1
|
Zhao J, Yang J, Yang F, Wang Y, Xia Q, Ren F, Zhang Y. An integrated zebrafish model and network pharmacology to investigate the mechanism of Chrysanthemum for treating metabolic dysfunction-associated fatty liver disease. Food Chem 2025; 473:143134. [PMID: 39893923 DOI: 10.1016/j.foodchem.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat) is a food, which serves both as a medicinal and culinary resource in China; however, its active ingredients and mechanisms underlying its hepatoprotective effects remain elusive. This study aimed to investigate the protective effect of water extract from chrysanthemum flowers (WEFC) against metabolic dysfunction-associated fatty liver induced by thioacetamide (TAA) in zebrafish and its underlying mechanisms. The protective effect of WEFC against TAA-induced liver injury was investigated using the liver-specific transgenic zebrafish line, Tg(fabp10a:DsRed). Network pharmacology was used to analyze the potential targets and ingredients. Quantitative polymerase chain reaction was used to verify the associated mechanisms. Molecular protein docking was performed to identify the targets. WEFC and its component prunin attenuated TAA-induced liver injury and reversed the changes in lipid pathway-related gene expression induced by TAA. Therefore, prunin may play an important role in protecting the liver through RAC-alpha serine/threonine-protein kinase (AKT1) activation.
Collapse
Affiliation(s)
- Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China; Uygur Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830049, China
| | - Jing Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Fei Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Yuanhao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China
| | - Fengming Ren
- Chongqing Pharmaceutical Planting Research Institute, Chongqing 408435, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, China.
| |
Collapse
|
2
|
Beghini M, Metz M, Baumgartner C, Wolf P, Bastian M, Hackl M, Baumgartner-Parzer S, Marculescu R, Krebs M, Harreiter J, Brandt S, Miehle K, Ceccarini G, Magno S, Pelosini C, Tran C, Gambineri A, Cecchetti C, Gard LI, Risti R, Lõokene A, Krššák M, Pfleger L, Trauner M, Kautzky-Willer A, Stumvoll M, Wabitsch M, Santini F, Turan I, Akinci B, Frommlet F, Stangl H, Fürnsinn C, Scherer T. Leptin acutely increases hepatic triglyceride secretion in patients with lipodystrophy. Metabolism 2025:156261. [PMID: 40204211 DOI: 10.1016/j.metabol.2025.156261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND AND AIMS Metreleptin ameliorates hepatic steatosis partially independent of its anorexic action. We previously showed that metreleptin increases hepatic very-low density lipoprotein triglycerides (VLDL1-TG) export in rodents and healthy humans requiring intact hepatic autonomic innervation. The primary aim of this study was to investigate whether metreleptin has anti-steatotic properties in patients with lipodystrophy by increasing VLDL1-TG export. In addition, we present a case of generalized lipodystrophy undergoing metreleptin treatment after liver transplantation, a model for hepatic autonomic denervation. METHODS In this randomized, placebo-controlled, crossover trial (EudraCT 2017-003014-22) we assessed the acute effects of a single metreleptin injection in ten patients (8 females, 2 males; mean age ± SD: 49 ± 14 yrs; 9 familial partial and 1 generalized lipodystrophy) on hepatic VLDL1-TG secretion and hepatocellular lipid content (HCL) measured via an intravenous fat emulsion test and 1H-magnetic resonance spectroscopy, respectively. RESULTS We found that a single injection of metreleptin increased hepatic VLDL1-TG secretion by 75 % (mean difference ± SD: +219 ± 149 mg/h metreleptin vs. placebo; p = 0.001), without significant changes in HCL within 3 h (mean difference ± SD: -8 ± 14 % metreleptin vs. placebo, p = 0.14). Metreleptin therapy in a patient with generalized lipodystrophy following liver transplantation failed to ameliorate hepatic steatosis despite improving glucose and lipid metabolism. CONCLUSIONS Leptin acutely increases hepatic VLDL1-TG secretion in patients with lipodystrophy, likely contributing to metreleptin's body weight-independent anti-steatotic effects. The case report suggests that intact autonomic liver innervation may be required for this action, warranting further research.
Collapse
Affiliation(s)
- Marianna Beghini
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthäus Metz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Baumgartner
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Wolf
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Magdalena Bastian
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Hackl
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stephanie Brandt
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Konstanze Miehle
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Italy
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Christel Tran
- Division of Genetic Medicine, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Alessandra Gambineri
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Carolina Cecchetti
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Liliana-Imi Gard
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Risti
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Aivar Lõokene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Italy
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Department of Pediatrics, Cukurova University, Adana, Turkey
| | - Baris Akinci
- Depark, Dokuz Eylül University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Florian Frommlet
- Center for Medical Data Science (Institute of Medical Statistics), Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Luque-Urbano MR, Fernández-Ramos D, Lopitz-Otsoa F, Gutiérrez de Juan V, Bizkarguenaga M, Castro-Espadas L, Hermoso-Martínez U, Barbier-Torres L, Lu SC, Millet O, Mato JM. S-Adenosylmethionine Deficit Disrupts Very Low-Density Lipoprotein Metabolism Promoting Liver Lipid Accumulation in Mice. J Lipid Res 2025:100794. [PMID: 40180215 DOI: 10.1016/j.jlr.2025.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Hepatic deletion of methionine adenosyltransferase-1a (Mat1a) in mice reduces S-adenosylmethionine (SAMe), a key methyl donor essential for many biological processes, which promotes the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Hyperglycemia and reduced MAT1A expression, along with low SAMe levels, are common in MASLD patients. This study explores how Mat1a-knockout (KO) hepatocytes respond to prolonged high glucose conditions, focusing on glucose metabolism and lipid accumulation. Hepatocytes from Mat1a-KO mice were incubated in high glucose conditions overnight, allowing for analysis of key metabolic intermediates and gene expression related to glycolysis, gluconeogenesis, glyceroneogenesis, phospholipid synthesis, and very low-density lipoprotein (VLDL) secretion. SAMe deficiency in Mat1a-KO hepatocytes led to reduced protein methyltransferase-1 activity, resulting in increased expression of glycolytic enzymes (glucokinase, phosphofructokinase, and pyruvate kinase) and decreased expression of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase). These alterations led to a reduction in dihydroxyacetone phosphate (DHAP), which subsequently inhibited mammalian target of rapamycine complex 1 (mTORC1) activity. This inhibition resulted in decreased phosphatidylcholine synthesis via the CDP-choline pathway and impaired VLDL secretion, ultimately causing lipid accumulation. Thus, under high glucose conditions, SAMe deficiency in hepatocytes depletes DHAP, inhibits mTORC1 activity, and promotes lipid buildup.
Collapse
Affiliation(s)
- María R Luque-Urbano
- Atlas Molecular Pharma, 48160 Derio, Spain,; Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - David Fernández-Ramos
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain,; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Virginia Gutiérrez de Juan
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Lia Castro-Espadas
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Uxue Hermoso-Martínez
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oscar Millet
- Atlas Molecular Pharma, 48160 Derio, Spain,; Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain,; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M Mato
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain,; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain,.
| |
Collapse
|
4
|
Li Y, Pan T, Wang Y, Wang G, Wang F. The predictive value of triglyceride-glucose-high density lipoprotein-body mass index (TGH-BMI) for different degrees of hepatic steatosis and liver fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Nutr ESPEN 2025; 66:290-301. [PMID: 39863255 DOI: 10.1016/j.clnesp.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND & AIMS The triglyceride-glucose index (TyG) and triglyceride-glucose body mass index (TyG-BMI) have been identified as potential predictive factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, they do not include high density lipoprotein (HDL-C), which is closely related to lipid metabolism. Furthermore, there is a lack of comprehensive and longitudinal data to determine the cut-off points for different degrees of hepatic steatosis and liver fibrosis in MASLD. This study aimed to investigate the predictive capability of triglyceride-glucose-high density lipoprotein-body mass index (TGH-BMI) in determining hepatic steatosis and liver fibrosis in MASLD, as well as to establish the predictive cut-off points. METHODS We analyzed the relationships of TGH-BMI (TGH-BMI = ln [TG (mg/dL) ∗FBG (mg/dL)/HDL-C (mg/dL)] ∗ BMI (kg/m2)) with different degrees of hepatic steatosis and fibrosis in 35,114 participants who underwent health check-ups. A total of 2262 subjects without MASLD were selected for the analysis of cumulative hazard of hepatic steatosis and liver fibrosis in TGH-BMI dichotomous groups over a follow-up period of 1001 days. RESULTS Controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) demonstrated a consistent upward trend as TGH-BMI increased across quartile groups, as determined by One-way analysis of variance (P < 0.001). TGH-BMI and CAP, LSM exhibit distinct curve-like relationships between males and females when utilizing smoothing functions and conducting threshold effect analysis (P < 0.05). In males, prior to the inflection point at TGH-BMI = 177.733, there was a significant increase of 0.807 in CAP for every 1 unit increase in TGH-BMI (P < 0.05), after the inflection point, there was still an increase of 0.417 in CAP for every 1 unit increase in TGH-BMI (P < 0.05); There was no significant correlation between LSM and TGH-BMI before the first inflection point at TGH-BMI = 131.689 (P > 0.05) and after the second inflection point at TGH-BMI = 253.268 (P > 0.05). Between the first and the second inflection, LSM showed an increase of 0.015 for every 1 unit increase in TGH-BMI (P < 0.05). In females, before the inflection point at TGH-BMI = 94.686, there was a significant increase of 0.272 in CAP for every 1 unit increase in TGH-BMI (P < 0.05), after the inflection point, there was a notable change as CAP increased by 0.806 for every 1 unit increase in TGH-BMI (P < 0.05). There was no significant correlation between LSM and TGH-BMI before the inflection point at TGH-BMI = 118.098 (P > 0.05), after the inflection point, LSM showed an increase of 0.017 for every 1 unit increase in TGH-BMI (P < 0.05). Notably, TGH-BMI has been shown to be a strong predictor for the severity of hepatic steatosis and liver fibrosis in MASLD. The Area Under Curves (AUCs) for hepatic steatosis, moderate or above hepatic steatosis, severe hepatic steatosis and liver fibrosis in males were 0.845, 0.846, 0.882 and 0.668 respectively, the AUCs for hepatic steatosis, moderate or above hepatic steatosis, severe hepatic steatosis and liver fibrosis in females were 0.855, 0.895, 0.939 and 0.705 respectively (P < 0.05). In individuals without MASLD, the cumulative hazard of hepatic steatosis was found to be strongly associated with the dichotomy of increased TGH-BMI (TGH-BMID2: Hazard Ratio (HR) = 2.412, 95 % Confidence interval (CI): 2.0164-2.9071, P < 0.0001), while the same is true in liver fibrosis (TGH-BMID2: HR = 1.454, 95 % CI: 1.0633-1.9883, P = 0.0191). CONCLUSIONS The TGH-BMI demonstrates a strong predictive value for hepatic steatosis and liver fibrosis, with significantly different cut-off points for men and women. Therefore, it is important to consider the potential need for gender-specific cut-off points for triglyceride, glucose, high density lipoprotein and body mass index in clinical practice. In individuals without MASLD, a higher TGH-BMI is associated with an increased risk of developing MASLD in the future.
