1
|
Zhang Y, Randesi M, Blendy JA, Kreek MJ, Butelman ER. Impact of OPRM1 (Mu-opioid Receptor Gene) A112G Polymorphism on Dual Oxycodone and Cocaine Self-administration Behavior in a Mouse Model. Neuroscience 2024; 539:76-85. [PMID: 38211933 DOI: 10.1016/j.neuroscience.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The use of mu-opioid receptor (MOP-r) agonists such as oxycodone together with cocaine is prevalent, and deaths attributed to using these combinations have increased. RATIONALE It is unknown if functional single nucleotide polymorphisms (SNPs), such as the OPRM1 (MOP-r gene) SNP A118G, can predispose individuals to more dual opioid and psychostimulant intake. The dual self-administration (SA) of MOP-r agonists and cocaine has not been thoroughly examined, especially with regard to neurobiological changes. OBJECTIVES We examined oxycodone SA and subsequent dual oxycodone and cocaine SA in male and female A112G (A/G and G/G, heterozygote and homozygote, respectively) mice, models of human A118G carriers, versus wild-type (A/A) mice. METHODS Adult male and female A/G, G/G and A/A mice self-administered oxycodone (0.25 mg/kg/infusion, 4hr/session, FR 1.) for 10 consecutive days (sessions 1-10). Mice then self-administered cocaine (2 hr) following oxycodone SA (4 hr, as above) in each session for a further 10 consecutive days (sessions 11-20). Message RNA transcripts of 24 reward-related genes were examined in the dorsal striatum. RESULTS Male and female A/G and G/G mice had greater oxycodone SA than A/A mice did in the initial 10 days and in the last 10 sessions. Further, A/G and G/G mice showed greater cocaine intake than A/A mice. Dorsal striatal mRNA levels of Pdyn, Fkbp5, Oprk1, and Oprm1 were altered following oxycodone and cocaine SA. CONCLUSIONS These studies demonstrated that this functional genetic variation in Oprm1 affected dual opioid and cocaine SA and altered specific gene expression in the striatum.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States.
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York, NY 10065, United States; Neuropsychoimaging of Addictions and Related Conditions Research Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
2
|
Urbańska DM, Pawlik M, Korwin-Kossakowska A, Rutkowska K, Kawecka-Grochocka E, Czopowicz M, Mickiewicz M, Kaba J, Bagnicka E. The Expression of Selected Cytokine Genes in the Livers of Young Castrated Bucks after Supplementation with a Mixture of Dry Curcuma longa and Rosmarinus officinalis Extracts. Animals (Basel) 2023; 13:3489. [PMID: 38003107 PMCID: PMC10668812 DOI: 10.3390/ani13223489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The study aims to determine the effect of supplementation with a mixture of Curcuma longa and Rosmarinus officinalis extracts (896:19 ratio) on the expression of 15 cytokine genes in the livers of 20 castrated goat bucks. Two equal groups were created: treated and control groups. The treated group was provided a mixture (1.6 g/day/buck) for 124 days. Liver tissue samples were collected after slaughter. The gene expression was analyzed using RT-qPCR with two reference genes. Variance analysis was conducted using a model with the group fixed effect. IL-2 and IL-8 expression was below the detection level. No differences were found for IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-16, IFN-α, IFN-β, TNF-α, and CCL4 expressions, suggesting that supplementation does not activate cytokine production in the healthy hepatocytes. The treated group demonstrated lower IL-12 expression (p < 0.05) and a tendency for higher IL-18 and INF-γ (0.05 < p < 0.10) expressions, which may indicate a hypersensitivity resulting from excessive supplement dose. The increased IFN-γ expression could be caused by the increased IL-18 expression. If a small dose of extract can induce an allergic reaction in young goat bucks, it is also possible that humans may be susceptible to an overdose of curcumin and/or turmeric extracts.
Collapse
Affiliation(s)
- Daria Maria Urbańska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Marek Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Institute Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Agnieszka Korwin-Kossakowska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Karolina Rutkowska
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Ewelina Kawecka-Grochocka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| |
Collapse
|
3
|
Estave PM, Sun H, Peck EG, Holleran KM, Chen R, Jones SR. Cocaine self-administration augments kappa opioid receptor system-mediated inhibition of dopamine activity in the mesolimbic dopamine system. IBRO Neurosci Rep 2023; 14:129-137. [PMID: 36748012 PMCID: PMC9898071 DOI: 10.1016/j.ibneur.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Prior studies examining the effects of cocaine on the dynorphin/kappa opioid receptor (Dyn/KOR) system primarily focus on non-contingent cocaine exposure, but the effects of self-administration, which more closely reflects human drug-taking behaviors, are not well studied. In this study we characterized the effects of escalated intravenous cocaine self-administration on the functional state of the Dyn/KOR system and its interaction with mesolimbic dopamine signaling. Rats self-administered cocaine in an extended access, limited intake cocaine procedure, in which animals obtained 40 infusions per day (1.5 mg/kg/inf) for 5 consecutive days to ensure comparable consumption levels. Following single day tests of cue reactivity and progressive ratio responding, quantitative real-time polymerase chain reaction was used to measure levels of Oprk and Pdyn transcripts in the ventral tegmental area and nucleus accumbens. Additionally, after self-administration, ex vivo fast-scan cyclic voltammetry in the NAc was used to examine the ability of the KOR agonist U50,488 to inhibit dopamine release. We found that KOR-induced inhibition of dopamine release was enhanced in animals that self-administered cocaine compared to controls, suggesting upregulated Dyn/KOR activity after cocaine self-administration. Furthermore, expression levels of Pdyn in the nucleus accumbens and ventral tegmental area, and Oprk in the nucleus accumbens, were elevated in cocaine animals compared to controls. Additionally, Pdyn expression in the nucleus accumbens was negatively correlated with progressive ratio breakpoints, a measure of motivation to self-administer cocaine. Overall, these data suggest that cocaine self-administration elevates KOR/Dyn system activity in the mesolimbic dopamine pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara R. Jones
- Correspondence to: Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
4
|
Kappa Opioid Receptor Mediated Differential Regulation of Serotonin and Dopamine Transporters in Mood and Substance Use Disorder. Handb Exp Pharmacol 2021; 271:97-112. [PMID: 34136961 DOI: 10.1007/164_2021_499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dynorphin (DYN) is an endogenous neurosecretory peptide which exerts its activity by binding to the family of G protein-coupled receptors, namely the kappa opioid receptor (KOR). Opioids are associated with pain, analgesia, and drug abuse, which play a central role in mood disorders with monoamine neurotransmitter interactions. Growing evidence demonstrates the cellular signaling cascades linked to KOR-mediated monoamine transporters regulation in cell models and native brain tissues. This chapter will review DYN/KOR role in mood and addiction in relevance to dopaminergic and serotonergic neurotransmissions. Also, we discuss the recent findings on KOR-mediated differential regulation of serotonin and dopamine transporters (SERT and DAT). These findings led to a better understanding of the role of DYN/KOR system in aminergic neurotransmission via its modulatory effect on both amine release and clearance. Detailed knowledge of these processes at the molecular level enables designing novel pharmacological reagents to target transporter motifs to treat mood and addiction and reduce unwanted side effects such as aversion, dysphoria, sedation, and psychomimesis.
Collapse
|
5
|
Yuferov V, Butelman ER, Randesi M, van den Brink W, Blanken P, van Ree JM, Kreek MJ. Association of Serotonin Transporter (SERT) Polymorphisms with Opioid Dependence and Dimensional Aspects of Cocaine Use in a Caucasian Cohort of Opioid Users. Neuropsychiatr Dis Treat 2021; 17:659-670. [PMID: 33658787 PMCID: PMC7920580 DOI: 10.2147/ndt.s286536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION A functional tandem repeat polymorphism in the promoter of the serotonin transporter (SERT) gene (SLC6A4) has been studied for association to neuropsychiatric conditions, including substance use disorders. Short (S) forms of this repeat result in reduced transcription, and presumably greater synaptic levels of serotonin, which are involved in opioid and cocaine-induced reward. Dual exposure to heroin and cocaine is a common pattern of poly-drug use and is associated with considerable morbidity. We hypothesize that SLC6A4 variants are associated with cocaine exposure in subjects with an opioid dependence diagnosis (OD), and also in non-dependent opioid users (NOD). Other single nucleotide polymorphisms (SNPs) of SLC6A4 may also be likewise associated. MATERIALS AND METHODS This study determined whether variants of the SLC6A4 promoter repeats and two intronic SNPs, rs16965628 and rs2066713, are associated with categorical diagnoses of opioid dependence (DSM-IV criteria) and with dimensional aspects of cocaine use, in a Caucasian cohort (n=591). Three groups of subjects were examined: (1) 276 subjects with opioid dependence diagnosis (OD); (2) 163 subjects who had used opioids for non-medical reasons but never had an opioid dependence diagnosis (NOD); (3) 152 healthy controls (HC). RESULTS Aside from high exposure to heroin in the OD group, relatively high exposure to cocaine was detected in both OD and NOD groups. The SERT repeat genotype (classified as "long-long" [LL] versus "short-long" plus "short-short" [SL+SS]) was not associated with categorical opioid dependence diagnoses. A nominally significant association was identified with the [SL+SS] genotype of SLC6A4 and cocaine KMSK scores ≥"cutpoint" for a cocaine dependence diagnosis (p=0.026). The [SL+SS] genotype was associated with more rapid cocaine escalation than the LL genotype. No significant associations of rs16965628 and rs2066713 SNPs were found overall. CONCLUSION The functional SERT promoter tandem repeat genotype may be associated to heavy cocaine exposure and more rapid escalation of cocaine use, in persons with and without opioid dependence diagnosis.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Wim van den Brink
- Amsterdam University Medical Centers, Location Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Blanken
- Parnassia Addiction Research Centre, The Hague, The Netherlands
| | - Jan M van Ree
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
6
|
Cocaine Self-administration Regulates Transcription of Opioid Peptide Precursors and Opioid Receptors in Rat Caudate Putamen and Prefrontal Cortex. Neuroscience 2020; 443:131-139. [PMID: 32730947 DOI: 10.1016/j.neuroscience.2020.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
The brain opioid system plays an important role in cocaine reward. Altered signaling in the opioid system by chronic cocaine exposure contributes to cocaine-seeking and taking behavior. The current study investigated concurrent changes in the gene expression of multiple components in rat brain opioid system following cocaine self-administration. Animals were limited to 40 infusions (1.5 mg/kg/infusion) within 6 h per day for five consecutive days. We then examined the mRNA levels of opioid receptors including mu (Oprm), delta (Oprd), and kappa (Oprk), and their endogenous opioid peptide precursors including proopiomelanocortin (Pomc), proenkephalin (Penk), prodynorphin (Pdyn) in the dorsal striatum (CPu) and the prefrontal cortex (PFC) 18 h after the last cocaine infusion. We found that cocaine self-administration significantly increased the mRNA levels of Oprm and Oprd in both the CPu and PFC, but had no effect on Oprk mRNA levels in either brain region. Moreover, cocaine had a greater influence on the mRNA levels of opioid peptide precursors in rat CPu than in the PFC. In the CPu, cocaine self-administration significantly increased the mRNA levels of Penk and Pdyn and abolished the mRNA levels of Pomc. In the PFC, cocaine self-administration only increased Pdyn mRNA levels without changing the mRNA levels of Pomc and Penk. These data suggest that cocaine self-administration influences the expression of multiple genes in the brain opioid system, and the concurrent changes in these targets may underlie cocaine-induced reward and habitual drug-seeking behavior.
