1
|
Lafferty RA, Flatt PR, Irwin N. NPYR modulation: Potential for the next major advance in obesity and type 2 diabetes management? Peptides 2024; 179:171256. [PMID: 38825012 DOI: 10.1016/j.peptides.2024.171256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
2
|
Rubinić I, Kurtov M, Likić R. Novel Pharmaceuticals in Appetite Regulation: Exploring emerging gut peptides and their pharmacological prospects. Pharmacol Res Perspect 2024; 12:e1243. [PMID: 39016695 PMCID: PMC11253306 DOI: 10.1002/prp2.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024] Open
Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Collapse
Affiliation(s)
- Igor Rubinić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of RijekaRijekaCroatia
- Clinical Pharmacology unitClinical Hospital Center RijekaRijekaCroatia
| | - Marija Kurtov
- Division of Clinical Pharmacology and Toxicology, Department of Internal MedicineUniversity Hospital “Sveti Duh”ZagrebCroatia
| | - Robert Likić
- Department of Internal MedicineSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
3
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Zhang J, Sonnenburg D, Tricò D, Kabisch S, Mari A, Theis S, Kemper M, Pivovarova-Ramich O, Rohn S, Pfeiffer AFH. Isomaltulose Enhances GLP-1 and PYY Secretion to a Mixed Meal in People With or Without Type 2 Diabetes as Compared to Saccharose. Mol Nutr Food Res 2024; 68:e2300086. [PMID: 38332571 DOI: 10.1002/mnfr.202300086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Indexed: 02/10/2024]
Abstract
SCOPE Secretion of the gut hormones glucagon-like peptide (GLP-1) and peptide YY (PYY) are induced by nutrients reaching the lower small intestine which regulate insulin and glucagon release, inhibit appetite, and may improve β-cell regeneration. The aim is to test the effect of a slowly digested isomaltulose (ISO) compared to the rapidly digested saccharose (SAC) as a snack given 1 h before a standardized mixed meal test (MMT) on GLP-1, PYY, glucose-dependent insulinotropic peptide (GIP), and metabolic responses in participants with or without type 2 diabetes (T2DM). METHODS AND RESULTS Fifteen healthy volunteers and 15 patients with T2DM consumed either 50 g ISO or SAC 1 h preload of MMT on nonconsecutive days. Clinical parameters and incretin hormones are measured throughout the whole course of MMT. Administration of 50 g ISO as compared to SAC induced a significant increase in GLP-1, GIP, and PYY responses over 2 h after intake of a typical lunch in healthy controls. Patients with T2DM showed reduced overall responses of GLP-1 and delayed insulin release compared to controls while ISO significantly enhanced the GIP and almost tripled the PYY response compared to SAC. CONCLUSION A snack containing ISO markedly enhances the release of the metabolically advantageous gut hormones PYY and GLP-1 and enhances GIP release in response to a subsequent complex meal.
Collapse
Affiliation(s)
- Jiudan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Road 54, Hangzhou, 310000, China
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Sonnenburg
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, 35127, Italy
| | - Stephan Theis
- BENEO-Institute, c/o BENEO GmbH, Wormser Str. 11, 67283, Obrigheim, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
5
|
Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024; 16:2414796. [PMID: 39501848 PMCID: PMC11542600 DOI: 10.1080/19490976.2024.2414796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/09/2024] Open
Abstract
Appetite, a crucial aspect regulated by both the central nervous system and peripheral hormones, is influenced by the composition and dynamics of the intestinal microbiota, as evidenced by recent research. This review highlights the role of intestinal microbiota in appetite regulation, elucidating the involvement of various pathways. Notably, the metabolites generated by intestinal microorganisms, including short-chain fatty acids, bile acids, and amino acid derivatives, play a pivotal role in this intricate process. Furthermore, intestinal microorganisms contribute to appetite regulation by modulating nutritional perception, neural signal transmission, and hormone secretion within the digestive system. Consequently, manipulating and modulating the intestinal microbiota represent innovative strategies for ameliorating appetite-related disorders. This paper provides a comprehensive review of the effects of gut microbes and their metabolites on the central nervous system and host appetite. By exploring their potential regulatory pathways and mechanisms, this study aims to enhance our understanding of how gut microbes influence appetite regulation in the host.
Collapse
Affiliation(s)
- Miao Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- DadHank(Chengdu)Biotech Corp, Chengdu, Sichuan Province, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| |
Collapse
|
6
|
Kowalka AM, Alexiadou K, Cuenco J, Clarke RE, Minnion J, Williams EL, Bech P, Purkayastha S, Ahmed AR, Takats Z, Whitwell HJ, Romero MG, Bloom SR, Camuzeaux S, Lewis MR, Khoo B, Tan TM. The postprandial secretion of peptide YY 1-36 and 3-36 in obesity is differentially increased after gastric bypass versus sleeve gastrectomy. Clin Endocrinol (Oxf) 2023; 99:272-284. [PMID: 36345253 PMCID: PMC10952770 DOI: 10.1111/cen.14846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Peptide tyrosine tyrosine (PYY) exists as two species, PYY1-36 and PYY3-36 , with distinct effects on insulin secretion and appetite regulation. The detailed effects of bariatric surgery on PYY1-36 and PYY3-36 secretion are not known as previous studies have used nonspecific immunoassays to measure total PYY. Our objective was to characterize the effect of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on fasting and postprandial PYY1-36 and PYY3-36 secretion using a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. DESIGN AND SUBJECTS Observational study in 10 healthy nonobese volunteers and 30 participants with obesity who underwent RYGB (n = 24) or SG (n = 6) at the Imperial Weight Centre [NCT01945840]. Participants were studied using a standardized mixed meal test (MMT) before and 1 year after surgery. The outcome measures were PYY1-36 and PYY3-36 concentrations. RESULTS Presurgery, the fasting and postprandial levels of PYY1-36 and PYY3-36 were low, with minimal responses to the MMT, and these did not differ from healthy nonobese volunteers. The postprandial secretion of both PYY1-36 and PYY3-36 at 1 year was amplified after RYGB, but not SG, with the response being significantly higher in RYGB compared with SG. CONCLUSIONS There appears to be no difference in PYY secretion between nonobese and obese volunteers at baseline. At 1 year after surgery, RYGB, but not SG, is associated with increased postprandial secretion of PYY1-36 and PYY3-36 , which may account for long-term differences in efficacy and adverse effects between the two types of surgery.
Collapse
Affiliation(s)
- Anna M. Kowalka
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Kleopatra Alexiadou
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Joyceline Cuenco
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | | | - James Minnion
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Emma L. Williams
- Department of Clinical Biochemistry, North West London PathologyCharing Cross HospitalLondonUK
| | - Paul Bech
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Sanjay Purkayastha
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Ahmed R. Ahmed
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Harry J. Whitwell
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Maria Gomez Romero
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Stephen R. Bloom
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Stephane Camuzeaux
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Matthew R. Lewis
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Bernard Khoo
- Endocrinology, Division of MedicineUniversity College LondonLondonUK
| | - Tricia M.‐M. Tan
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
7
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
8
|
Chichura KS, Elfers CT, Salameh TS, Kamat V, Chepurny OG, McGivney A, Milliken BT, Holz GG, Applebey SV, Hayes MR, Sweet IR, Roth CL, Doyle RP. A peptide triple agonist of GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors promotes glycemic control and weight loss. Sci Rep 2023; 13:9554. [PMID: 37308546 PMCID: PMC10261008 DOI: 10.1038/s41598-023-36178-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Mechanisms underlying long-term sustained weight loss and glycemic normalization after obesity surgery include changes in gut hormone levels, including glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). We demonstrate that two peptide biased agonists (GEP44 and GEP12) of the GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors (GLP-1R, Y1-R, and Y2-R, respectively) elicit Y1-R antagonist-controlled, GLP-1R-dependent stimulation of insulin secretion in both rat and human pancreatic islets, thus revealing the counteracting effects of Y1-R and GLP-1R agonism. These agonists also promote insulin-independent Y1-R-mediated glucose uptake in muscle tissue ex vivo and more profound reductions in food intake and body weight than liraglutide when administered to diet-induced obese rats. Our findings support a role for Y1-R signaling in glucoregulation and highlight the therapeutic potential of simultaneous receptor targeting to achieve long-term benefits for millions of patients.
Collapse
Affiliation(s)
- Kylie S Chichura
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Clinton T Elfers
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Therese S Salameh
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Varun Kamat
- Diabetes Research Institute and Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98195, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Aelish McGivney
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Brandon T Milliken
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah V Applebey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian R Sweet
- Diabetes Research Institute and Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98195, USA
| | - Christian L Roth
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA.
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA.
