1
|
Wang Y, Yao M, Wang J, Liu H, Zhang X, Zhao L, Hu X, Guan H, Lyu Z. Effects of Antidiabetic Drugs on Endothelial Function in Patients With Type 2 Diabetes Mellitus: A Bayesian Network Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:818537. [PMID: 35370959 PMCID: PMC8969579 DOI: 10.3389/fendo.2022.818537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The changes of endothelial function in type 2 diabetes mellitus (T2DM) patients are closely associated with the development of cardiovascular disease (CVD). However, it is still unclear whether commonly used antidiabetic drugs can improve endothelial function. Flow-mediated dilation (FMD) is a noninvasive tool for evaluating endothelial function, which typically examines changes in the brachial artery diameter in response to ischemia using ultrasound. We performed a network meta-analysis (NMA) to explore the associations between changes in endothelial function and antidiabetic drugs by evaluating FMD in T2DM patients. METHODS We systematically searched several electronic databases for randomized controlled trials (RCTs) published from inception until January 25, 2022 with no language restriction. The primary outcome was FMD change in all studies, and we performed subgroup analysis in T2DM patients without CVD. NMA was performed to calculate the mean differences (MDs) with 95% confidence intervals (CIs). RESULTS From the 1,987 candidate articles identified in the initial search, 30 RCTs were eventually included in the analysis. In all studies, glucagon-like peptide-1 receptor (GLP-1R) agonists [MD = 3.70 (1.39-5.97)], TZD [MD = 1.96 (0.006-3.89)] produced improvement of FMD change compared to lifestyle intervention. GLP-1R agonists [MD = 3.33 (1.36-5.34) and MD = 3.30 (1.21-5.43)] showed significantly greater improvements in FMD change in pairwise comparisons with sulfonylureas and placebo. SGLT-2i also showed efficacy compared to sulfonylureas (MD = 1.89, 95% CI, 0.10, 3.75). In studies of T2DM patients without CVD, GLP-1R agonists [MD = 3.53 (1.24-5.76)], and TZD [MD = 2.30 (0.27-3.24)] produced improvements in FMD change compared to lifestyle treatment. GLP-1R agonists [MD = 3.25 (1.13-5.40), and MD = 3.85 (1.68-6.13)] showed significantly greater improvements in pairwise comparisons with sulfonylureas, and placebo. CONCLUSION In T2DM patients, both GLP-1R agonists, SGLT-2i and TZD have favorable effects to improve endothelial function in T2DM patients. In T2DM patients without CVD, GLP-1R agonists had a greater effect to improve endothelial function than sulfonylureas. These suggested that GLP-1R agonists are associated with significantly improved endothelial function in T2DM patients.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingyan Yao
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jincheng Wang
- Department of Radiology, Peking University Cancer Hospital, Beijing, China
| | - Hongzhou Liu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuelian Zhang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ling Zhao
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaodong Hu
- Department of Endocrinology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Haixia Guan
- Department of Endocrinology Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Haixia Guan, ; Zhaohui Lyu,
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Haixia Guan, ; Zhaohui Lyu,
| |
Collapse
|
2
|
Antoniou S, Naka KK, Papadakis M, Bechlioulis A, Tsatsoulis A, Michalis LK, Tigas S. Effect of glycemic control on markers of subclinical atherosclerosis in patients with type 2 diabetes mellitus: A review. World J Diabetes 2021; 12:1856-1874. [PMID: 34888012 PMCID: PMC8613661 DOI: 10.4239/wjd.v12.i11.1856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/29/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the predominant cause of death in type 2 diabetes mellitus (T2DM). Evidence suggests a strong association between duration and degree of hyperglycemia and vascular disease. However, large trials failed to show cardiovascular benefit after intensive glycemic control, especially in patients with longer diabetes duration. Atherosclerosis is a chronic and progressive disease, with a long asymptomatic phase. Subclinical atherosclerosis, which is impaired in T2DM, includes impaired vasodilation, increased coronary artery calcification (CAC), carotid intima media thickness, arterial stiffness, and reduced arterial elasticity. Each of these alterations is represented by a marker of subclinical atherosclerosis, offering a cost-effective alternative compared to classic cardiac imaging. Their additional use on top of traditional risk assessment strengthens the predictive risk for developing coronary artery disease (CAD). We, herein, review the existing literature on the effect of glycemic control on each of these markers separately. Effective glycemic control, especially in earlier stages of the disease, attenuates progression of structural markers like intima-media thickness and CAC. Functional markers are improved after use of newer anti-diabetic agents, such as incretin-based treatments or sodium-glucose co-transporter-2 inhibitors, especially in T2DM patients with shorter disease duration. Larger prospective trials are needed to enhance causal inferences of glycemic control on clinical endpoints of CAD.
Collapse
Affiliation(s)
- Sofia Antoniou
- Department of Endocrinology, University of Ioannina, Ioannina 45110, Greece
| | - Katerina K Naka
- 2nd Department of Cardiology and Michaelidion Cardiac Center, University of Ioannina, Ioannina 45110, Greece
| | - Marios Papadakis
- Department of Surgery II, University of Witten-Herdecke, Wuppertal 42283, Germany
| | - Aris Bechlioulis
- 2nd Department of Cardiology and Michaelidion Cardiac Center, University of Ioannina, Ioannina 45110, Greece
| | | | - Lampros K Michalis
- 2nd Department of Cardiology and Michaelidion Cardiac Center, University of Ioannina, Ioannina 45110, Greece
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
3
|
Saha PS, Kim Sawtelle KR, Bamberg BN, Arrick DM, Watt MJ, Scholl JL, Zheng H, Mayhan WG. Rosiglitazone restores nitric oxide synthase-dependent reactivity of cerebral arterioles in rats exposed to prenatal alcohol. Alcohol Clin Exp Res 2021; 45:1359-1369. [PMID: 34120346 DOI: 10.1111/acer.14634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Prenatal exposure to alcohol leads to a greater incidence of many cardiovascular-related diseases, presumably via a mechanism that may involve increased oxidative stress. An agonist of peroxisome proliferator-activated receptor gamma (PPARγ; rosiglitazone) has been shown to suppress alcohol-induced neuroinflammation and oxidative stress. The goal of this study was to determine whether acute and chronic treatment with rosiglitazone could restore or prevent impaired nitric oxide synthase (NOS)-dependent responses of cerebral arterioles in male and female adult (14-16 weeks old) rats exposed to alcohol in utero. METHODS We fed Sprague-Dawley dams a liquid diet with or without 3% ethanol for the duration of their pregnancy (21-23 days). In the first series of studies, we examined the reactivity of cerebral arterioles to eNOS- (ADP), nNOS-dependent (NMDA), and NOS-independent agonists in male and female adult rats before and during acute (1 hour) topical application of rosiglitazone (1 µM). In a second series of studies, we examined the influence of chronic treatment with rosiglitazone (3 mg/kg/day in drinking water for 2-3 weeks) on the responses of cerebral arterioles in male and female adult rats exposed to alcohol in utero. RESULTS We found that in utero exposure to alcohol similarly reduced responses of cerebral arterioles to ADP and NMDA, but not to nitroglycerin in male and female adult rats. In addition, acute treatment of the male and female adult rats with rosiglitazone similarly restored this impairment in cerebral vascular function to that observed in controls. We also found that chronic treatment with rosiglitazone prevented impaired vascular function in male and female adult rats that were exposed to alcohol in utero. CONCLUSIONS PPARγ activation may be an effective and relevant treatment to reverse or prevent cerebral vascular abnormalities associated with prenatal exposure to alcohol.
Collapse
Affiliation(s)
- Partha S Saha
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Kirsten R Kim Sawtelle
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Brittany N Bamberg
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Denise M Arrick
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
4
|
Yang H, Baltzis D, Bhatt V, Haack M, Meier-Ewert HK, Gautam S, Veves A, Mullington JM. Macro- and microvascular reactivity during repetitive exposure to shortened sleep: sex differences. Sleep 2021; 44:zsaa257. [PMID: 33249482 PMCID: PMC8120341 DOI: 10.1093/sleep/zsaa257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/17/2020] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have reported strong association between sleep loss and hypertension with unknown mechanisms. This study investigated macrovascular and microcirculation changes and inflammatory markers during repetitive sleep restriction. Sex differences were also explored. Forty-five participants completed a 22-day in-hospital protocol. Participants were assigned to, (1) eight-hour sleep per night (control), or (2) sleep restriction (SR) condition: participants slept from 0300 to 0700 h for three nights followed by a recovery night of 8-h sleep, repeated four times. Macrocirculation assessed by flow mediated dilation (FMD) and microcirculation reactivity tests were performed at baseline, last day of each experimental block and during recovery at the end. Cell adhesion molecules and inflammatory marker levels were measured in blood samples. No duration of deprivation (SR block) by condition interaction effects were found for FMD, microcirculation, norepinephrine, cell adhesion molecules, IL-6 or IL-8. However, when men and women were analyzed separately, there was a statistical trend (p = 0.08) for increased IL-6 across SR blocks in women, but not in men. Interestingly, men showed a significant progressive (dose dependent) increase in skin vasodilatation (p = 0.02). A novel and unexpected finding was that during the recovery period, men that had been exposed to repeated SR blocks had elevated IL-8 and decreased norepinephrine. Macrocirculation, microcirculation, cell adhesion molecules, and markers of inflammation appeared to be resistant to this model of short-term repetitive exposures to the blocks of shortened sleep in healthy sleepers. However, men and women responded differently, with women showing mild inflammatory response and men showing more vascular system sensitivity to the repetitive SR.