Collapse
|
7
|
Effects of Kappa opioid receptor blockade by LY2444296 HCl, a selective short-acting antagonist, during chronic extended access cocaine self-administration and re-exposure in rat. Psychopharmacology (Berl) 2020; 237:1147-1160. [PMID: 31915862 DOI: 10.1007/s00213-019-05444-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE Cocaine addiction is a chronic brain disease characterized by compulsive drug intake and dysregulation of brain reward systems. Few preclinical studies have modeled the natural longitudinal course of cocaine addiction. Extended access self-administration protocols are powerful tools for modeling the advanced stages of addiction; however, few studies have duration of drug access longer than 12 h/session, potentially limiting their construct validity. Identification of changes in cocaine intake patterns during the development of addictive-like states may allow better treatments for vulnerable subjects. The kappa opioid receptor (KOPr) system has been implicated in the neurobiological regulation of addictive states as well as mood and stress disorders, with selective KOPr antagonists proposed as possible pharmacotherapeutic agents. Chronic cocaine exposure increases the expression of KOPr and its endogenous agonists, the dynorphins, in several brain areas in rodents. OBJECTIVES To examine the behavioral pattern of intake during chronic (14 days) 18 h intravenous cocaine self-administration (0.5 mg/kg/infusion) and the effect of a novel short-acting KOPr antagonist LY2444296 HCl (3 mg/kg) administered during sessions 8 to 14 of chronic 18 h/day cocaine self-administration and prior to a single re-exposure session after 2 cocaine-free withdrawal days. RESULTS Both daily and hourly cocaine intake patterns changed over 14 days of 18 h self-administration. LY pretreatment affected the pattern of self-administration across the second week of extended access cocaine self-administration and prevented the increase in cocaine intake during re-exposure. CONCLUSIONS Overall, the KOPr antagonist attenuated escalated cocaine consumption in a rat model of extended access cocaine self-administration.
Collapse
|
8
|
Butelman ER, Fry RS, Kimani R, Reed B, Kreek MJ. Neuroendocrine effects of naltrexone versus nalmefene in humans. Hum Psychopharmacol 2020; 35:e2726. [PMID: 32050055 PMCID: PMC11372649 DOI: 10.1002/hup.2726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Naltrexone and nalmefene are approved for the treatment of alcohol use disorders, in different countries. Naltrexone is also approved for the treatment for opioid use disorders, most recently in a depot formulation. These compounds target primarily μ(mu)- and κ(kappa)-opioid receptor systems, which are involved in the downstream neurobiological effects of alcohol and in the modulation of neuroendocrine stress systems. The study objective was to compare the neuroendocrine effects of naltrexone and nalmefene on adrenocorticotropic hormone (ACTH), cortisol, and prolactin, in normal volunteers. METHOD Adult normal volunteers (n = 11 male and n = 9 female) were studied in a stress-minimized inpatient setting on three consecutive days, after intravenous saline, naltrexone HCl (10 mg), or nalmefene HCl (10 mg), in fixed order. ACTH, cortisol, and prolactin were analyzed pre-injection and up to 180 min post-injection. RESULTS Naltrexone and nalmefene caused elevations in ACTH and cortisol compared with saline. Nalmefene had a greater effect on ACTH and cortisol, compared with naltrexone. Both compounds also caused elevations in prolactin in males (females were not examined, due to the influence of menstrual cycle on prolactin). CONCLUSIONS This study suggests that both nalmefene and naltrexone have effects potentially due to κ-partial agonism in humans, as well as antagonist effects at μ-receptors.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Rebecca S Fry
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Rachel Kimani
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Brian Reed
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| |
Collapse
|
9
|
Abstract
Substance use disorders represent a global public health issue. This mental health disorder is hypothesized to result from neurobiological changes as a result of chronic drug exposure and clinically manifests as inappropriate behavioral allocation toward the procurement and use of the abused substance and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., social relationships, work). The dynorphin/kappa-opioid receptor (KOR) is one receptor system that has been altered following chronic exposure to drugs of abuse (e.g., cocaine, opioids, alcohol) in both laboratory animals and humans, implicating the dynorphin/KOR system in the expression, mechanisms, and treatment of substance use disorders. KOR antagonists have reduced drug self-administration in laboratory animals under certain experimental conditions, but not others. Recently, several human laboratory and clinical trials have evaluated the effectiveness of KOR antagonists as candidate pharmacotherapies for cocaine or tobacco use disorder to test hypotheses generated from preclinical studies. KOR antagonists failed to significantly alter drug use metrics in humans suggesting translational discordance between some preclinical drug self-administration studies and consistent with other preclinical drug self-administration studies that provide concurrent access to an alternative nondrug reinforcer (e.g., food). The implications of this translational discordance and future directions for examining the therapeutic potential of KOR agonists or antagonists as candidate substance use disorder pharmacotherapies are discussed.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
10
|
Shahkarami K, Vousooghi N, Golab F, Mohsenzadeh A, Baharvand P, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Zarrindast MR. Evaluation of dynorphin and kappa-opioid receptor level in the human blood lymphocytes and plasma: Possible role as a biomarker in severe opioid use disorder. Drug Alcohol Depend 2019; 205:107638. [PMID: 31710992 DOI: 10.1016/j.drugalcdep.2019.107638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The dynorphin (DYN)/kappa opioid receptor (KOR) system plays an important role in the development of addiction, and dysregulation of this system could lead to abnormal activity in the reward pathway. It has been reported that the expression state of the neurotransmitters and their receptors in the brain is reflected in peripheral blood lymphocytes (PBLs). METHODS We have evaluated the PBLs and plasma samples of four groups: 1) subjects with severe opioid use disorder (SOD), 2) methadone-maintenance treated (MMT) individuals, 3) long-term abstinent subjects having former SOD, and 4) healthy control subjects (n = 20 in each group). The mRNA expression level of preprodynorphin (pPDYN) and KOR in PBLs has been evaluated by real-time PCR. Peptide expression of PDYN in PBLs has been studied by western blot, and DYN concentration in plasma has been measured by ELISA. RESULTS The relative expression level of the pPDYN mRNA and PDYN peptide in PBLs were significantly up-regulated in SOD, MMT, and abstinent groups compared to control subjects. No significant difference was found in the plasma DYN concentration between study groups. The expression level of the KOR mRNA in PBLs was significantly decreased in all three study groups compared to the control subjects. CONCLUSION the expression changes in the DYN/KOR system after chronic exposure to opioids, including methadone, seems to be stable and does not return to normal levels even after 12 months abstinence. These long-time and permanent changes in PBLs may serve as a biomarker and footprint of SOD development in the periphery.
Collapse
Affiliation(s)
- Kourosh Shahkarami
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
11
|
Martinez D, Slifstein M, Matuskey D, Nabulsi N, Zheng MQ, Lin SF, Ropchan J, Urban N, Grassetti A, Chang D, Salling M, Foltin R, Carson RE, Huang Y. Kappa-opioid receptors, dynorphin, and cocaine addiction: a positron emission tomography study. Neuropsychopharmacology 2019; 44:1720-1727. [PMID: 31026862 PMCID: PMC6785004 DOI: 10.1038/s41386-019-0398-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023]
Abstract
Animal studies indicate that the kappa-opioid receptor/dynorphin system plays an important role in cocaine binges and stress-induced relapse. Our goal was to investigate changes in kappa-opioid receptor (KOR) availability in the human brain using positron emission tomography (PET), before and after a cocaine binge. We also investigated the correlation between KOR and stress-induced cocaine self-administration. PET imaging was performed with the KOR selective agonist [11C]GR103545. Subjects with cocaine-use disorder (CUD) underwent PET scans and performed two types of cocaine self-administration sessions in the laboratory as follows: (1) choice sessions following a cold pressor test, to induce stress, and (2) binge dosing of cocaine. This allowed us investigate the following: (1) the association between KOR binding and a laboratory model of stress-induced relapse and (2) the change in KOR binding following a 3-day cocaine binge, which is thought to represent a change in endogenous dynorphin. A group of matched healthy controls was included to investigate between group differences in KOR availability. A significant association between [11C]GR103545 binding and cocaine self-administration was seen: greater KOR availability was associated with more choices for cocaine. In addition, the 3-day cocaine binge significantly reduced [11C]GR103545 binding by 18% in the striatum and 14% across brain regions. No difference in [11C]GR103545 binding was found between the CUD subjects and matched controls. In the context of previous studies, these findings add to the growing evidence that pharmacotherapies targeting the KOR have the potential to significantly impact treatment development for cocaine-use disorder.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA.