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
9
|
Anachad O, Taouil A, Taha W, Bennis F, Chegdani F. The Implication of Short-Chain Fatty Acids in Obesity and Diabetes. Microbiol Insights 2023; 16:11786361231162720. [PMID: 36994236 PMCID: PMC10041598 DOI: 10.1177/11786361231162720] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/28/2023] Open
Abstract
Evidence indicates that short-chain fatty acids (SCFAs) generated from the gut microbiota play crucial roles in host metabolism. They contribute to metabolic regulation and energy acquisition of the host by influencing the development of metabolic disorders. This review aims to synthesize recent advances from the literature to investigate the implication of SCFAs in the modulation of obesity and diabetes pathologies. For a better understanding of the relationships between SCFAs and host metabolism, we need to answer some questions: What is the biochemistry of SCFAs, and how they are generated by gut microbiota? What are the bacteria producing of SCFAs and from which routes? How SCFAs are absorbed and transported in the gut by different mechanisms and receptors? How SCFAs involved in obesity and diabetes pathologies?
Collapse
Affiliation(s)
- Oumaima Anachad
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Amine Taouil
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Wafaa Taha
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faiza Bennis
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
10
|
Sridhar A, Khan D, Flatt PR, Irwin N, Moffett RC. PYY (3-36) protects against high fat feeding induced changes of pancreatic islet and intestinal hormone content and morphometry. Biochim Biophys Acta Gen Subj 2023; 1867:130359. [PMID: 37001706 DOI: 10.1016/j.bbagen.2023.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Prolonged high fat feeding negatively impacts pancreatic and intestinal morphology. In this regard, direct effects of PYY(3-36) on intestinal cell and pancreatic islet morphometry are yet to be fully explored in the setting of obesity. METHODS We examined the influence of 21-days twice daily treatment with PYY(3-36) on these parameters in mice fed a high fat diet (HFD). RESULTS PYY(3-36) treatment decreased food intake, body weight and circulating glucose in HFD mice. In terms of intestinal morphology, crypt depth was restored to control levels by PYY(3-36), with an additional enlargement of villi length. PYY(3-36) also reversed HFD-induced decreases of ileal PYY, and especially GLP-1, content. HFD increased numbers of PYY and GIP positive ileal cells, with PYY(3-36) fully reversing the effect on PYY cell detection. There were no obvious differences in the overall number of GLP-1 positive ileal cells in all mice, barring PYY(3-36) marginally decreasing GLP-1 villi cell immunoreactivity. Within pancreatic islets, PYY(3-36) significantly decreased alpha-cell area, whilst islet, beta-, PYY- and delta-cell areas remained unchanged. However, PYY(3-36) increased the percentage of beta-cells while also reducing percentage alpha-cell area. This was related to PYY(3-36)-induced reductions of beta-cell proliferation and apoptosis frequencies. Co-localisation of islet PYY with glucagon or somatostatin was elevated by PYY(3-36), with GLP-1/glucagon co-visualisation increased when compared to lean controls. CONCLUSION PYY(3-36) exerts protective effects on pancreatic and intestinal morphology in HFD mice linked to elevated ileal GLP-1 content. GENERAL SIGNIFICANCE These observations highlight mechanisms linked to the metabolic and weight reducing benefits of PYY(3-36).
Collapse
Affiliation(s)
- A Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - D Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - P R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - N Irwin
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK.
| | - R C Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| |
Collapse
|
11
|
Wang Y, Wu Y, Wang A, Wang A, Alkhalidy H, Helm R, Zhang S, Ma H, Zhang Y, Gilbert E, Xu B, Liu D. An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice. Front Nutr 2022; 9:1051452. [PMID: 36386896 PMCID: PMC9664001 DOI: 10.3389/fnut.2022.1051452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Insulin resistance and progressive decline in functional β-cell mass are two key factors for developing type 2 diabetes (T2D), which is largely driven by overweight and obesity, a significant obstacle for effective metabolic control in many patients with T2D. Thus, agents that simultaneously ameliorate obesity and act on multiple pathophysiological components could be more effective for treating T2D. Here, we report that elenolic acid (EA), a phytochemical, is such a dual-action agent. we show that EA dose-dependently stimulates GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. In addition, EA induces L-cells to secrete peptide YY (PYY). EA induces a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) or Gαq ablates EA-stimulated increase of [Ca2+]i and GLP-1 secretion. In vivo, a single dose of EA acutely stimulates GLP-1 and PYY secretion in mice, accompanied with an improved glucose tolerance and insulin levels. Oral administration of EA at a dose of 50 mg/kg/day for 2 weeks normalized the fasting blood glucose and restored glucose tolerance in high-fat diet-induced obese (DIO) mice to levels that were comparable to chow-fed mice. In addition, EA suppresses appetite, reduces food intake, promotes weight loss, and reverses perturbated metabolic variables in obese mice. These results suggest that EA could be a dual-action agent as an alternative or adjuvant treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yajun Wu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aihua Wang
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Richard Helm
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Elizabeth Gilbert
- School of Animal Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bin Xu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Drug Discovery Center, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Zhao Y, Zhou Y, Xiao M, Huang Y, Qi M, Kong Z, Chi J, Che K, Lv W, Dong B, Wang Y. Impaired glucose tolerance is associated with enhanced postprandial pancreatic polypeptide secretion. J Diabetes 2022; 14:334-344. [PMID: 35437937 PMCID: PMC9366580 DOI: 10.1111/1753-0407.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The purpose of this study is to compare serum pancreatic polypeptide (PP), insulin, C-peptide, and glucagon in different glucose tolerance stages; analyze the influencing factors of PP secretion; and further explore the role of PP in the pathogenesis of diabetes mellitus. METHODS Data were collected from 100 subjects from hospital. According to the results of oral glucose tolerance test (OGTT), the subjects were divided into a normal glucose tolerance (NGT) group, an impaired glucose regulation (IGR) group, and a newly diagnosed type 2 diabetes mellitus (T2DM) group. PP and the related parameters were measured, and the area under the curve (AUC) 120 min after OGTT was calculated. AUCpp (AUC of PP) was used as the dependent variable and the potentially influencing factors were used as the independent variable for multiple linear regression analysis. RESULTS Postprandial 60 min PP in the IGR group was higher than those in the NGT group (2973.80 [±547.49] pg·h/mL vs 2663.55 [±594.89] pg·h/mL, p < 0.05). AUCpp was significantly higher in the IGR group (428.76 pg·h/mL, 95% confidence interval [CI] [41.06 -816.46], p = 0.031) and newly diagnosed T2DM group (404.35 pg·h/mL, 95% CI [5.37-803.33], p = 0.047) than in the NGT group. AUCpp was negatively correlated with body mass index (BMI) (r = -0.235, p = 0.038) and positively correlated with postprandial 60 min blood glucose (r = 0.370, p = 0.001) and AUCbg (AUC of blood glucose) (r = 0.323, p = 0.007). Multiple linear regression analysis indicated that there was a linear correlation between BMI, AUCbg , and AUCpp (p = 0.004, p = 0.001), and the regression equation was calculated as: AUCpp = 6592.272 + 86.275 × AUCbg -95.291 × BMI (R2 = 12.7%, p < 0.05). CONCLUSIONS Compared with NGT subjects, IGR and T2DM patients have an enhanced postprandial PP secretion. In T2DMs, the secretion of PP is mainly affected by BMI and blood glucose.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yue Zhou
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Min Xiao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yajing Huang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mengmeng Qi
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Zili Kong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Jingwei Chi
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Kui Che
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Wenshan Lv
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Bingzi Dong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
13
