1
|
Morya AK, Ramesh PV, Nishant P, Kaur K, Gurnani B, Heda A, Salodia S. Diabetic retinopathy: A review on its pathophysiology and novel treatment modalities. World J Methodol 2024; 14:95881. [DOI: 10.5662/wjm.v14.i4.95881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/26/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic non-communicable disease with the ability to cause serious microvascular and macrovascular complications throughout the body, including in the eye. Diabetic retinopathy (DR), present in one-third of patients with diabetes, is a vision-threatening complication caused by uncontrolled diabetes, which greatly affects the retinal blood vessels and the light-sensitive inner retina, eventually leading to blindness. Several epidemiological studies elucidate that DR can vary by age of onset, duration, types of diabetes, and ethnicity. Recent studies show that the pathogenesis of diabetic retinopathy has spread its roots beyond merely being the result of hyperglycemia. The complexity of its etiopathology and diagnosis makes therapeutic intervention challenging. This review throws light on the pathological processes behind DR, the cascade of events that follow it, as well as the available and emerging treatment options.
Collapse
Affiliation(s)
- Arvind Kumar Morya
- Head of the Department, Department of Ophthalmology, All India Institute of Medical Sciences, Hyderabad 508126, Telangana, India
| | - Prasanna Venkatesh Ramesh
- Glaucoma Medical Officer, Department of Glaucoma and Research, Mahathma Eye Hospital Private Limited, Trichy 620017, Tamil Nadu, India
| | - Prateek Nishant
- Department of Ophthalmology, ESIC Medical College, Patna 801103, Bihar, India
| | - Kirandeep Kaur
- Department of Pediatric Ophthalmology and Strabismus, Gomabai Netralaya and Research Centre, Neemuch 458441, Madhya Pradesh, India
| | - Bharat Gurnani
- Cornea and Refractive Services, Gomabai Netralaya and Research Centre, Neemuch 458441, Madhya Pradesh, India
| | - Aarti Heda
- Department of Ophthalmology, National Institute of Ophthalmology, Pune 411000, Maharashtra, India
| | - Sarika Salodia
- Global Medical Safety, Lundbeck, Singapore 569933, Singapore, Singapore
| |
Collapse
|
2
|
Rebelo AP, Abad C, Dohrn MF, Li JJ, Tieu EK, Medina J, Yanick C, Huang J, Zotter B, Young JI, Saporta M, Scherer SS, Walz K, Zuchner S. SORD-deficient rats develop a motor-predominant peripheral neuropathy unveiling novel pathophysiological insights. Brain 2024; 147:3131-3143. [PMID: 38538210 DOI: 10.1093/brain/awae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 04/09/2024] Open
Abstract
Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect ∼10 000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord-/-, Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioural tests as well as biochemical, physiological and comprehensive histological examinations. Sord-/- rats had remarkably increased levels of sorbitol in serum, CSF and peripheral nerve. Moreover, serum from Sord-/- rats contained significantly increased levels of neurofilament light chain, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord-/- animals starting at ∼7 months of age. Gait analysis evaluated with video motion-tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding-enlarged 'ballooned' myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord-/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Clemer Abad
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Jian J Li
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan K Tieu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jessica Medina
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher Yanick
- Graduate Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jingyu Huang
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brendan Zotter
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherina Walz
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- IQUIBICEN-CONICET, Faculty of Exact and Natural Sciences-University of Buenos Aires, Buenos Aires C1428EG4, Argentina