Collapse
Affiliation(s)
- Ying Li
- Department of Endocrinology, Hefei City First People's Hospital, Hefei 230001, Anhui, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Guojuan Wang
- Department of Endocrinology, Hefei City First People's Hospital, Hefei 230001, Anhui, China
| | - Fang Wang
- Department of the Health Management Center, The First Affiliated Hospital of USTC: Anhui Provincial Hospital, Hefei 230001, Anhui, China.
| |
Collapse
|
5
|
Gao F, Ma Y, Yu C, Duan Q. miR-125b-5p regulates FFA-induced hepatic steatosis in L02 cells by targeting estrogen-related receptor alpha. Gene 2025:149419. [PMID: 40113187 DOI: 10.1016/j.gene.2025.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND & AIMS NAFLD is a global and complex liver disease caused by multiple factors. Intrahepatocellular steatosis is the primary prerequisite for the occurrence and development of NAFLD. It has been shown that miR-125b-5p is highly correlated with NAFLD, and ESRRA is a factor that regulates lipid metabolism. The purpose of our study is to investigate whether miR-125b-5p regulates FFA-induced steatosis in L02 cells by targeting ESRRA. APPROACHES AND RESULTS Estrogen-related receptor alpha (ESRRA) was identified as a direct target of miR-125b-5p through database prediction and a dual-luciferase reporter gene assay. L02 cells were induced with free fatty acids (OA:PA, 2:1) at concentrations of 0.3 mM, 0.6 mM, 0.9 mM, 1.2 mM and 1.5 mM for 24 h, 48 h and 72 h, respectively. The degree of hepatocyte steatosis and triglyceride content were separately manifested by oil red O staining and colorimetric method. Cell viability per group was detected by CCK-8 assay. Eventually, 0.9 mM and 24 h were screened out as the optimal concentration and time for establishing the in-vitro model of hepatic steatosis. Followingly, miR-125b-5p and ESRRA were knocked down by transient transfection. We monitored the expressions of lipid metabolism factors SREBP-1c, ACC1 and FAS. The data showed that knockdown of ESRRA led to down-regulation of the expressions of SREBP-1, ACC1 and FAS. Meanwhile, knockdown of ESRRA and miR-125b-5p resulted that the expressions of ESRRA, SREBP-1, ACC1 and FAS rebounded. CONCLUSIONS MiR-125b-5p down-regulates the expressions of lipid metabolism-related factors by negatively regulating ESRRA, thereby improving hepatic steatosis.
Collapse
Affiliation(s)
- Fen Gao
- Gansu University of Chinese Medicine, Gansu 730000, China
| | - Yanhua Ma
- Gansu University of Chinese Medicine, Gansu 730000, China.
| | - Chun Yu
- Gansu University of Chinese Medicine, Gansu 730000, China
| | | |
Collapse
|
6
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
7
|
Zhang X, Lau HCH, Yu J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options. Pharmacol Rev 2025; 77:100018. [PMID: 40148030 DOI: 10.1016/j.pharmr.2024.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as nonalcoholic fatty liver disease) is a chronic liver disease affecting over a billion individuals worldwide. MASLD can gradually develop into more severe liver pathologies, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and liver malignancy. Notably, although being a global health problem, there are very limited therapeutic options against MASLD and its related diseases. While a thyroid hormone receptor agonist (resmetirom) is recently approved for MASH treatment, other efforts to control these diseases remain unsatisfactory. Given the projected rise in MASLD and MASH incidence, it is urgent to develop novel and effective therapeutic strategies against these prevalent liver diseases. In this article, the pathogenic mechanisms of MASLD and MASH, including insulin resistance, dysregulated nuclear receptor signaling, and genetic risk factors (eg, patatin-like phospholipase domain-containing 3 and hydroxysteroid 17-β dehydrogenase-13), are introduced. Various therapeutic interventions against MASH are then explored, including approved medication (resmetirom), drugs that are currently in clinical trials (eg, glucagon-like peptide 1 receptor agonist, fibroblast growth factor 21 analog, and PPAR agonist), and those failed in previous trials (eg, obeticholic acid and stearoyl-CoA desaturase 1 antagonist). Moreover, given that the role of gut microbes in MASLD is increasingly acknowledged, alterations in the gut microbiota and microbial mechanisms in MASLD development are elucidated. Therapeutic approaches that target the gut microbiota (eg, dietary intervention and probiotics) against MASLD and related diseases are further explored. With better understanding of the multifaceted pathogenic mechanisms, the development of innovative therapeutics that target the root causes of MASLD and MASH is greatly facilitated. The possibility of alleviating MASH and achieving better patient outcomes is within reach. SIGNIFICANCE STATEMENT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, and it can progress to more severe pathologies, including steatohepatitis, cirrhosis, and liver cancer. Better understanding of the pathogenic mechanisms of these diseases has facilitated the development of innovative therapeutic strategies. Moreover, increasing evidence has illustrated the crucial role of gut microbiota in the pathogenesis of MASLD and related diseases. It may be clinically feasible to target gut microbes to alleviate MASLD in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:278-291. [PMID: 39191606 PMCID: PMC11861388 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
9
|
Kim JH, Lee Y, Nam CM, Kwon YJ, Lee JW. Impact of cardiometabolic risk factors for metabolic dysfunction-associated steatotic liver disease on mortality. Nutr Metab Cardiovasc Dis 2025:103965. [PMID: 40187915 DOI: 10.1016/j.numecd.2025.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a potential independent risk factor for cardiovascular disease (CVD)-associated and all-cause mortalities as they share common risk factors. We investigated the association between cardiometabolic risk factors for MASLD and CVD-associated and all-cause mortality risks in middle-aged and older Korean adults. METHODS AND RESULTS We used data from the Korean Genome and Epidemiology Study, a population-based prospective cohort study. Five cardiometabolic risk factors were assessed. MASLD was defined as liver steatosis with a fatty liver index (FLI) ≥60 and at least one cardiometabolic risk factor. The non-MASLD group included individuals with a FLI <60 or FLI ≥60 without cardiometabolic risk factors. The primary outcomes were CVD-associated and all-cause mortalities. Cox proportional hazard models were used to evaluate the association between cardiometabolic risk factors for MASLD and mortalities, adjusting for covariates. Multivariable Cox regression analysis revealed that the MASLD group had increased CVD-associated and all-cause mortality risks compared to the non-MASLD group. The presence of three or more and one or more cardiometabolic risk factors significantly increased the CVD-associated and all-cause mortality rate, respectively. The combination of hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C), and high glucose concentrations significantly increased both CVD-associated (hazard ratio [HR] 3.64; 95 % confidence interval [CI] 1.44-9.22; p = 0.006) and all-cause (HR 4.57; 95 % CI: 1.74-12.05; p = 0.002) mortality risks. CONCLUSION Cardiometabolic risk factors for MASLD are strongly associated with higher CVD-associated and all-cause mortality risks, highlighting the need to manage hypertriglyceridemia, low HDL-C, and high glucose concentrations.
Collapse
Affiliation(s)
- Jung-Hwan Kim
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yaeji Lee
- Department of Biostatistics and Computing, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chung-Mo Nam
- Department of Health Informatics and Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995, Republic of Korea.
| | - Ji-Won Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Song L, Huang Y, Liu L, Chang X, Hu L, Wang G, Xu L, Zhang T, Wang Y, Xiao Y, Yang H, Ran S, Shi Q, Wang T, Shi M, Zhou Y, Guo B. Meteorin-like alleviates hepatic steatosis by regulating hepatic triglyceride secretion and fatty acid oxidation. Cell Rep 2025; 44:115246. [PMID: 39918960 DOI: 10.1016/j.celrep.2025.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Amid a rising prevalence of non-alcoholic fatty liver disease (NAFLD), there is still an unmet need to better treat it. We identified a secreted factor, Meteorin-like (Metrnl), with decreased levels in livers with hepatic steatosis. Notably, recombinant Metrnl ameliorated hepatic steatosis in NAFLD mouse models. Mechanistically, Metrnl exerted dual effects by promoting triglyceride (TG) transportation by the phosphatidylinositol 3-kinase (PI3K)/Akt/Sp1/cytidylyltransferase α (CCTα) axis, thereby increasing the biosynthesis of phosphatidylcholine (PC) to facilitate TG secretion from the liver while facilitating AMP-activated protein kinase (AMPK)-dependent fatty acid oxidation (FAO). Exogenous injection of cytidine diphosphocholine (CDP)-choline, the production of CCTα, to increase PC synthesis, was shown to restore the inhibition of TG secretion in hepatic Metrnl-deficient (LKO-Met) mice. Combining CDP-choline and an AMPK activator was sufficient to rescue hepatic steatosis in LKO-Met mice. Collectively, these findings reveal unexpected roles of Metrnl as a factor in PC biosynthesis, TG secretion, and FAO, suggesting potential therapeutic application for NAFLD.