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Yang CH, Ann-Onda D, Lin X, Fynch S, Nadarajah S, Pappas EG, Liu X, Scott JW, Oakhill JS, Galic S, Shi Y, Moreno-Asso A, Smith C, Loudovaris T, Levinger I, Eizirik DL, Laybutt DR, Herzog H, Thomas HE, Loh K. Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes. Mol Metab 2021; 55:101413. [PMID: 34890851 PMCID: PMC8733231 DOI: 10.1016/j.molmet.2021.101413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Loss of functional β-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve β-cell function and survival in T2D. METHODS The gene expression of the NPY system in human islets from nondiabetic subjects and subjects with T2D was determined and correlated with the stimulation index. The glucose-lowering and β-cell-protective effects of BIBO3304, a selective orally bioavailable Y1 receptor antagonist, in high-fat diet (HFD)/multiple low-dose streptozotocin (STZ)-induced and genetically obese (db/db) T2D mouse models were assessed. RESULTS In this study, we identified a more than 2-fold increase in NPY1R and its ligand, NPY mRNA expression in human islets from subjects with T2D, which was significantly associated with reduced insulin secretion. Consistently, the pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected β cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, we demonstrated that the inhibition of Y1 receptors by BIBO3304 led to reduced adiposity and enhanced insulin action in the skeletal muscle. Importantly, the Y1 receptor antagonist BIBO3304 treatment also improved β-cell function and preserved functional β-cell mass, thereby resulting in better glycemic control in both HFD/multiple low-dose STZ-induced and db/db T2D mice. CONCLUSIONS Our results revealed a novel causal link between increased islet NPY-Y1 receptor gene expression and β-cell dysfunction and failure in human T2D, contributing to the understanding of the pathophysiology of T2D. Furthermore, our results demonstrate that the inhibition of the Y1 receptor by BIBO3304 represents a potential β-cell-protective therapy for improving functional β-cell mass and glycemic control in T2D.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
| | - Danise Ann-Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Xuzhu Lin
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Stacey Fynch
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | | | - Evan G Pappas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Xin Liu
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Yanchuan Shi
- Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Alba Moreno-Asso
- Institute of Health and Sport (IHES), Victoria University, Footscray, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Cassandra Smith
- Institute of Health and Sport (IHES), Victoria University, Footscray, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Itamar Levinger
- Institute of Health and Sport (IHES), Victoria University, Footscray, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles (ULB), Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
15
|
Choong YS, Lim YY, Soong JX, Savoo N, Guida C, Rhyman L, Ramracheya R, Ramasami P. Theoretical study of the interactions between peptide tyrosine tyrosine [PYY (1-36)], a newly identified modulator in type 2 diabetes pathophysiology, with receptors NPY1R and NPY4R. Hormones (Athens) 2021; 20:557-569. [PMID: 33782920 DOI: 10.1007/s42000-021-00278-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Diabetes mellitus is a common condition in the clinically obese. Bariatric surgery is one of the ways to put type 2 diabetes in remission. Recent findings propose the appetite-regulator peptide tyrosine tyrosine (PYY) as a therapeutic option for patients with type 2 diabetes. This novel gut hormone restores impaired insulin and glucagon secretion in pancreatic islets and is implicated in type 2 diabetes reversal after bariatric surgery. The current study elucidates the interactions between PYY and the NPY1R and NPY4R receptors using computational methods. METHODS Protein structure prediction, molecular docking simulation, and molecular dynamics (MD) simulation were performed to elucidate the interactions of PYY with NPY1R and NPY4R. RESULTS The predicted binding models of PYY-NPY receptors are in agreement with those described in the literature, although different interaction partners are presented for the C-terminal tail of PYY. Non-polar interactions are predicted to drive the formation of the protein complex. The calculated binding energies show that PYY has higher affinity for NPY4R (ΔGGBSA = -65.08 and ΔGPBSA = -87.62 kcal/mol) than for NPY1R (ΔGGBSA = -23.11 and ΔGPBSA = -50.56 kcal/mol). CONCLUSIONS Based on the constructed models, the binding conformations obtained from docking and MD simulation for both the PYY-NPY1R and PYY-NPY4R complexes provide a detailed map of possible interactions. The calculated binding energies show a higher affinity of PYY for NPY4R. These findings may help to understand the mechanisms behind the improvement of diabetes following bariatric surgery.
Collapse
Affiliation(s)
- Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jia Xin Soong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Nandini Savoo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom.
- Pharmaceutical Operations, Centre International de Dévelopment Pharmaceutique, BioPark Mauritius, Socota Phoenicia, Phoenix 73408, Mauritius.
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
16
|
Jin ZL, Liu W. Progress in treatment of type 2 diabetes by bariatric surgery. World J Diabetes 2021; 12:1187-1199. [PMID: 34512886 PMCID: PMC8394224 DOI: 10.4239/wjd.v12.i8.1187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Bariatric surgical procedures, such as the vertical sleeve gastrectomy and Roux-en-Y gastric bypass, are the most efficient approaches to obtain substantial and durable remission of T2D. The benefits of bariatric surgery are realized through the consequent increased satiety and alterations in gastrointestinal hormones, bile acids, and the intestinal microbiota. A comprehensive understanding of the mechanisms by which various bariatric surgical procedures exert their benefits on T2D could contribute to the design of better non-surgical treatments for T2D. In this review, we describe the classification and evolution of bariatric surgery and explore the multiple mechanisms underlying the effect of bariatric surgery on insulin resistance. Based upon our summarization of the current knowledge on the underlying mechanisms, we speculate that the gut might act as a new target for improving T2D. Our ultimate goal with this review is to provide a better understanding of T2D pathophysiology in order to support development of T2D treatments that are less invasive and more scalable.
Collapse
Affiliation(s)
- Zhang-Liu Jin
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei Liu
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
17
|
Hansen MS, Frost M. Alliances of the gut and bone axis. Semin Cell Dev Biol 2021; 123:74-81. [PMID: 34303607 DOI: 10.1016/j.semcdb.2021.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.
Collapse
Affiliation(s)
- Morten Steen Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark.
| |
Collapse
|
18
|
Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J, Yin Y, Yin J, Chen L, Zhang H. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. MICROBIOME 2021; 9:162. [PMID: 34284827 PMCID: PMC8293578 DOI: 10.1186/s40168-021-01093-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 05/25/2023]
Abstract
Feelings of hunger and satiety are the key determinants for maintaining the life of humans and animals. Disturbed appetite control may disrupt the metabolic health of the host and cause various metabolic disorders. A variety of factors have been implicated in appetite control, including gut microbiota, which develop the intricate interactions to manipulate the metabolic requirements and hedonic feelings. Gut microbial metabolites and components act as appetite-related signaling molecules to regulate appetite-related hormone secretion and the immune system, or act directly on hypothalamic neurons. Herein, we summarize the effects of gut microbiota on host appetite and consider the potential molecular mechanisms. Furthermore, we propose that the manipulation of gut microbiota represents a clinical therapeutic potential for lessening the development and consequence of appetite-related disorders. Video abstract.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, 5030, Gembloux, Belgium
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Martín M, Rodríguez A, Gómez-Ambrosi J, Ramírez B, Becerril S, Catalán V, López M, Diéguez C, Frühbeck G, Burrell MA. Caloric Restriction Prevents Metabolic Dysfunction and the Changes in Hypothalamic Neuropeptides Associated with Obesity Independently of Dietary Fat Content in Rats. Nutrients 2021; 13:nu13072128. [PMID: 34206176 PMCID: PMC8308389 DOI: 10.3390/nu13072128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Energy restriction is a first therapy in the treatment of obesity, but the underlying biological mechanisms have not been completely clarified. We analyzed the effects of restriction of high-fat diet (HFD) on weight loss, circulating gut hormone levels and expression of hypothalamic neuropeptides. Ten-week-old male Wistar rats (n = 40) were randomly distributed into four groups: two fed ad libitum a normal diet (ND) (N group) or a HFD (H group) and two subjected to a 25% caloric restriction of ND (NR group) or HFD (HR group) for 9 weeks. A 25% restriction of HFD over 9 weeks leads to a 36% weight loss with regard to the group fed HFD ad libitum accompanied by normal values in adiposity index and food efficiency ratio (FER). This restriction also carried the normalization of NPY, AgRP and POMC hypothalamic mRNA expression, without changes in CART. Caloric restriction did not succeed in improving glucose homeostasis but reduced HFD-induced hyperinsulinemia. In conclusion, 25% restriction of HFD reduced adiposity and improved metabolism in experimental obesity, without changes in glycemia. Restriction of the HFD triggered the normalization of hypothalamic NPY, AgRP and POMC expression, as well as ghrelin and leptin levels.