| | - Mark Slifstein
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - David Matuskey
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-Fei Lin
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nina Urban
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Alexander Grassetti
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Dinnisa Chang
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Michael Salling
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard Foltin
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Butelman ER, Chen CY, Fry RS, Kimani R, Levran O, Ott J, Correa da Rosa J, Kreek MJ. Re-evaluation of the KMSK scales, rapid dimensional measures of self-exposure to specific drugs: Gender-specific features. Drug Alcohol Depend 2018; 190:179-187. [PMID: 30041093 DOI: 10.1016/j.drugalcdep.2018.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND The Kreek-McHugh-Schluger-Kellogg (KMSK) scales provide a rapid assessment of maximal self-exposure to specific drugs and can be used as a dimensional instrument. This study provides a re-evaluation of the KMSK scales for cannabis, alcohol, cocaine, and heroin in a relatively large multi-ethnic cohort, and also the first systematic comparison of gender-specific profiles of drug exposure with this scale. METHODS This was an observational study of n = 1,133 consecutively ascertained adult volunteers. The main instruments used were the SCID-I interview (DSM-IV criteria) and KMSK scales for cannabis, alcohol, cocaine, and heroin. RESULTS Participants were 852 volunteers (297 female) with specific DSM-IV abuse or dependence diagnoses, and 281 volunteers without any drug diagnoses (154 female). Receiver operating characteristic (ROC) curves were calculated for concurrent validity of KMSK scores with the respective DSM-IV dependence diagnoses. The areas under the ROC curves for men and women combined were 99.5% for heroin, 97% for cocaine, 93% for alcohol, and 85% for cannabis. Newly determined optimal KMSK "cutpoint" scores were identical for men and women for cocaine and heroin dependence diagnoses, but were higher in men than in women, for cannabis and alcohol dependence diagnoses. CONCLUSIONS This study confirms the scales' effectiveness in performing rapid dimensional analyses for cannabis, alcohol, cocaine, and heroin exposure, in a cohort larger than previously reported, with "cutpoints" changed from initial determinations, based on this larger sample. The KMSK scales also detected gender differences in self-exposure to alcohol and cannabis that are associated with the respective dependence diagnoses.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Carina Y Chen
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Rebecca S Fry
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Rachel Kimani
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jürg Ott
- Laboratory of Statistical Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Joel Correa da Rosa
- Center for Clinical and Translational Science, The Rockefeller University Hospital, 1230 York Avenue, New York, NY, 10065, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
13
|
Reed B, Butelman ER, Fry RS, Kimani R, Kreek MJ. Repeated Administration of Opra Kappa (LY2456302), a Novel, Short-Acting, Selective KOP-r Antagonist, in Persons with and without Cocaine Dependence. Neuropsychopharmacology 2018; 43:739-750. [PMID: 28857070 PMCID: PMC5809790 DOI: 10.1038/npp.2017.205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/27/2017] [Indexed: 12/14/2022]
Abstract
The κ-opioid receptor (KOP-r) system and its endogenous ligands, the dynorphins, are involved in the neurobiological regulation of addictive states, and of mood. There are limited data on the impact of selective KOP-r antagonism in humans on basic biobehavioral functions, or on addictive diseases and mood disorders. Previously studied selective KOP-r antagonists have unusual pharmacodynamic and pharmacokinetic properties (slow development of KOP-r selectivity, extremely long duration of action) that limit translation to human studies. A recently developed selective KOP-r-antagonist, Opra Kappa (LY2456302; CERC-501), has medication-like duration of action, oral bioavailability, and target engagement. The current study is the first investigation of the effects of a KOP-r-antagonist in cocaine-dependent persons in comparison with normal volunteers. In a stress-minimized inpatient setting, we determined the neuroendocrine and neurobehavioral effects of repeated administration of an active dose of Opra Kappa (10 mg p.o. daily, four consecutive days in comparison with an initial baseline day). Healthy volunteers (n=40), persons diagnosed with cocaine dependence in early abstinence (<2 months, EACD) (n=23), and drug-free former cocaine-dependent persons (7-month to 25-year abstinence, DFFCD) (n=7) were studied, with measurements including circulating neuroendocrine hormones, affect, and, in cocaine-dependent persons, cocaine craving. Modest adverse events related to Opra Kappa included pruritus, observed in a subset of individuals. No significant change was observed in serum prolactin levels following Opra Kappa administration, but modest increases in circulating adrenocorticotropic hormone and cortisol were observed. No significant changes were noted in measures of depression or cocaine craving in this stress-minimized setting. Overall, these studies demonstrate that effects of 10 mg Opra Kappa are largely consistent with those predicted for a selective KOP-r antagonist. This medication regimen was tolerable, and is therefore feasible for further studies in cocaine-dependent persons.
Collapse
Affiliation(s)
- Brian Reed
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA,Laboratory of the Biology of Addictive Diseases, Rockefeller University, Box 171, New York, NY 10065, USA, Tel: 212 327 8247, Fax: 212 327 8574, E-mail:
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| | - Rebecca S Fry
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| | - Rachel Kimani
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| |
Collapse
|
14
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Yakovleva T, Hansson AC, Sommer WH, Spanagel R, Bakalkin G. Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics. Mol Neurobiol 2018; 55:7049-7061. [PMID: 29383684 PMCID: PMC6061161 DOI: 10.1007/s12035-017-0844-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden.
| | - Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| |
Collapse
|
15
|
"Effects of the novel relatively short-acting kappa opioid receptor antagonist LY2444296 in behaviors observed after chronic extended-access cocaine self-administration in rats". Psychopharmacology (Berl) 2017; 234:2219-2231. [PMID: 28550455 PMCID: PMC5591939 DOI: 10.1007/s00213-017-4647-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE The recruitment of the stress circuitry contributes to a shift from positive to negative reinforcement mechanisms sustaining long-term cocaine addiction. The kappa opioid receptor (KOPr) signaling is upregulated by stress and chronic cocaine exposure. While KOPr agonists induce anhedonia and dysphoria, KOPr antagonists display antidepressant and anxiolytic properties. Most of the knowledge on KOPr antagonism is based on drugs with unusual pharmacokinetic and pharmacodynamic properties, complicating interpretation of results. Here we characterized in vivo behavioral and neuroendocrine effects of the novel relatively short-acting KOPr antagonist LY2444296. To date, no study has investigated whether systemic KOPr blockade reduced anxiety-like and depressive-like behaviors in animals previously exposed to chronic extended access cocaine self-administration. OBJECTIVES We tested the effect of LY2444296 in blocking KOPr-mediated aversive and neuroendocrine effects. Then, we tested acute systemic LY2444296 in reducing anxiety- and depression-like behaviors, as well as releasing the stress hormone corticosterone (CORT), observed after chronic extended access (18 h/day for 14 days) cocaine self-administration. RESULTS LY2444296 blocked U69,593-induced place aversion and -reduced motor activity as well as U69,593-induced release of serum CORT, confirming its major site of action, without exerting an effect per se. Acute systemic administration of LY2444296 reduced anxiety-like and depressive-like behaviors, as well as CORT release, in rats tested after chronic extended access cocaine self-administration, but not in cocaine-naïve rats. CONCLUSIONS Results suggest that acute blockade of KOPr by a relatively short-acting antagonist produces therapeutic-like effects selectively in rats with a history of chronic extended access cocaine self-administration.