Collapse
Affiliation(s)
- Huan Yang
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Dimitrios Baltzis
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Vrushank Bhatt
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Hans K Meier-Ewert
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Shiva Gautam
- Department of Medicine, University of Florida College of Medicine – Jacksonville, Jacksonville, FL
| | - Aristidis Veves
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Schinzari F, Tesauro M, Campia U, Cardillo C. Increased fractalkine and vascular dysfunction in obesity and in type 2 diabetes. Effects of oral antidiabetic treatment. Vascul Pharmacol 2020; 128-129:106676. [PMID: 32224233 DOI: 10.1016/j.vph.2020.106676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/23/2020] [Accepted: 03/20/2020] [Indexed: 12/29/2022]
Abstract
Activation of fractalkine and other chemokines plays an important role in atherogenesis and, in conjunction with endothelial dysfunction, promotes premature vascular damage in obesity and diabetes. We hypothesized that increased circulating fractalkine coexists with impaired vasomotor function in metabolically healthy or unhealthy obesity, and that treatment with antidiabetic drugs may impact these abnormalities in type 2 diabetes. Compared to lean subjects, in both obese groups the vasodilator responses to acetylcholine and sodium nitroprusside were impaired (both P < .001); ETA-receptor blockade resulted in greater vasodilation (both P < .001); and plasma levels of fractalkine, E-selectin and monocyte chemoattractant protein (MCP)-1 were increased (all P < .05). In diabetic patients, oral antidiabetic drugs (glyburide, metformin or pioglitazone) reduced circulating levels fractalkine and E-selectin (both P < .05), without affecting vascular responses (all P > .05). Our findings indicate that insulin resistant states are associated with elevated atherogenic chemokines and impaired vascular reactivity. Antidiabetic treatment results in lower circulating fractalkine, which may provide cardiovascular benefits.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Internal Medicine, Università Tor Vergata, Roma, Italy
| | - Umberto Campia
- Vascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmine Cardillo
- Policlinico A. Gemelli IRCCS, Roma, Italy; Department of Internal Medicine, Università Cattolica del Sacro Cuore, Roma, Italy.
| |
Collapse
|
7
|
Giraldo-Grueso M, Echeverri D. From Endothelial Dysfunction to Arterial Stiffness in Diabetes Mellitus. Curr Diabetes Rev 2020; 16:230-237. [PMID: 30332971 DOI: 10.2174/1573399814666181017120415] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/22/2022]
Abstract
Prevalence of diabetes mellitus has increased drastically over time, especially in more populous countries such as the United States, India, and China. Patients with diabetes have an increased risk of major cardiovascular events such as acute myocardial infarction, cerebrovascular disease, and peripheral vascular disease. Arterial stiffness is a process related to aging and vascular, metabolic, cellular and physiological deterioration. In recent years, it has been described as an independent predictor of cardiovascular mortality and coronary artery disease. Additionally, it plays an important role in the measurement of chronic disease progression. Recent studies have suggested a strong relationship between diabetes mellitus and arterial stiffness since they share a similar pathophysiology involving endothelial dysfunction. The literature has shown that microvascular and macrovascular complications in diabetic patients could be screened and measured with arterial stiffness. Additionally, new evidence proposes that there is a relationship between blood glucose levels, microalbuminuria, and arterial stiffness. Moreover, arterial stiffness predicts cardiovascular risk and is independently associated with mortality in diabetic patients. Abnormal arterial stiffness values in diabetic patients should alert the clinician to the presence of vascular disease, which merits early study and treatment. We await more studies to determine if arterial stiffness could be considered a routine useful non-invasive tool in the evaluation of diabetic patients. There is enough evidence to conclude that arterial stiffness is related to the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Manuel Giraldo-Grueso
- Vascular Function Research Laboratory, Fundación Cardioinfantil-Instituto de Cardiologia, Universidad del Rosario, Medical School, Bogota, Colombia
| | - Darío Echeverri
- Vascular Function Research Laboratory, Fundación Cardioinfantil-Instituto de Cardiologia, Universidad del Rosario, Medical School, Bogota, Colombia
| |
Collapse
|
8
|
Karan A, Bhakkiyalakshmi E, Jayasuriya R, Sarada DVL, Ramkumar KM. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol Res 2019; 153:104601. [PMID: 31838079 DOI: 10.1016/j.phrs.2019.104601] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction (ED) is a key event in the onset and progression of vascular complications associated with diabetes. Regulation of endothelial function and the underlying signaling mechanisms in the progression of diabetes-induced vascular complications have been well established. Recent studies indicate that increased oxidative stress is an important determinant of endothelial injury and patients with hypertension display ED mediated by impaired Nitric Oxide (NO) availability. Further, oxidative stress is known to be associated with inflammation and ED in vascular remodeling and diabetes-associated hypertension. Numerous strategies have been developed to improve the function of endothelial cells and increasing number of evidences highlight the indispensable role of antioxidants in modulation of endothelium-dependent vasodilation responses. Nuclear factor Erythroid 2-related factor 2 (Nrf2), is the principal transcriptional regulator, that is central in mediating oxidative stress signal response. Having unequivocally established the relationship between type 2 diabetes mellitus (T2DM) and oxidative stress, the pivotal role of Nrf2/Keap1/ARE network, has taken the center stage as target for developing therapies towards maintaining the cellular redox environment. Several activators of Nrf2 are known to combat diabetes-induced ED and few are currently in clinical trials. Focusing on their therapeutic value in diabetes-induced ED, this review highlights some natural and synthetic molecules that are involved in the modulation of the Nrf2/Keap1/ARE network and its underlying molecular mechanisms in the regulation of ED. Further emphasis is also laid on the therapeutic benefits of directly up-regulating Nrf2-mediated antioxidant defences in regulating endothelial redox homeostasis for countering diabetes-induced ED.
Collapse
Affiliation(s)
- Amin Karan
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Elango Bhakkiyalakshmi
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Loader J, Khouri C, Taylor F, Stewart S, Lorenzen C, Cracowski JL, Walther G, Roustit M. The continuums of impairment in vascular reactivity across the spectrum of cardiometabolic health: A systematic review and network meta-analysis. Obes Rev 2019; 20:906-920. [PMID: 30887713 DOI: 10.1111/obr.12831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess, for the first time, the change in vascular reactivity across the full spectrum of cardiometabolic health. Systematic searches were conducted in MEDLINE and EMBASE databases from their inception to March 13, 2017, including studies that assessed basal vascular reactivity in two or more of the following health groups (aged ≥18 years old): healthy, overweight, obesity, impaired glucose tolerance, metabolic syndrome, or type 2 diabetes with or without complications. Direct and indirect comparisons of vascular reactivity were combined using a network meta-analysis. Comparing data from 193 articles (7226 healthy subjects and 19344 patients), the network meta-analyses revealed a progressive impairment in vascular reactivity (flow-mediated dilation data) from the clinical onset of an overweight status (-0.41%, 95% CI, -0.98 to 0.15) through to the development of vascular complications in those with type 2 diabetes (-4.26%, 95% CI, -4.97 to -3.54). Meta-regressions revealed that for every 1 mmol/l increase in fasting blood glucose concentration, flow-mediated dilation decreased by 0.52%. Acknowledging that the time course of disease may vary between patients, this study demonstrates multiple continuums of vascular dysfunction where the severity of impairment in vascular reactivity progressively increases throughout the pathogenesis of obesity and/or insulin resistance, providing information that is important to enhancing the timing and effectiveness of strategies that aim to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Jordan Loader
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- LAPEC EA4278, Avignon Université, Avignon, France
| | - Charles Khouri
- Inserm U1042, Université Grenoble Alpes, Grenoble, France
- Clinical Pharmacology, Grenoble Alpes University Hospital, Grenoble, France
| | - Frances Taylor
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Simon Stewart
- Hatter Institute for Reducing Cardiovascular Disease in Africa, The University of Cape Town, Cape Town, South Africa
| | - Christian Lorenzen
- School of Exercise Science, Australian Catholic University, Melbourne, Australia
| | - Jean-Luc Cracowski
- Inserm U1042, Université Grenoble Alpes, Grenoble, France
- Clinical Pharmacology, Grenoble Alpes University Hospital, Grenoble, France
| | - Guillaume Walther
- LAPEC EA4278, Avignon Université, Avignon, France
- School of Exercise Science, Australian Catholic University, Melbourne, Australia
| | - Matthieu Roustit
- Inserm U1042, Université Grenoble Alpes, Grenoble, France
- Clinical Pharmacology, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
10
|
Wu Y, Tan X, Tian J, Liu X, Wang Y, Zhao H, Yan Z, Liu H, Ma X. PPARγ Agonist Ameliorates the Impaired Fluidity of the Myocardial Cell Membrane and Cardiac Injury in Hypercholesterolemic Rats. Cardiovasc Toxicol 2017; 17:25-34. [PMID: 26679939 DOI: 10.1007/s12012-015-9352-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hypercholesterolemia can increase the risk of cardiac injury, but the underlying mechanisms are not fully understood. The present study aimed to determine whether changes in the fluidity of the cardiomyocyte membrane may contribute to the increased susceptibility to myocardial ischemia/reperfusion (MI/R) injury observed in hypercholesterolemic rats. Male Wistar rats were fed a normal (n = 24) or high-cholesterol diet (n = 32) for 10 weeks. At the 6th week, the rats in the high-cholesterol diet group were treated with vehicle (n = 16, HC + V) or pioglitazone (n = 16, HC + PIO), a peroxisome proliferator-activated receptor-γ (PPARγ) agonist, and treatment lasted for the next 4 weeks. Rats in HC + V group displayed less membrane fluidity, a greater membrane cholesterol-to-phospholipid ratio (C/P), less Na+-K+-ATPase activity, and less cAMP content in their myocardial cells than rats fed a normal diet. A strong positive correlation was observed between membrane fluidity and cardiac injury, i.e., the myocardial infarct size when subjected to MI/R (30 min/24 h). Treatment with PIO restored much of the lost hypercholesterolemia-induced myocardial cell membrane fluidity, decreased membrane C/P ratio, increased Na+-K+-ATPase activity and cardiac cell cAMP content, improved cardiac function, and reduced the sizes of myocardial infarcts. Results demonstrated that hypercholesterolemia-induced decreased myocardial cell membrane fluidity may contribute to the increased susceptibility to cardiac injury, and PPARγ agonists may have therapeutic value in patients with hypercholesterolemia.