Collapse
Affiliation(s)
- Lingyu Song
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yali Huang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lu Liu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Xuebing Chang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Laying Hu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Guifang Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tian Zhang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yuanyuan Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Ying Xiao
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Hong Yang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Suye Ran
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Qing Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361005, Fujian, China
| | - Mingjun Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Yuxia Zhou
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Bing Guo
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases and Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Gui'an New Area, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New Area, 561113, Guizhou, China.
| |
Collapse
|
11
|
Smith K, Dennis KMJH, Hodson L. The ins and outs of liver fat metabolism: The effect of phenotype and diet on risk of intrahepatic triglyceride accumulation. Exp Physiol 2025. [PMID: 39861959 DOI: 10.1113/ep092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/22/2024] [Indexed: 01/27/2025]
Abstract
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation. The processes of FA uptake, FA synthesis and the intracellular partitioning of FAs into storage, oxidation or secretory pathways are tightly regulated. An imbalance in these processes causes intrahepatic triglyceride to accumulate and is associated with the development of metabolic dysfunction-associated steatotic liver disease. It is well appreciated that many factors can influence intrahepatic FA partitioning, and although there is good evidence that both phenotype (e.g., sex, ethnicity and adiposity) and dietary macronutrient composition can play a role in intrahepatic triglyceride accumulation, their interaction remains poorly understood. The aim of this review is to explore how the respective pathways of FA delivery, synthesis and disposal are altered by phenotype and understand how dietary macronutrient composition might influence the partitioning of FAs in the liver in vivo, in humans.
Collapse
Affiliation(s)
- Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Kaitlyn M J H Dennis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
12
|
Flam E, Haas JT, Staels B. Liver metabolism in human MASLD: A review of recent advancements using human tissue metabolomics. Atherosclerosis 2025; 400:119054. [PMID: 39586140 DOI: 10.1016/j.atherosclerosis.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Global incidence of Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is on the rise while treatments remain elusive. MASLD is a disease of dysregulated systemic and hepatic metabolism. Current understanding of disease pathophysiology as it relates to metabolome changes largely comes from studies on animal models and human plasma. However, human tissue data are crucial for transitioning from mechanisms to clinical therapies. The close relationship between MASLD and comorbidities like obesity, type 2 diabetes and dyslipidemia make it difficult to determine the contribution from liver disease itself. Here, we review recent metabolomics studies in liver tissue from human MASLD patients, which have predominately focused on lipid metabolism, but also include bile acid, tricarboxylic acid (TCA) cycle, and branched chain amino acid (BCAA) metabolism. Several clinical trials are underway to target various of these lipid-related pathways in MASLD. Although only the β-selective thyroid hormone receptor agonist resmetirom has so far been approved for use, many metabolism-targeting pharmaceuticals show promising results for halting disease progression, if not promoting outright reversal. Ultimately, the scarcity of human tissue data and the variability of confounding factors, like obesity, within and between cohorts are impediments to the pathophysiological understanding required for efficient development of metabolic treatments.
Collapse
Affiliation(s)
- Emily Flam
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
13
|
Ram R, Subramanian A, K. R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in People Living With HIV Attending Centre of Excellence in HIV Care at a Tertiary Level Teaching Hospital in North India-A Pilot Study. J Int Assoc Provid AIDS Care 2025; 24:23259582241311912. [PMID: 39801172 PMCID: PMC11726528 DOI: 10.1177/23259582241311912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
With the availability of free antiretroviral therapy (ART) across India, HIV in adults has become a chronic disease with prolonged survival. The emergence of various non-communicable diseases in these prolonged survivors is a cause of concern. Metabolic dysfunction-associated steatotic liver disease (MASLD) in adults with HIV infection in India has not been explored to date. In this study, we attempted to assess the existence of MASLD in thirty adults registered at the Centre of Excellence in ART Care at a tertiary teaching hospital in New Delhi. This center provides free first-line, second-line, and third-line ART to patients as well as comprehensive HIV care including counseling, nutritional advice, and inpatient admissions for intercurrent illnesses. A total of 30 subjects were enrolled in the study to assess the occurrence of MASLD among people living with HIV (PLHIV) and its risk factors and to assess hepatic fibrosis in the subjects with MASLD using transient elastography and clinical fibrosis scores. The study population included 13 subjects on ART (43.3%) and 17 ART-naïve subjects (56.6%). All the study subjects underwent ultrasonography (USG) for the identification of the development of MASLD in them. Steatosis was identified as an increase in the echogenicity of the liver seen as an increase in the hepatorenal contrast and was further graded into the 3 grades of fatty liver. Out of the 30 subjects, 16.6% (5 out of 30) were found to have MASLD on USG, with grade 1 fatty changes seen in 4 (13.3%) and grade 2 fatty changes seen in 1 out of 30 subjects (3.3%). A majority (40%) of the subjects were underweight (body mass index [BMI] < 18.5). 22.7% of the male subjects included in the study had MASLD whereas none of the females had fatty changes in the liver on USG. Out of the study subjects, MASLD was detected in 17.6% of ART-naïve subjects while it was detected in 15.4% of subjects on ART. Although no statistically significant association was seen with any of these parameters, a few important trends were observed. These might be statistically significant in a higher power study with a larger sample size. Higher BMI (mean difference [MD] = 3.25, P = .09), waist circumference (MD = 3.84, P = .15), hip circumference (MD = 4.36, P = .14), and older age (MD = 6.56, P = .07) were observed to be associated with MASLD in our study, whereas the biochemical parameters and HIV-related factors were not seen to have any particular trend of association in our study. However, a higher median CD4 count was associated with MASLD as compared to the group without fatty changes on USG. On FibroScan, all 5 subjects with fatty changes in our study were found to have liver stiffness less than 7 kPa which corresponds to F0-F1 stage of fibrosis. Using the nonalcoholic fatty liver disease score, 2 subjects had scores corresponding to F0-F2 stage of fibrosis (as per METAVIR score) while the rest (3 out of 5) had indeterminate values. While on FIB4 scoring, 4 subjects had scores suggesting stage 0-1 fibrosis while 1 had a score suggestive of stage 4-6 fibrosis as per Ishak Fibrosis staging. As PLHIV with known diabetes mellitus, obesity, and hypothyroidism were excluded from our study, the prevalence of MASLD observed in our study underestimates the real prevalence of MASLD in this specific population. No significant association was observed between ART status or ART regimen and MASLD in our study subjects. However, in light of the existing evidence of association of dolutegravir (DTG) with significant weight gain, and the recent inclusion of DTG in the first-line ART regimen nationally in India, robust surveillance and large-scale studies are recommended to study the contribution of DTG to MASLD in PLHIV, if any.
Collapse
Affiliation(s)
- Ragini Ram
- Maulana Azad Medical College, New Delhi, India
| | - Anuradha Subramanian
- Centre of Excellence in HIV Care, Maulana Azad Medical College, New Delhi, India
| | - Rajeshwari K.
- Centre of Excellence in HIV Care, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
14
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
15
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
16
|
Carli F, Della Pepa G, Sabatini S, Vidal Puig A, Gastaldelli A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep 2024; 6:101185. [PMID: 39583092 PMCID: PMC11582433 DOI: 10.1016/j.jhepr.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is recognised as a metabolic disease characterised by excess intrahepatic lipid accumulation due to lipid overflow and synthesis, alongside impaired oxidation and/or export of these lipids. But where do these lipids come from? The main pathways related to hepatic lipid accumulation are de novo lipogenesis and excess fatty acid transport to the liver (due to increased lipolysis, adipose tissue insulin resistance, as well as excess dietary fatty acid intake, in particular of saturated fatty acids). Not only triglycerides but also other lipids are secreted by the liver and are associated with a worse histological profile in MASH, as shown by lipidomics. Herein, we review the role of lipid metabolism in MASLD/MASH and discuss the impact of weight loss (diet, bariatric surgery, GLP-1RAs) or other pharmacological treatments (PPAR or THRβ agonists) on hepatic lipid metabolism, lipidomics, and the resolution of MASH.
Collapse
Affiliation(s)
- Fabrizia Carli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Giuseppe Della Pepa
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Silvia Sabatini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Antonio Vidal Puig
- Metabolic Research Laboratories, Medical Research Council Institute of Metabolic Science University of Cambridge, Cambridge CB2 0QQ UK
- Centro de Investigacion Principe Felipe Valencia 46012 Spain
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
17
|
Gu MJ, Ahn Y, Lee YR, Yoo G, Kim Y, Choi I, Ha SK, Kim D. Coriandrum sativum L. Leaf Extract Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease by Modulating the AMPK Pathway in High Fat-Fed C57BL/6 Mice. Nutrients 2024; 16:4165. [PMID: 39683561 DOI: 10.3390/nu16234165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. In recent times, the term NAFLD has been modified to metabolic dysfunction-associated steatotic liver disease (MASLD), reflecting its comprehensive scope encompassing a range of metabolic abnormalities. Coriandrum sativum L. (CS) is a traditional medicine, although the preventive mechanism of CS extracts remains unclear. OBJECTIVE This study evaluated the preventive effects of CS in high-fat diet (HFD)-induced MASLD mice by oral administration of 100 or 200 mg/kg/day of CS extracts for 12 weeks. RESULTS The major CS extract compounds were chlorogenic acid, caffeic acid, rutin, and isoquercetin. The administration of CS extract suppressed HFD-induced weight gain, liver weight, and the liver/body weight ratio. It improved the mice's serum biological profiles and suppressed HFD-induced lipid droplet and lipid accumulation by inhibiting lipid accumulation-related gene expression in the liver. It modulated HFD-induced Ampk-Srebp1c pathways and suppressed HFD-induced NF-κB pathway activation in the liver. It regulated inflammation and the AMPK alpha signaling pathway in HFD-fed mice by reducing the accumulation of specific amino acids, leading to the amelioration of fatty liver. CONCLUSIONS The CS extract prevents HFD-induced MASLD and may help prevent or treat MASLD.