Collapse
Affiliation(s)
- Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, IdiSNA, 31008 Pamplona, Spain;
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Miguel López
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Carlos Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - María A. Burrell
- Department of Pathology, Anatomy and Physiology, University of Navarra, IdiSNA, 31008 Pamplona, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Correspondence: ; Tel.: +34-948-425600 (ext. 806247)
| |
Collapse
|
20
|
Lafferty RA, Flatt PR, Irwin N. Established and emerging roles peptide YY (PYY) and exploitation in obesity-diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:253-261. [PMID: 33395088 DOI: 10.1097/med.0000000000000612] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The antiobesity effects of activation of hypothalamic neuropeptide Y2 receptors (NPYR2) by the gut-derived hormone, peptide YY (PYY), are established. However, more recent insight into the biology of PYY has demonstrated remarkable benefits of sustained activation of pancreatic beta-cell NPYR1, that promises to open a new therapeutic avenue in diabetes. RECENT FINDINGS The therapeutic applicability of NPYR2 agonists for obesity has been considered for many years. An alternative pathway for the clinical realisation of PYY-based drugs could be related to the development of NPYR1 agonists for treatment of diabetes. Thus, although stimulation of NPYR1 on pancreatic beta-cells has immediate insulinostatic effects, prolonged activation of these receptors leads to well defined beta-cell protective effects, with obvious positive implications for the treatment of diabetes. In this regard, NPYR1-specific, long-acting enzyme resistant PYY analogues, have been recently developed with encouraging preclinical effects observed on pancreatic islet architecture in diabetes. In agreement, the benefits of certain types of bariatric surgeries on beta-cell function and responsiveness have also been linked to elevated PYY secretion and NPY1 receptor activation. SUMMARY Enzymatically stable forms of PYY, that selectively activate NPYR1, may have significant potential for preservation of beta-cell mass and the treatment of diabetes.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | | | | |
Collapse
|
21
|
Lafferty RA, Tanday N, Moffett RC, Reimann F, Gribble FM, Flatt PR, Irwin N. Positive Effects of NPY1 Receptor Activation on Islet Structure Are Driven by Pancreatic Alpha- and Beta-Cell Transdifferentiation in Diabetic Mice. Front Endocrinol (Lausanne) 2021; 12:633625. [PMID: 33716983 PMCID: PMC7949013 DOI: 10.3389/fendo.2021.633625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Enzymatically stable and specific neuropeptide Y1 receptor (NPYR1) agonists, such as sea lamprey PYY(1-36) (SL-PYY(1-36)), are believed to improve glucose regulation in diabetes by targeting pancreatic islets. In this study, streptozotocin (STZ) diabetic transgenic GluCreERT2 ;ROSA26-eYFP and Ins1Cre/+;Rosa26-eYFP mouse models have been used to study effects of sustained NPYR1 activation on islet cell composition and alpha- and beta-cell lineage transitioning. STZ induced a particularly severe form of diabetes in Ins1Cre/+;Rosa26-eYFP mice, but twice-daily administration (25 nmol/kg) of SL-PYY(1-36) for 11 days consistently improved metabolic status. Blood glucose was decreased (p < 0.05 - p < 0.001) and both fasted plasma and pancreatic insulin significantly increased by SL-PYY(1-36). In both GluCreERT2 ;ROSA26-eYFP and Ins1Cre/+; Rosa26-eYFP mice, STZ provoked characteristic losses (p < 0.05 - p < 0.001) of islet numbers, beta-cell and pancreatic islet areas together with increases in area and central islet location of alpha-cells. With exception of alpha-cell area, these morphological changes were fully, or partially, returned to non-diabetic control levels by SL-PYY(1-36). Interestingly, STZ apparently triggered decreased (p < 0.001) alpha- to beta-cell transition in GluCreERT2 ;ROSA26-eYFP mice, together with increased loss of beta-cell identity in Ins1Cre/+;Rosa26-eYFP mice, but both effects were significantly (p < 0.001) reversed by SL-PYY(1-36). SL-PYY(1-36) also apparently reduced (p < 0.05) beta- to alpha-cell conversion in Ins1Cre/+;Rosa26-eYFP mice and glucagon expressing alpha-cells in GluCreERT2 ;ROSA26-eYFP mice. These data indicate that islet benefits of prolonged NPY1R activation, and especially restoration of beta-cell mass, are observed irrespective of diabetes status, being linked to cell lineage alterations including transdifferentiation of alpha- to beta-cells.
Collapse
Affiliation(s)
- Ryan A. Lafferty
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, United Kingdom
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, United Kingdom
| | - R. Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, United Kingdom
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Fiona M. Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Peter R. Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, United Kingdom
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
22
|
Milliken BT, Elfers C, Chepurny OG, Chichura KS, Sweet IR, Borner T, Hayes MR, De Jonghe BC, Holz GG, Roth CL, Doyle RP. Design and Evaluation of Peptide Dual-Agonists of GLP-1 and NPY2 Receptors for Glucoregulation and Weight Loss with Mitigated Nausea and Emesis. J Med Chem 2021; 64:1127-1138. [PMID: 33449689 PMCID: PMC7956155 DOI: 10.1021/acs.jmedchem.0c01783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
There is a critical unmet need for
therapeutics to treat the epidemic
of comorbidities associated with obesity and type 2 diabetes, ideally
devoid of nausea/emesis. This study developed monomeric peptide agonists
of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y2 receptor
(Y2-R) based on exendin-4 (Ex-4) and PYY3–36. A
novel peptide, GEP44, was obtained via in vitro receptor
screens, insulin secretion in islets, stability assays, and in vivo rat and shrew studies of glucoregulation, weight
loss, nausea, and emesis. GEP44 in lean and diet-induced obese rats
produced greater reduction in body weight compared to Ex-4 without
triggering nausea associated behavior. Studies in the shrew demonstrated
a near absence of emesis for GEP44 in contrast to Ex-4. Collectively,
these data demonstrate that targeting GLP-1R and Y2-R with chimeric
single peptides offers a route to new glucoregulatory treatments that
are well-tolerated and have improved weight loss when compared directly
to Ex-4.
Collapse
Affiliation(s)
- Brandon T Milliken
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Clinton Elfers
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Kylie S Chichura
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ian R Sweet
- Diabetes Research Institute, University of Washington, Seattle, Washington 98105, United States
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Christian L Roth
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
23
|
Carapeto PV, Mandarim-de-Lacerda CA, Aguila MB. Effects of Y1 receptor agonist on the pancreatic islet of diet-induced obese and diabetic mice. J Diabetes Complications 2020; 34:107669. [PMID: 32646628 DOI: 10.1016/j.jdiacomp.2020.107669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/07/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
AIMS Agonists of the NPY receptor might be potential in protecting pancreatic islets from injury. We aimed to characterize the role of [Leu31, Pro34]-PYY, an NPYR1 agonist, in pancreatic islets of a diet-induced obesity and insulin resistance model. METHODS We studied long-term high-fat diet intake as a model and selective agonist of the Y1 receptor to explore the pancreatic islet architecture and stereology, and insulin secretion in isolated islets and a whole animal model. Gene and protein expressions were assessed in isolated islets investigating the signaling cascades involved in inflammation, insulin signaling, and secretion. Also, the insulin release potential was studied in vitro. RESULTS Our data reveal that an infusion of NPYR1 for 14 days did not change the body mass of mice and eating behavior. NPYR1 did not modify the islet and beta-cell mass but positively impacted the inflammatory process by lowering the expressions of Tnf alpha and If gamma. Besides, NPYR1 restored the insulin signaling and the exocytose pattern by activating the PDX1/STAT3 pathway and improving the leptin signaling cascade. CONCLUSIONS The findings are compellingly indicating the potential effect of the NPYR1 as a target for improving the insulin resistance condition. As such, the infusion of the NPYR1 agonist would help to enhance insulin secretion by the beta-cell from the PDX1/STAT3 pathway and the improvement of the inflammatory process.
Collapse
Affiliation(s)
- Priscila Viana Carapeto
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Curr Obes Rep 2020; 9:136-149. [PMID: 32388792 DOI: 10.1007/s13679-020-00378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is currently a steep rise in the global prevalence of obesity. Pharmaceutical therapy is a valuable component of conservative obesity therapy. Herein, medications currently in the phase of preclinical or clinical testing are reviewed, along with an overview of the mechanisms that regulate energy intake and expenditure. In addition, the current and potential future directions of obesity drug therapy are discussed. RECENT FINDINGS Although the current arsenal of obesity pharmacotherapy is limited, a considerable number of agents that exert their actions through a variety of pharmacodynamic targets and mechanisms are in the pipeline. This expansion shapes a potential near future of obesity conservative management, characterized by tailored combined therapeutic regimens, targeting not only weight loss but also improved overall health outcomes. The progress regarding the elucidation of the mechanisms which regulate the bodily energy equilibrium has led to medications which mimic hormonal adaptations that follow bariatric surgery, in the quest for a "Medical bypass." These, combined with agents which could increase energy expenditure, point to a brilliant future in the conservative treatment of obesity.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece.