Collapse
Affiliation(s)
- Ye Wu
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Xiutao Tan
- Department of Biochemistry, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jue Tian
- Department of Pathophysiology, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Xin Liu
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Yehong Wang
- Department of Physiology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, People's Republic of China
| | - Huanxin Zhao
- Department of Physiology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, People's Republic of China
| | - Zi Yan
- Department of Physiology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, People's Republic of China
| | - Huirong Liu
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China. .,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China.
| | - Xinliang Ma
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China. .,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China. .,Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut St, College Bldg 808, Philadelphia, PA, 19107, USA.
| |
Collapse
|
11
|
Casanova F, Adingupu DD, Adams F, Gooding KM, Looker HC, Aizawa K, Dove F, Elyas S, Belch JJF, Gates PE, Littleford RC, Gilchrist M, Colhoun HM, Shore AC, Khan F, Strain WD. The impact of cardiovascular co-morbidities and duration of diabetes on the association between microvascular function and glycaemic control. Cardiovasc Diabetol 2017; 16:114. [PMID: 28915818 PMCID: PMC5603035 DOI: 10.1186/s12933-017-0594-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Good glycaemic control in type 2 diabetes (T2DM) protects the microcirculation. Current guidelines suggest glycaemic targets be relaxed in advanced diabetes. We explored whether disease duration or pre-existing macrovascular complications attenuated the association between hyperglycaemia and microvascular function. METHODS 743 participants with T2DM (n = 222), cardiovascular disease (CVD = 183), both (n = 177) or neither (controls = 161) from two centres in the UK, underwent standard clinical measures and endothelial dependent (ACh) and independent (SNP) microvascular function assessment using laser Doppler imaging. RESULTS People with T2DM and CVD had attenuated ACh and SNP responses compared to controls. This was additive in those with both (ANOVA p < 0.001). In regression models, cardiovascular risk factors accounted for attenuated ACh and SNP responses in CVD, whereas HbA1c accounted for the effects of T2DM. HbA1c was associated with ACh and SNP response after adjustment for cardiovascular risk factors (adjusted standardised beta (β) -0.096, p = <0.008 and -0.135, p < 0.001, respectively). Pre-existing CVD did not modify this association (β -0.099; p = 0.006 and -0.138; p < 0.001, respectively). Duration of diabetes accounted for the association between HbA1c and ACh (β -0.043; p = 0.3), but not between HbA1c and SNP (β -0.105; p = 0.02). CONCLUSIONS In those with T2DM and CVD, good glycaemic control is still associated with better microvascular function, whereas in those with prolonged disease this association is lost. This suggests duration of diabetes may be a better surrogate for "advanced disease" than concomitant CVD, although this requires prospective validation.
Collapse
Affiliation(s)
- F Casanova
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - D D Adingupu
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - F Adams
- Vascular and Inflammatory Diseases Research Unit, Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - K M Gooding
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - H C Looker
- Vascular and Inflammatory Diseases Research Unit, Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - K Aizawa
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - F Dove
- Vascular and Inflammatory Diseases Research Unit, Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - S Elyas
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - J J F Belch
- Vascular and Inflammatory Diseases Research Unit, Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - P E Gates
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - R C Littleford
- Vascular and Inflammatory Diseases Research Unit, Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - M Gilchrist
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - H M Colhoun
- Vascular and Inflammatory Diseases Research Unit, Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - A C Shore
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK
| | - F Khan
- Vascular and Inflammatory Diseases Research Unit, Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| | - W D Strain
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science and NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Barrack Rd, Exeter, EX2 5AX, UK.
| |
Collapse
|
12
|
Cariou B, Fruchart JC, Staels B. Review: Vascular protective effects of peroxisome proliferator-activated receptor agonists. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514050050030301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ardiovascular disease is significantly increased in patients with the metabolic syndrome and type 2 diabetes. A clustering of risk factors, including dyslipidaemia, insulin resistance, hypertension, inflammation and coagulation disorders are acting in concert to promote cardiovascular events in these patients. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that influence vascular function by altering gene expression in vascular tissue and indirectly via effects on other tissues. Indeed, PPAR activation displays beneficial effects on glucose homeostasis and lipid metabolism, and also on endothelial function and vessel wall inflammation. Clinically used PPARα agonists, such as fibrates, and PPARγ agonists, such as insulin-sensitising thiazolidinediones, may consequently alter the process of atherosclerosis, especially in subjects with the metabolic syndrome and type 2 diabetes. The present review highlights emerging evidence for beneficial effects of PPAR α and PPARγ in the prevention and treatment of atherosclerosis in such high-risk patients.
Collapse
Affiliation(s)
- Bertrand Cariou
- Département d'Athérosclérose, Institut Pasteur de Lille & Faculté de Pharmacie, Université de Lille2, Lille, France
| | - Jean-Charles Fruchart
- Département d'Athérosclérose, Institut Pasteur de Lille & Faculté de Pharmacie, Université de Lille2, Lille, France
| | - Bart Staels
- Département d'Athérosclérose, Institut Pasteur de Lille & Faculté de Pharmacie, Université de Lille2, Lille, France,
| |
Collapse
|
13
|
Stojanović M, Prostran M, Radenković M. Thiazolidinediones improve flow-mediated dilation: a meta-analysis of randomized clinical trials. Eur J Clin Pharmacol 2015; 72:385-98. [PMID: 26690770 DOI: 10.1007/s00228-015-1999-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/14/2015] [Indexed: 02/02/2023]
Abstract
AIMS Thiazolidinediones administration is assumed to be related with an improvement of endothelial dysfunction (ED); nevertheless, previous studies have been inconsistent. For this reason, the present meta-analysis was directed to estimate if thiazolidinediones were related to endothelial dysfunction improvement by using flow-mediated dilation (FMD) measurement. METHODS Literature search of the PubMed, the Cochrane Library, the Web of Science, and the Scopus databases was performed covering the period until July 01, 2015, for randomized clinical trials that investigated an influence of thiazolidinediones on FMD. For the calculation of the pooled overall effect, a random effect model was used. Meta-regression and subgroup analyses were performed to evaluate the impact of study characteristics on the effect of thiazolidinediones administration on FMD. RESULTS This meta-analysis included 16 studies with 812 subjects. The obtained results demonstrated an improvement of endothelial dysfunction measured with FMD (16 studies, 812 subjects; WMD: 2.4 %, 95 % CI = 1.1 to 3.69 %; p = 0.0003). The significant heterogeneity was noted (I (2) = 95 %, p < 0.00001). Subgroup analysis demonstrated that pioglitazone and rosiglitazone were able to improve FMD. Also, thiazolidinediones improved FMD if treatment was longer than 12 weeks and if patients were younger than 65 years. Additionally, a lipid profile was found to influence thiazolidinediones effect on FMD. CONCLUSION The results of this meta-analysis demonstrated that thiazolidinediones were able to improve FMD, which in clinical terms can be further translated to the improvement of an impaired endothelial function. Nevertheless, the link between FMD and its predictive clinical relevance still requires further clarification.