Collapse
Affiliation(s)
- Min Ji Gu
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yejin Ahn
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yu Ra Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Inwook Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Donghwan Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
18
|
Angelini G, Russo S, Carli F, Infelise P, Panunzi S, Bertuzzi A, Caristo ME, Lembo E, Calce R, Bornstein SR, Gastaldelli A, Mingrone G. Dodecanedioic acid prevents and reverses metabolic-associated liver disease and obesity and ameliorates liver fibrosis in a rodent model of diet-induced obesity. FASEB J 2024; 38:e70202. [PMID: 39600104 PMCID: PMC11599784 DOI: 10.1096/fj.202402108r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Dodecanedioic acid (DC12) is a dicarboxylic acid present in protective polymers of fruit and leaves. We explored the effects of DC12 on metabolic dysfunction-associated steatohepatitis (MASH) and obesity. DC12 supplementation (100 mg/kg/day) was added to a high-fat diet (HFD) for 8 weeks in rodents to assess its impact on obesity and MASH prevention. Rats given DC12 experienced significant reductions of weight gain, liver and visceral fat weight, and improved glucose tolerance and insulin sensitivity. Liver histology showed protection against diet-induced MASH, with reduced steatosis, hepatocyte ballooning, and fibrosis. For weight-loss and MASH reversion, rats were fed HFD for 14 weeks, followed by 6 weeks with or without DC12. DC12 supplementation (100 mg/kg/day) led to a significant reduction of weight gain and liver weight. DC12 induced white adipose tissue beiging and reduced adiposity with a decrease of visceral fat. It also improved glucose tolerance, insulin sensitivity, and reduced hepatic gluconeogenic gene expression. Liver histology revealed a significant reduction in steatosis, hepatocyte ballooning, and inflammation as well as fibrosis, indicating MASH reversal. DC12 reduced hepatic lipogenesis enzymes as well as de novo lipogenesis measured by deuterated water and increased fatty acid β-oxidation. Plasma lipid profile showed lower triglycerides and phosphatidylcholines in the DC12 group. Notably, DC12 decreased mINDY expression, the cell membrane Na+-coupled citrate transporter, reducing citrate uptake and de-novo lipogenesis, linking its effects to improved lipid metabolism and reduced steatosis. We found that during the hepatic first pass, half of the DC12 ingested with water was taken up by the liver. The concentration of DC12 in the portal vein falls within the range identified in vitro as sufficient to inhibit citrate transport in hepatocytes.
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Sara Russo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Fabrizia Carli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Patrizia Infelise
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Simona Panunzi
- CNR‐IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed InformaticaRomeItaly
| | - Alessandro Bertuzzi
- CNR‐IASI, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed Informatica, Laboratorio di BiomatematicaRomeItaly
| | - Maria Emiliana Caristo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
| | - Erminia Lembo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Roberta Calce
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Stefan R. Bornstein
- Department of Medicine IIIUniversitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenGermany
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| | - Amalia Gastaldelli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Geltrude Mingrone
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| |
Collapse
|
19
|
Mishra P, Sadananthan SA, Yaligar J, Tan KH, Chong YS, Gluckman PD, Godfrey KM, Fortier MV, Eriksson JG, Chan JKY, Chan SY, Wang D, Velan SS, Michael N. Even moderate liver fat accumulation below conventional fatty liver cutoffs is linked to multiple metabolomic alterations and gestational dysglycemia in Asian women of reproductive age. BMC Med 2024; 22:561. [PMID: 39605006 PMCID: PMC11600899 DOI: 10.1186/s12916-024-03779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND It is not clear if conventional liver fat cutoff of 5.56% weight which has been used for identifying fatty liver in western populations is also applicable for Asians. In Asian women of reproductive age, we evaluate the optimum metabolic syndrome (MetS)-linked liver fat cutoff, the specific metabolomic alterations apparent at this cutoff, as well as prospective associations of preconception liver fat levels with gestational dysglycemia. METHODS Liver fat (measured by magnetic resonance spectroscopy), MetS, and nuclear magnetic resonance (NMR)-based plasma metabolomic profiles were assessed in 382 Asian women, who were planning to conceive. Ninety-eight women went on to become pregnant and received an oral glucose tolerance test at week 26 of gestation. RESULTS The optimum liver fat cutoff for diagnosing MetS was 2.07%weight. Preconception liver fat was categorized into Low (liver fat < 2.07%), Moderate (2.07% ≤ liver fat < 5.56%), and High (liver fat ≥ 5.56%) groups. Individual MetS traits showed worsening trends, going from Low to Moderate to High groups. Multiple plasma metabolomic alterations, previously linked to incident type 2 diabetes (T2D), were already evident in the Moderate group (adjusted for ethnicity, age, parity, educational attainment, and BMI). Both a cross-sectional multi-metabolite score for incident T2D and mid-gestational glucose area under the curve showed increasing trends, going from Low to Moderate to High groups (p < 0.001 for both). Gestational diabetes incidence was 2-fold (p = 0.23) and 7-fold (p < 0.001) higher in the Moderate and High groups relative to the Low group. CONCLUSIONS In Asian women of reproductive age, moderate liver fat accumulation below the conventional fatty liver cutoff was not metabolically benign and was linked to gestational dysglycemia. The newly derived cutoff can aid in screening individuals before adverse metabolic phenotypes have consolidated, which provides a longer window for preventive strategies.
Collapse
Affiliation(s)
- Priti Mishra
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
| | - Suresh Anand Sadananthan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
| | - Jadegoud Yaligar
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
| | - Kok Hian Tan
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - Yap Seng Chong
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, Southampton University Hospital NHS Foundation Trust and University of Southampton, Southampton, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Marielle V Fortier
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - Johan G Eriksson
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Folkhalsan Research Centre, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Jerry Kok Yen Chan
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Reproductive Medicine, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - Shiao-Yng Chan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dennis Wang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
| | - S Sendhil Velan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
| | - Navin Michael
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| |
Collapse
|
20
|
Mucinski JM, Salvador AF, Moore MP, Fordham TM, Anderson JM, Shryack G, Cunningham RP, Lastra G, Gaballah AH, Diaz-Arias A, Ibdah JA, Rector RS, Parks EJ. Histological improvements following energy restriction and exercise: The role of insulin resistance in resolution of MASH. J Hepatol 2024; 81:781-793. [PMID: 38914313 DOI: 10.1016/j.jhep.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common liver diseases worldwide and is characterized by multi-tissue insulin resistance. The effects of a 10-month energy restriction and exercise intervention on liver histology, anthropometrics, plasma biochemistries, and insulin sensitivity were compared to standard of care (control) to understand mechanisms that support liver health improvements. METHODS Following medical diagnosis of MASH, individuals were randomized to treatment (n = 16) or control (n = 8). Liver fat (magnetic resonance spectroscopy), 18-hour plasma biochemical measurements, and isotopically labeled hyperinsulinemic-euglycemic clamps were completed pre- and post-intervention. Body composition and cardiorespiratory fitness (VO2peak) were also measured mid-intervention. Those in the treatment group were counseled to reduce energy intake and completed supervised, high-intensity interval training (3x/week) for 10 months. Controls continued physician-directed care. RESULTS Treatment induced significant (p <0.05) reductions in body weight, fat mass, and liver injury, while VO2peak (p <0.05) and non-esterified fatty acid suppression (p = 0.06) were improved. Both groups exhibited reductions in total energy intake, hemoglobin A1c, hepatic insulin resistance, and liver fat (p <0.05). Compared to control, treatment induced a two-fold increase in peripheral insulin sensitivity which was significantly related to higher VO2peak and resolution of liver disease. CONCLUSIONS Exercise and energy restriction elicited significant and clinically meaningful treatment effects on liver health, potentially driven by a redistribution of excess nutrients to skeletal muscle, thereby reducing hepatic nutrient toxicity. Clinical guidelines should emphasize the addition of aerobic exercise in lifestyle treatments for the greatest histologic benefit in individuals with advanced MASH. IMPACT AND IMPLICATIONS The mechanisms that underpin histologic improvement in individuals with metabolic dysfunction-associated steatohepatitis (MASH) are not well understood. This study evaluated the relationship between liver and metabolic health, testing how changes in one may affect the other. We investigated the effects of energy restriction and exercise on the association between multi-tissue insulin sensitivity and histologic improvements in participants with biopsy-proven MASH. For the first time, these results show that an improvement in peripheral (but not hepatic) insulin sensitivity and systemic markers of muscle function (i.e. cardiorespiratory fitness) were strongly related to resolution of liver disease. Extrahepatic disposal of substrates and improved fitness levels supported histologic improvement, confirming the addition of exercise as crucial to lifestyle interventions in MASH. CLINICAL TRIAL NUMBER NCT03151798.
Collapse
Affiliation(s)
- Justine M Mucinski
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Mary P Moore
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States
| | - Talyia M Fordham
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Jennifer M Anderson
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Grace Shryack
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; NextGen Precision Health, Columbia, MO 65201, United States
| | - Rory P Cunningham
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States
| | - Guido Lastra
- Endocrinology and Metabolism, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Ayman H Gaballah
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, 65212, United States
| | - Alberto Diaz-Arias
- Boyce & Bynum Pathology Laboratories, Columbia, MO, 65201, United States
| | - Jamal A Ibdah
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States; NextGen Precision Health, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; NextGen Precision Health, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
21
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
22
|
Goyal V, Tosini G. Disruption of Melatonin Signaling Leads to Lipids Accumulation in the Liver of Melatonin Proficient Mice. J Pineal Res 2024; 76:e70007. [PMID: 39539075 DOI: 10.1111/jpi.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Melatonin signaling via melatonin receptor type 1 (MT1) and type 2 (MT2) plays an important role in the regulation of several physiological functions. Studies in rodents and humans have demonstrated that disruption of melatonin signaling may affect glucose metabolism, insulin sensitivity, and leptin levels. Accumulating experimental evidence also indicates that in rodents the administration of exogenous melatonin has a beneficial effect on the blood lipid levels. However, the molecular mechanism by which melatonin signaling may regulate lipids is still unclear. In addition, most of the studies with mice have been performed in melatonin-deficient mice by administering exogenous melatonin at supraphysiological doses. Hence the results of these studies may be greatly affected by these two factors. In this study, we report the effects of melatonin signaling removal on the liver biology and transcriptome using melatonin-proficient mice (C3H-f+/f+) in which MT1 or MT2 have been genetically ablated. Our data indicate that the absence of MT1 or MT2 signaling leads to disruption of the blood lipids profile and an increase in lipids deposition in the liver. These effects were more pronounced in the mice lacking MT1 than MT2. The gene expression profiles obtained with RNA-seq from the livers of the three genotypes revealed that removal of MT1 affected the transcription of 4255 genes (i.e., 40.6%). Conversely, the removal of MT2 affected the transcription of 1864 transcripts (i.e., 17.2%). Finally, we identified a group of 13 genes involved in lipids biology that may play a key role in the accumulation of lipids in the liver when melatonin signaling is disrupted. In conclusion, our study indicates that melatonin signaling is an important modulator of liver physiology and metabolism. Our study also indicated that the removal of MT1 signaling is more deleterious than MT2 removal.