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Mendonca J, Boloor A, Manoj MA, Singh T, Correa TL. Whole blood viscosity and its association with the presence and severity of hearing loss and other microangiopathies in Indian patients with type 2 diabetes mellitus. Porto Biomed J 2024; 9:267. [PMID: 39416597 PMCID: PMC11473063 DOI: 10.1097/j.pbj.0000000000000267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Background/Aims Although studies correlating idiopathic sensorineural hearing loss (SNHL) to whole blood viscosity (WBV) have been conducted, no such study has been done in diabetic patients in whom WBV is said to be altered. Therefore, we aimed to investigate the potential association between calculated WBV and the presence and severity of SNHL and other microangiopathies in Indian patients with type 2 diabetes mellitus (T2DM). Methods A cross-sectional study was carried out in the Kasturba Medical College (KMC) group of hospitals among individuals who were older than 18 years and had T2DM. The included patients underwent pure-tone audiometry, ophthalmoscopy, monofilament test, and routine blood investigations for diabetes. WBV was derived using hematocrit and total protein with a validated formula. Results Of the total 60 participants, 73.3% had SNHL, which was predominantly bilateral and moderate. There was a statistically significant association between glycemic control and the degree of SNHL. The associations between SNHL and HbA1C levels and random plasma glucose were both statistically significant (P = .001). The statistical association between WBV and the degree of SNHL was not significant (P = .056). Although higher mean blood viscosity was noted in individuals with diabetic retinopathy and neuropathy than those without, the associations between blood viscosity and the presence of retinopathy, neuropathy, and nephropathy were not statistically significant (P = .238, P = .621, and P = .656; respectively). Finally, the associations between WBV and glycemic control were also not significant (P = .652 for random plasma glucose and P = .928 for HbA1C). Conclusion This study concludes that SNHL is highly prevalent in diabetes, and poor glycemic control is associated with its worsening. Elevations in WBV, if present, are not affected by poor glycemic control and do not appear to significantly contribute to the development of complications of the microvasculature in T2DM.
Collapse
Affiliation(s)
- Jane Mendonca
- Department of Internal Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Archith Boloor
- Department of Internal Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Matthew A. Manoj
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tanya Singh
- Department of Internal Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Tulio L. Correa
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Arlt A, Akova-Öztürk E, Schirmacher A, Schlüter B, Rust S, Meyer Zu Hörste G, Wiendl H, Wiethoff S. SORDD: mutation frequency and phenotype in predominantly axonal Charcot-Marie-Tooth disease of undefined genetic cause. J Neurogenet 2024; 38:35-40. [PMID: 38975976 DOI: 10.1080/01677063.2024.2374898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Pathogenic, biallelic variants in SORD were identified in 2020 as a novel cause for autosomal-recessive Charcot-Marie-Tooth disease (CMT) type 2, an inherited neuropathy. SORD codes for the enzyme sorbitol dehydrogenase. Loss of this enzyme's activity leads to an increase of sorbitol in serum. We retrospectively screened 166 patients with axonal neuropathy (predominantly CMT type 2, but including intermediate form of CMT and distal hereditary motor neuropathy (dHMN)) without identified genetic etiology for SORD mutations at a single large German neuromuscular center. Clinical and electrophysiology exam findings were analyzed for genotype-phenotype correlation. Five patients of the total cohort of 166 patients harbored pathogenic variants in SORD (3%). The homozygous frameshift variant c.757delG (p.Ala253Glnfs*27) was the most common (4/5). One additional case carried this variant on one allele only and an additional pathogenic missense variant c.458C > A (p.Ala153Asp) on the other allele. Age of onset ranged from early infancy to mid-twenties, and phenotypes comprised axonal CMT (4) and dHMN (1). Our findings strengthen the importance of screening for pathogenic variants in SORD, especially in patients with genetically unconfirmed axonal neuropathy, especially CMT type 2 and dHMN.