Collapse
Affiliation(s)
- Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, Belgrade, 11129, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, Belgrade, 11129, Serbia
| | - Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, Belgrade, 11129, Serbia.
| |
Collapse
|
14
|
Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity. PPAR Res 2015; 2015:358029. [PMID: 26697060 PMCID: PMC4677228 DOI: 10.1155/2015/358029] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023] Open
Abstract
The Peroxisome Proliferator-Activated Receptors (PPARs) PPARA and PPARD are regulators of lipid metabolism with important roles in energy release through lipid breakdown, while PPARG plays a key role in lipid storage and adipogenesis. The aim of this review is to describe the role of PPARs in lipid metabolism, adipogenesis, and obesity and evaluate the zebrafish as an emerging vertebrate model to study the function of PPARs. Zebrafish are an appropriate model to study human diseases, including obesity and related metabolic diseases, as pathways important for adipogenesis and lipid metabolism which are conserved between mammals and fish. This review synthesizes knowledge on the role of PPARs in zebrafish and focuses on the putative function of PPARs in zebrafish adipogenesis. Using in silico analysis, we confirm the presence of five PPARs (pparaa, pparab, pparda, ppardb, and pparg) in the zebrafish genome with 67–74% identity to human and mouse PPARs. During development, pparda/b paralogs and pparg show mRNA expression around the swim bladder and pancreas, the region where adipocytes first develop, whereas pparg is detectable in adipocytes at 15 days post fertilization (dpf). This review indicates that the zebrafish is a promising model to investigate the specific functions of PPARs in adipogenesis and obesity.
Collapse
|
15
|
Association between cardiac changes and stress, and the effect of peroxisome proliferator-activated receptor-γ on stress-induced myocardial injury in mice. ACTA ACUST UNITED AC 2015; 35:28-34. [DOI: 10.1007/s11596-015-1384-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/11/2014] [Indexed: 10/24/2022]
|
16
|
Guarini G, Huqi A, Morrone D, Capozza P, Todiere G, Marzilli M. Pharmacological approaches to coronary microvascular dysfunction. Pharmacol Ther 2014; 144:283-302. [DOI: 10.1016/j.pharmthera.2014.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
|
17
|
Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, Tsiamis E, Stefanadis C. Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol Ther 2014; 144:253-267. [PMID: 24928320 DOI: 10.1016/j.pharmthera.2014.06.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
The vascular endothelium not only is a single monolayer of cells between the vessel lumen and the intimal wall, but also plays an important role by controlling vascular function and structure mainly via the production of nitric oxide (NO). The so called "cardiovascular risk factors" are associated with endothelial dysfunction, that reduces NO bioavailability, increases oxidative stress, and promotes inflammation contributing therefore to the development of atherosclerosis. The significant role of endothelial dysfunction in the development of atherosclerosis emphasizes the need for efficient therapeutic interventions. During the last years statins, angiotensin-converting enzyme inhibitors, angiotensin-receptor antagonists, antioxidants, beta-blockers and insulin sensitizers have been evaluated for their ability to restore endothelial function (Briasoulis et al., 2012). As there is not a straightforward relationship between therapeutic interventions and improvement of endothelial function but rather a complicated interrelationship between multiple cellular and sub-cellular targets, research has been focused on the understanding of the underlying mechanisms. Moreover, the development of novel diagnostic invasive and non-invasive methods has allowed the early detection of endothelial dysfunction expanding the role of therapeutic interventions and our knowledge. In the current review we present the available data concerning the contribution of endothelial dysfunction to atherogenesis and review the methods that assess endothelial function with a view to understand the multiple targets of therapeutic interventions. Finally we focus on the classic and novel therapeutic approaches aiming to improve endothelial dysfunction and the underlying mechanisms.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece.
| | - Chryssa Simopoulou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Nikos Papageorgiou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - George Hatzis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Eleftherios Tsiamis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | | |
Collapse
|
18
|
Abstract
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Collapse
|
19
|
Zanobetti A, Luttmann-Gibson H, Horton ES, Cohen A, Coull BA, Hoffmann B, Schwartz JD, Mittleman MA, Li Y, Stone PH, de Souza C, Lamparello B, Koutrakis P, Gold DR. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:242-8. [PMID: 24398072 PMCID: PMC3948021 DOI: 10.1289/ehp.1206136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/03/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Extreme weather and air pollution are associated with increased cardiovascular risk in people with diabetes. OBJECTIVES In a population with diabetes, we conducted a novel assessment of vascular brachial artery responses both to ambient pollution and to weather (temperature and water vapor pressure, a measure of humidity). METHODS Sixty-four 49- to 85-year-old Boston residents with type 2 diabetes completed up to five study visits (279 repeated measures). Brachial artery diameter (BAD) was measured by ultrasound before and after brachial artery occlusion [i.e., flow-mediated dilation (FMD)] and before and after nitroglycerin-mediated dilation (NMD). Ambient concentrations of fine particulate mass (PM2.5), black carbon (BC), organic carbon (OC), elemental carbon, particle number, and sulfate were measured at our monitoring site; ambient concentrations of carbon monoxide, nitrogen dioxide, and ozone were obtained from state monitors. Particle exposure in the home and during each trip to the clinic (home/trip exposure) was measured continuously and as a 5-day integrated sample. We used linear models with fixed effects for participants, adjusting for date, season, temperature, and water vapor pressure on the day of each visit, to estimate associations between our outcomes and interquartile range increases in exposure. RESULTS Baseline BAD was negatively associated with particle pollution, including home/trip-integrated BC (-0.02 mm; 95% CI: -0.04, -0.003, for a 0.28 μg/m3 increase in BC), OC (-0.08 mm; 95% CI: -0.14, -0.03, for a 1.61 μg/m3 increase) as well as PM2.5, 5-day average ambient PM2.5, and BC. BAD was positively associated with ambient temperature and water vapor pressure. However, exposures were not consistently associated with FMD or NMD. CONCLUSION Brachial artery diameter, a predictor of cardiovascular risk, decreased in association with particle pollution and increased in association with ambient temperature in our study population of adults with type 2 diabetes. CITATION Zanobetti A, Luttmann-Gibson H, Horton ES, Cohen A, Coull BA, Hoffmann B, Schwartz JD, Mittleman MA, Li Y, Stone PH, de Souza C, Lamparello B, Koutrakis P, Gold DR. 2014. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study. Environ Health Perspect 122:242-248; http://dx.doi.org/10.1289/ehp.1206136.
Collapse
Affiliation(s)
- Antonella Zanobetti
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 2014; 13:17. [PMID: 24524207 PMCID: PMC3943808 DOI: 10.1186/1475-2891-13-17] [Citation(s) in RCA: 871] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors are expressed in many tissues, including adipocytes, hepatocytes, muscles and endothelial cells; however, the affinity depends on the isoform of PPAR, and different distribution and expression profiles, which ultimately lead to different clinical outcomes. Because they play an important role in lipid and glucose homeostasis, they are called lipid and insulin sensors. Their actions are limited to specific tissue types and thus, reveal a characteristic influence on target cells. PPARα mainly influences fatty acid metabolism and its activation lowers lipid levels, while PPARγ is mostly involved in the regulation of the adipogenesis, energy balance, and lipid biosynthesis. PPARβ/δ participates in fatty acid oxidation, mostly in skeletal and cardiac muscles, but it also regulates blood glucose and cholesterol levels. Many natural and synthetic ligands influence the expression of these receptors. Synthetic ligands are widely used in the treatment of dyslipidemia (e.g. fibrates--PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones--PPARγ agonists). New generation drugs--PPARα/γ dual agonists--reveal hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action while the overexpression of PPARβ/δ prevents the development of obesity and reduces lipid accumulation in cardiac cells, even during a high-fat diet. Precise data on the expression and function of natural PPAR agonists on glucose and lipid metabolism are still missing, mostly because the same ligand influences several receptors and a number of reports have provided conflicting results. To date, we know that PPARs have the capability to accommodate and bind a variety of natural and synthetic lipophilic acids, such as essential fatty acids, eicosanoids, phytanic acid and palmitoylethanolamide. A current understanding of the effects of PPARs, their molecular mechanisms and the role of these receptors in nutrition and therapeutic treatment are delineated in this paper.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Bromatology and Human Nutrition, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
21
|
McCarthy FP, Delany AC, Kenny LC, Walsh SK. PPAR-γ -- a possible drug target for complicated pregnancies. Br J Pharmacol 2013. [PMID: 23186152 DOI: 10.1111/bph.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors expressed in trophoblasts, which regulate both cell differentiation and proliferation. In recent years, evidence has linked PPARs to playing an integral role in pregnancy; specifically, PPAR-β and PPAR-γ have been shown to play an integral role in placentation, with PPAR-γ additionally serving to regulate trophoblast differentiation. Recent evidence has shown that PPAR-γ expression is altered in many complications of pregnancy such as intrauterine growth restriction (IUGR), preterm birth, pre-clampsia and gestational diabetes. Thus, at present, accumulating evidence from the literature suggests both a pivotal role for PPAR-γ in the progression of a healthy pregnancy and the possibility that PPAR-γ may act as a therapeutic target in complicated pregnancies. This review aims to provide a succinct and comprehensive assessment of the role of PPAR-γ in normal pregnancy and pregnancy complications, and finally its potential as a therapeutic target in the treatment and/or prevention of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Fergus P McCarthy
- Department of Obstetrics & Gynaecology, Anu Research Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
22
|
Hamilton SJ, Watts GF. Endothelial dysfunction in diabetes: pathogenesis, significance, and treatment. Rev Diabet Stud 2013; 10:133-56. [PMID: 24380089 DOI: 10.1900/rds.2013.10.133] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes (T2D) markedly increases the risk of cardiovascular disease. Endothelial dysfunction (ED), an early indicator of diabetic vascular disease, is common in T2D and independently predicts cardiovascular risk. Although the precise pathogenic mechanisms for ED in T2D remain unclear, at inception they probably involve uncoupling of both endothelial nitric oxide synthase activity and mitochondrial oxidative phosphorylation, as well as the activation of vascular nicotinamide adenine dinucleotide phosphate oxidase. The major contributing factors include dyslipoproteinemia, oxidative stress, and inflammation. Therapeutic interventions are designed to target these pathophysiological factors that underlie ED. Therapeutic interventions, including lifestyle changes, antiglycemic agents and lipid-regulating therapies, aim to correct hyperglycemia and atherogenic dyslipidemia and to improve ED. However, high residual cardiovascular risk is seen in both research and clinical practice settings. Well-designed studies of endothelial function in appropriately selected volunteers afford a good opportunity to test new therapeutic interventions, paving the way for clinical trials and utilization in the care of the diabetic patient. However, based on the results from a recent clinical trial, niacin should not be added to a statin in individuals with low high-density lipoprotein cholesterol and very well controlled low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Sandra J Hamilton
- Combined Universities Centre for Rural Health, University of Western Australia, Geraldton, Australia
| | - Gerald F Watts
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| |
Collapse
|
23
|
Eldor R, DeFronzo RA, Abdul-Ghani M. In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 2013; 36 Suppl 2:S162-74. [PMID: 23882042 PMCID: PMC3920780 DOI: 10.2337/dcs13-2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roy Eldor
- Diabetes Division, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | |
Collapse
|
24
|
Abstract
Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.