Collapse
Affiliation(s)
- Varunika Goyal
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Neuroscience Institute, Atlanta, Georgia, USA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Neuroscience Institute, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
25
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
26
|
Yang L, Jiang Z, Yang L, Zheng W, Chen Y, Qu F, Crabbe MJC, Zhang Y, Andersen ME, Zheng Y, Qu W. Disinfection Byproducts of Haloacetaldehydes Disrupt Hepatic Lipid Metabolism and Induce Lipotoxicity in High-Fat Culture Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12356-12367. [PMID: 38953388 DOI: 10.1021/acs.est.3c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unhealthy lifestyles, obesity, and environmental pollutants are strongly correlated with the development of nonalcoholic fatty liver disease (NAFLD). Haloacetaldehyde-associated disinfection byproducts (HAL-DBPs) at various multiples of concentrations found in finished drinking water together with high-fat (HF) were examined to gauge their mixed effects on hepatic lipid metabolism. Using new alternative methods (NAMs), studying effects in human cells in vitro for risk assessment, we investigated the combined effects of HF and HAL-DBPs on hepatic lipid metabolism and lipotoxicity in immortalized LO-2 human hepatocytes. Coexposure of HAL-DBPs at various multiples of environmental exposure levels with HF increased the levels of triglycerides, interfered with de novo lipogenesis, enhanced fatty acid oxidation, and inhibited the secretion of very low-density lipoproteins. Lipid accumulation caused by the coexposure of HAL-DBPs and HF also resulted in more severe lipotoxicity in these cells. Our results using an in vitro NAM-based method provide novel insights into metabolic reprogramming in hepatocytes due to coexposure of HF and HAL-DBPs and strongly suggest that the risk of NAFLD in sensitive populations due to HAL-DBPs and poor lifestyle deserves further investigation both with laboratory and epidemiological tools. We also discuss how results from our studies could be used in health risk assessments for HAL-DBPs.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lan Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fei Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Yubin Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Zhang J, Li Y, Yang L, Ma N, Qian S, Chen Y, Duan Y, Xiang X, He Y. New advances in drug development for metabolic dysfunction-associated diseases and alcohol-associated liver disease. Cell Biosci 2024; 14:90. [PMID: 38971765 PMCID: PMC11227172 DOI: 10.1186/s13578-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic disorders are currently threatening public health worldwide. Discovering new targets and developing promising drugs will reduce the global metabolic-related disease burden. Metabolic disorders primarily consist of lipid and glucose metabolic disorders. Specifically, metabolic dysfunction-associated steatosis liver disease (MASLD) and alcohol-associated liver disease (ALD) are two representative lipid metabolism disorders, while diabetes mellitus is a typical glucose metabolism disorder. In this review, we aimed to summarize the new drug candidates with promising efficacy identified in clinical trials for these diseases. These drug candidates may provide alternatives for patients with metabolic disorders and advance the progress of drug discovery for the large disease burden.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yixin Li
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Westcott F, Dearlove DJ, Hodson L. Hepatic fatty acid and glucose handling in metabolic disease: Potential impact on cardiovascular disease risk. Atherosclerosis 2024; 394:117237. [PMID: 37633797 DOI: 10.1016/j.atherosclerosis.2023.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The prevalence of metabolic diseases, including type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing. Although invariably associated with obesity, the importance of fat deposition in non-adipose tissue organs has yet to be fully explored. Pathological ectopic fat deposition within the liver (known as (MASLD)) has been suggested to underlie the development of T2DM and is now emerging as an independent risk factor for cardiovascular disease (CVD). The process of hepatic de novo lipogenesis (DNL), that is the synthesis of fatty acids from non-lipid precursors (e.g. glucose), has received much attention as it sits at the intersect of hepatic glucose and fatty acid handling. An upregulation of the DNL pathway has been suggested to be central in the development of metabolic diseases (including MASLD, insulin resistance, and T2DM). Here we review the evidence to determine if hepatic DNL may play a role in the development of MASLD and T2DM and therefore underlie an increased risk of CVD.
Collapse
Affiliation(s)
- Felix Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
| | - David J Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
29
|
Elnegaard JJ, Iena FM, Herold J, Lebeck J. Sex-specific effect of AQP9 deficiency on hepatic triglyceride metabolism in mice with diet-induced obesity. J Physiol 2024; 602:3131-3149. [PMID: 37026573 DOI: 10.1113/jp284188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Studies in obese rats and human cell models of non-alcoholic fatty liver disease have indicated that knockdown of the hepatic glycerol channel aquaporin 9 (AQP9) leads to decreased hepatic steatosis. However, a study in leptin receptor-deficient mice did not find that knockout (KO) of AQP9 alleviated hepatic steatosis. The aim of this study was to investigate the effect of high-fat diet (HFD) on hepatic glycerol and triglyceride metabolism in male and female AQP9 KO mice. Male and female AQP9 KO mice and wild-type (WT) littermates were fed a HFD for 12 weeks. Weight, food intake and blood glucose were monitored throughout the study and tissue analysis included determination of hepatic triglyceride content and triglyceride secretion. The expression of key molecules for hepatic glycerol and triglyceride metabolism was evaluated using qPCR and western blotting. AQP9 KO and WT mice demonstrated a similar weight gain throughout the study period, and we found no evidence for AQP9 deficiency being associated with a reduced hepatic accumulation of triglyceride or a reduced blood glucose level. Instead, we show that the effect of AQP9 deficiency on hepatic lipid metabolism is sex-specific, with only male AQP9 KO mice having a reduced hepatic secretion of triglycerides and an elevated expression of peroxisome proliferator-activated receptor α. Male AQP9 KO mice had an elevated blood glucose level after 12 weeks of HFD when compared to baseline levels. Thus, we found no evidence for AQP9 inhibition being a target for alleviating the development of hepatic steatosis in mice with diet-induced obesity. KEY POINTS: This study investigates the effect of AQP9 deficiency on hepatic triglyceride metabolism in both male and female mice fed a high-fat diet (HFD) for 12 weeks. No evidence was found for AQP9 deficiency being associated with a reduced hepatic accumulation of triglyceride or a reduced blood glucose level. The effect of AQP9 deficiency on hepatic triglyceride metabolism is sex-specific. Male AQP9 KO mice had a reduced hepatic secretion of triglycerides and an elevated expression of peroxisome proliferator-activated receptor α, which likely promotes an increased hepatic fatty acid oxidation. Male AQP9 KO had an elevated blood glucose level after 12 weeks of HFD when compared to baseline levels.
Collapse
Affiliation(s)
| | | | | | - Janne Lebeck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Risikesan J, Heebøll S, Kumarathas I, Søndergaard E, Johansen RF, Ringgaard S, Aagaard NK, Sandahl TD, Villadsen GE, Gormsen LC, Frystyk J, Jensen MD, Grønbæk H, Nielsen S. Similar insulin regulation of splanchnic FFA and VLDL-TG in men with nonalcoholic hepatic steatosis and steatohepatitis. J Lipid Res 2024; 65:100580. [PMID: 38901559 PMCID: PMC11301221 DOI: 10.1016/j.jlr.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
This study aimed to determine whether obese men with nonalcoholic fatty liver disease (NAFLD) display differences between those with simple steatosis versus steatohepatitis (NASH) in splanchnic and hepatic FFA and VLDL-triglycerides (VLDL-TG) balances. The study involved 17 obese men with biopsy-proven NAFLD (9 with NASH and 8 with simple steatosis). We used hepatic vein catheterization in combination with [3H]palmitate and [14C]VLDL-TG tracers to measure splanchnic palmitate and VLDL-TG uptake and release rates during basal and hyperinsulinemic conditions. Indocyanine green was used to measure splanchnic plasma flow. Splanchnic palmitate uptake was similar in the two groups and significantly reduced during hyperinsulinemia (NASH: 62 (48-77) versus 38 (18-58) μmol/min; simple steatosis: 62 (46-78) versus 45 (25-65) μmol/min, mean (95% CI), basal versus clamp periods, respectively, P = 0.02 time-effect). Splanchnic palmitate release was also comparable between groups and nonsignificantly diminished during hyperinsulinemia. The percent palmitate delivered to the liver originating from visceral adipose tissue lipolysis was similar and unchanged by hyperinsulinemia. Splanchnic uptake and release of VLDL-TG were similar between groups. Hyperinsulinemia suppressed VLDL-TG release (P <0.05 time-effect) in both groups. Insulin-mediated glucose disposal was similar in the two groups (P = 0.54). Obese men with NASH and simple steatosis have similar splanchnic uptake and release of FFA and VLDL-TG and a similar proportion of FFA from visceral adipose tissue lipolysis delivered to the liver. These results demonstrate that the splanchnic balances of FFA and VLDL-TG do not differ between obese men with NASH and those with simple steatosis.