| |
Collapse
|
25
|
Lafferty RA, Tanday N, McCloskey A, Bompada P, De Marinis Y, Flatt PR, Irwin N. Peptide YY (1-36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic β-cell function, growth and survival. Diabetes Obes Metab 2020; 22:404-416. [PMID: 31692207 DOI: 10.1111/dom.13908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
AIM To investigate the antidiabetic efficacy of enzymatically stable Peptide YY (PYY) peptides from phylogenetically ancient fish. MATERIALS AND METHODS N-terminally stabilized, PYY (1-36) sequences from Amia calva (bowfin), Oncorhynchus mykiss (trout), Petromyzon marinus (sea lamprey) and Scaphirhynchus albus (sturgeon), were synthesized, and both biological actions and antidiabetic therapeutic efficacy were assessed. RESULTS All fish PYY (1-36) peptides were resistant to dipeptidyl peptidase-4 (DPP-4) degradation and inhibited glucose- and alanine-induced (P < 0.05 to P < 0.001) insulin secretion. In addition, PYY (1-36) peptides imparted significant (P < 0.05 to P < 0.001) β-cell proliferative and anti-apoptotic benefits. Proliferative effects were almost entirely absent in β cells with CRISPR-Cas9-induced knockout of Npyr1. In contrast to human PYY (1-36), the piscine-derived peptides lacked appetite-suppressive actions. Twice-daily administration of sea lamprey PYY (1-36), the superior bioactive peptide, for 21 days significantly (P < 0.05 to P < 0.001) decreased fluid intake, non-fasting glucose and glucagon in streptozotocin (STZ)-induced diabetic mice. In addition, glucose tolerance, insulin sensitivity, pancreatic insulin and glucagon content were significantly improved. Metabolic benefits were linked to positive changes in pancreatic islet morphology as a result of augmented (P < 0.001) proliferation and decreased apoptosis of β cells. Sturgeon PYY (1-36) exerted similar but less impressive effects in STZ mice. CONCLUSION These observations reveal, for the first time, that PYY (1-36) peptide sequences from phylogenetically ancient fish replicate the pancreatic β-cell benefits of human PYY (1-36) and have clear potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Andrew McCloskey
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Pradeep Bompada
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Yang De Marinis
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| |
Collapse
|
26
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
27
|
Development and characterisation of a peptidergic N-and C-terminally stabilised mammalian NPY1R agonist which protects against diabetes induction. Biochim Biophys Acta Gen Subj 2020; 1864:129543. [PMID: 32007578 DOI: 10.1016/j.bbagen.2020.129543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND PYY (1-36) peptides from phylogenetically ancient fish, such as sea lamprey, have previously been shown to function as specific neuropeptide Y1 receptor (NPYR1) agonists. Although, sea lamprey PYY (1-36) is N-terminally stable, we reveal in this study that the peptide is subject to endopeptidase mediated C-terminal dipeptide degradation. In an attempt to prevent this, (d-Arg35)-sea lamprey PYY (1-36) was developed. METHODS In vitro bioassays assessed enzymatic stability, insulinostatic activity as well as beta-cell anti-apoptotic actions of (d-Arg35)-sea lamprey PYY (1-36). Follow-up studies examined the impact of twice daily administration of sea lamprey PYY (1-36) or (d-Arg35)-sea lamprey PYY (1-36) in multiple low dose STZ-induced diabetic mice. RESULTS (d-Arg35)-sea lamprey PYY (1-36) was fully resistant to plasma enzymatic degradation. The peptide possessed similar significant insulinostatic, as well as positive anti-apoptotic biological actions, as the parent peptide. Sea lamprey PYY (1-36) and (d-Arg35)-sea lamprey PYY (1-36) delayed diabetes progression in STZ mice. Both treatment interventions induced a significant decrease in body weight, food and fluid intake as well as glucose and glucagon concentrations. In addition, glucose tolerance, plasma and pancreatic insulin were partially normalised. (d-Arg35)-sea lamprey PYY (1-36) was significantly more effective than sea lamprey PYY (1-36) in terms of enhancing glucose-stimulate insulin release. Both treatments improved pancreatic islet morphology, linked to decreased apoptosis of beta-cells. CONCLUSION We present (d-Arg35)-sea lamprey PYY (1-36) as the first-in-class N- and C-terminally stable PYY (1-36) peptide analogue. GENERAL SIGNIFICANCE Enzymatically stable, long-acting PYY (1-36) peptides highlight the therapeutic benefits of sustained activation of NPYR1's in diabetes.
Collapse
|
28
|
Guida C, Ramracheya R. PYY, a Therapeutic Option for Type 2 Diabetes? CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551419892985. [PMID: 32030069 PMCID: PMC6977199 DOI: 10.1177/1179551419892985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
Metabolic surgery leads to rapid and effective diabetes reversal in humans, by weight-independent mechanisms. The crucial improvement in pancreatic islet function observed after surgery is induced by alteration in several factors, including gut hormones. In addition to glucagon-like peptide 1 (GLP-1), increasing lines of evidence show that peptide tyrosine tyrosine (PYY) plays a key role in the metabolic benefits associated with the surgery, ranging from appetite regulation to amelioration of islet secretory properties and survival. Here, we summarize the current knowledge and the latest advancements in the field, which pitch a strong case for the development of novel PYY-based therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Kokkinos A, Tsilingiris D, le Roux CW, Rubino F, Mantzoros CS. Will medications that mimic gut hormones or target their receptors eventually replace bariatric surgery? Metabolism 2019; 100:153960. [PMID: 31412266 DOI: 10.1016/j.metabol.2019.153960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Bariatric surgery is currently the most effective therapeutic modality through which sustained beneficial effects on weight loss and metabolic improvement are achieved. During recent years, indications for bariatric surgery have been expanded to include cases of poorly controlled type 2 (T2DM) diabetes mellitus in lesser extremes of body weight. A spectrum of the beneficial effects of surgery is attributed to robust changes of postprandial gut peptide responses that are observed post operatively. Consolidated knowledge regarding gut peptide physiology as well as emerging new evidence shedding light on the mode of action of previously overlooked gut hormones provide appealing potential obesity and T2DM therapeutic perspectives. The accumulation of evidence from the effect of exogenous administration of native gut peptides alone or in combinations to humans as well as the development of mimetic agents exerting agonistic effects on combinations of gut hormone receptors pave the way for future integrated gut peptide-based treatments, which may mimic the effects of bariatric surgery.
Collapse
Affiliation(s)
- Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece.
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Francesco Rubino
- Department of Metabolic and Bariatric Surgery, Diabetes and Nutritional Science Division, King's College Hospital, London, United Kingdom
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
30
|
Remission of Type 2 Diabetes Mellitus after Bariatric Surgery: Fact or Fiction? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173171. [PMID: 31480306 PMCID: PMC6747427 DOI: 10.3390/ijerph16173171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Although type 2 diabetes mellitus (T2DM) has been traditionally viewed as an intractable chronic medical condition, accumulating evidence points towards the notion that a complete remission of T2DM is feasible following a choice of medical and/or surgical interventions. This has been paralleled by increasing interest in the establishment of a universal definition for T2DM remission which, under given circumstances, could be considered equivalent to a “cure”. The efficacy of bariatric surgery in particular for achieving glycemic control has highlighted surgery as a candidate curative intervention for T2DM. Herein, available evidence regarding available surgical modalities and the mechanisms that drive metabolic amelioration after bariatric surgery are reviewed. Furthermore, reports from observational and randomized studies with regard to T2DM remission are reviewed, along with concepts relevant to the variety of definitions used for T2DM remission and other potential sources of discrepancy in success rates among different studies.
Collapse
|
31
|
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther 2019; 50:144-158. [PMID: 31149745 PMCID: PMC6771496 DOI: 10.1111/apt.15314] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent disorder associated with obesity and diabetes. Few treatment options are effective for patients with NAFLD, but connections between the gut microbiome and NAFLD and NAFLD-associated conditions suggest that modulation of the gut microbiota could be a novel therapeutic option. AIM To examine the effect of the gut microbiota on pathophysiologic causes of NAFLD and assess the potential of microbiota-targeting therapies for NAFLD. METHODS A PubMed search of the literature was performed; relevant articles were included. RESULTS The composition of bacteria in the gastrointestinal tract can enhance fat deposition, modulate energy metabolism and alter inflammatory processes. Emerging evidence suggests a role for the gut microbiome in obesity and metabolic syndrome. NAFLD is often considered the hepatic manifestation of metabolic syndrome, and there has been tremendous progress in understanding the association of gut microbiome composition with NAFLD disease severity. We discuss the role of the gut microbiome in NAFLD pathophysiology and whether the microbiome composition can differentiate the two categories of NAFLD: nonalcoholic fatty liver (NAFL, the non-progressive form) vs nonalcoholic steatohepatitis (NASH, the progressive form). The association between gut microbiome and fibrosis progression in NAFLD is also discussed. Finally, we review whether modulation of the gut microbiome plays a role in improving treatment outcomes for patients with NAFLD. CONCLUSIONS Multiple pathophysiologic pathways connect the gut microbiome with the pathophysiology of NAFLD. Therefore, therapeutics that effectively target the gut microbiome may be beneficial for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Saumya Jayakumar
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia,Division of Epidemiology, Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCalifornia
| |
Collapse
|
32
|
Lafferty RA, Gault VA, Flatt PR, Irwin N. Effects of 2 Novel PYY(1-36) Analogues, (P 3L 31P 34)PYY(1-36) and PYY(1-36)(Lys 12PAL), on Pancreatic Beta-Cell Function, Growth, and Survival. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419855626. [PMID: 31244528 PMCID: PMC6580715 DOI: 10.1177/1179551419855626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Recent studies have identified a beneficial role for peptide tyrosine tyrosine
(PYY) on pancreatic beta-cell function and survival. These effects are linked to
the activation of neuropeptide Y1 receptors (NPYR1s) by PYY(1-36). However,
PYY(1-36) is subject to rapid degradation by dipeptidyl peptidase-4 (DPP-4),
resulting is the loss of NPYR1 activity. Therefore, the aim of this study was to
develop 2 enzymatically stable PYY(1-36) analogues, namely,
(P3L31P34)PYY(1-36) and
PYY(1-36)(Lys12PAL), with further structural modifications to
enhance NPYR1 specificity. As expected,
(P3L31P34)PYY(1-36) was fully resistant to
DPP-4-mediated degradation in vitro, whereas PYY(1-36) and
PYY(1-36)(Lys12PAL) were both liable to DPP-4 breakdown.