Collapse
Affiliation(s)
- Kieren J Mather
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
25
|
Abstract
Diabetes is a complex disease defined by hyperglycaemia; however, strong associations with abdominal obesity, hypertension and dyslipidaemia contribute to the high risk of cardiovascular disease. Although aggressive glycaemic control reduces microvascular complications, the evidence for macrovascular complications is less certain. The theoretical benefits of the mode of action of peroxisome proliferator-activated receptor (PPAR) agonists are clear. In clinical practice, PPAR-α agonists such as fibrates improve dyslipidaemia, while PPAR-γ agonists such as thiazolidinediones improve insulin resistance and diabetes control. However, although these agents are traditionally classed according to their target, they have different and sometimes conflicting clinical benefit and adverse event profiles. It is speculated that this is because of differing properties and specificities for the PPAR receptors (each of which targets specific genes). This is most obvious in the impact on cardiovascular outcomes--in clinical trials pioglitazone appeared to reduce cardiovascular events, whereas rosiglitazone potentially increased the risk of myocardial infarction. The development of a dual PPAR-α/γ agonist may prove beneficial in effectively managing glycaemic control and improving dyslipidaemia in patients with type 2 diabetes. Yet, development of agents such as muraglitazar and tesaglitazar has been hindered by various serious adverse events. Aleglitazar, a balanced dual PPAR-α/γ agonist, is currently the most advanced in clinical development and has shown promising results in phase II clinical trials with beneficial effects on glucose and lipid variables. A phase III study, ALECARDIO, is ongoing and will establish whether improvements in laboratory test profiles translate into an improvement in cardiovascular outcomes.
Collapse
Affiliation(s)
- J P H Wilding
- Department of Obesity & Endocrinology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
26
|
Buras J, Reenstra WR, Orlow D, Horton ES, Veves A. Troglitazone-Induced Changes in Adiponectin Do Not Affect Endothelial Function in Diabetes. ACTA ACUST UNITED AC 2012; 13:1167-74. [PMID: 16076985 DOI: 10.1038/oby.2005.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Adiponectin has been proposed to be related to endothelial function. We have examined the relationship between the increase in adiponectin levels that is associated with troglitazone treatment and endothelium-dependent vasodilation in type 2 diabetic patients. RESEARCH METHODS AND PROCEDURES Seventy-two patients participated in this randomized, placebo-controlled, double-blinded study. High-resolution ultrasound images were used to measure the flow-mediated dilation (endothelium-dependent) and nitroglycerin-induced dilation (endothelium-independent) of the brachial artery. Laser Doppler perfusion imaging was employed to measure the vascular reactivity in the forearm skin. RESULTS Troglitazone treatment resulted in an average 75% increase in the adiponectin levels, but no changes were observed in the endothelium-dependent vasodilation, any other measurement of vascular reactivity, or any other markers of endothelial activation. Also, no changes were observed in the expression of the receptor for advanced glycation end-products in skin biopsies taken from the forearm. Significant correlations were observed during troglitazone treatment between the changes in the adiponectin levels and the changes in fasting plasma glucose (r = -0.29, p < 0.05), hemoglobin A(1c) (r = -0.30, p < 0.05), total cholesterol (r = 0.25, p < 0.05), and low-density lipoprotein-cholesterol (r = 0.34, p < 0.01). DISCUSSION The increase in adiponectin levels after troglitazone treatment is not associated with an improvement in the endothelium-dependent vasodilation, indicating that adiponectin is not a major determinant of endothelial function. In addition, receptor for advanced glycation end-products expression in the skin microcirculation is not affected by troglitazone treatment.
Collapse
Affiliation(s)
- Jon Buras
- Microcirculation Laboratory, Palmer 317, West Campus, Beth Israel Deaconess Medical Center, One Deaconess Road, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
27
|
Sotornik R, Brassard P, Martin E, Yale P, Carpentier AC, Ardilouze JL. Update on adipose tissue blood flow regulation. Am J Physiol Endocrinol Metab 2012; 302:E1157-70. [PMID: 22318953 DOI: 10.1152/ajpendo.00351.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
According to Fick's principle, any metabolic or hormonal exchange through a given tissue depends on the product of the blood flow to that tissue and the arteriovenous difference. The proper function of adipose tissue relies on adequate adipose tissue blood flow (ATBF), which determines the influx and efflux of metabolites as well as regulatory endocrine signals. Adequate functioning of adipose tissue in intermediary metabolism requires finely tuned perfusion. Because metabolic and vascular processes are so tightly interconnected, any disruption in one will necessarily impact the other. Although altered ATBF is one consequence of expanding fat tissue, it may also aggravate the negative impacts of obesity on the body's metabolic milieu. This review attempts to summarize the current state of knowledge on adipose tissue vascular bed behavior under physiological conditions and the various factors that contribute to its regulation as well as the possible participation of altered ATBF in the pathophysiology of metabolic syndrome.
Collapse
Affiliation(s)
- Richard Sotornik
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Centre Hospitalier, Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Magri CJ, Gatt N, Xuereb RG, Fava S. Peroxisome proliferator-activated receptor-γ and the endothelium: implications in cardiovascular disease. Expert Rev Cardiovasc Ther 2012; 9:1279-94. [PMID: 21985541 DOI: 10.1586/erc.11.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisome proliferator-activated receptors-γ (PPARγs) are ligand-activated transcription factors that play a crucial regulatory role in the transcription of a large number of genes involved in lipid metabolism and inflammation. In addition to physiological ligands, synthetic ligands (the thiazoledinediones) have been developed. In spite of the much publicized adverse cardiovascular effects of one such thiazoledinedione (rosiglitazone), PPARγ activation may have beneficial cardiovascular effects. In this article we review the effects of PPARγ activation on the endothelium with special emphasis on the possible implications in cardiovascular disease. We discuss its possible role in inflammation, vasomotor function, thrombosis, angiogenesis, vascular aging and vascular rhythm. We also briefly review the clinical implications of these lines of research.
