightly, did not influence cumulative susceptibility to cholesterol gallstones. The lithogenic diet induced marked increases in biliary cholesterol and phospholipid secretion rates but not of bile salts. Basal expression of hepatic SR-BI protein was dissimilar in both wild-type and SR-BI mice, and remained unaltered in response to the lithogenic diet. By two independent dual isotope methods, intestinal cholesterol absorption was unimpaired by attenuation of the SR-BI which also displays low-density expression on small intestinal enterocytes. We conclude that although HDL cholesterol is a principal source of biliary cholesterol in the basal state, uptake of cholesterol from chylomicron remnants appears to be the major contributor to biliary cholesterol hypersecretion during diet-induced cholelithogenesis in the mouse.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Medicine, Gastroenterology Division, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA 02115, USA.
| | | |
Collapse
|
45
|
Abstract
Recently, a number of nuclear receptors have been identified as key regulators of cholesterol homeostasis. Two of these, liver X receptor alpha (LXRalpha) (NR1H3) [1] and ubiquitous receptor (UR) (NR1H2) [1], appear to be involved in cholesterol reverse transport and disposal. LXRalpha null gene mice fail to adapt metabolically to high-cholesterol diets. We have recently shown that some 6alpha-hydroxylated bile acid analogs are selective activators of LXRalpha. In this report, we show that these orally administered LXRalpha agonists have an overall hypolipidemic effect in hypercholesterolemic rats, mice and hamsters, which indicates that in these animal models, endogenous LXRalpha agonist is a limiting factor for induction of cholesterol disposal. Furthermore, in animals, these 6alpha-hydroxylated bile acid analogs exhibit a unique pharmacokinetic profile and do not increase the serum triglyceride level; therefore, they may represent a novel class of therapeutic agents for cholesterol management.
Collapse
Affiliation(s)
- C Song
- The Ben May Institute for Cancer Research, Department of Biochemistry and Molecular Biology, the Tang Center for Herbal Medicine Research, 5841 South Maryland Avenue, , Chicago, Illinois 60637, USA
| | | |
Collapse
|
46
|
Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem 2000; 275:39313-7. [PMID: 10998425 DOI: 10.1074/jbc.m007998200] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bile acids facilitate the absorption of dietary lipids and fat-soluble vitamins and are physiological ligands for the farnesoid X-activated receptor (FXR), a member of the nuclear hormone receptor superfamily. FXR functions as a heterodimer with the retinoid X receptor and in the presence of ligand, the heterodimer binds to specific DNA sequences in the promoters of target genes to regulate gene transcription. Phospholipid transfer protein (PLTP) has been identified as a possible target gene for FXR because the human promoter contains a potential FXR response element, an inverted repeat in which consensus receptor-binding hexamers are separated by one nucleotide (inverted repeat-1). PLTP is essential in the transfer of very low density lipoprotein phospholipids into high density lipoprotein (Jiang, X. C., Bruce, C., Mar, J., Lin, M., Ji, Y., Francone, O. L., and Tall, A. R. (1999) J. Clin. Invest. 103, 907-914). Here we report the regulation of PLTP gene expression by FXR and bile acids. In CV-1 cells, cotransfection of FXR and the retinoid X receptor resulted in bile acid-dependent transactivation of a luciferase reporter construct containing the human PLTP promoter. Mutation analysis demonstrated that the inverted repeat-1 (IR-1) in the PLTP promoter is required for this transactivation. Finally, we demonstrate that bile acids are able to regulate PLTP gene expression in vivo. Mice fed a chow diet supplemented with bile acid showed increased hepatic PLTP mRNA levels. These results suggest that FXR may play a role in high density lipoprotein metabolism via the regulation of PLTP gene expression.
Collapse
Affiliation(s)
- N L Urizar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|