PYY(1-36) and (P3L31P34)PYY(1-36) induced
significant reductions in glucose-stimulated insulin secretion (GSIS) from BRIN
BD11 cells, but only PYY(1-36) diminished alanine-stimulated insulin secretion.
In contrast, PYY(1-36)(Lys12PAL) had no impact on GSIS or
alanine-induced insulin release. All 3 PYY peptides significantly enhanced
proliferation in BRIN BD11 and 1.1B4 beta-cell lines, albeit only at the highest
concentration examined, 10-6 M, for
(P3L31P34)PYY(1-36) and
PYY(1-36)(Lys12PAL) in BRIN BD11 cells. Regarding the protection
of beta-cells against cytokine-induced apoptosis, PYY(1-36) induced clear
protective effects. Both (P3L31P34)PYY(1-36)
and PYY(1-36)(Lys12PAL) offered some protection against apoptosis in
BRIN BD11 cells, but were significantly less efficacious than PYY(1-36).
Similarly, in 1.1B4 cells, both PYY analogues (10-6 M) protected
against cytokine-induced apoptosis, but
(P3L31P34)PYY(1-36) was significantly less
effective than PYY(1-36). All 3 PYY peptides had no impact on refeeding in
overnight fasted mice. These data underline the beta-cell benefits of PYY(1-36)
and highlight the challenges of synthesising stable, bioactive, NPYR1-specific,
PYY(1-36) analogues.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK.,Diabetes Research Group, University of Ulster, Coleraine, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| |
Collapse
|
33
|
Chen X, Zhang J, Zhou Z. Targeting Islets: Metabolic Surgery Is More than a Bariatric Surgery. Obes Surg 2019; 29:3001-3009. [DOI: 10.1007/s11695-019-03979-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol Aspects Med 2018; 66:80-93. [PMID: 30513310 DOI: 10.1016/j.mam.2018.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The global prevalence of diabesity is on the rise, and the clinical, social and economic health burden arising from this epidemic is aggravated by a significant co-morbidity of diabesity with neuropsychiatric disease, particularly depression. Importantly, not only is the prevalence of mood disorders elevated in patients with type 2 diabetes, depressed patients are also more prone to develop diabetes. This reciprocal relationship calls for a molecular and systemic analysis of diabesity-brain interactions to guide preventive and therapeutic strategies. The analysis we are presenting in this review is modelled on the microbiota-gut-brain axis, which provides the brain with information from the gut not only via the nervous system, but also via a continuous stream of microbial, endocrine, metabolic and immune messages. This communication network offers important clues as to how obesity and diabetes could target the brain to provoke neuropsychiatric disease. There is emerging evidence that the gut microbiota is orchestrating a multiplicity of bodily functions that are intimately related to the immune, metabolic and nervous systems and that gut dysbiosis spoils the homeostasis between these systems. In our article we highlight two groups of molecular links that seem to have a significant bearing on the impact of diabesity on the brain. On the one hand, we focus on microbiota-related metabolites such as short-chain fatty acids, tryptophan metabolites, immune stimulants and endocannabinoids that are likely to play a mediator role. On the other hand, we discuss signalling molecules that operate primarily in the brain, specifically neuropeptide Y, brain-derived neurotrophic factor and γ-amino butyric acid, that are disturbed by microbial factors, obesity and diabetes and are relevant to mental illness. Finally, we address the usefulness of diet-related interventions to suspend the deleterious relationship between diabesity and mood disorders.
Collapse
|
35
|
Loh K, Shi YC, Bensellam M, Lee K, Laybutt DR, Herzog H. Y1 receptor deficiency in β-cells leads to increased adiposity and impaired glucose metabolism. Sci Rep 2018; 8:11835. [PMID: 30177746 PMCID: PMC6120893 DOI: 10.1038/s41598-018-30140-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023] Open
Abstract
Insulin secretion from pancreatic β-cells is critical for maintaining glucose homeostasis and deregulation of circulating insulin levels is associated with the development of metabolic diseases. While many factors have been implicated in the stimulation of insulin secretion, the mechanisms that subsequently reduce insulin secretion remain largely unexplored. Here we demonstrate that mice with β-cell specific ablation of the Y1 receptor exhibit significantly upregulated serum insulin levels associated with increased body weight and adiposity. Interestingly, when challenged with a high fat diet these β-cell specific Y1-deficient mice also develop hyperglycaemia and impaired glucose tolerance. This is most likely due to enhanced hepatic lipid synthesis, resulting in an increase of lipid accumulation in the liver. Together, our study demonstrates that Y1 receptor signaling negatively regulates insulin release, and pharmacological inhibition of Y1 receptor signalling for the treatment of non-insulin dependent diabetes should be taken into careful consideration.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia. .,St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Mohammed Bensellam
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia
| | - Kailun Lee
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
36
|
Guida C, McCulloch LJ, Godazgar M, Stephen SD, Baker C, Basco D, Dong J, Chen D, Clark A, Ramracheya RD. Sitagliptin and Roux-en-Y gastric bypass modulate insulin secretion via regulation of intra-islet PYY. Diabetes Obes Metab 2018; 20:571-581. [PMID: 28892258 PMCID: PMC5836881 DOI: 10.1111/dom.13113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
AIMS The gut hormone peptide tyrosine tyrosine (PYY) is critical for maintaining islet integrity and restoring islet function following Roux-en-Y gastric bypass (RYGB). The expression of PYY and its receptors (NPYRs) in islets has been documented but not fully characterized. Modulation of islet PYY by the proteolytic enzyme dipeptidyl peptidase IV (DPP-IV) has not been investigated and the impact of DPP-IV inhibition on islet PYY function remains unexplored. Here we have addressed these gaps and their effects on glucose-stimulated insulin secretion (GSIS). We have also investigated changes in pancreatic PYY in diabetes and following RYGB. METHODS Immunohistochemistry and gene expression analysis were used to assess PYY, NPYRs and DPP-IV expression in rodent and human islets. DPP-IV activity inhibition was achieved by sitagliptin. Secretion studies were used to test PYY and the effects of sitagliptin on insulin release, and the involvement of GLP-1. Radioimmunoassays were used to measure hormone content in islets. RESULTS PYY and DPP-IV localized in different cell types in islets while NPYR expression was confined to the beta-cells. Chronic PYY application enhanced GSIS in rodent and diabetic human islets. DPP-IV inhibition by sitagliptin potentiated GSIS; this was mediated by locally-produced PYY, and not GLP-1. Pancreatic PYY was markedly reduced in diabetes. RYGB strongly increased islet PYY content, but did not lead to full restoration of pancreatic GLP-1 levels. CONCLUSION Local regulation of pancreatic PYY, rather than GLP-1, by DPP-IV inhibition or RYGB can directly modulate the insulin secretory response to glucose, indicating a novel role of pancreatic PYY in diabetes and weight-loss surgery.
Collapse
Affiliation(s)
- Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Laura J. McCulloch
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Mahdieh Godazgar
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Sam D. Stephen
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Charlotte Baker
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Davide Basco
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | | - Duan Chen
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Reshma D Ramracheya
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| |
Collapse
|
37
|
Franklin ZJ, Tsakmaki A, Fonseca Pedro P, King AJ, Huang GC, Amjad S, Persaud SJ, Bewick GA. Islet neuropeptide Y receptors are functionally conserved and novel targets for the preservation of beta-cell mass. Diabetes Obes Metab 2018; 20:599-609. [PMID: 28940946 DOI: 10.1111/dom.13119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 12/27/2022]
Abstract
AIMS Two unmet therapeutic strategies for diabetes treatment are prevention of beta-cell death and stimulation of beta-cell replication. Our aim was to characterize the role of neuropeptide Y receptors in the control of beta-cell mass. MATERIALS AND METHODS We used endogenous and selective agonists of the NPY receptor system to explore its role in the prevention of beta-cell apoptosis and proliferation in islets isolated from both mouse and human donors. We further explored the intra-cellular signalling cascades involved, using chemical inhibitors of key signalling pathways. As proof of principle we designed a long-acting analogue of [Leu31 Pro34 ]-NPY, an agonist of the islet-expressed Y receptors, to determine if targeting this system could preserve beta-cell mass in vivo. RESULTS Our data reveal that NPY Y1, 4 and 5 receptor activation engages a generalized and powerful anti-apoptotic pathway that protects mouse and human islets from damage. These anti-apoptotic effects were dependent on stimulating a Gαi-PLC-PKC signalling cascade, which prevented cytokine-induced NFkB signalling. NPY receptor activation functionally protected islets by restoring glucose responsiveness following chemically induced injury in both species. NPY receptor activation attenuated beta-cell apoptosis, preserved functional beta-cell mass and attenuated the hyperglycaemic phenotype in a low-dose streptozotocin model of diabetes. CONCLUSION Taken together, our observations identify the islet Y receptors as promising targets for the preservation of beta-cell mass. As such, targeting these receptors could help to maintain beta-cell mass in both type 1 and type 2 diabetes, and may also be useful for improving islet transplantation outcomes.