Collapse
Affiliation(s)
- Caroline Jane Magri
- Department of Cardiac Services, Mater Dei Hospital, Tal-Qroqq, Msida MSD 2090, Malta
| | | | | | | |
Collapse
|
29
|
McCarthy FP, Drewlo S, Kingdom J, Johns EJ, Walsh SK, Kenny LC. Peroxisome proliferator-activated receptor-γ as a potential therapeutic target in the treatment of preeclampsia. Hypertension 2011; 58:280-6. [PMID: 21690483 DOI: 10.1161/hypertensionaha.111.172627] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Preeclampsia is a multisystemic disorder of pregnancy characterized by hypertension, proteinuria, and maternal endothelial dysfunction. It is a major cause of maternal and perinatal morbidity and mortality and is thought to be attributable, in part, to inadequate trophoblast invasion. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-activated transcription factor expressed in trophoblasts, and the vasculature of which activation has been shown to improve endothelium-dependent vasodilatation in hypertensive conditions. We investigated the effects of the administration of a PPAR-γ agonist using the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. The selective PPAR-γ agonist, rosiglitazone, was administered to pregnant rats that had undergone RUPP surgery. To investigate whether any observed beneficial effects of PPAR-γ activation were mediated by the antioxidant enzyme, heme oxygenase 1, rosiglitazone was administered in combination with the heme oxygenase 1 inhibitor tin-protoporphyrin IX. RUPP rats were characterized by hypertension, endothelial dysfunction, and elevated microalbumin:creatinine ratios. Rosiglitazone administration ameliorated hypertension, improved vascular function, and reduced the elevated microalbumin:creatinine ratio in RUPP rats. With the exception of microalbumin:creatinine ratio, these beneficial effects were abrogated in the presence of the heme oxygenase 1 inhibitor. Administration of a PPAR-γ agonist prevented the development of several of the pathophysiological characteristics associated with the RUPP model of preeclampsia, via a heme oxygenase 1-dependent pathway. The findings from this study provide further insight into the underlying etiology of preeclampsia and a potential therapeutic target for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Fergus P McCarthy
- Anu Research Centre, University College Cork, Cork University Maternity Hospital, Wilton, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|
30
|
Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Zarić BL, Stojanović SD, Stokić EJ, Mikhailidis DP, Isenović ER. Peroxisome proliferator-activated receptors and atherosclerosis. Angiology 2011; 62:523-34. [PMID: 21467121 DOI: 10.1177/0003319711401012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) represent the family of 3 nuclear receptor isoforms-PPARα, -γ, and -δ/β, which are encoded by different genes. As lipid sensors, they are primarily involved in regulation of lipid metabolism and subsequently in inflammation and atherosclerosis. Atherosclerosis considers accumulation of the cells and extracellular matrix in the vessel wall leading to the formation of atherosclerotic plaque, atherothrombosis, and other vascular complications. Besides existence of natural ligands for PPARs, their more potent synthetic ligands are fibrates and thiazolidindiones. Future investigations should now focus on the mechanisms of PPARs activation, which might present new approaches involved in the antiatherosclerotic effects revealed in this review. In addition, in this review we are presenting latest data from recent performed clinical studies which have focus on novel approach to PPARs agonists as potential therapeutic agents in the treatment of complex disease such as atherosclerosis.
Collapse
Affiliation(s)
- Sanja S Soskić
- Laboratory for Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Picchi A, Capobianco S, Qiu T, Focardi M, Zou X, Cao JM, Zhang C. Coronary microvascular dysfunction in diabetes mellitus: A review. World J Cardiol 2010; 2:377-90. [PMID: 21179305 PMCID: PMC3006474 DOI: 10.4330/wjc.v2.i11.377] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/19/2010] [Accepted: 09/26/2010] [Indexed: 02/06/2023] Open
Abstract
The exploration of coronary microcirculatory dysfunction in diabetes has accelerated in recent years. Cardiac function is compromised in diabetes. Diabetic patients manifest accelerated atherosclerosis in coronary arteries. These data are confirmed in diabetic animal models, where lesions of small coronary arteries have been described. These concepts are epitomized in the classic microvascular complications of diabetes, i.e. blindness, kidney failure and distal dry gangrene. Most importantly, accumulating data indicate that insights gained from the link between inflammation and diabetes can yield predictive and prognostic information of considerable clinical utility. This review summarizes the evidence for the predisposing factors and the mechanisms involved in diabetes, and assesses the current state of knowledge regarding the triggers for inflammation in this disease. We evaluate the roles of hyperglycemia, oxidative stress, polyol pathway, protein kinase C, advanced glycation end products, insulin resistance, peroxisome proliferator-activated receptor-γ, inflammation, and diabetic cardiomyopathy as a "stem cell disease". Furthermore, we discuss the mechanisms responsible for impaired coronary arteriole function. Finally, we consider how new insights in diabetes may provide innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Picchi
- Andrea Picchi, Marta Focardi, Ji-Min Cao, Department of Cardiology, Misericordia Hospital, Via Senese 161, 58100 Grosseto, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Walcher T, Walcher D, Hetzel J, Mielke C, Rau M, Rittig K, Balletshofer B, Schwedhelm E, Hombach V, Böger RH, Koenig W, Marx N. Rapid effect of single-dose rosiglitazone treatment on endothelial function in healthy men with normal glucose tolerance: data from a randomised, placebo-controlled, double-blind study. Diab Vasc Dis Res 2010; 7:178-85. [PMID: 20460360 DOI: 10.1177/1479164110367812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Antidiabetic thiazolidinediones (TZDs) improve endothelial function in patients with or without type 2 diabetes. The present randomised, placebo-controlled, double-blind study examined the time course of a single dose of rosiglitazone on flow-mediated endothelium-dependent vasodilation (FMD), metabolic parameters, and its effect on inflammatory markers in non-diabetic men. Forty non-obese, healthy men with normal glucose tolerance were randomised to a single dose of rosiglitazone (8 mg) or placebo, and FMD was assessed at baseline as well as after 6 h and 24 h. Rosiglitazone did not significantly affect blood glucose and insulin levels or lipid parameters after 6 and 24 h compared with placebo. Treatment with rosiglitazone significantly increased FMD after 6 h from 4.3% (3.3; 4.9) to 7.6% (5.6; 9.2) (p<0.0001 vs. baseline) resulting in a highly significant effect compared with placebo (p<0.0001 for difference between groups). After 24 h FMD was still significantly higher in the rosiglitazone group compared with baseline (p=0.001), but the effect was no longer statistically significant versus placebo (p=0.171). Our study shows a very rapid effect of single dose rosiglitazone treatment on endothelial function in non-diabetic healthy men, underscoring the hypothesis that TZDs may exhibit direct effect in the vasculature independent of their metabolic action.
Collapse
Affiliation(s)
- Thomas Walcher
- Department of Internal Medicine II - Cardiology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de las Fuentes L, de Simone G, Arnett DK, Dávila-Román VG. Molecular determinants of the cardiometabolic phenotype. Endocr Metab Immune Disord Drug Targets 2010; 10:109-23. [PMID: 20384572 PMCID: PMC2887744 DOI: 10.2174/187153010791213119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/04/2010] [Indexed: 12/25/2022]
Abstract
The metabolic syndrome represents a clustering of risk factors that has been shown to predict adverse cardiovascular outcomes. Although the precise mechanisms contributing to the cardiometabolic syndrome (CMS) remain poorly defined, accumulating evidence identifies two intersecting candidate pathways responsible for inflammation and energy homeostasis in the pathophysiology that underlie cardiometabolic traits. Although currently no pharmacologic interventions specifically target CMS, future drug development efforts should attempt to capitalize on molecular nodes at the intersections of these pathways in the CMS.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
34
|
Relationship of insulin resistance to macro- and microvasculature reactivity in hypertension. Am J Hypertens 2010; 23:495-500. [PMID: 20111010 DOI: 10.1038/ajh.2010.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Although insulin resistance (IR) is thought to be related to vascular dysfunction, the difference in the relationship of IR to microvasculature and macrovasculature reactivity has not yet been clarified. The present study was conducted to clarify whether the IR is more closely related to the macrovasculature reactivity (flow-mediated vasodilatation of the brachial artery induced by reactive hyperemia: FMD) or microvasculature reactivity (skin reactive hyperemia as assessed by laser Doppler flowmetry: SRH) in patients with hypertension. METHODS In 75 consecutive hypertensive patients (61 +/- 11 years of age) without obvious cardiovascular (CV) disease and/or risk factors for CV disease other than hypertension, FMD, SRH, and homeostasis model assessment index of IR (HOMA(IR)) were measured. RESULTS No significant relationship was observed between FMD with the parameters of SRH. In the univariate linear regression analysis, HOMA(IR) showed a significant correlation with the FMD (R(2) = 0.05, P < 0.05), but not with the parameters of SRH. Multivariate linear regression analysis demonstrated a significant association between HOMA(IR) and FMD, even after adjustments for covariates, including the use of medication for hypertension. (R(2) = 0.32, beta = -0.29, P = 0.02). CONCLUSIONS The complication of IR in hypertensive patients without obvious CV disease/risk factors may be related to impaired macrovasculature rather than microvasculature reactivity, apart from the influence of antihypertensive medication on the reactivity of the vasculature and insulin sensitivity.
Collapse
|
35
|
Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 2010; 11:61-74. [PMID: 20186491 PMCID: PMC2882637 DOI: 10.1007/s11154-010-9134-4] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is a major complication of diabetes mellitus, and improved strategies for prevention and treatment are needed. Endothelial dysfunction contributes to the pathogenesis and clinical expression of atherosclerosis in diabetes mellitus. This article reviews the evidence linking endothelial dysfunction to human diabetes mellitus and experimental studies that investigated the responsible mechanisms. We then discuss the implications of these studies for current management and for new approaches for the prevention and treatment of cardiovascular disease in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Corey E. Tabit
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - William B. Chung
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Naomi M. Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A. Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
- Section of Cardiology, Boston Medical Center, 88 East Newton Street, Boston, MA 02118, USA,
| |
Collapse
|
36
|
Dorafshar AH, Moodley K, Khoe M, Lyon C, Bryer-Ash M. Pioglitazone improves superoxide dismutase mediated vascular reactivity in the obese Zucker rat. Diab Vasc Dis Res 2010; 7:20-7. [PMID: 20368229 DOI: 10.1177/1479164109341688] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that the thiazolidinedione agent, pioglitazone, mediates its chronic BP lowering action via improving vascular reactivity. METHODS AND RESULTS Lean (Fa/fa) and obese (fa/fa) Zucker rats were treated with or without pioglitazone (20 mg/ kg/day) for 4 weeks (n=8 animals per group). Pioglitazone treatment was associated with a significant improvement in oral glucose tolerance in the obese animals (p<0.05 compared with untreated obese). Pioglitazone prevented the development of hypertension seen in obese untreated rats (SBP 126+/-1 versus 138+/-1 mmHg; p<0.0001). Aortic ring preparations from pioglitazone-treated obese rats showed improved relaxation responsiveness (ED(50) 0.28 versus 1.15 U/ ml, p<0.001) to SOD, a NO potentiator, compared with untreated obese animals. CONCLUSIONS SOD-mediated vasorelaxation may contribute to the chronic antihypertensive effect and/or the improvement in insulin sensitivity following pioglitazone treatment.