Collapse
Affiliation(s)
- Annabelle Arlt
- Institute of Human Genetics, University of Münster, Münster, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Esra Akova-Öztürk
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | | | - Stephan Rust
- UKM Laboratory, University of Münster, Münster, Germany
- Department of General Pediatrics, University of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sarah Wiethoff
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
- UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
5
|
Dmitrieva NI, Boehm M, Yancey PH, Enhörning S. Long-term health outcomes associated with hydration status. Nat Rev Nephrol 2024; 20:275-294. [PMID: 38409366 DOI: 10.1038/s41581-024-00817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Body water balance is determined by fundamental homeostatic mechanisms that maintain stable volume, osmolality and the composition of extracellular and intracellular fluids. Water balance is maintained by multiple mechanisms that continuously match water losses through urine, the skin, the gastrointestinal tract and respiration with water gains achieved through drinking, eating and metabolic water production. Hydration status is determined by the state of the water balance. Underhydration occurs when a decrease in body water availability, due to high losses or low gains, stimulates adaptive responses within the water balance network that are aimed at decreasing losses and increasing gains. This stimulation is also accompanied by cardiovascular adjustments. Epidemiological and experimental studies have linked markers of low fluid intake and underhydration - such as increased plasma concentration of vasopressin and sodium, as well as elevated urine osmolality - with an increased risk of new-onset chronic diseases, accelerated aging and premature mortality, suggesting that persistent activation of adaptive responses may be detrimental to long-term health outcomes. The causative nature of these associations is currently being tested in interventional trials. Understanding of the physiological responses to underhydration may help to identify possible mechanisms that underlie potential adverse, long-term effects of underhydration and inform future research to develop preventative and treatment approaches to the optimization of hydration status.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA.
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Paul H Yancey
- Biology Department, Whitman College, Walla Walla, Washington, USA
| | - Sofia Enhörning
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Parwani K, Mandal P. Advanced glycation end products and insulin resistance in diabetic nephropathy. VITAMINS AND HORMONES 2024; 125:117-148. [PMID: 38997162 DOI: 10.1016/bs.vh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India.
| |
Collapse
|
7
|
Dănilă AI, Ghenciu LA, Stoicescu ER, Bolintineanu SL, Iacob R, Săndesc MA, Faur AC. Aldose Reductase as a Key Target in the Prevention and Treatment of Diabetic Retinopathy: A Comprehensive Review. Biomedicines 2024; 12:747. [PMID: 38672103 PMCID: PMC11047946 DOI: 10.3390/biomedicines12040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The escalating global prevalence of diabetes mellitus (DM) over the past two decades has led to a persistent high incidence of diabetic retinopathy (DR), necessitating screening for early symptoms and proper treatment. Effective management of DR aims to decrease vision impairment by controlling modifiable risk factors including hypertension, obesity, and dyslipidemia. Moreover, systemic medications and plant-based therapy show promise in advancing DR treatment. One of the key mechanisms related to DR pathogenesis is the polyol pathway, through which aldose reductase (AR) catalyzes the conversion of glucose to sorbitol within various tissues, including the retina, lens, ciliary body and iris. Elevated glucose levels activate AR, leading to osmotic stress, advanced glycation end-product formation, and oxidative damage. This further implies chronic inflammation, vascular permeability, and angiogenesis. Our comprehensive narrative review describes the therapeutic potential of aldose reductase inhibitors in treating DR, where both synthetic and natural inhibitors have been studied in recent decades. Our synthesis aims to guide future research and clinical interventions in DR management.
Collapse
Affiliation(s)
- Alexandra-Ioana Dănilă
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
| | - Laura Andreea Ghenciu
- Department of Functional Sciences, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Doctoral School, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
- Department of Radiology and Medical Imaging, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Sorin Lucian Bolintineanu
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
| | - Roxana Iacob
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
- Doctoral School, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Mihai-Alexandru Săndesc
- Department of Orthopedics and Traumatology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Alexandra Corina Faur
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
| |
Collapse
|
8
|
Guo Y, Lu J, Zhu L, Hao X, Huang K. Association between hyperglycemia during pregnancy and offspring's refractive error: A focused review. Eur J Ophthalmol 2024:11206721241238389. [PMID: 38523364 DOI: 10.1177/11206721241238389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This review article explores the relationship between hyperglycemia during pregnancy and the visual development of offspring, specifically focusing on refractive error. The authors conducted a comprehensive search for relevant articles in various databases and assessed the methodological quality of the included studies. The findings consistently indicate that hyperglycemia during pregnancy can have a detrimental impact on the structural and functional aspects of visual development in offspring. The intrauterine hyperglycemic environment appears to negatively affect the retina and lens, leading to refractive errors. In conclusion, there is likely an association between hyperglycemia during pregnancy and the development of refractive errors in offspring.