Collapse
Affiliation(s)
| | - Sara Heebøll
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark; Department of Endocrinology and Internal Medicine, AUH, Aarhus, Denmark
| | | | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Rakel F Johansen
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark
| | | | - Niels K Aagaard
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas D Sandahl
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gerda E Villadsen
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars C Gormsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET Centre, AUH, Aarhus, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | | | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, AUH, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital (AUH), Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
31
|
Zheng K, Li X, Rong Y, Wang X, Hou L, Gu W, Hou X, Guan Y, Liu L, Geng J, Song G. Serum Gamma Glutamyltransferase: A Biomarker for Identifying Postprandial Hypertriglyceridemia. Diabetes Metab Syndr Obes 2024; 17:2273-2281. [PMID: 38859995 PMCID: PMC11164083 DOI: 10.2147/dmso.s461876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose Elevated serum gamma-glutamyltranspeptidase (GGT) is an independent marker of the activation of systemic inflammation, while conditions associated with elevated triglyceride (TG) levels, such as type 2 diabetes, non-alcoholic fatty liver disease, obesity, and metabolic syndrome, are associated with an increased inflammatory burden. Moreover, serum liver enzymes (GGT, alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]) are associated with metabolic syndrome and its components, including hypertriglyceridemia. However, the relationship between liver enzymes and postprandial hypertriglyceridemia (PHTG) remains unclear. Therefore, in this study we conducted oral fat tolerance tests (OFTTs) to understand the differences in serum liver enzyme levels among individuals with different lipid tolerance levels and their correlation with PHTG. Patients and Methods For the OFTT, we enrolled 202 non-diabetic volunteers whose fasting triglyceride (TG) levels were less than 1.7 mmol/L in this case-control study. The participants were categorized into two groups according to the TG levels at the 0- and 4-h OFTT: a postprandial normal TG (PNTG) group and a PHTG group. Routine fasting serum biochemical indices, liver enzyme (GGT, ALT, AST, and ALP) levels, and 0- and 4-h OFTT lipid levels were assessed. Results The PHTG group had significantly higher serum GGT and ALT levels and a lower AST/ALT ratio than those in the PNTG group. However, no significant difference was observed in AST and ALP levels compared with the PNTG group. After adjusting for major confounders, logistic regression analysis indicated a significant correlation between serum GGT and PHTG (odds ratio = 1.168, P < 0.001), but not with ALT level, AST level, AST/ALT ratio, and ALP level. The receiver operating characteristic curve analysis demonstrated that the serum GGT level was an effective predictor of PHTG. Conclusion Serum GGT levels are significantly associated with PHTG risk and serve as an effective biomarker for early identification.
Collapse
Affiliation(s)
- Kunjie Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hengshui People’s Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaolong Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hengshui People’s Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Yihua Rong
- Department of Endocrinology, Hengshui People’s Hospital, Hengshui, Hebei, People’s Republic of China
| | - Xuejing Wang
- Hengshui People’s Hospital Statistical Office, Hengshui, Hebei, People’s Republic of China
| | - Liping Hou
- Department of Endocrinology, Hengshui People’s Hospital, Hengshui, Hebei, People’s Republic of China
| | - Wei Gu
- Department of Endocrinology, Hengshui People’s Hospital, Hengshui, Hebei, People’s Republic of China
| | - Xiaoyu Hou
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Yunpeng Guan
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Lifang Liu
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, People’s Republic of China
| | - Jianlin Geng
- Department of Endocrinology, Hengshui People’s Hospital, Hengshui, Hebei, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
32
|
Johnson SM, Bao H, McMahon CE, Chen Y, Burr SD, Anderson AM, Madeyski-Bengtson K, Lindén D, Han X, Liu J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024; 15:4847. [PMID: 38844467 PMCID: PMC11156938 DOI: 10.1038/s41467-024-49224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Scott M Johnson
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Department of Cell Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cailin E McMahon
- Molecular Biology and Genetics Department; Cornell College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Stephanie D Burr
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Aaron M Anderson
- Department of Developmental Biology; Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences; BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM); BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition; Mayo Clinic in Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|
33
|
Gjela M, Askeland A, Mellergaard M, Drewes AM, Handberg A, Frøkjær JB. Intra-pancreatic fat deposition and its relation to obesity: a magnetic resonance imaging study. Scand J Gastroenterol 2024; 59:742-748. [PMID: 38557425 DOI: 10.1080/00365521.2024.2333365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Intra-pancreatic fat deposition (IPFD) is suspected to be associated with various medical conditions. This study aimed to assess pancreatic fat content in lean and obese individuals, characterize obese individuals with and without IPFD, and explore the underlying mechanisms. MATERIALS AND METHODS Sixty-two obese individuals without diabetes and 35 lean controls underwent magnetic resonance imaging (MRI) using proton density fat fraction (PDFF) maps to evaluate pancreatic and hepatic fat content, and visceral adipose tissue (VAT) content. Pancreatic fibrosis was explored by T1 relaxation time and MR elastography (MRE) measurements. Associations between pancreatic fat, measures of obesity and metabolic syndrome were examined using uni- and multivariate regression analyses. RESULTS Pancreatic PDFF was higher in obese than in lean controls (median 8.0%, interquartile range (6.1;13.3) % vs 2.6(1.7;3.9)%, p < 0.001). Obese individuals with IPFD (PDFF ≥6.2%) had higher waist circumference (114.0 ± 12.5 cm vs 105.2 ± 8.7 cm, p = 0.007) and VAT (224.9(142.1; 316.1) cm2 vs 168.2(103.4; 195.3) cm2, p < 0.001) than those without. In univariate analysis, pancreatic PDFF in obese individuals correlated with BMI (r = 0.27, p = 0.03), waist circumference (r = 0.44, p < 0.001), VAT (r = 0.37, p = 0.004), hepatic PDFF (r = 0.25, p = 0.046) and diastolic blood pressure (r = 0.32, p = 0.01). However, in multivariate analysis, only VAT was associated to pancreatic fat content. MRI measures of pancreatic fibrosis indicated no evident fibrosis in relation to increased pancreatic fat content. CONCLUSIONS Pancreatic fat content was increased in obese individuals compared with lean controls and predominantly correlated with the amount of visceral adipose tissue. Pancreatic fat content was not clearly linked to measures of pancreatic fibrosis.
Collapse
Affiliation(s)
- Mimoza Gjela
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
34
|
Jiang Y, Wu L, Zhu X, Bian H, Gao X, Xia M. Advances in management of metabolic dysfunction-associated steatotic liver disease: from mechanisms to therapeutics. Lipids Health Dis 2024; 23:95. [PMID: 38566209 PMCID: PMC10985930 DOI: 10.1186/s12944-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.
Collapse
Affiliation(s)
- Yuxiao Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Lili Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Department of Integrated Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Mellemkjær A, Kjær MB, Haldrup D, Grønbæk H, Thomsen KL. Management of cardiovascular risk in patients with metabolic dysfunction-associated steatotic liver disease. Eur J Intern Med 2024; 122:28-34. [PMID: 38008609 DOI: 10.1016/j.ejim.2023.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
The novel term Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is proposed to replace non-alcoholic fatty liver disease (NAFLD) to highlight the close association with the metabolic syndrome. MASLD encompasses patients with liver steatosis and at least one of five cardiometabolic risk factors which implies that these patients are at increased risk of cardiovascular disease (CVD). Indeed, the prevalence of CVD in MASLD patients is increased and CVD is recognized as the most common cause of death in MASLD patients. We here present an update on the pathophysiology of CVD in MASLD, discuss the risk factors, and suggest screening for CVD in patients with MASLD. Currently, there is no FDA-approved pharmacological treatment for MASLD, and no specific treatment recommended for CVD in patients with MASLD. Thus, the treatment strategy is based on weight loss and a reduction and treatment of CVD risk factors. We recommend screening of MASLD patients for CVD using the SCORE2 system with guidance to specific treatment algorithms. In all patients with CVD risk factors, lifestyle intervention to induce weight loss through diet and exercise is recommended. Especially a Mediterranean diet may improve hyperlipidemia and if further treatment is needed, statins should be used as first-line treatment. Further, anti-hypertensive drugs should be used to treat hypertension. With the epidemic of obesity and type 2 diabetes mellitus (T2DM) the risk of MASLD and CVD is expected to increase, and preventive measures, screening, and effective treatments are highly needed to reduce morbidity and mortality in MASLD patients.
Collapse
Affiliation(s)
- Anders Mellemkjær
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Breinholt Kjær
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David Haldrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Karen Louise Thomsen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Wu IT, Yeh WJ, Huang WC, Yang HY. Very low-carbohydrate diet with higher protein ratio improves lipid metabolism and inflammation in rats with diet-induced nonalcoholic fatty liver disease. J Nutr Biochem 2024; 126:109583. [PMID: 38244701 DOI: 10.1016/j.jnutbio.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is commonly associated with obesity, and it is mainly treated through lifestyle modifications. The very low-carbohydrate diet (VLCD) can help lose weight rapidly but the possible effects of extreme dietary patterns on lipid metabolism and inflammatory responses in individuals with NAFLD remain debatable. Moreover, VLCD protein content may affect its effectiveness in weight loss, steatosis, and inflammatory responses. Therefore, we investigated the effects of VLCDs with different protein contents in NAFLD rats and the mechanisms underlying these effects. After a 16-week inducing period, the rats received an isocaloric normal diet (NC group) or a VLCD with high or low protein content (NVLH vs. NVLL group, energy ratio:protein/carbohydrate/lipid=20/1/79 vs. 6/1/93) for the next 8 weeks experimental period. We noted that the body weight decreased in both the NVLH and NVLL groups; nevertheless, the NVLH group demonstrated improvements in ketosis. The NVLL group led to hepatic lipid accumulation, possibly by increasing very-low-density lipoprotein receptor (VLDLR) expression and elevating liver oxidative stress, subsequently activating the expression of Nrf2, and inflammation through the TLR4/TRIF/NLRP3 and TLR4/MyD88/NF-κB pathway. The NVLH was noted to prevent the changes in VLDLR and the TLR4-inflammasome pathway partially. The VLCD also reduced the diversity of gut microbiota and changed their composition. In conclusion, although low-protein VLCD consumption reduces BW, it may also lead to metabolic disorders and changes in microbiota composition; nevertheless, a VLCD with high protein content may partially alleviate these limitations.