Collapse
Affiliation(s)
- Amir H Dorafshar
- Department of Medicine, University of California Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
37
|
Steinmetz M, Brouwers C, Nickenig G, Wassmann S. Synergistic effects of telmisartan and simvastatin on endothelial progenitor cells. J Cell Mol Med 2009; 14:1645-56. [PMID: 19555424 PMCID: PMC3829027 DOI: 10.1111/j.1582-4934.2009.00829.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Circulating endothelial progenitor cells (EPC) contribute to endothelial replenishment. Telmisartan is an angiotensin-receptor blocker with PPARγ-agonistic properties. PPARγ-agonists and HMG-CoA reductase inhibitors have been shown to enhance EPC number and function. We focused on the effects of telmisartan alone or in combination with simvastatin on EPC. EPC were isolated from healthy human volunteers, cultured and stimulated with telmisartan, simvastatin, or the combination of telmisartan and simvastatin. Telmisartan significantly increased the number of acLDL/lectin double-positive early EPC, the number of colony forming units (EC-CFU) as well as EPC migratory capacity, inhibited TNFα-induced EPC apoptosis and reduced glucose-induced oxidative stress. The telmisartan effect was dose-dependent and could be inhibited by GW9662, indicating a PPARγ-dependent mechanism. The combination of telmisartan and simvastatin led to a significant additive increase in EPC count and function. In wild-type mice, systemic treatment with either telmisartan or simvastatin elevated the number of sca-1/flk-1-positive EPC in bone marrow and peripheral blood, spleen-derived acLDL/lectin double-positive EPC, EPC migration and EC-CFU. Consistent with the in vitro findings, the combination of telmisartan and simvastatin resulted in a further enhancement of EPC counts. Re-endothelialization after carotid injury was significantly enhanced by telmisartan, simvastatin and the combination. Telmisartan increases EPC number and function mediated by a PPARγ-dependent mechanism. This effect is further enhanced by combination with simvastatin, suggesting a synergistic activation of potentially diverse intracellular pathways.
Collapse
Affiliation(s)
- Martin Steinmetz
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Germany
| | | | | | | |
Collapse
|
38
|
Hall GM, Nicholson G. Current Therapeutic Drugs for Type 2 Diabetes, Still Useful After 50 Years? Anesth Analg 2009; 108:1727-30. [DOI: 10.1213/ane.0b013e3181a6ad5c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Brunelli SM, Thadhani R, Ikizler TA, Feldman HI. Thiazolidinedione use is associated with better survival in hemodialysis patients with non-insulin dependent diabetes. Kidney Int 2009; 75:961-8. [PMID: 19190679 PMCID: PMC2864092 DOI: 10.1038/ki.2009.4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular mortality is especially high among dialysis patients with diabetes, as is morbidity due to protein energy wasting. Given that both of these factors may be decreased by thiazolidinedione treatment, we studied the effect of thiazolidinedione use on survival among chronic dialysis patients in a national cohort of 5290 incident dialysis patients with diabetes. Thiazolidinedione use was assessed according to prescription data, and the analyses were stratified based on insulin use due to observed interaction. In the primary analysis, thiazolidinedione treatment was associated with significantly lower all-cause mortality among insulin-free but not insulin-requiring subjects, with adjusted hazards ratios of 0.53 (0.31-0.89) and 0.82 (0.46-1.47) respectively. Sensitivity analyses found the findings to be robust with respect to confounding by indication, severity of the diabetes, potential reverse causality, and time varying exposure patterns. The mechanism of this decline in all-cause mortality will need to be examined after these studies are confirmed.
Collapse
Affiliation(s)
- Steven M Brunelli
- Renal, Electrolyte and Hypertension Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
40
|
Rahangdale S, Yeh SY, Malhotra A, Veves A. Therapeutic interventions and oxidative stress in diabetes. Front Biosci (Landmark Ed) 2009; 14:192-209. [PMID: 19273063 DOI: 10.2741/3240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many therapeutic agents that are used in patients with diabetes mitigate oxidative stress. These agents are of particular interest because oxidative stress is elevated in diabetes and is thought to contribute to vascular dysfunction. Agents that merely quench already formed reactive oxygen species have demonstrated limited success in improving cardiovascular outcomes. Thus, although vitamin E, C, and alpha lipoic acid appeared promising in animal models and initial human studies, subsequent larger trials have failed to demonstrate improvement in cardiovascular outcomes. Drugs that limit the production of oxidative stress are more successful in improving vascular outcomes in patients with diabetes. Thus, although statins, ACE inhibitors, ARBs and thiazolinediones are used for varied clinical purposes, their increased efficacy in improving cardiovascular outcomes is likely related to their success in reducing the production of reactive oxygen species at an earlier part of the cascade, thereby more effectively decreasing the oxidative stress burden. In particular, statins and ACE inhibitors/ ARBs appear the most successful at reducing oxidative stress and vascular disease and have potential for synergistic effects.
Collapse
Affiliation(s)
- Shilpa Rahangdale
- Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA, USA
| | | | | | | |
Collapse
|
41
|
Tousoulis D, Tsarpalis K, Cokkinos D, Stefanadis C. Effects of insulin resistance on endothelial function: possible mechanisms and clinical implications. Diabetes Obes Metab 2008; 10:834-842. [PMID: 18034844 DOI: 10.1111/j.1463-1326.2007.00818.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulin resistance (IR) is defined as a reduced responsiveness of peripheral tissues to the effects of the hormone, referring to abated ability of insulin in stimulating glucose uptake in peripheral tissues and in inhibiting hepatic glucose output. Insulin has both a vasodilatory effect, which is largely endothelium dependent through the release of nitric oxide, and a vasoconstrictory effect through the stimulation of the sympathetic nervous system and the release of endothelin-1. IR and endothelial dysfunction (ED) are not only linked by common pathogenetic mechanisms, involving deranged insulin signalling pathways, but also by other, indirect to the hormone's actions, mechanisms. Different treatment modalities have been proposed to affect positively both the metabolic effects of insulin and ED. Weight loss has been shown to improve sensitivity to insulin as a result of either altered diet or exercise. Exercise has favourable effects on endothelial function in normal states and in states of disease, in men and women, and throughout the age spectrum and, hence, in IR states. Metformin improves sensitivity to insulin and most likely affects positively ED. Studies have shown that inhibitors of the renin-angiotensin system alter IR favourably, while Angiotensin converting enzyme (ACE) inhibitors and Angiotensin receptor type II (ATII) inhibitors improve ED. Ongoing studies are expected to shed more light on the issue of whether treatment with the thiazolidinediones results in improvement of endothelial function, along with the accepted function of improving insulin sensitivity. Finally, improved endothelial function by such treatments is not in itself proof of reduced risk for atherosclerosis; this remains to be directly tested in clinical trials.
Collapse
Affiliation(s)
- D Tousoulis
- Cardiology Unit, Hippokration Hospital, Athens University Medical School, Athens, Greece.
| | | | | | | |
Collapse
|
42
|
Imanishi T, Kobayashi K, Kuroi A, Ikejima H, Akasaka T. Pioglitazone inhibits angiotensin II-induced senescence of endothelial progenitor cell. Hypertens Res 2008; 31:757-65. [PMID: 18633188 DOI: 10.1291/hypres.31.757] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated whether a peroxisome proliferator-activated receptor (PPAR) agonist would effect the angiotensin II (Ang II)-induced senescence of endothelial progenitor cells (EPCs). EPCs were isolated from peripheral blood and characterized. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to assess gp91phox expression and angiotensin type 1 receptor (AT1R) levels. Immunofluorescence of nitrotyrosine provided evidence of peroxynitrite formation. Our data indicate that Ang II increased the expression of gp91phox mRNA, which was significantly diminished by pioglitazone, a PPARgamma agonist. Western blotting revealed that Ang II stimulated an increase in the gp91phox protein, whereas co-treatment with pioglitazone significantly reduced this increase. In addition, pioglitazone also inhibited Ang II-induced peroxynitrite formation. Interestingly, pioglitazone decreased the expressions of AT1R mRNA and protein. The exposure of cultured EPCs to Ang II (100 nmol/L) significantly accelerated the rate of senescence compared to that of the control cells during 14 d in culture, as determined by acidic beta-galactosidase staining. Ang II-induced EPC senescence was significantly inhibited by co-treatment with pioglitazone. Because cellular senescence is critically influenced by telomerase, which elongates telomeres, we also measured telomerase activity by means of PCR-ELISA-based assay. The results showed that Ang II significantly diminished telomerase activity, and this effect was significantly abolished by co-treatment with pioglitazone. In conclusion, pioglitazone inhibited Ang II-induced senescence of EPCs via down-regulation of the expression of AT1R.