Collapse
Affiliation(s)
- Yufan Guo
- School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, Anhui, China
| | - Jingru Lu
- School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, Anhui, China
| | - Linlin Zhu
- School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, Anhui, China
| | - Xuemei Hao
- School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Courset, Hefei, Anhui, China
| |
Collapse
|
9
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
10
|
Rebelo AP, Abad C, Dohrn MF, Li JJ, Tieu E, Medina J, Yanick C, Huang J, Zotter B, Young JI, Saporta M, Scherer SS, Walz K, Zuchner S. Sord deficient rats develop a motor-predominant peripheral neuropathy unveiling novel pathophysiological insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570001. [PMID: 38106042 PMCID: PMC10723320 DOI: 10.1101/2023.12.05.570001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect approximately 10,000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord -/- , Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioral tests as well as biochemical, physiological, and comprehensive histological examinations. Sord -/- rats had remarkably increased levels of sorbitol in serum, cerebral spinal fluid (CSF), and peripheral nerve. Moreover, serum from Sord -/- rats contained significantly increased levels of neurofilament light chain, NfL, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord -/- animals starting at ∼7 months of age. Gait analysis evaluated with video motion tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding - enlarged "ballooned" myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord -/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.
Collapse
|
11
|
Amanfo AF, Kyei S, Boakye YD, Akoto CO, Addo JK, Yeboah KO, Osafo N. The Aqueous Stem Bark Extract of Alstonia boonei Exhibits Anticataract Activity in Sprague Dawley Rat. SCIENTIFICA 2023; 2023:5524137. [PMID: 37560323 PMCID: PMC10409581 DOI: 10.1155/2023/5524137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In Africa, Alstonia boonei is used folklorically for the management of the multitude of conditions including cataract, which accounts for 50% of cases of blindness in the region. The current study set out to probe the traditional use of the aqueous extract of Alstonia boonei stem bark (ABE) as an anticataract remedy using Sprague Dawley rat models. We investigated the probable phytochemical constituents in the extract, in vitro antioxidant potential, and its in vitro aldose reductase inhibition. For the anticataract investigations, diabetic cataract was induced using galactose in 3-week-old Sprague Dawley rats, and age-related cataract was induced by the administration of sodium selenite to 10-day-old rat pups. Cataract scores in both models were determined after treatment with 30, 100, and 300 mgkg-1 doses of ABE and 10 mlkg-1 of distilled water. Lens glutathione, total lens protein, soluble lens proteins (alpha-A) crystallin, and aquaporin 0 levels in the enucleated lens homogenates were determined. Changes in lens to body weight were also determined with histopathological analysis done on the lenses in the selenite-induced cataract model. The presence of alkaloids, tannins, flavonoids, glycosides, and triterpenoids was identified in the extract. The extract inhibited aldose reductase activity with IC50 of 92.30 μgml-1. The 30, 100, and 300 mgkg-1ABE-treated rats recorded significantly (p < 0.05) reduced cataract scores indicating a delay in cataractogenesis in galactose-induced cataract and in selenite-induced cataractogenesis as well. Markers of lens transparency such as AQP0, alpha-A crystallin, and total lens proteins and lens glutathione levels were significantly (p < 0.05) preserved. In conclusion, this study establishes the anticataract potential of the aqueous stem bark extract of Alstonia boonei in Sprague Dawley rat models.