Collapse
|
16
|
Banks ML, Negus SS. Insights from Preclinical Choice Models on Treating Drug Addiction. Trends Pharmacol Sci 2017; 38:181-194. [PMID: 27916279 PMCID: PMC5258826 DOI: 10.1016/j.tips.2016.11.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
Substance-use disorders are a global public health problem that arises from behavioral misallocation between drug use and more adaptive behaviors maintained by nondrug alternatives (e.g., food or money). Preclinical drug self-administration procedures that incorporate a concurrently available nondrug reinforcer (e.g., food) provide translationally relevant and distinct dependent measures of behavioral allocation (i.e., to assess the relative reinforcing efficacy of the drug) and behavioral rate (i.e., to assess motor competence). In particular, preclinical drug versus food 'choice' procedures have produced increasingly concordant results with both human laboratory drug self-administration studies and double-blind placebo-controlled clinical trials. Accordingly, here we provide a heuristic framework of substance-use disorders based on a behavioral-centric perspective and recent insights from these preclinical choice procedures.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
17
|
Egervari G, Jutras-Aswad D, Landry J, Miller ML, Anderson SA, Michaelides M, Jacobs MM, Peter C, Yiannoulos G, Liu X, Hurd YL. A Functional 3'UTR Polymorphism (rs2235749) of Prodynorphin Alters microRNA-365 Binding in Ventral Striatonigral Neurons to Influence Novelty Seeking and Positive Reward Traits. Neuropsychopharmacology 2016; 41:2512-20. [PMID: 27074815 PMCID: PMC4987849 DOI: 10.1038/npp.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 12/21/2022]
Abstract
Genetic factors impact behavioral traits relevant to numerous psychiatric disorders and risk-taking behaviors, and different lines of evidence have indicated that discrete neurobiological systems contribute to such individual differences. In this study, we explored the relationship of genetic variants of the prodynorphin (PDYN) gene, which is enriched in the striatonigral/striatomesencephalic pathway, a key neuronal circuit implicated in positive 'Go' behavioral choice and action. Our multidisciplinary approach revealed that the single nucleotide polymorphism (SNP) rs2235749 (in high linkage disequilibrium with rs910080) modifies striatal PDYN expression via impaired binding of miR-365, a microRNA that targets the PDYN 3'-untranslated region (3'UTR), and is significantly associated to novelty- and reward-related behavioral traits in humans and translational animal models. Carriers of the rs2235749G allele exhibited increased levels of PDYN 3'UTR in vitro and had elevated mRNA expression in the medial nucleus accumbens shell (NAcSh) and caudate nucleus in postmortem human brains. There was an association of rs2235749 with novelty-seeking trait and a strong genotype-dose association with positive reinforcement behavior in control subjects, which differed in cannabis-dependent individuals. Using lentiviral miRZip-365 constructs selectively expressed in Pdyn-neurons of the NAcSh, we demonstrated that the Pdyn-miR365 interaction in the NAcSh directly influences novelty-seeking exploratory behavior and facilitates self-administration of natural reward. Overall, this translational study suggests that genetically determined miR-365-mediated epigenetic regulation of PDYN expression in mesolimbic striatonigral/striatomesencephalic circuits possibly contributes to novelty seeking and positive reinforcement traits.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Didier Jutras-Aswad
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Landry
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael L Miller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Ann Anderson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Michaelides
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle M Jacobs
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cyril Peter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgia Yiannoulos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xun Liu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Liu H, Tian Y, Ji B, Lu H, Xin Q, Jiang Y, Ding L, Zhang J, Chen J, Bai B. Heterodimerization of the kappa opioid receptor and neurotensin receptor 1 contributes to a novel β-arrestin-2-biased pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2719-2738. [PMID: 27523794 DOI: 10.1016/j.bbamcr.2016.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
Together with its endogenous ligands (dynorphin), the kappa opioid receptor (KOR) plays an important role in modulating various physiological and pharmacological responses, with a classical G protein-coupled pathway mediating analgesia and non-G protein-dependent pathway, especially the β-arrestin-dependent pathway, eliciting side effects of dysphoria, aversion, drug-seeking in addicts, or even relapse to addiction. Although mounting evidence has verified a functional overlap between dynorphin/KOR and neurotensin/neurotensin receptor 1 (NTSR1) systems, little is known about direct interaction between the two receptors. Here, we showed that KOR and NTSR1 form a heterodimer that functions as a novel pharmacological entity, and this heterodimer, in turn, brings about a switch in KOR-mediated signal transduction, from G protein-dependent to β-arrestin-2-dependent. This was simultaneously verified by analyzing a KOR mutant (196th residue) that lost the ability to dimerize with NTSR1. We also found that dual occupancy of the heterodimer forced the β-arrestin-2-dependent pathway back into Gi protein-dependent signaling, according to KOR activation. These data provide new insights into the interaction between KOR and NTSR1, and the newly discovered role of NTSR1 acting as a switch between G protein- and β-arrestin-dependent pathways of KOR also suggests a new approach for utilizing pathologically elevated dynorphin/KOR system into full play for its analgesic effect with limited side effects.
Collapse
Affiliation(s)
- Haiqing Liu
- School of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China; Department of Physiology, Taishan Medical College, Taian, Shandong 271000, PR China.
| | - Yanjun Tian
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Hai Lu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Qing Xin
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Liangcai Ding
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Jingmei Zhang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Translational and Systems, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| |
Collapse
|
19
|
Hutsell BA, Cheng K, Rice KC, Negus SS, Banks ML. Effects of the kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI) on cocaine versus food choice and extended-access cocaine intake in rhesus monkeys. Addict Biol 2016; 21:360-73. [PMID: 25581305 DOI: 10.1111/adb.12206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dynorphin/kappa opioid receptor (KOR) system has been implicated as one potential neurobiological modulator of the abuse-related effects of cocaine and as a potential target for medications development. This study determined effects of the KOR antagonist nor-binaltorphimine (nor-BNI) on cocaine self-administration under a novel procedure that featured two daily components: (1) a 2-hour 'choice' component (9:00-11:00 am) when monkeys could choose between food pellets and cocaine injections (0-0.1 mg/kg per injection, intravenous) and (2) a 20-hour 'extended-access' component (noon to 8:00 am) when cocaine (0.1 mg/kg per injection) was available under a fixed-ratio schedule to promote high daily cocaine intakes. Rhesus monkeys (n = 4) were given 14 days of exposure to the choice + extended-access procedure then treated with nor-BNI (3.2 or 10.0 mg/kg, intramuscular), and cocaine choice and extended-access cocaine intake were evaluated for an additional 14 days. Consistent with previous studies, cocaine maintained both a dose-dependent increase in cocaine choice during choice components and a high level of cocaine intake during extended-access components. Neither 3.2 nor 10 mg/kg nor-BNI significantly altered cocaine choice or extended-access cocaine intake. In two additional monkeys, nor-BNI also had no effect on cocaine choice or extended-access cocaine intake when it was administered at the beginning of exposure to the extended-access components. Overall, these results do not support a major role for the dynorphin/KOR system in modulating cocaine self-administration under these conditions in non-human primates nor do they support the clinical utility of KOR antagonists as a pharmacotherapeutic strategy for cocaine addiction.
Collapse
Affiliation(s)
- Blake A. Hutsell
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
| | - Kejun Cheng
- Chemical Biology Branch; National Institute on Alcohol Abuse and Alcoholism; National Institute of Health; Bethesda MD USA
| | - Kenner C. Rice
- Chemical Biology Branch; National Institute on Alcohol Abuse and Alcoholism; National Institute of Health; Bethesda MD USA
| | - Sidney Stevens Negus
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
- Institute for Drug and Alcohol Abuse Studies; Virginia Commonwealth University; Richmond VA USA
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
- Institute for Drug and Alcohol Abuse Studies; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
20
|
Valenza M, Picetti R, Yuferov V, Butelman ER, Kreek MJ. Strain and cocaine-induced differential opioid gene expression may predispose Lewis but not Fischer rats to escalate cocaine self-administration. Neuropharmacology 2016; 105:639-650. [PMID: 26777278 DOI: 10.1016/j.neuropharm.2016.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 01/03/2016] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to investigate alterations in gene expression of opioid system components induced by extended access (18 h) cocaine self-administration and to determine the impact of genetic background in the vulnerability to escalate cocaine intake. Comparing two inbred rat strains, we previously reported that Lewis rats progressively escalated cocaine consumption compared to Fischer rats, in a new translational model of intravenous cocaine self-administration, which included 14 sessions of 18-h operant sessions in which rats were allowed to select the cocaine unit dose to self-administer. We compare here Fischer and Lewis rats in the gene expression of endogenous opioid peptides (Pomc, Penk, Pdyn) and cognate receptors (Oprm, Oprk and Oprd) in reward-related brain regions, after exposure to either cocaine self-administration or yoked-saline, in the aforementioned translational paradigm. We performed a correlation analysis between the mRNA level, found in the Dorsal Striatum (DS), Nucleus accumbens (NAcc) shell and core respectively, and individual cocaine intake. Our findings show that the gene expression of all the aforementioned opioid genes exhibit strain-dependent differences in the DS, in absence of cocaine exposure. Also, different strain-specific cocaine-induced mRNA expression of Oprm and Oprk was found in DS. Only few differences were found in the ventral parts of the striatum. Moreover, gene expression level of Pdyn, Penk, Oprk, and Oprm in the DS was significantly correlated with cocaine intake only in Fischer rats. Overall, these data shed light on potential genetic differences which may predispose of subjects to initiate and escalate cocaine consumption.
Collapse
Affiliation(s)
- Marta Valenza
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Roberto Picetti
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA; Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Lutfy K, Zaveri NT. The Nociceptin Receptor as an Emerging Molecular Target for Cocaine Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:149-81. [PMID: 26810001 DOI: 10.1016/bs.pmbts.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is a global public health and socioeconomic issue that requires pharmacological and cognitive therapies. Currently there are no FDA-approved medications to treat cocaine addiction. However, in preclinical studies, interventions ranging from herbal medicine to deep-brain stimulation have shown promise for the therapy of cocaine addiction. Recent developments in molecular biology, pharmacology, and medicinal chemistry have enabled scientists to identify novel molecular targets along the pathways involved in drug addiction. In 1994, a receptor that showed a great deal of homology to the traditional opioid receptors was characterized. However, endogenous and exogenous opioids failed to bind to this receptor, which led scientists to name it opioid receptor-like receptor, now referred to as the nociceptin receptor. The endogenous ligand of NOPr was identified a year later and named orphanin FQ/nociceptin. Nociceptin and NOPr are widely distributed throughout the CNS and are involved in many physiological responses, such as food intake, nociceptive processing, neurotransmitter release, etc. Furthermore, exogenous nociceptin has been shown to regulate the activity of mesolimbic dopaminergic neurons, glutamate, and opioid systems, and the stress circuit. Importantly, exogenous nociceptin has been shown to reduce the rewarding and addictive actions of a number of drugs of abuse, such as psychostimulants, alcohol, and opioids. This paper reviews the existing literature on the role of endogenous nociceptin in the rewarding and addictive actions of cocaine. The effect of exogenous nociceptin on these processes is also reviewed. Furthermore, the effects of novel small-molecule NOPr ligands on these actions of cocaine are discussed. Overall, a review of the literature suggests that NOPr could be an emerging target for cocaine addiction pharmacotherapy.
Collapse
Affiliation(s)
- Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA.
| | | |
Collapse
|
22
|
Shagiakhmetov FS, Proskuryakova TV, Shamakina IY. The dynorphin/kappa-opioid system of the brain as a promising target for therapy for dependence on psychoactive substances. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, Pyo CO, Park SI, Marcinkiewcz CM, Crowley NA, Krashes MJ, Lowell BB, Kash TL, Rogers JA, Bruchas MR. Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward. Neuron 2015; 87:1063-77. [PMID: 26335648 DOI: 10.1016/j.neuron.2015.08.019] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/07/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022]
Abstract
The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and was positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease.