Collapse
Affiliation(s)
- Zara J Franklin
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Anastasia Tsakmaki
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | | | - Aileen J King
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Guo Cai Huang
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Sakeena Amjad
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Shanta J Persaud
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Gavin A Bewick
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
38
|
Deacon CF. Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides 2018; 100:150-157. [PMID: 29412814 DOI: 10.1016/j.peptides.2017.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/17/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are now a widely used, safe and efficacious class of antidiabetic drugs, which were developed prospectively using a rational drug design approach based on a thorough understanding of the endocrinology and degradation of glucagon-like peptide-1 (GLP-1). GLP-1 is an intestinal hormone with potent insulinotropic and glucagonostatic effects and can normalise blood glucose levels in patients with type 2 diabetes, but the native peptide is not therapeutically useful because of its inherent metabolic instability. Using the GLP-1/DPP-4 system and type 2 diabetes as an example, this review summarises how knowledge of a peptide's biological effects coupled with an understanding of the pathways involved in its metabolic clearance can be exploited in a rational, step-by-step manner to develop a therapeutic agent, which is effective and well tolerated, and any side effects are minor and largely predictable. Other peptides with metabolic effects which can also be degraded by DPP-4 will be reviewed, and their potential role as additional mediators of the effects of DPP-4 inhibitors will be assessed.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
39
|
Khan D, Moffet CR, Flatt PR, Kelly C. Role of islet peptides in beta cell regulation and type 2 diabetes therapy. Peptides 2018; 100:212-218. [PMID: 29412821 DOI: 10.1016/j.peptides.2017.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
Abstract
The endocrine pancreas is composed of islets of Langerhans, which secrete a variety of peptide hormones critical for the maintenance of glucose homeostasis. Insulin is the primary regulator of glucose and its secretion from beta-cells is tightly regulated in response to physiological demands. Direct cell-cell communication within islets is essential for glucose-induced insulin secretion. Emerging data suggest that islet connectivity is also important in the regulating the release of other islet hormones including glucagon and somatostatin. Autocrine and paracrine signals exerted by secreted peptides within the islet also play a key role. A great deal of attention has focused on classical islet peptides, namely insulin, glucagon and somatostatin. Recently, it has become clear that islets also synthesise and secrete a range of non-classical peptides, which regulate beta-cell function and insulin release. The current review summarises the roles of islet cell connectivity and islet peptide-driven autocrine and paracrine signalling in beta-cell function and survival. The potential to harness the paracrine effects of non-classical islet peptides for the treatment of type 2 diabetes is also briefly discussed.
Collapse
Affiliation(s)
- Dawood Khan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, L/Derry, BT47 6SB, Northern Ireland, UK
| | - Charlotte R Moffet
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, L/Derry, BT47 6SB, Northern Ireland, UK.
| |
Collapse
|
40
|
Lafferty RA, Flatt PR, Irwin N. Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides 2018; 100:269-274. [PMID: 29412828 DOI: 10.1016/j.peptides.2017.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The vast majority of research to date on the gut hormone Peptide YY (PYY) has focused on appetite suppression and body weight regulation effects. These biological actions are believed to occur through interaction of PYY with hypothalamic Y2 receptors. However, more recent studies have added additional knowledge to understanding of the physiological, and potential therapeutic, roles of PYY beyond obesity alone. Thus, PYY has now been shown to impart improvements in pancreatic beta-cell survival and function, with obvious benefits for diabetes. This effect has been linked mainly to binding and activation of Y1 receptors by PYY, but more evidence is still required in this regard. Given the potential therapeutic promise of PYY-derived compounds, and complexity of receptor interactions, it is important to fully understand the complete biological action profile of PYY. Therefore, the current review aims to compile, evaluate and summarise current knowledge on PYY, with particular emphasis on obesity and diabetes treatment, and the importance of specific Y receptor interactions for this.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
41
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:toxins10010033. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
42
|
Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne) 2018; 9:754. [PMID: 30662430 PMCID: PMC6328484 DOI: 10.3389/fendo.2018.00754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.
Collapse
Affiliation(s)
- Emily W. L. Sun
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alyce M. Martin
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard L. Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Damien J. Keating
| |
Collapse
|
43
|
Andersen ES, Deacon CF, Holst JJ. Do we know the true mechanism of action of the DPP-4 inhibitors? Diabetes Obes Metab 2018; 20:34-41. [PMID: 28544214 DOI: 10.1111/dom.13018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/19/2022]
Abstract
The prevalence of type 2 diabetes is increasing, which is alarming because of its serious complications. Anti-diabetic treatment aims to control glucose homeostasis as tightly as possible in order to reduce these complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a recent addition to the anti-diabetic treatment modalities, and have become widely accepted because of their good efficacy, their benign side-effect profile and their low hypoglycaemia risk. The actions of DPP-4 inhibitors are not direct, but rather are mediated indirectly through preservation of the substrates they protect from degradation. The two incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, are known substrates, but other incretin-independent mechanisms may also be involved. It seems likely therefore that the mechanisms of action of DPP-4 inhibitors are more complex than originally thought, and may involve several substrates and encompass local paracrine, systemic endocrine and neural pathways, which are discussed here.
Collapse
Affiliation(s)
- Emilie S Andersen
- Department of Internal Medicine F, Hospital Gentofte, Copenhagen University, Copenhagen, Denmark
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
44
|
Guida C, Stephen S, Guitton R, Ramracheya RD. The Role of PYY in Pancreatic Islet Physiology and Surgical Control of Diabetes. Trends Endocrinol Metab 2017; 28:626-636. [PMID: 28533020 DOI: 10.1016/j.tem.2017.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022]
Abstract
Bariatric surgery in obese individuals leads to rapid and lasting remission of type 2 diabetes (T2D). This phenomenon occurs independently of weight loss possibly via a combination of factors. The incretin hormone GLP-1 has so far been recognised as a critical factor. However, recent data have indicated that elevation in another gut hormone, peptide tyrosine tyrosine (PYY), may drive the beneficial effects of surgery. Here we discuss recent findings on PYY-mediated control of glucose homeostasis and its role in diabetes, in the context of what is known for GLP-1. Identification of factors that increase the expression of PYY following bariatric surgery and elucidation of its role in diabetes reversal may have clinical relevance as a nonsurgical therapy for T2D.
Collapse
Affiliation(s)
- Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LJ Oxford, UK
| | - Sam Stephen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LJ Oxford, UK
| | - Romain Guitton
- Angers University Hospital, 18 Avenue du Général Patton, 49000 Angers, France
| | - Reshma D Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LJ Oxford, UK.