Collapse
Affiliation(s)
- I-Ting Wu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wan-Ju Yeh
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Chih Huang
- Department of Anatomical Pathology, Taipei Institute of Pathology, Taipei City, Taiwan
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
37
|
Zhang S, Williams KJ, Verlande-Ferrero A, Chan AP, Su GB, Kershaw EE, Cox JE, Maschek JA, Shapira SN, Christofk HR, de Aguiar Vallim TQ, Masri S, Villanueva CJ. Acute activation of adipocyte lipolysis reveals dynamic lipid remodeling of the hepatic lipidome. J Lipid Res 2024; 65:100434. [PMID: 37640283 PMCID: PMC10839691 DOI: 10.1016/j.jlr.2023.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of β3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kevin J Williams
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amandine Verlande-Ferrero
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Alvin P Chan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gino B Su
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, PA, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Alan Maschek
- Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Suzanne N Shapira
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
38
|
Esler WP, Cohen DE. Pharmacologic inhibition of lipogenesis for the treatment of NAFLD. J Hepatol 2024; 80:362-377. [PMID: 37977245 PMCID: PMC10842769 DOI: 10.1016/j.jhep.2023.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
The hepatic accumulation of excess triglycerides is a seminal event in the initiation and progression of non-alcoholic fatty liver disease (NAFLD). Hepatic steatosis occurs when the hepatic accrual of fatty acids from the plasma and de novo lipogenesis (DNL) is no longer balanced by rates of fatty acid oxidation and secretion of very low-density lipoprotein-triglycerides. Accumulating data indicate that increased rates of DNL are central to the development of hepatic steatosis in NAFLD. Whereas the main drivers in NAFLD are transcriptional, owing to both hyperinsulinemia and hyperglycaemia, the effectors of DNL are a series of well-characterised enzymes. Several have proven amenable to pharmacologic inhibition or oligonucleotide-mediated knockdown, with lead compounds showing liver fat-lowering efficacy in phase II clinical trials. In humans with NAFLD, percent reductions in liver fat have closely mirrored percent inhibition of DNL, thereby affirming the critical contributions of DNL to NAFLD pathogenesis. The safety profiles of these compounds have so far been encouraging. It is anticipated that inhibitors of DNL, when administered alone or in combination with other therapeutic agents, will become important agents in the management of human NAFLD.
Collapse
Affiliation(s)
- William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research Development and Medical, Cambridge, MA 02139 United States.
| | - David E Cohen
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 United States.
| |
Collapse
|
39
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
40
|
Deng G, Li J, Huang M, Li Y, Shi H, Wu C, Zhao J, Qin M, Liu C, Yang M, Wang Y, Zhang Y, Liao Y, Zhou C, Yang J, Xu Y, Liu B, Gao L. Erchen decoction alleviates the progression of NAFLD by inhibiting lipid accumulation and iron overload through Caveolin-1 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117320. [PMID: 37838297 DOI: 10.1016/j.jep.2023.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A combination of 6 different Chinese herbs known as Erchen decoction (ECD) has been traditionally used to treat digestive tract diseases and found to have a protective effect against nonalcoholic fatty liver disease (NAFLD). Despite its efficacy in treating NAFLD, the precise molecular mechanism by which Erchen Decoction regulated iron ion metabolism to prevent disease progression remained poorly understood. AIM OF STUDY Our study attempted to confirm the specific mechanism of ECD in reducing lipid and iron in NAFLD from the perspective of regulating the expression of Caveolin-1 (Cav-1). STUDY DESIGN In our study, the protective effect of ECD was investigated in Palmitic Acid + Oleic Acid-induced hepatocyte NAFLD model and high-fat diet-induced mice NAFLD model. To investigate the impact of Erchen Decoction (ECD) on lipid metabolism and iron metabolism via mediating Cav-1 in vitro, Cav-1 knockdown cell lines were established using lentivirus-mediated transfection techniques. MATERIALS AND METHODS We constructed NAFLD model by feeding with high-fat diet for 12 weeks in vivo and Palmitic Acid + Oleic Acid treatment for 24 h in vitro. The regulation of Lipid and iron metabolism results by ECD were detected by serological diagnosis, immunofluorescent and immunohistochemical staining, and western blotting. The binding ability of 6 small molecules of ECD to Cav-1 was analyzed by molecular docking. RESULTS We demonstrated that ECD alleviated the progression of NAFLD by inhibiting lipid accumulation, nitrogen oxygen stress, and iron accumulation in vivo and in vitro experiments. Furthermore, ECD inhibited lipid and iron accumulation in liver by up-regulating the expression of Cav-1, which indicated that Cav-1 was an important target for ECD to exert its curative effect. CONCLUSIONS In summary, our study demonstrated that ECD alleviated the accumulation of lipid and iron in NAFLD through promoting the expression of Cav-1, and ECD might serve as a novel Cav-1 agonist to treat NAFLD.
Collapse
Affiliation(s)
- Guanghui Deng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Manping Huang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiamin Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunqing Wang
- Hangzhou Linping District Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Yuxue Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Yang
- Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yunsheng Xu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Bin Liu
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Lei Gao
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Yang CR, Lin WJ, Shen PC, Liao PY, Dai YC, Hung YC, Lai HC, Mehmood S, Cheng WC, Ma WL. Phenotypic and metabolomic characteristics of mouse models of metabolic associated steatohepatitis. Biomark Res 2024; 12:6. [PMID: 38195587 PMCID: PMC10777576 DOI: 10.1186/s40364-023-00555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Metabolic associated steatohepatitis (MASH) is metabolic disease that may progress to cirrhosis and hepatocellular carcinoma. Mouse models of diet-induced MASH, which is characterized by the high levels of fats, sugars, and cholesterol in diets, are commonly used in research. However, mouse models accurately reflecting the progression of MASH in humans remain to be established. Studies have explored the potential use of serological metabolites as biomarkers of MASH severity in relation to human MASH. METHODS We performed a comparative analysis of three mouse models of diet-induced MASH in terms of phenotypic and metabolomic characteristics; MASH was induced using different diets: a high-fat diet; a Western diet; and a high-fat, high-cholesterol diet. Liver cirrhosis was diagnosed using standard clinical approaches (e.g., METAVIR score, hyaluronan level, and collagen deposition level). Mouse serum samples were subjected to nuclear magnetic resonance spectroscopy-based metabolomic profiling followed by bioinformatic analyses. Metabolomic analysis of a retrospective cohort of patients with hepatocellular carcinoma was performed; the corresponding cirrhosis scores were also evaluated. RESULTS Using clinically relevant quantitative diagnostic methods, the severity of MASH was evaluated. Regarding metabolomics, the number of lipoprotein metabolites increased with both diet and MASH progression. Notably, the levels of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) significantly increased with fibrosis progression. During the development of diet-induced MASH in mice, the strongest upregulation of expression was noted for VLDL receptor. Metabolomic analysis of a retrospective cohort of patients with cirrhosis indicated lipoproteins (e.g., VLDL and LDL) as predominant biomarkers of cirrhosis. CONCLUSIONS Our findings provide insight into the pathophysiology and metabolomics of experimental MASH and its relevance to human MASH. The observed upregulation of lipoprotein expression reveals a feedforward mechanism for MASH development that may be targeted for the development of noninvasive diagnosis.
Collapse
Affiliation(s)
- Cian-Ru Yang
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Jen Lin
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Chun Shen
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Chang Dai
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Yao-Ching Hung
- Department of Gynecology and Obstetrics, Asia University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shiraz Mehmood
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Wen-Lung Ma
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
42
|
Nazeer B, Khawar MB, Khalid MU, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Ali A, Fatima H, Ahmad S. Emerging role of lipophagy in liver disorders. Mol Cell Biochem 2024; 479:1-11. [PMID: 36943663 DOI: 10.1007/s11010-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.
Collapse
Affiliation(s)
- Bismillah Nazeer
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Muhammad Usman Khalid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ahmad Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hooriya Fatima
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sadia Ahmad
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
43
|
Linghu L, Zong W, Liao Y, Chen Q, Meng F, Wang G, Liao Z, Lan X, Chen M. Herpetrione, a New Type of PPARα Ligand as a Therapeutic Strategy Against Nonalcoholic Steatohepatitis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0276. [PMID: 38034083 PMCID: PMC10687582 DOI: 10.34133/research.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease, especially nonalcoholic steatohepatitis (NASH), is a leading cause of cirrhosis and liver cancer worldwide; nevertheless, there are no Food and Drug Administration-approved drugs for treating NASH until now. Peroxisome proliferator-activated receptor alpha (PPARα) is an interesting therapeutic target for treating metabolic disorders in the clinic, including NASH. Herpetrione, a natural lignan compound isolated from Tibetan medicine Herpetospermum caudigerum, exerts various hepatoprotective effects, but its efficacy and molecular mechanism in treating NASH have not yet been elucidated. Here, we discovered that herpetrione lessened lipid accumulation and inflammation in hepatocytes stimulated with oleic acid and lipopolysaccharide, and effectively alleviated NASH caused by a high-fat diet or methionine-choline-deficient diet by regulating glucolipid metabolism, insulin resistance, and inflammation. Mechanistically, RNA-sequencing analyses further showed that herpetrione activated PPAR signaling, which was validated by protein expression. Furthermore, the analysis of molecular interactions illustrated that herpetrione bound directly to the PPARα protein, with binding sites extending to the Arm III domain. PPARα deficiency also abrogated the protective effects of herpetrione against NASH, suggesting that herpetrione protects against hepatic steatosis and inflammation by activation of PPARα signaling, thereby alleviating NASH. Our findings shed light on the efficacy of a natural product for treating NASH, as well as the broader prospects for NASH treatment by targeting PPARα.