Collapse
Affiliation(s)
- Ream Al-Hasani
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, Division of Biomedical Engineering and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Jordan G McCall
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, Division of Biomedical Engineering and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gunchul Shin
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adrian M Gomez
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, Division of Biomedical Engineering and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gavin P Schmitz
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, Division of Biomedical Engineering and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Julio M Bernardi
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chang-O Pyo
- Department of Electrical and Computer Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sung Il Park
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine M Marcinkiewcz
- Department of Pharmacology and Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27516, USA
| | - Nicole A Crowley
- Department of Pharmacology and Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27516, USA
| | - Michael J Krashes
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA; Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Bradford B Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas L Kash
- Department of Pharmacology and Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27516, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Electrical and Computer Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael R Bruchas
- Departments of Anesthesiology, Division of Basic Research, Anatomy and Neurobiology, Division of Biomedical Engineering and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
24
|
Geerling JC, Kim M, Mahoney CE, Abbott SBG, Agostinelli LJ, Garfield AS, Krashes MJ, Lowell BB, Scammell TE. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2015; 310:R41-54. [PMID: 26491097 DOI: 10.1152/ajpregu.00094.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts;
| | - Minjee Kim
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Stephen B G Abbott
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Lindsay J Agostinelli
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Alastair S Garfield
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Michael J Krashes
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Bradford B Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015; 172:3964-79. [PMID: 25988826 DOI: 10.1111/bph.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Florence Noble
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Magalie Lenoir
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
26
|
Murray RC, Logan MC, Horner KA. Striatal patch compartment lesions reduce stereotypy following repeated cocaine administration. Brain Res 2015; 1618:286-98. [PMID: 26100338 DOI: 10.1016/j.brainres.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/06/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
Stereotypy can be characterized as inflexible, repetitive behaviors that occur following repeated exposure to psychostimulants, such as cocaine (COC). Stereotypy may be related to preferential activation of the patch (striosome) compartment of striatum, as enhanced relative activation of the patch compartment has been shown to positively correlate with the emergence of stereotypy following repeated psychostimulant treatment. However, the specific contribution of the patch compartment to COC-induced stereotypy following repeated exposure is unknown. To elucidate the involvement of the patch compartment to the development of stereotypy following repeated COC exposure, we determined if destruction of this sub-region altered COC-induced behaviors. The neurons of the patch compartment were ablated by bilateral infusion of the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) into the striatum. Animals were allowed to recover for eight days following the infusion, and then were given daily injections of COC (25mg/kg) or saline for one week, followed by a weeklong drug-free period. Animals were then given a challenge dose of saline or COC, observed for 2h in activity chambers and sacrificed. The number of mu-labeled patches in the striatum were reduced by DERM-SAP pretreatment. In COC-treated animals DERM-SAP pretreatment significantly reduced the immobilization and intensity of stereotypy but increased locomotor activity. DERM-SAP pretreatment attenuated COC-induced c-Fos expression in the patch compartment, while enhancing COC-induced c-Fos expression in the matrix compartment. These data indicate that the patch compartment contributes to repetitive behavior and suggests that alterations in activity in the patch vs matrix compartments may underlie to this phenomenon.
Collapse
Affiliation(s)
- Ryan C Murray
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States
| | - Mary C Logan
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States
| | - Kristen A Horner
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| |
Collapse
|
27
|
Caputi FF, Di Benedetto M, Carretta D, Bastias del Carmen Candia S, D'Addario C, Cavina C, Candeletti S, Romualdi P. Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:36-46. [PMID: 24184686 DOI: 10.1016/j.pnpbp.2013.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 12/11/2022]
Abstract
Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addiction. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen (mCPu and lCPu, respectively) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epigenetic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine induced pDYN gene expression up-regulation in the NA and lCPu, and its down-regulation in the mCPu, whereas KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA and lCPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the lCPu. Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter, consistent with the observed gene expression alterations. The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underlying the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene promoters that result in long-lasting drug-induced plasticity.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Manuela Di Benedetto
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Donatella Carretta
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | | | - Claudio D'Addario
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Chiara Cavina
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
28
|
Kivell BM, Ewald AWM, Prisinzano TE. Salvinorin A analogs and other κ-opioid receptor compounds as treatments for cocaine abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:481-511. [PMID: 24484985 DOI: 10.1016/b978-0-12-420118-7.00012-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute activation of kappa-opioid receptors produces anti-addictive effects by regulating dopamine levels in the brain. Unfortunately, classic kappa-opioid agonists have undesired side effects such as sedation, aversion, and depression, which restrict their clinical use. Salvinorin A (Sal A), a novel kappa-opioid receptor agonist extracted from the plant Salvia divinorum, has been identified as a potential therapy for drug abuse and addiction. Here, we review the preclinical effects of Sal A in comparison with traditional kappa-opioid agonists and several new analogs. Sal A retains the anti-addictive properties of traditional kappa-opioid receptor agonists with several improvements including reduced side effects. However, the rapid metabolism of Sal A makes it undesirable for clinical development. In an effort to improve the pharmacokinetics and tolerability of this compound, kappa-opioid receptor agonists based on the structure of Sal A have been synthesized. While work in this field is still in progress, several analogs with improved pharmacokinetic profiles have been shown to have anti-addictive effects. While in its infancy, it is clear that these compounds hold promise for the future development of anti-addictive therapeutics.
Collapse
Affiliation(s)
- Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Amy W M Ewald
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|
29
|
Dopamine receptor D1 and postsynaptic density gene variants associate with opiate abuse and striatal expression levels. Mol Psychiatry 2013; 18:1205-10. [PMID: 23044706 PMCID: PMC3637428 DOI: 10.1038/mp.2012.140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
Abstract
Opioid drugs are highly addictive and their abuse has a strong genetic load. Dopamine-glutamate interactions are hypothesized to be important for regulating neural systems central for addiction vulnerability. Balanced dopamine-glutamate interaction is mediated through several functional associations, including a physical link between discs, large homolog 4 (Drosophila) (DLG4, PSD-95) and dopamine receptor 1 (DRD1) within the postsynaptic density to regulate DRD1 trafficking. To address whether genetic associations with heroin abuse exist in relation to dopamine and glutamate and their potential interactions, we evaluated single-nucleotide polymorphisms of key genes within these systems in three populations of opiate abusers and controls, totaling 489 individuals from Europe and the United States. Despite significant differences in racial makeup of the separate samples, polymorphisms of DRD1 and DLG4 were found to be associated with opiate abuse. In addition, a strong gene-gene interaction between homer 1 homolog (Drosophila) (HOMER1) and DRD1 was predicted to occur in Caucasian subjects. This interaction was further analyzed by evaluating DRD1 genotype in relation to HOMER1b/c protein expression in postmortem tissue from a subset of Caucasian subjects. DRD1 rs265973 genotype correlated with HOMER1b/c levels in the striatum, but not cortex or amygdala; the correlation was inversed in opiate abusers as compared with controls. Cumulatively, these results support the hypothesis that there may be significant, genetically influenced interactions between glutamatergic and dopaminergic pathways in opiate abusers.
Collapse
|
30
|
Kappa opioid receptor-mediated dysregulation of gamma-aminobutyric acidergic transmission in the central amygdala in cocaine addiction. Biol Psychiatry 2013; 74:520-8. [PMID: 23751206 PMCID: PMC3773286 DOI: 10.1016/j.biopsych.2013.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/12/2013] [Accepted: 04/26/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND Studies have demonstrated an enhanced dynorphin/kappa-opioid receptor (KOR) system following repeated cocaine exposure, but few reports have focused on neuroadaptations within the central amygdala (CeA). METHODS We identified KOR-related physiological changes in the CeA following escalation of cocaine self-administration in rats. We used in vitro slice electrophysiological (intracellular and whole-cell recordings) methods to assess whether differential cocaine access in either 1-hour (short access [ShA]) or 6-hour (long access [LgA]) sessions induced plasticity at CeA gamma-aminobutyric acid (GABA)ergic synapses or altered the sensitivity of these synapses to KOR agonism (U50488) or antagonism (norbinaltorphimine [norBNI]). We then determined the functional effects of CeA KOR blockade in cocaine-related behaviors. RESULTS Baseline evoked GABAergic transmission was enhanced in the CeA from ShA and LgA rats compared with cocaine-naïve rats. Acute cocaine (1 µmol/L) application significantly decreased GABA release in all groups (naïve, ShA, and LgA rats). Application of U50488 (1 µmol/L) significantly decreased GABAergic transmission in the CeA from naïve rats but increased it in LgA rats. Conversely, norBNI (200 nmol/L) significantly increased GABAergic transmission in the CeA from naïve rats but decreased it in LgA rats. Norbinaltorphimine did not alter the acute cocaine-induced inhibition of GABAergic responses. Finally, CeA microinfusion of norBNI blocked cocaine-induced locomotor sensitization and attenuated the heightened anxiety-like behavior observed during withdrawal from chronic cocaine exposure in the defensive burying paradigm. CONCLUSIONS Together these data demonstrate that CeA dynorphin/KOR systems are dysregulated following excessive cocaine exposure and suggest KOR antagonism as a viable therapeutic strategy for cocaine addiction.