Collapse
Affiliation(s)
- Adwoa Frema Amanfo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Kyei
- Department of Optometry and Vision Science, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, University of Cape Coast, Cape Coast, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, College of Science, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | | | - Kofi Oduro Yeboah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Newman Osafo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
12
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
13
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
14
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|
15
|
Rao M, Huang YK, Liu CC, Meadows C, Cheng HC, Zhou M, Chen YC, Xia X, Goldberg JL, Williams AM, Kuwajima T, Chang KC. Aldose reductase inhibition decelerates optic nerve degeneration by alleviating retinal microglia activation. Sci Rep 2023; 13:5592. [PMID: 37019993 PMCID: PMC10076364 DOI: 10.1038/s41598-023-32702-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
As part of the central nervous system (CNS), retinal ganglion cells (RGCs) and their axons are the only neurons in the retina that transmit visual signals from the eye to the brain via the optic nerve (ON). Unfortunately, they do not regenerate upon injury in mammals. In ON trauma, retinal microglia (RMG) become activated, inducing inflammatory responses and resulting in axon degeneration and RGC loss. Since aldose reductase (AR) is an inflammatory response mediator highly expressed in RMG, we investigated if pharmacological inhibition of AR can attenuate ocular inflammation and thereby promote RGC survival and axon regeneration after ON crush (ONC). In vitro, we discovered that Sorbinil, an AR inhibitor, attenuates BV2 microglia activation and migration in the lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) treatments. In vivo, Sorbinil suppressed ONC-induced Iba1 + microglia/macrophage infiltration in the retina and ON and promoted RGC survival. Moreover, Sorbinil restored RGC function and delayed axon degeneration one week after ONC. RNA sequencing data revealed that Sorbinil protects the retina from ONC-induced degeneration by suppressing inflammatory signaling. In summary, we report the first study demonstrating that AR inhibition transiently protects RGC and axon from degeneration, providing a potential therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Chandler Meadows
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Hui-Chun Cheng
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Mengli Zhou
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Andrew M Williams
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA.
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
16
|
The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life (Basel) 2023; 13:life13020539. [PMID: 36836895 PMCID: PMC9967500 DOI: 10.3390/life13020539] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic Nephropathy (DN) is a serious complication of type I and II diabetes. It develops from the initial microproteinuria to end-stage renal failure. The main initiator for DN is chronic hyperglycemia. Hyperglycemia (HG) can stimulate the resident and non-resident renal cells to produce humoral mediators and cytokines that can lead to functional and phenotypic changes in renal cells and tissues, interference with cell growth, interacting proteins, advanced glycation end products (AGEs), etc., ultimately resulting in glomerular and tubular damage and the onset of kidney disease. Therefore, poor blood glucose control is a particularly important risk factor for the development of DN. In this paper, the types and mechanisms of DN cell damage are classified and summarized by reviewing the related literature concerning the effect of hyperglycemia on the development of DN. At the cellular level, we summarize the mechanisms and effects of renal damage by hyperglycemia. This is expected to provide therapeutic ideas and inspiration for further studies on the treatment of patients with DN.
Collapse
|
17
|
Abstract
Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
18
|
Januzzi JL, Butler J, Del Prato S, Ezekowitz JA, Ibrahim NE, Lam CSP, Lewis GD, Marwick TH, Rosenstock J, Tang WHW, Zannad F, Lawson F, Perfetti R, Urbinati A. Rationale and design of the Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure Trial (ARISE-HF) in patients with high-risk diabetic cardiomyopathy. Am Heart J 2023; 256:25-36. [PMID: 36372245 DOI: 10.1016/j.ahj.2022.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DbCM) is a specific form of heart muscle disease that may result in substantial morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). Hyperactivation of the polyol pathway is one of the primary mechanisms in the pathogenesis of diabetic complications, including development of DbCM. There is an unmet need for therapies targeting the underlying metabolic abnormalities that drive this form of Stage B heart failure (HF). METHODS Aldose reductase (AR) catalyzes the first and rate-limiting step in the polyol pathway, and AR inhibition has been shown to reduce diabetic complications, including DbCM in animal models and in patients with DbCM. Previous AR inhibitors (ARIs) were limited by poor specificity resulting in unacceptable tolerability and safety profile. AT-001 is a novel investigational highly specific ARI with higher binding affinity and greater selectivity than previously studied ARIs. ARISE-HF (NCT04083339) is an ongoing Phase 3 randomized, placebo-controlled, double blind, global clinical study to investigate the efficacy of AT-001 (1000 mg twice daily [BID] and 1500 mg BID) in 675 T2DM patients with DbCM at high risk of progression to overt HF. ARISE-HF assesses the ability of AT-001 to improve or prevent decline in exercise capacity as measured by functional capacity (changes in peak oxygen uptake [peak VO2]) over 15 (and possibly 27) months of treatment. Additional endpoints include percentage of patients progressing to overt HF, health status metrics, echocardiographic measurements, and changes in cardiacbiomarkers. RESULTS The ARISE-HF Trial is fully enrolled. CONCLUSIONS This report describes the rationale and study design of ARISE-HF.