| |
Collapse
|
45
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochim Biophys Acta Gen Subj 2017; 1861:749-758. [PMID: 28069397 DOI: 10.1016/j.bbagen.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND In the present study we assessed the impact of neuropeptide Y receptor (NPYR) modulators, neuropeptide Y (NPY) and pancreatic polypeptide (PP), on islet function and beta-cell survival. METHODS The effects of NPY and PP on beta-cell function were examined in BRIN BD11 and 1.1B4 beta-cells, as well as isolated mouse islets. Involvement of both peptides in pancreatic islet adaptations to streptozotocin and hydrocortisone, as well as effects on beta-cell proliferation and apoptosis was also evaluated. RESULTS Neither NPY nor PP affected in vivo glucose disposal or insulin secretion in mice. However, both peptides inhibited (p<0.05 to p<0.001) glucose stimulated insulin secretion from rat and human beta-cells. NPY exerted similar insulinostatic effects in isolated mouse islets. NPY and PP inhibited alanine-induced changes in BRIN BD11 cell membrane potential and (Ca2+)i. Streptozotocin treatment decreased and hydrocortisone treatment increased beta-cell mass in mice. In addition, streptozotocin, but not hydrocortisone, increased PP cell area. Streptozotocin also shifted the normal co-localisation of NPY with PP, towards more pronounced co-expression with somatostatin in delta-cells. Both streptozotocin and hydrocortisone increased pancreatic exocrine expression of NPY. More detailed in vitro investigations revealed that NPY, but not PP, augmented (p<0.01) BRIN BD11 beta-cell proliferation. In addition, both peptides exerted protective effects against streptozotocin-induced DNA damage in beta-cells. CONCLUSION These data emphasise the involvement of PP, and particularly NPY, in the regulation of beta-cell mass and function. GENERAL SIGNIFICANCE Modulation of PP and NPY signalling is suitable for further evaluation and possible clinical development for the treatment of diabetes.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
46
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
47
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival. Mol Cell Endocrinol 2016; 436:102-13. [PMID: 27465830 DOI: 10.1016/j.mce.2016.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
Abstract
Recent evidence suggests that the classic gut peptide, Peptide YY (PYY), could play a fundamental role in endocrine pancreatic function. In the present study expression of PYY and its NPY receptors on mouse islets and immortalised rodent and human beta-cells was examined together with the effects of both major circulating forms of PYY, namely PYY(1-36) and PYY(3-36), on beta-cell function, murine islet adaptions to insulin deficiency/resistance, as well as direct effects on cultured beta-cell proliferation and apoptosis. In vivo administration of PYY(3-36), but not PYY(1-36), markedly (p < 0.05) decreased food intake in overnight fasted mice. Neither form of PYY affected glucose disposal or insulin secretion following an i.p. glucose challenge. However, in vitro, PYY(1-36) and PYY(3-36) inhibited (p < 0.05 to p < 0.001) glucose, alanine and GLP-1 stimulated insulin secretion from immortalised rodent and human beta-cells, as well as isolated mouse islets, by impeding alterations in membrane potential, [Ca(2+)]i and elevations of cAMP. Mice treated with multiple low dose streptozotocin presented with severe (p < 0.01) loss of beta-cell mass accompanied by notable increases (p < 0.001) in alpha and PP cell numbers. In contrast, hydrocortisone-induced insulin resistance increased islet number (p < 0.01) and beta-cell mass (p < 0.001). PYY expression was consistently observed in alpha-, PP- and delta-, but not beta-cells. Streptozotocin decreased islet PYY co-localisation with PP (p < 0.05) and somatostatin (p < 0.001), whilst hydrocortisone increased PYY co-localisation with glucagon (p < 0.05) in mice. More detailed in vitro investigations revealed that both forms of PYY augmented (p < 0.05 to p < 0.01) immortalised human and rodent beta-cell proliferation and protected against streptozotocin-induced cytotoxicity, to a similar or superior extent as the well characterised beta-cell proliferative and anti-apoptotic agent GLP-1. Taken together, these data highlight the significance and potential offered by modulation of pancreatic islet NPY receptor signalling pathways for preservation of beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
48
|
Xu W, Zhang Y, Bai M, Zhou F, Deng R, Ji X, Zhang J, Liu Y, Zhou L, Wang X. Glucose enhances rat islet function via stimulating CART expression. Biochem Biophys Res Commun 2016; 481:84-89. [PMID: 27823935 DOI: 10.1016/j.bbrc.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is an anorexigenic peptide widely expressed in the central and peripheral nervous systems, as well as in endocrine cells. CART is markedly upregulated in the β-cells of several rodent models of type-2 diabetes. The stimulatory effect of exogenous CART peptide on insulin secretion is cAMP dependent. Glucose is the most important regulator of islet function. However, the role of CART in glucose-potentiated insulin secretion remains unclear. Here, our results showed that glucose time- and dose-dependently elicited CART mRNA expression in rat islets. Both the glucokinase agonist GKA50 and the long-acting GLP-1 analogue exendin-4 increased CART mRNA expression. The protein kinase A (PKA) inhibitor H89 and the inactivation of cAMP response element-binding protein (CREB) suppressed forskolin-stimulated CART mRNA expression. Furthermore, CART overexpression amplified insulin secretion from rat islets in response to glucose and forskolin, and ameliorated dexamethasone-impaired insulin secretion. These findings suggest that islet-derived CART is involved, at least in part, in high glucose-potentiated pancreatic β-cell function.
Collapse
Affiliation(s)
- Wan Xu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuqing Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Mengyao Bai
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Feiye Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ruyuan Deng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xueying Ji
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Juan Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yun Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Libin Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
49
|
Brooks L, Viardot A, Tsakmaki A, Stolarczyk E, Howard JK, Cani PD, Everard A, Sleeth ML, Psichas A, Anastasovskaj J, Bell JD, Bell-Anderson K, Mackay CR, Ghatei MA, Bloom SR, Frost G, Bewick GA. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab 2016; 6:48-60. [PMID: 28123937 PMCID: PMC5220466 DOI: 10.1016/j.molmet.2016.10.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/24/2022] Open
Abstract
Objective Dietary supplementation with fermentable carbohydrate protects against body weight gain. Fermentation by the resident gut microbiota produces short-chain fatty acids, which act at free fatty acid receptor 2 (FFAR2). Our aim was to test the hypothesis that FFAR2 is important in regulating the beneficial effects of fermentable carbohydrate on body weight and to understand the role of gut hormones PYY and GLP-1. Methods Wild-type or Ffar2−/− mice were fed an inulin supplemented or control diet. Mice were metabolically characterized and gut hormone concentrations, enteroendocrine cell density measurements were carried out. Intestinal organoids and colonic cultures were utilized to substantiate the in vivo findings. Results We provide new mechanistic insight into how fermentable carbohydrate regulates metabolism. Using mice that lack FFAR2, we demonstrate that the fermentable carbohydrate inulin acts via this receptor to drive an 87% increase in the density of cells that produce the appetite-suppressing hormone peptide YY (PYY), reduce food intake, and prevent diet-induced obesity. Conclusion Our results demonstrate that FFAR2 is predominantly involved in regulating the effects of fermentable carbohydrate on metabolism and does so, in part, by enhancing PYY cell density and release. This highlights the potential for targeting enteroendocrine cell differentiation to treat obesity. Fermentable carbohydrate protects against diet-induced obesity via FFAR2. Fermentable carbohydrate increases GLP-1 cell density independently of FFAR2. FFAR2 signaling increases PYY cell density and circulating PYY concentration.
Collapse
Affiliation(s)
- Lucy Brooks
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Alexander Viardot
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Sydney-Darlinghurst, NSW, 2010, Australia
| | - Anastasia Tsakmaki
- Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK
| | - Emilie Stolarczyk
- Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK
| | - Jane K Howard
- Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK
| | - Patrice D Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Amandine Everard
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Michelle L Sleeth
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Arianna Psichas
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Jelena Anastasovskaj
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, London, W12 0NN, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, London, W12 0NN, UK
| | - Kim Bell-Anderson
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Charles R Mackay
- Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Department of Immunology, Monash University, Clayton, VIC, 3800, Australia
| | - Mohammad A Ghatei
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK.
| | - Gavin A Bewick
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK; Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
50
|
Sasson A, Rachi E, Sakhneny L, Baer D, Lisnyansky M, Epshtein A, Landsman L. Islet Pericytes Are Required for β-Cell Maturity. Diabetes 2016; 65:3008-14. [PMID: 27388217 DOI: 10.2337/db16-0365] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/04/2016] [Indexed: 11/13/2022]
Abstract
β-Cells rely on the islet microenvironment for their functionality and mass. Pericytes, along with endothelial cells, make up the dense islet capillary network. However, although the role of endothelial cells in supporting β-cell homeostasis has been vastly investigated, the role of pericytes remains largely unknown. Here, we focus on contribution of pericytes to β-cell function. To this end, we used a transgenic mouse system that allows diphtheria toxin-based depletion of pericytes. Our results indicate that islets depleted of their pericytes have reduced insulin content and expression. Additionally, isolated islets displayed impaired glucose-stimulated insulin secretion, accompanied by a reduced expression of genes associated with β-cell function. Importantly, reduced levels of the transcription factors MafA and Pdx1 point to β-cell dedifferentiation in the absence of pericytes. Ex vivo depletion of pericytes in isolated islets resulted in a similar impairment of gene expression, implicating their direct, blood flow-independent role in maintaining β-cell maturity. To conclude, our findings suggest that pericytes are pivotal components of the islet niche, which are required for β-cell maturity and functionality. Abnormalities of islet pericytes, as implicated in type 2 diabetes, may therefore contribute to β-cell dysfunction and disease progression.
Collapse
Affiliation(s)
- Adi Sasson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eleonor Rachi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Sakhneny
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daria Baer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Lisnyansky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alona Epshtein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|