Collapse
|
31
|
Striatal patch compartment lesions alter methamphetamine-induced behavior and immediate early gene expression in the striatum, substantia nigra and frontal cortex. Brain Struct Funct 2013; 219:1213-29. [PMID: 23625147 DOI: 10.1007/s00429-013-0559-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Methamphetamine (METH) induces stereotypy, which is characterized as inflexible, repetitive behavior. Enhanced activation of the patch compartment of the striatum has been correlated with stereotypy, suggesting that stereotypy may be related to preferential activation of this region. However, the specific contribution of the patch compartment to METH-induced stereotypy is not clear. To elucidate the involvement of the patch compartment to the development of METH-induced stereotypy, we determined if destruction of this sub-region altered METH-induced behaviors. Animals were bilaterally infused in the striatum with the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) to specifically ablate the neurons of the patch compartment. Eight days later, animals were treated with METH (7.5 mg/kg), placed in activity chambers, observed for 2 h and killed. DERM-SAP pretreatment significantly reduced the number and total area of mu-labeled patches in the striatum. DERM-SAP pretreatment significantly reduced the intensity of METH-induced stereotypy and the spatial immobility typically observed with METH-induced stereotypy. In support of this observation, DERM-SAP pretreatment also significantly increased locomotor activity in METH-treated animals. In the striatum, DERM-SAP pretreatment attenuated METH-induced c-Fos expression in the patch compartment, while enhancing METH-induced c-Fos expression in the matrix compartment. DERM-SAP pretreatment followed by METH administration augmented c-Fos expression in the SNpc and reduced METH-induced c-Fos expression in the SNpr. In the medial prefrontal, but not sensorimotor cortex, c-Fos and zif/268 expression was increased following METH treatment in animals pre-treated with DERM-SAP. These data indicate that the patch compartment is necessary for the expression of repetitive behaviors and suggests that alterations in activity in the basal ganglia may contribute to this phenomenon.
Collapse
|
32
|
Trifilieff P, Martinez D. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence. Front Psychiatry 2013; 4:44. [PMID: 23760592 PMCID: PMC3669800 DOI: 10.3389/fpsyt.2013.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/14/2013] [Indexed: 11/13/2022] Open
Abstract
Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the positron emission tomography (PET) imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development.
Collapse
Affiliation(s)
- Pierre Trifilieff
- New York State Psychiatric Institute, Columbia University , New York, NY , USA ; NutriNeuro, UMR 1286 INRA, University Bordeaux 2 , Bordeaux , France
| | | |
Collapse
|
33
|
Zhang Y, Schlussman SD, Rabkin J, Butelman ER, Ho A, Kreek MJ. Chronic escalating cocaine exposure, abstinence/withdrawal, and chronic re-exposure: effects on striatal dopamine and opioid systems in C57BL/6J mice. Neuropharmacology 2012; 67:259-66. [PMID: 23164614 DOI: 10.1016/j.neuropharm.2012.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022]
Abstract
Cocaine addiction is a chronic relapsing disease with periods of chronic escalating self-exposure, separated by periods of abstinence/withdrawal of varying duration. Few studies compare such cycles in preclinical models. This study models an "addiction-like cycle" in mice to determine neurochemical/molecular alterations that underlie the chronic, relapsing nature of this disease. Groups of male C57BL/6J mice received acute cocaine exposure (14-day saline/14-day withdrawal/13-day saline + 1-day cocaine), chronic cocaine exposure (14 day cocaine) or chronic re-exposure (14-day cocaine/14-day withdrawal/14-day cocaine). Escalating-dose binge cocaine (15-30 mg/kg/injection × 3/day, i.p. at hourly intervals) or saline (14-day saline) was administered, modeling initial exposure. In "re-exposure" groups, after a 14-day injection-free period (modeling abstinence/withdrawal), mice that had received cocaine were re-injected with 14-day escalating-dose binge cocaine, whereas controls received saline. Microdialysis was conducted on the 14th day of exposure or re-exposure to determine striatal dopamine content. Messenger RNA levels of preprodynorphin (Pdyn), dopamine D1 (Drd1) and D2 (Drd2) in the caudate putamen were determined by real-time PCR. Basal striatal dopamine levels were lower in mice after 14-day escalating exposure or re-exposure than in those in the acute cocaine group and controls. Pdyn mRNA levels were higher in the cocaine groups than in controls. Long-term adaptation was observed across the stages of this addiction-like cycle, in that the effects of cocaine on dopamine levels were increased after re-exposure compared to exposure. Changes in striatal dopaminergic responses across chronic escalating cocaine exposure and re-exposure are a central feature of the neurobiology of relapsing addictive states.
Collapse
Affiliation(s)
- Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Jutras-Aswad D, Jacobs MM, Yiannoulos G, Roussos P, Bitsios P, Nomura Y, Liu X, Hurd YL. Cannabis-dependence risk relates to synergism between neuroticism and proenkephalin SNPs associated with amygdala gene expression: case-control study. PLoS One 2012; 7:e39243. [PMID: 22745721 PMCID: PMC3382183 DOI: 10.1371/journal.pone.0039243] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/17/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Many young people experiment with cannabis, yet only a subgroup progress to dependence suggesting individual differences that could relate to factors such as genetics and behavioral traits. Dopamine receptor D2 (DRD2) and proenkephalin (PENK) genes have been implicated in animal studies with cannabis exposure. Whether polymorphisms of these genes are associated with cannabis dependence and related behavioral traits is unknown. METHODOLOGY/PRINCIPAL FINDINGS Healthy young adults (18-27 years) with cannabis dependence and without a dependence diagnosis were studied (N = 50/group) in relation to a priori-determined single nucleotide polymorphisms (SNPs) of the DRD2 and PENK genes. Negative affect, Impulsive Risk Taking and Neuroticism-Anxiety temperamental traits, positive and negative reward-learning performance and stop-signal reaction times were examined. The findings replicated the known association between the rs6277 DRD2 SNP and decisions associated with negative reinforcement outcomes. Moreover, PENK variants (rs2576573 and rs2609997) significantly related to Neuroticism and cannabis dependence. Cigarette smoking is common in cannabis users, but it was not associated to PENK SNPs as also validated in another cohort (N = 247 smokers, N = 312 non-smokers). Neuroticism mediated (15.3%-19.5%) the genetic risk to cannabis dependence and interacted with risk SNPs, resulting in a 9-fold increase risk for cannabis dependence. Molecular characterization of the postmortem human brain in a different population revealed an association between PENK SNPs and PENK mRNA expression in the central amygdala nucleus emphasizing the functional relevance of the SNPs in a brain region strongly linked to negative affect. CONCLUSIONS/SIGNIFICANCE Overall, the findings suggest an important role for Neuroticism as an endophenotype linking PENK polymorphisms to cannabis-dependence vulnerability synergistically amplifying the apparent genetic risk.
Collapse
Affiliation(s)
- Didier Jutras-Aswad
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Michelle M. Jacobs
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Georgia Yiannoulos
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Panos Roussos
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Yoko Nomura
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychology, Queens College, Queens, New York, United States of America
| | - Xun Liu
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Institute of Psychology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yasmin L. Hurd
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- James J Peters VA Medical Center, New York, New York, United States of America
| |
Collapse
|
35
|
Butelman ER, Yuferov V, Kreek MJ. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci 2012; 35:587-96. [PMID: 22709632 DOI: 10.1016/j.tins.2012.05.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/27/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022]
Abstract
Addictions to cocaine or heroin/prescription opioids [short-acting μ-opioid receptor (MOPr) agonists] involve relapsing cycles, with experimentation/escalating use, withdrawal/abstinence, and relapse/re-escalation. κ-Opioid receptors (KOPr; encoded by OPRK1), and their endogenous agonists, the dynorphins (encoded by PDYN), have counter-modulatory effects on reward caused by cocaine or MOPr agonist exposure, and exhibit plasticity in addictive-like states. KOPr/dynorphin activation is implicated in depression/anxiety, often comorbid with addictions. In this opinion article we propose that particular stages of the addiction cycle are differentially affected by KOPr/dynorphin systems. Vulnerability and resilience can be due to pre-existing (e.g., genetic) factors, or epigenetic modifications of the OPRK1 or PDYN genes during the addiction cycle. Pharmacotherapeutic approaches limiting changes in KOPr/dynorphin tone, especially with KOPr partial agonists, may hold potential for the treatment of specific drug addictions and psychiatric comorbidity.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/physiology
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/genetics
- Behavior, Addictive/physiopathology
- Disease Models, Animal
- Drug Discovery/methods
- Dynorphins/physiology
- Enkephalins/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Illicit Drugs/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Polymorphism, Genetic
- Protein Precursors/genetics
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Recurrence
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
36
|
Reed B, Fang N, Mayer-Blackwell B, Chen S, Yuferov V, Zhou Y, Kreek MJ. Chromatin alterations in response to forced swimming underlie increased prodynorphin transcription. Neuroscience 2012; 220:109-18. [PMID: 22698692 DOI: 10.1016/j.neuroscience.2012.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 12/11/2022]
Abstract
Antagonism of the kappa opioid receptor (KOR) has been reported to have anti-depressant-like properties. The dynorphin/KOR system is a crucial neurochemical substrate underlying the pathologies of addictive diseases, affective disorders and other disease states. However, the molecular underpinnings and neuroanatomical localization of the dysregulation of this system have not yet been fully elucidated. Utilizing the Porsolt Forced Swim Test (FST), an acute stressor commonly used as in rodent models measuring antidepressant efficacy, male Sprague-Dawley rats were subject to forced swimming for 15 min, treated 1h with vehicle or norbinaltorphimine (nor-BNI) (5 or 10mg/kg), and then 1 day later subject to FST for 5 min. In accordance with previous findings, nor-BNI dose dependently increased climbing time and reduced immobility. In comparison to control animals not exposed to FST, we observed a significant elevation in prodynorphin (pDyn) mRNA levels following FST using real-time optical polymerase chain reaction (PCR) in the caudate putamen but not in the nucleus accumbens, hypothalamus, amygdala, frontal cortex, or hippocampus. nor-BNI treatment did not affect pDyn mRNA levels in comparison to animals that received vehicle. The corresponding brain regions from the opposite hemisphere were analyzed for underlying chromatin modifications of the prodynorphin gene promoter region using chromatin immunoprecipitation with antibodies against specifically methylated histones H3K27Me2, H3K27Me3, H3K4Me2, and H3K4Me3, as well as CREB-1 and MeCP2. Significant alterations in proteins bound to DNA in the Cre-3, Cre-4, and Sp1 regions of the prodynorphin promoter were found in the caudate putamen of the FST saline-treated animals compared to control animals, with no changes observed in the hippocampus. Epigenetic changes resulting in elevated dynorphin levels specifically in the caudate putamen may in part underlie the enduring effects of stress.