Collapse
Affiliation(s)
- James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Baim Institute for Clinical Research and Harvard Medical School, Boston, MA.
| | - Javed Butler
- University of Mississippi Medical Center, Jackson, MS; Baylor Scott and White Institute, Dallas, TX
| | - Stefano Del Prato
- Department of Clinical & Experimental Medicine, Section of Diabetes, University of Pisa, Pisa, Italy
| | | | | | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, MA
| | | | | | - W H Wilson Tang
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Faiez Zannad
- Université de Lorraine, Inserm CIC and CHRU, Nancy, France
| | | | | | | |
Collapse
|
19
|
Frema Amanfo A, Kyei S, Duah Boakye Y, Osei Akoto C, Kwaku Addo J, Oduro Yeboah K, Osafo N. Anticataract Effect of the Aqueous Extract of the Flowers of Aspilia africana in Murine Model of Diabetic and Age-Related Cataracts. Adv Pharmacol Pharm Sci 2023; 2023:7867497. [PMID: 37152635 PMCID: PMC10159747 DOI: 10.1155/2023/7867497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Background The use of Aspilia africana in traditional medicine for the management of ocular diseases has been reported in India and some indigenous communities of Africa. The aim of this study was to investigate the aqueous extract of the flowers of A. africana (AAE) as an anticataract remedy using murine models of diabetic and senile cataracts. Methods Preliminary phytochemical screening of the extract, in vitro antioxidant assays, and in vitro aldose reductase inhibitory activity were performed. For anticataract investigations of the extracts, diabetic cataract was induced by galactose administration in 3-week-old Sprague Dawley rats. The evaluation of experimentally induced age-related cataract was performed by administering sodium selenite to 10-day-old rat pups. Results The phytochemical analysis revealed the presence of alkaloids, tannins, flavonoids, glycosides, and saponins. In vitro aldose reductase inhibitory property of the extract on rat lenses revealed that the AAE inhibited the enzyme activity with IC50 of 12.12 µg/ml. For the anticataract investigations, 30, 100, and 300 mg·kg-1AAE-treated rats recorded significantly low (p ≤ 0.0001) cataract scores compared to the negative control rats, indicating a delay in cataractogenesis from the second week of treatment in the galactose-induced cataractogenesis. Similarly, the treatment with AAE caused a significant reduction (p ≤ 0.0001) in cataract scores compared to the negative control rats in the selenite-induced cataractogenesis. Markers of lens transparency, such as aquaporin 0, alpha-A crystallin, and total lens proteins and lens glutathione levels, were significantly preserved (p ≤ 0.05-0.0001) in each cataract model after AAE treatment. Conclusion The study established the anticataract potential of the aqueous extract of flowers of A. africana in murine models, hence giving scientific credence to its folkloric use in the management of cataract.
Collapse
Affiliation(s)
- Adwoa Frema Amanfo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Kyei
- Department of Optometry and Vision Science, University of Cape Coast, Cape Coast, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, College of Science, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | | | - Kofi Oduro Yeboah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Newman Osafo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
20
|
No Association between the SORD Gene and Amyotrophic Lateral Sclerosis in a Chinese Cohort. J Clin Med 2022; 11:jcm11226834. [PMID: 36431311 PMCID: PMC9697221 DOI: 10.3390/jcm11226834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. Recently a juvenile ALS patient was reported carrying the c.757delG mutation of the sorbitol dehydrogenase (SORD) gene, which was also a related mutation of Charcot-Marie-Tooth disease (CMT) and distal hereditary motor neuropathy (dHMN). ALS shares pathogenesis and overlapping genes with CMT and dHMN. We used whole-exome sequencing technology to screen the full-length SORD gene in 601 Chinese sporadic ALS patients and 174 controls without a history of neurological diseases. No SORD pathogenic variants were identified in the ALS patients. Our current results did not find an association between SORD and ALS in Chinese patients, and further studies will be required.