Collapse
Affiliation(s)
- Lang Linghu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
- School of Pharmacy,
Zunyi Medical University, Zunyi 563000, China
| | - Wei Zong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Yixuan Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Qianyu Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Fancheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Guowei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, TAAHC SWU Medicinal Plant Joint R&D Centre,
Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center,
Tibet Agricultural and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| |
Collapse
|
44
|
Rao G, Peng X, Li X, An K, He H, Fu X, Li S, An Z. Unmasking the enigma of lipid metabolism in metabolic dysfunction-associated steatotic liver disease: from mechanism to the clinic. Front Med (Lausanne) 2023; 10:1294267. [PMID: 38089874 PMCID: PMC10711211 DOI: 10.3389/fmed.2023.1294267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly defined as non-alcoholic fatty liver disease (NAFLD), is a disorder marked by the excessive deposition of lipids in the liver, giving rise to a spectrum of liver pathologies encompassing steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. Despite the alarming increase in its prevalence, the US Food and Drug Administration has yet to approve effective pharmacological therapeutics for clinical use. MASLD is characterized by the accretion of lipids within the hepatic system, arising from a disarray in lipid provision (whether through the absorption of circulating lipids or de novo lipogenesis) and lipid elimination (via free fatty acid oxidation or the secretion of triglyceride-rich lipoproteins). This disarray leads to the accumulation of lipotoxic substances, cellular pressure, damage, and fibrosis. Indeed, the regulation of the lipid metabolism pathway is intricate and multifaceted, involving a myriad of factors, such as membrane transport proteins, metabolic enzymes, and transcription factors. Here, we will review the existing literature on the key process of lipid metabolism in MASLD to understand the latest progress in this molecular mechanism. Notably, de novo lipogenesis and the roles of its two main transcription factors and other key metabolic enzymes are highlighted. Furthermore, we will delve into the realm of drug research, examining the recent progress made in understanding lipid metabolism in MASLD. Additionally, we will outline prospective avenues for future drug research on MASLD based on our unique perspectives.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Xinqiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kang An
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Gowda D, Shekhar C, B. Gowda SG, Chen Y, Hui SP. Crosstalk between Lipids and Non-Alcoholic Fatty Liver Disease. LIVERS 2023; 3:687-708. [DOI: 10.3390/livers3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a complex liver disorder that can result in non-alcoholic steatohepatitis, cirrhosis, and liver cancer, is the accumulation of fat in the liver seen in people due to metabolic dysfunction. The pathophysiology of NAFLD is influenced by several variables, such as metabolic dysregulation, oxidative stress, inflammation, and genetic susceptibility. This illness seriously threatens global health because of its link to obesity, insulin resistance, type 2 diabetes, and other metabolic disorders. In recent years, lipid–NAFLD crosstalk has drawn a lot of interest. Through numerous methods, lipids have been connected to the onset and advancement of the illness. The connection between lipids and NAFLD is the main topic of the current review, along with the various therapeutic targets and currently available drugs. The importance of hepatic lipid metabolism in the progression of NAFLD is summarized with the latest results in the field.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Chandra Shekhar
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0812, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
46
|
McCall KD, Walter D, Patton A, Thuma JR, Courreges MC, Palczewski G, Goetz DJ, Bergmeier S, Schwartz FL. Anti-Inflammatory and Therapeutic Effects of a Novel Small-Molecule Inhibitor of Inflammation in a Male C57BL/6J Mouse Model of Obesity-Induced NAFLD/MAFLD. J Inflamm Res 2023; 16:5339-5366. [PMID: 38026235 PMCID: PMC10658948 DOI: 10.2147/jir.s413565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic (dysfunction) associated fatty liver disease (MAFLD), is the most common chronic liver disease in the United States. Presently, there is an intense and ongoing effort to identify and develop novel therapeutics for this disease. In this study, we explored the anti-inflammatory activity of a new compound, termed IOI-214, and its therapeutic potential to ameliorate NAFLD/MAFLD in male C57BL/6J mice fed a high fat (HF) diet. Methods Murine macrophages and hepatocytes in culture were treated with lipopolysaccharide (LPS) ± IOI-214 or DMSO (vehicle), and RT-qPCR analyses of inflammatory cytokine gene expression were used to assess IOI-214's anti-inflammatory properties in vitro. Male C57BL/6J mice were also placed on a HF diet and treated once daily with IOI-214 or DMSO for 16 weeks. Tissues were collected and analyzed to determine the effects of IOI-214 on HF diet-induced NAFL D/MAFLD. Measurements such as weight, blood glucose, serum cholesterol, liver/serum triglyceride, insulin, and glucose tolerance tests, ELISAs, metabolomics, Western blots, histology, gut microbiome, and serum LPS binding protein analyses were conducted. Results IOI-214 inhibited LPS-induced inflammation in macrophages and hepatocytes in culture and abrogated HF diet-induced mesenteric fat accumulation, hepatic inflammation and steatosis/hepatocellular ballooning, as well as fasting hyperglycemia without affecting insulin resistance or fasting insulin, cholesterol or TG levels despite overall obesity in vivo in male C57BL/6J mice. IOI-214 also decreased systemic inflammation in vivo and improved gut microbiota dysbiosis and leaky gut. Conclusion Combined, these data indicate that IOI-214 works at multiple levels in parallel to inhibit the inflammation that drives HF diet-induced NAFLD/MAFLD, suggesting that it may have therapeutic potential for NAFLD/MAFLD.
Collapse
Affiliation(s)
- Kelly D McCall
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Debra Walter
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Ashley Patton
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Jean R Thuma
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | - Maria C Courreges
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | | | - Douglas J Goetz
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemical & Biomolecular Engineering, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Stephen Bergmeier
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemistry & Biochemistry, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Frank L Schwartz
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| |
Collapse
|
47
|
Lundsgaard AM, Bojsen-Møller KN, Kiens B. Dietary Regulation of Hepatic Triacylglycerol Content-the Role of Eucaloric Carbohydrate Restriction with Fat or Protein Replacement. Adv Nutr 2023; 14:1359-1373. [PMID: 37591342 PMCID: PMC10721463 DOI: 10.1016/j.advnut.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Accumulation of hepatic triacylglycerol (TG) is highly associated with impaired whole-body insulin-glucose homeostasis and dyslipidemia. The summarized findings from human intervention studies investigating the effect of reduced dietary carbohydrate and increased fat intake (and in studies also increased protein) while maintaining energy intake at eucaloric requirements reveal a beneficial effect of carbohydrate reduction on hepatic TG content in obese individuals with steatosis and indices of insulin resistance. Evidence suggests that the reduction of hepatic TG content after reduced intake of carbohydrates and increased fat/protein intake in humans, results from regulation of fatty acid (FA) metabolism within the liver, with an increase in hepatic FA oxidation and ketogenesis, together with a concomitant downregulation of FA synthesis from de novo lipogenesis. The adaptations in hepatic metabolism may result from reduced intrahepatic monosaccharide and insulin availability, reduced glycolysis and increased FA availability when carbohydrate intake is reduced.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Terracciani F, Falcomatà A, Gallo P, Picardi A, Vespasiani-Gentilucci U. Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers. J Physiol Biochem 2023; 79:851-868. [PMID: 36472795 DOI: 10.1007/s13105-022-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.
Collapse
Affiliation(s)
- Francesca Terracciani
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Falcomatà
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo Gallo
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Antonio Picardi
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | | |
Collapse
|
49
|
Li Z, Weinstein J, Redstone E, Mitchell DG. Hepatic Steatosis After Partial Pancreatectomy in a Cohort of Patients with Intraductal Papillary Mucinous Neoplasm. J Clin Exp Hepatol 2023; 13:955-961. [PMID: 37975040 PMCID: PMC10643521 DOI: 10.1016/j.jceh.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/13/2023] [Indexed: 11/19/2023] Open
Abstract
Background/Aims Nonalcoholic fatty liver disease (NAFLD) has been observed in patients after partial pancreatectomy. Previous studies have been performed on oncologic patients who underwent partial pancreatectomy and received adjuvant chemotherapy. By studying a cohort of patients with intraductal papillary mucinous neoplasms (IPMNs) who did not receive chemotherapy, the authors investigate the isolated effect of partial pancreatectomy on the development of fatty liver. Methods A retrospective search for patients with pancreatic IPMNs who underwent partial pancreatectomy at an academic center from 2006 to 2014 identified 63 patients, including 42 who had pancreaticoduodenectomy (PD) and 21 who had distal pancreatectomy (DP). Fourteen patients with preoperative hepatic steatosis, diabetes, obesity, on steroid therapy, history of malignancy, or incomplete data were excluded. No patient received chemotherapy. Liver fat signal fraction (LFSF) was computed by the Dixon method using pre- and postoperative in- and out-of-phase MRI. Results Of the 49 patients included in the study, 29 (59%) underwent PD and 20 (41%) underwent DP. A total of 17 patients (34%) developed fatty liver after surgery. The entire cohort developed significant weight loss, 72.1 versus 69.4 kg (P < 0.01). Postoperatively, there was significant increase in LFSF, 1.3% versus 9.6% following PD (P < 0.01), and 2.1% versus 9.4% following DP (P = 0.01). Conclusion Partial pancreatectomy increases the risk of NAFLD independent of chemotherapy-induced hepatotoxicity. The underlying mechanism remains unclear and possibly related to pancreatic exocrine insufficiency and malnutrition.
Collapse
Affiliation(s)
- Zhenteng Li
- Department of Radiology, St. Luke's University Health Network, Bethlehem, PA, USA
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Weinstein
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ellen Redstone
- Department of Radiology, St. Luke's University Health Network, Bethlehem, PA, USA
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Donald G. Mitchell
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
50
|
Huneault HE, Ramirez Tovar A, Sanchez-Torres C, Welsh JA, Vos MB. The Impact and Burden of Dietary Sugars on the Liver. Hepatol Commun 2023; 7:e0297. [PMID: 37930128 PMCID: PMC10629746 DOI: 10.1097/hc9.0000000000000297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
NAFLD, or metabolic dysfunction-associated steatotic liver disease, has increased in prevalence hand in hand with the rise in obesity and increased free sugars in the food supply. The causes of NAFLD are genetic in origin combined with environmental drivers of the disease phenotype. Dietary intake of added sugars has been shown to have a major role in the phenotypic onset and progression of the disease. Simple sugars are key drivers of steatosis, likely through fueling de novo lipogenesis, the conversion of excess carbohydrates into fatty acids, but also appear to upregulate lipogenic metabolism and trigger hyperinsulinemia, another driver. NAFLD carries a clinical burden as it is associated with obesity, type 2 diabetes, metabolic syndrome, and cardiovascular disease. Patient quality of life is also impacted, and there is an enormous economic burden due to healthcare use, which is likely to increase in the coming years. This review aims to discuss the role of dietary sugar in NAFLD pathogenesis, the health and economic burden, and the promising potential of sugar reduction to improve health outcomes for patients with this chronic liver disease.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ana Ramirez Tovar
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Cristian Sanchez-Torres
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Jean A. Welsh
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Miriam B. Vos
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|