Collapse
Affiliation(s)
- B Reed
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, Schlussman SD, Butelman ER, Ho A, Kreek MJ. Effects of withdrawal from chronic escalating-dose binge cocaine on conditioned place preference to cocaine and striatal preproenkephalin mRNA in C57BL/6J mice. Neuropharmacology 2012; 63:322-9. [PMID: 22504589 DOI: 10.1016/j.neuropharm.2012.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/13/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Relapse is a serious problem for the effective treatment of cocaine addiction. RATIONALE Examining cocaine re-exposure-induced behavioral and neurobiological alterations following chronic escalating-dose binge cocaine administration and withdrawal may provide insight into the neurobiological basis of cocaine relapse. OBJECTIVES Our goal was to determine how exposure to chronic escalating-dose cocaine affects development of subsequent cocaine-induced conditioned place preference (CPP) and changes in endogenous opioid systems. METHODS Mice were injected with either escalating-dose binge cocaine (15-30 mg/kg/injection × 3/day) or saline for 14-days and conditioned with 15 mg/kg of cocaine or saline (once per day for 10-days), starting either 1 or 14-days after the last day of binge injections. RESULTS Mice exposed to chronic escalating cocaine did not develop CPP to cocaine when conditioning commenced on the first day of withdrawal (CPP test on day 10 of withdrawal). By contrast, mice did develop CPP to cocaine when conditioning started on the 14th day of withdrawal (CPP test on day 24 of withdrawal). Furthermore, preproenkephalin (Penk) mRNA levels in caudate putamen were significantly higher in mice that received 14-day withdrawal from escalating-dose binge cocaine before the CPP procedure (tested 24 days post-binge) than those that received 1-day withdrawal (tested 10 days post-binge). CONCLUSIONS The rewarding effect of cocaine was blunted in early withdrawal from chronic escalating exposure, but recovered in more prolonged withdrawal. Time-dependent elevations in Penk mRNA levels may be part of the underlying mechanisms of this effect.
Collapse
Affiliation(s)
- Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
38
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
39
|
Chronic cocaine exposure induces putamen glutamate and glutamine metabolite abnormalities in squirrel monkeys. Psychopharmacology (Berl) 2011; 217:367-75. [PMID: 21494788 PMCID: PMC3169716 DOI: 10.1007/s00213-011-2292-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/26/2011] [Indexed: 12/17/2022]
Abstract
RATIONALE Chronic cocaine exposure has been associated with progressive brain structural and functional changes. Clarifying mechanisms underlying cocaine's progressive brain effects may help in the development of effective cocaine abuse treatments. OBJECTIVES We used a controlled squirrel monkey model of chronic cocaine exposure (45 mg/kg/week for 9 months) combined with ultra-high magnetic field (9.4 T) proton magnetic resonance spectroscopy to prospectively measure putamen metabolite changes. METHODS Proton metabolites were measured with a STEAM sequence, quantified with LCModel using a simulated basis set, and expressed as metabolite/total creatine (tCr) ratios. RESULTS We found cocaine-induced time-dependent changes in putamen glutamate/tCr and glutamine/tCr metabolite ratios suggestive of altered glutamate compartmentalization, neurotransmission, and metabolism. By contrast, saline-treated monkeys exhibited no metabolite changes over time. The time course of cocaine-induced metabolite abnormalities we detected is consistent with the apparent time course of glutamate abnormalities identified in a cross-sectional study in human cocaine users, as well as with microdialysis findings in rodent models of repeated cocaine exposure. CONCLUSIONS Together, these findings suggests that this squirrel monkey model may be useful for characterizing glutamatergic changes associated with cocaine exposure and for determining efficacies of treatments designed to mitigate cocaine-induced glutamatergic system dysfunction.
Collapse
|
40
|
Schlussman SD, Cassin J, Zhang Y, Levran O, Ho A, Kreek MJ. Regional mRNA expression of the endogenous opioid and dopaminergic systems in brains of C57BL/6J and 129P3/J mice: strain and heroin effects. Pharmacol Biochem Behav 2011; 100:8-16. [PMID: 21807019 DOI: 10.1016/j.pbb.2011.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/08/2011] [Accepted: 07/17/2011] [Indexed: 12/12/2022]
Abstract
We have previously shown strain and dose differences in heroin-induced behavior, reward and regional expression of somatostatin receptor mRNAs in C57BL/6J and 129P3/J mice. Using Real Time PCR we examined the effects of five doses of heroin on the levels of the transcripts of endogenous opioid peptides and their receptors and dopaminergic receptors in the mesocorticolimbic and nigrostriatal pathways in these same mice. Compared to C57BL/6J animals, 129P3/J mice had higher mRNA levels of Oprk1 in the nucleus accumbens and of Oprd1 in the nucleus accumbens and a region containing both the substantia nigra and ventral tegmental area (SN/VTA). In the cortex of 129P3/J mice, lower levels of both Oprk1 and Oprd1 mRNAs were observed. Pdyn mRNA was also lower in the caudate putamen of 129P3/J mice. Strain differences were not found in the levels of Oprm1, Penk or Pomc mRNAs in any region examined. Within strains, complex patterns of heroin dose-dependent changes in the levels of Oprm1, Oprk1 and Oprd1 mRNAs were observed in the SN/VTA. Additionally, Oprd1 mRNA was dose-dependently elevated in the hypothalamus. Also in the hypothalamus, we found higher levels of Drd1a mRNA in C57BL/6J mice than in 129P3/J animals and higher levels of DAT (Slc6a3) mRNA in the caudate putamen of C57BL/6J animals than in 129P3/J counterparts. Heroin had dose-related effects on Drd1a mRNA in the hypothalamus and on Drd2 mRNA in the caudate putamen.
Collapse
Affiliation(s)
- S D Schlussman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Okvist A, Fagergren P, Whittard J, Garcia-Osta A, Drakenberg K, Horvath MC, Schmidt CJ, Keller E, Bannon MJ, Hurd YL. Dysregulated postsynaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers. Biol Psychiatry 2011; 69:245-52. [PMID: 21126734 PMCID: PMC3017476 DOI: 10.1016/j.biopsych.2010.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/02/2010] [Accepted: 09/02/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glutamatergic transmission in the amygdala is hypothesized as an important mediator of stimulus-reward associations contributing to drug-seeking behavior and relapse. Insight is, however, lacking regarding the amygdala glutamatergic system in human drug abusers. METHODS We examined glutamate receptors and scaffolding proteins associated with the postsynaptic density in the human postmortem amygdala. Messenger RNA or protein levels were studied in a population of multidrug (seven heroin, eight cocaine, seven heroin/cocaine, and seven controls) or predominant heroin (29 heroin and 15 controls) subjects. RESULTS The amygdala of drug abusers was characterized by a striking positive correlation (r > .8) between α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptor subunit 1 (GluA1) and postsynaptic density protein-95 (PSD-95) mRNA levels, which was not evident in control subjects. Structural equation multigroup analysis of protein correlations also identified the relationship between GluA1 and PSD-95 protein levels as the distinguishing feature of abusers. In line with the GluA1-PSD-95 implications of enhanced synaptic plasticity, Homer 1b/c protein expression was increased in both heroin and cocaine users as was its binding partner, dynamin-3. Furthermore, there was a positive relationship between Homer 1b/c and dynamin-3 in drug abusers that reflected an increase in the direct physical coupling between the proteins. A noted age-related decline of Homer 1b/c-dynamin-3 interactions, as well as GluA1 levels, was blunted in abusers. CONCLUSIONS Impairment of key components of the amygdala postsynaptic density and coupling to the endocytic zone, critical for the regulation of glutamate receptor cycling, may underlie heightened synaptic plasticity in human drug abusers.
Collapse
|
42
|
The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010; 210:121-35. [PMID: 20352414 PMCID: PMC2879894 DOI: 10.1007/s00213-010-1825-8] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. RESULTS The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. CONCLUSION kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.
Collapse
|
43
|
Piras AP, Zhou Y, Schlussman SD, Ho A, Kreek MJ. Acute withdrawal from chronic escalating-dose binge cocaine administration alters kappa opioid receptor stimulation of [35S] guanosine 5'-O-[gamma-thio]triphosphate acid binding in the rat ventral tegmental area. Neuroscience 2010; 169:751-7. [PMID: 20452406 DOI: 10.1016/j.neuroscience.2010.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/21/2010] [Accepted: 04/24/2010] [Indexed: 11/30/2022]
Abstract
There is evidence that the kappa opioid system plays an important role in cocaine addiction and that chronic cocaine administration and withdrawal from chronic cocaine alter kappa opioid receptor (KOPr) density. The present study employed in situ [(35)S]guanosine 5'-O-[gamma-thio]triphosphate acid (GTPgammaS) binding autoradiography to measure KOPr-stimulated activation of G-protein in the caudate putamen, nucleus accumbens core and shell, lateral hypothalamus, basolateral amygdala, substantia nigra compacta, substantia nigra reticulata and ventral tegmental area (VTA), in response to chronic cocaine administration or acute and chronic withdrawal from chronic cocaine. Male Fischer rats were injected i.p. with saline or cocaine three times daily at 1 h intervals in an escalating-dose paradigm for 14 days (from 3x15 mg/kg/injection on days 1-3 up to 3x30 mg/kg/injection on days 10-14). Identically treated separate groups were withdrawn from cocaine or saline for 24 h or 14 days. No significant change in KOPr agonist U-69593-stimulated [(35)S]GTPgammaS was found in the seven regions studied 30 min or 14 days after chronic 14 days escalating-dose binge cocaine administration. However there was an increase in KOPr -stimulated [(35)S]GTPgammaS binding in the VTA (P<0.01) of rats withdrawn for 24 h from chronic cocaine. Our results show a cocaine withdrawal induced increase of KOPr signaling in the VTA, and suggest that the KOPr may play a role in acute withdrawal from cocaine.