Collapse
Affiliation(s)
- Toshio Imanishi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | |
Collapse
|
43
|
Briasoulis A, Tousoulis D, Stefanadis C. Anti-apoptotic agents for the treatment of vascular disease. Expert Opin Ther Pat 2008; 18:569-580. [DOI: 10.1517/13543776.18.6.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Ikejima H, Imanishi T, Tsujioka H, Kuroi A, Muragaki Y, Mochizuki S, Goto M, Yoshida K, Akasaka T. Effect of pioglitazone on nitroglycerin-induced impairment of nitric oxide bioavailability by a catheter-type nitric oxide sensor. Circ J 2008; 72:998-1002. [PMID: 18503229 DOI: 10.1253/circj.72.998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND We examined whether nitroglycerin (NTG)-induced impairment of nitric oxide (NO) bioavailability could be modified by a peroxisome proliferator-activated receptor (PPAR) gammaagonist. METHODS AND RESULTS Male New Zealand White rabbits were treated for 7 days with NTG patches, either alone or in combination with pioglitazone. Plasma NO concentration was measured with the catheter-type NO sensor located in the aorta. N(G)-methyl-L-arginine and acetylcholine (ACh) were infused into the aortic arch to measure the basal and ACh-induced plasma NO concentrations. Vascular nitrotyrosine and tetrahydrobiopterin (BH(4)) concentrations were measured by enzyme-linked immunosorbent assay and high-performance liquid chromatography with fluorescence detection, respectively. The negative effects of NTG, that is, the decrease in basal and ACh-induced NO production, were significantly suppressed by co-treatment with pioglitazone. NTG-induced increases in vascular nitrotyrosine and BH(4) concentrations were significantly decreased with co-treatment with pioglitazone. CONCLUSIONS NTG-induced impairment of basal and ACh-stimulated NO production might be prevented by the co-treatment with a PPAR gamma agonist, pioglitazone through suppressions of nitrosative stress.
Collapse
Affiliation(s)
- Hideyuki Ikejima
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kobayashi N, Ohno T, Yoshida K, Fukushima H, Mamada Y, Nomura M, Hirata H, Machida Y, Shinoda M, Suzuki N, Matsuoka H. Cardioprotective mechanism of telmisartan via PPAR-gamma-eNOS pathway in dahl salt-sensitive hypertensive rats. Am J Hypertens 2008; 21:576-81. [PMID: 18437150 DOI: 10.1038/ajh.2008.27] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recently, some investigators have shown that telmisartan, an angiotensin II (Ang II)-receptor blocker (ARB), is a partial agonist of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). We investigate whether telmisartan improves cardiovascular remodeling associated with the production of endothelial nitric oxide synthase (eNOS) through PPAR-gamma, inhibits the Rho-kinase pathway, and suppresses oxidative stress in Dahl salt-sensitive (DS) hypertensive rats. METHODS Telmisartan (1 mg/kg per day) or telmisartan plus PPAR-gamma inhibitor, GW9662 (1 mg/kg per day) was administered from the age of 6-11 weeks. Age-matched male Dahl salt-resistant (DR) rats served as a control group. RESULTS The levels of eNOS and PPAR-gamma expression, and eNOS phosphorylation were significantly lower in DS rats than in DR rats. Chronic telmisartan treatment in DS rats significantly increased these parameters, but not telmisartan plus GW9662. Telmisartan effectively inhibited the vascular lesion formation such as medial thickness and perivascular fibrosis, but not telmisartan plus GW9662. Moreover, upregulated RhoA protein, Rho-kinase mRNA, and myosin light-chain phosphorylation in DS rats was decreased by telmisartan to a similar degree as observed after treatment with Y-27632, a selective Rho-kinase inhibitor. In addition, NAD(P)H oxidase p22phox, p47phox, gp91phox expression, and mitogen-activated protein kinase and its downstream effector p70 S6 kinase phosphorylation in DS rats was also inhibited by telmisartan. CONCLUSIONS These results suggest that the cardioprotective mechanism of telmisartan may be partly due to improvement of endothelial function associated with PPAR-gamma-eNOS, oxidative stress, and Rho-kinase pathway.
Collapse
|
46
|
Effects of telmisartan, a unique angiotensin receptor blocker with selective peroxisome proliferator-activated receptor-γ-modulating activity, on nitric oxide bioavailability and atherosclerotic change. J Hypertens 2008; 26:964-72. [DOI: 10.1097/hjh.0b013e3282f52c36] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Rizos CV, Liberopoulos EN, Mikhailidis DP, Elisaf MS. Pleiotropic effects of thiazolidinediones. Expert Opin Pharmacother 2008; 9:1087-108. [DOI: 10.1517/14656566.9.7.1087] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Rohatgi A, McGuire DK. Effects of the thiazolidinedione medications on micro- and macrovascular complications in patients with diabetes--update 2008. Cardiovasc Drugs Ther 2008; 22:233-40. [PMID: 18373186 DOI: 10.1007/s10557-008-6093-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/24/2008] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The thiazolidinedione (TZD) drugs, including pioglitazone (Actos) and rosiglitazone (Avandia), are commonly prescribed in patients with type 2 diabetes mellitus (T2DM), largely due to their favorable effects on hyperglycemia, insulin sensitivity, and cardiometabolic profile. However, the data are sparse assessing the effects of TZDs on micro- and macrovascular disease risk. DISCUSSION Although no studies have been published on microvascular clinical outcomes, both TZDs significantly reduce the urine albumin-to-creatinine ratio. TZDs have consistently been associated with favorable effects on atherosclerosis and cardiovascular disease (CVD) risk. Only one study has been published to date specifically designed to assess the effects of a TZD (pioglitazone) on macrovascular outcomes, the PROactive trial. In this trial, pioglitazone versus placebo was associated with a non-significant 10% reduction in the combined primary endpoint of mortality, coronary and peripheral vascular events, and revascularizations. No individual trial has been published specifically assessing the CVD effects of rosiglitazone, but several meta-analyses and a published interim report from an ongoing trial (RECORD) point to safety concerns regarding rosiglitazone use and the risk of myocardial infarctions (MI), leading to amplified warnings in the product labeling for rosiglitazone to reflect these concerns. CONCLUSION All published trials and meta-analyses of TZDs have consistently shown increased risk of heart failure (HF) with both TZDs, though the actual placebo-subtracted incidence of HF is low (<0.5% per year). The initiation of either TZD is contraindicated in patients with NHYA class III or IV HF, and cautions exist for their use in any patient with heart failure. Much uncertainty remains regarding the aggregate CVD effects of the TZDs, and several trials are presently underway to further address these issues.
Collapse
Affiliation(s)
- Anand Rohatgi
- Cardiovascular Division, University of Texas Southwestern Medical Center, Dallas, TX 75235-9047, USA
| | | |
Collapse
|
49
|
Hadi HAR, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 2008. [PMID: 18200806 DOI: 10.2147/vhrm.s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is associated with an increased risk of cardiovascular disease, even in the presence of intensive glycemic control. Substantial clinical and experimental evidence suggest that both diabetes and insulin resistance cause a combination of endothelial dysfunctions, which may diminish the anti-atherogenic role of the vascular endothelium. Both insulin resistance and endothelial dysfunction appear to precede the development of overt hyperglycemia in patients with type 2 diabetes. Therefore, in patients with diabetes or insulin resistance, endothelial dysfunction may be a critical early target for preventing atherosclerosis and cardiovascular disease. Microalbuminuria is now considered to be an atherosclerotic risk factor and predicts future cardiovascular disease risk in diabetic patients, in elderly patients, as well as in the general population. It has been implicated as an independent risk factor for cardiovascular disease and premature cardiovascular mortality for patients with type 1 and type 2 diabetes mellitus, as well as for patients with essential hypertension. A complete biochemical understanding of the mechanisms by which hyperglycemia causes vascular functional and structural changes associated with the diabetic milieu still eludes us. In recent years, the numerous biochemical and metabolic pathways postulated to have a causal role in the pathogenesis of diabetic vascular disease have been distilled into several unifying hypotheses. The role of chronic hyperglycemia in the development of diabetic microvascular complications and in neuropathy has been clearly established. However, the biochemical or cellular links between elevated blood glucose levels, and the vascular lesions remain incompletely understood. A number of trials have demonstrated that statins therapy as well as angiotensin converting enzyme inhibitors is associated with improvements in endothelial function in diabetes. Although antioxidants provide short-term improvement of endothelial function in humans, all studies of the effectiveness of preventive antioxidant therapy have been disappointing. Control of hyperglycemia thus remains the best way to improve endothelial function and to prevent atherosclerosis and other cardiovascular complications of diabetes. In the present review we provide the up to date details on this subject.
Collapse
Affiliation(s)
- Hadi A R Hadi
- Department of Cardiology and Cardiovascular Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, State of Qatar, UAE.
| | | |
Collapse
|
50
|
Affiliation(s)
- Darren K McGuire
- Cardiovascular Division and Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, 5909 Harry Hines Blvd, Dallas, TX 75235-9047, USA.
| | | |
Collapse
|