Collapse
|
21
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
22
|
Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022; 19:581-596. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yi Mei
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
23
|
Sano H, Nakamura A, Yamane M, Niwa H, Nishimura T, Araki K, Takemoto K, Ishiguro KI, Aoki H, Kato Y, Kojima M. The polyol pathway is an evolutionarily conserved system for sensing glucose uptake. PLoS Biol 2022; 20:e3001678. [PMID: 35687590 PMCID: PMC9223304 DOI: 10.1371/journal.pbio.3001678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/23/2022] [Accepted: 05/17/2022] [Indexed: 01/20/2023] Open
Abstract
Cells must adjust the expression levels of metabolic enzymes in response to fluctuating nutrient supply. For glucose, such metabolic remodeling is highly dependent on a master transcription factor ChREBP/MondoA. However, it remains elusive how glucose fluctuations are sensed by ChREBP/MondoA despite the stability of major glycolytic pathways. Here, we show that in both flies and mice, ChREBP/MondoA activation in response to glucose ingestion involves an evolutionarily conserved glucose-metabolizing pathway: the polyol pathway. The polyol pathway converts glucose to fructose via sorbitol. It has been believed that this pathway is almost silent, and its activation in hyperglycemic conditions has deleterious effects on human health. We show that the polyol pathway regulates the glucose-responsive nuclear translocation of Mondo, a Drosophila homologue of ChREBP/MondoA, which directs gene expression for organismal growth and metabolism. Likewise, inhibition of the polyol pathway in mice impairs ChREBP’s nuclear localization and reduces glucose tolerance. We propose that the polyol pathway is an evolutionarily conserved sensing system for glucose uptake that allows metabolic remodeling. The polyol pathway, which converts glucose to fructose via sorbitol, was thought to be largely silent, and only the negative effects of its activation were known. This study reveals that the polyol pathway is involved in glucose-responsive activation of Mondo/ChREBP-mediated metabolic remodeling in both mice and flies.
Collapse
Affiliation(s)
- Hiroko Sano
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
- * E-mail:
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Mariko Yamane
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Takashi Nishimura
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Kazumasa Takemoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto, Japan
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Kei-ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masayasu Kojima
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| |
Collapse
|
24
|
Frudd K, Sivaprasad S, Raman R, Krishnakumar S, Revathy YR, Turowski P. Diagnostic circulating biomarkers to detect vision-threatening diabetic retinopathy: Potential screening tool of the future? Acta Ophthalmol 2022; 100:e648-e668. [PMID: 34269526 DOI: 10.1111/aos.14954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of diabetes in developing and developed countries, the socio-economic burden of diabetic retinopathy (DR), the leading complication of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the leading causes of blindness in working-age adults worldwide. Robust methodologies exist to detect and monitor DR; however, these rely on specialist imaging techniques and qualified practitioners. This makes detecting and monitoring DR expensive and time-consuming, which is particularly problematic in developing countries where many patients will be remote and have little contact with specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic until late in the pathology. Therefore, early identification and stratification of vision-threatening DR (VTDR) is highly desirable and will ameliorate the global impact of this disease. A simple, reliable and more cost-effective test would greatly assist in decreasing the burden of DR around the world. Here, we evaluate and review data on circulating protein biomarkers, which have been verified in the context of DR. We also discuss the challenges and developments necessary to translate these promising data into clinically useful assays, to detect VTDR, and their potential integration into simple point-of-care testing devices.