Collapse
Affiliation(s)
- A P Piras
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
44
|
Bruijnzeel AW. kappa-Opioid receptor signaling and brain reward function. BRAIN RESEARCH REVIEWS 2009; 62:127-46. [PMID: 19804796 PMCID: PMC2787673 DOI: 10.1016/j.brainresrev.2009.09.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 02/06/2023]
Abstract
The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administration of drugs of abuse increases the release of dopamine in the striatum and mediates the concomitant release of dynorphin-like peptides in this brain region. The reviewed studies suggest that chronic drug intake leads to an upregulation of the brain dynorphin system in the striatum and in particular in the dorsal part of the striatum/caudate putamen. This might inhibit drug-induced dopamine release and provide protection against the neurotoxic effects of high dopamine levels. After the discontinuation of chronic drug intake these neuroadaptations remain unopposed which has been suggested to contribute to the negative emotional state associated with drug withdrawal and increased drug intake. kappa-Opioid receptor agonists have also been shown to inhibit calcium channels. Calcium channel inhibitors have antidepressant-like effects and inhibit the release of norepinephrine. This might explain that in some studies kappa-opioid receptor agonists attenuate nicotine and opioid withdrawal symptomatology. A better understanding of the role of dynorphins in the regulation of brain reward function might contribute to the development of novel treatments for mood disorders and other disorders that stem from a dysregulation of the brain reward system.
Collapse
Affiliation(s)
- Adrie W Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, 32610, USA.
| |
Collapse
|
45
|
Babbitt CC, Silverman JS, Haygood R, Reininga JM, Rockman MV, Wray GA. Multiple Functional Variants in cis Modulate PDYN Expression. Mol Biol Evol 2009; 27:465-79. [PMID: 19910384 DOI: 10.1093/molbev/msp276] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.
Collapse
|
46
|
Lull ME, Freeman WM, Vrana KE, Mash DC. Correlating human and animal studies of cocaine abuse and gene expression. Ann N Y Acad Sci 2008; 1141:58-75. [PMID: 18991951 DOI: 10.1196/annals.1441.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene expression changes resulting from cocaine abuse in both humans and animal models have been studied for several decades. Although human studies have been very useful at illuminating cocaine-related expression changes, there are many factors complicating these studies, including the difficulty of obtaining high-quality postmortem brain tissue and patient comorbidities. Animal models of cocaine abuse have served as valuable additions to human data and allow examination of specific aspects of cocaine abuse, including immediate early gene expression and the molecular effects of abstinence and relapse. In total, human and animal studies of cocaine abuse have uncovered gene expression changes in the brain related to a number of molecular functions, including the extracellular matrix, synaptic communication and neuroplasticity, receptors, ion channels and transporters, oligodendrocytes and myelin, apoptosis and cell death, mitochondrial function, signal transduction, and transcription factors. In addition, the mitogen-activated protein kinase and synaptic long-term potentiation signal transduction pathways are highlighted as pathways in which multiple components are altered by cocaine. Pathways and processes affected by changes in gene expression that overlap among multiple species may be promising pharmacotherapeutic targets for reducing the behavioral effects of cocaine abuse and the relapse potential observed in humans.
Collapse
Affiliation(s)
- Melinda E Lull
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Drugs of abuse produce both acute and chronic changes in brain function, each of which is reflected in altered gene expression patterns. A number of large-scale gene expression studies have employed microarray analysis of human postmortem brain to identify transcriptional correlates of antemortem substance use. These studies have identified changes in transcripts encoding proteins functionally involved in neuronal function and synaptic plasticity, oligodendrocyte function and myelination, lipid and energy metabolism, mitochondrial function, oxidative phosphorylation, and cytoskeleton-related signal transduction. Overall, different types of substance use appear to share some of these effects, but there are more differences than similarities in gene expression for different types of substance use. Moreover, data suggest that transcriptional subtypes within a diagnostic classification of substance use may occur. These transcriptional subtypes, or "endophenotypes," may reflect complex patterns of substance use and co-morbid neuropsychiatric disorders or other diseases, which may interact with substance use to differentially affect gene expression. A broader understanding of the manner in which substance abuse causes long-term changes in brain function may be obtained from studies replicating and expanding the present gene expression data. In particular, cross-referencing comprehensive transcriptional data on regional and/or substance use-specific changes with genetic and proteomic data may further aid in identifying candidate biomarkers of altered brain function in substance-use disorders.
Collapse
Affiliation(s)
- Elin Lehrmann
- Cellular Neurobiology Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA
| | | |
Collapse
|
48
|
Kreek MJ, Schlussman SD, Reed B, Zhang Y, Nielsen DA, Levran O, Zhou Y, Butelman ER. Bidirectional translational research: Progress in understanding addictive diseases. Neuropharmacology 2008; 56 Suppl 1:32-43. [PMID: 18725235 DOI: 10.1016/j.neuropharm.2008.07.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
The focus of this review is primarily on recent developments in bidirectional translational research on the addictions, within the Laboratory of the Biology of Addictive Diseases at The Rockefeller University. This review is subdivided into major interacting aspects, including (a) Investigation of neurobiological and molecular adaptations (e.g., in genes for the opioid receptors or endogenous neuropeptides) in response to cocaine or opiates, administered under laboratory conditions modeling chronic patterns of human self-exposure (e.g., chronic escalating "binge"). (b) The impact of such drug exposure on the hypothalamic-pituitary-adrenal (HPA) axis and interacting neuropeptidergic systems (e.g., opioid, orexin and vasopressin). (c) Molecular genetic association studies using candidate gene and whole genome approaches, to define particular systems involved in vulnerability to develop specific addictions, and response to pharmacotherapy. (d) Neuroendocrine challenge studies in normal volunteers and current addictive disease patients along with former addicts in treatment, to investigate differential pharmacodynamics and responsiveness of molecular targets, in particular those also investigated in the experimental and molecular genetic approaches as described above.
Collapse
Affiliation(s)
- M J Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jayaram-Lindström N, Konstenius M, Eksborg S, Beck O, Hammarberg A, Franck J. Naltrexone attenuates the subjective effects of amphetamine in patients with amphetamine dependence. Neuropsychopharmacology 2008; 33:1856-63. [PMID: 17957221 DOI: 10.1038/sj.npp.1301572] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amphetamine abuse and dependence is a global health concern with a collateral increase in medical and social problems. Although some of the neurobiological mechanisms underlying amphetamine dependence and its devastating effects in humans are known, the development of rational and evidence-based treatment is lagging. There is evidence from preclinical studies suggesting that the endogenous opioid system plays a role in mediating some of the behavioral and neurochemical effects of amphetamine in a variety of controlled settings. In the present study we assessed the effects of naltrexone, an opioid antagonist (50 mg) on the subjective physiological and biochemical response to dexamphetamine (30 mg) in 20 amphetamine-dependent patients. Patients received naltrexone/amphetamine followed by placebo/amphetamine, 1 week apart in a randomized double-blind placebo-controlled design. The primary objective of the study was to evaluate the effect of pretreatment with naltrexone on the subjective response to amphetamine, using a Visual Analog Scale. The secondary objective was to investigate the effects of naltrexone on physiological and biochemical responses to amphetamine, as measured by changes in blood pressure, heart rate, skin conductance, and cortisol. Naltrexone significantly attenuated the subjective effects produced by dexamphetamine in dependent patients (p<0.001). Pretreatment with naltrexone also significantly blocked the craving for dexamphetamine (p<0.001). There was no difference between the groups on the physiological measures. The results suggest that the subjective effects of amphetamine could be modulated via the endogenous opioid system. The potential of naltrexone as an adjunct pharmaceutical for amphetamine dependence is promising.
Collapse
Affiliation(s)
- Nitya Jayaram-Lindström
- Department of Clinical Neuroscience, Section for Alcohol and Drug Dependence Research, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
50
|
Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ. Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology 2008; 55:41-6. [PMID: 18538358 DOI: 10.1016/j.neuropharm.2008.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/11/2008] [Accepted: 04/14/2008] [Indexed: 11/18/2022]
Abstract
Interest in development of therapeutics targeting brain neuropeptide systems for treatment of cocaine addiction (e.g., kappa opioid agonists) is based on animal data showing interactions between the neuropeptides, brain dopamine, and cocaine. In this autopsied brain study, our major objective was to establish by radioimmunoassay whether levels of dynorphin and other neuropeptides (e.g., metenkephalin, neurotensin and substance P) are increased in the dopamine-rich caudate, putamen, and nucleus accumbens of human chronic cocaine users (n=12) vs. matched control subjects (n=17) as predicted by animal findings. Changes were limited to markedly increased dynorphin immunoreactivity in caudate (+92%), decreased caudate neurotensin (-49%), and a trend for increased dynorphin (+75%) in putamen. In other examined subcortical/cerebral cortical areas dynorphin levels were normal with the striking exception of the ventral pallidum (+346%), whereas cerebral cortical metenkephalin levels were generally decreased and neurotensin variably changed. Our finding that, in contradistinction to animal data, the other striatal neuropeptides were not increased in human cocaine users could be explained by differences in pattern and contingency between human drug users and the animal models. However, the human dynorphin observations parallel well animal findings and suggest that the dynorphin system is upregulated, manifested as elevated neuropeptide levels, after chronic drug exposure in striatum and ventral pallidum. Our postmortem brain data suggest involvement of striatal dynorphin systems in human cocaine users and should add to the interest in the testing of new dynorphin-related therapeutics for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Paul S Frankel
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|