Collapse
Affiliation(s)
- Karen Frudd
- Institute of Ophthalmology University College London London UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology University College London London UK
- NIHR Moorfields Biomedical Research Centre Moorfields Eye Hospital London UK
| | - Rajiv Raman
- Vision Research Foundation Sankara Nethralaya Chennai Tamil Nadu India
| | | | | | - Patric Turowski
- Institute of Ophthalmology University College London London UK
| |
Collapse
|
25
|
Loponte HF, Oliveira IA, Rodrigues BC, Nunes-da-Fonseca R, Mohana-Borges R, Alisson-Silva F, Dias WB, Todeschini AR. Hyperglycemia alters N-glycans on colon cancer cells through increased production of activated monosaccharides. Glycoconj J 2022; 39:663-675. [PMID: 35380345 DOI: 10.1007/s10719-022-10057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022]
Abstract
Diabetes Mellitus (DM) is both, correlated and a known risk factor for colorectal cancer (CRC). Besides favoring the incidence of CRC, DM also accelerates its progression, worsening its prognosis. Previously, hyperglycemia, the DM hallmark, has been shown to lead to aberrant glycosylation of CRC cells, heightening their malignancy both in vivo and in vitro. Here we use mass spectrometry to elucidate the composition and putative structures of N-glycans expressed by MC38 cultured in normoglycemic (LG) and hyperglycemic-like conditions (HG). N-glycans, 67, were identified in MC38 cells cultured in LG and HG. The cells grown in HG showed a greater abundance of N-glycans when compared to LNG cells, without changes in the proportion of sialylated, fucosylated and mannosylated N-glycans. Among the identified N-glycans, 16 were differentially expressed, mostly mannosylated and fucosylated, with a minority of them being sialylated. Metabolomics analysis indicates that the alterations observed in the N-glycosylation may be mostly due to increase of the activated monosaccharides pool, through an increased glucose entrance into the cells. The alterations found here corroborate data from the literature regarding the progression of CRC, advocating for development or repositioning of effective treatments against CRC in diabetic patients.
Collapse
Affiliation(s)
- H F Loponte
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.,Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - I A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - B C Rodrigues
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, 27965‑550, Macaé, Brazil
| | - R Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, 27965‑550, Macaé, Brazil
| | - R Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - F Alisson-Silva
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - W B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - A R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Sivakumar PM, Prabhakar PK, Cetinel S, R N, Prabhawathi V. Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Mini Rev Med Chem 2022; 22:1828-1846. [PMID: 35264089 DOI: 10.2174/1389557522666220309140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients develop diabetic neuropathy eventually. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being done on natural products including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of an important of flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and c,lass eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc. are also covered in this review article.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | | | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Neelakandan R
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India
| | - Veluchamy Prabhawathi
- Multidisciplinary Research Unit, Coimbatore Medical College, Coimbatore - 641014, Tamil Nadu, India
| |
Collapse
|
27
|
Nabovati P, Khabazkhoob M, Fayaz F, Rajabi S, Asharlous A. Vision-related symptoms, accommodative and binocular vision performance in young diabetics vs. normal controls. Ophthalmic Physiol Opt 2022; 42:904-912. [PMID: 35238412 DOI: 10.1111/opo.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare accommodative and binocular vision performance between young diabetic subjects and normal controls, and to investigate the correlation of accommodative/binocular indices with the severity of diabetes. METHODS Thirty young subjects with diabetes mellitus (DM) and 30 age-matched normal controls were recruited in this hospital-based cross-sectional study. DM was diagnosed by a haemoglobin A1c (HbA1c) higher than 6.5%. The status of vision-related symptoms was examined by the convergence insufficiency symptoms survey (CISS). All participants underwent a complete optometric examination including visual acuity measurement, objective and subjective refraction, accommodative and binocular vision assessments. RESULTS All study participants were between 18 and 40 years of age. There were no statistically significant differences in best-corrected visual acuity (BCVA), sphere, cylinder and spherical equivalent refraction (SE) between the diabetes and control groups. The median near point of convergence (NPC) was significantly more remote in diabetics compared with the control group. Mean accommodative amplitude (AA) and vergence facility (VF) and the median monocular accommodative facility (AF) were significantly lower in diabetic subjects compared with normal controls. In addition, the median accommodative lag in the diabetic group was significantly higher than the control group. A significantly higher percentage of the diabetic group were symptomatic (26.6%), compared with the controls (6.6%). The NPC and accommodative lag showed a significant positive correlation with the HbA1c level, while VF, AA and AF exhibited a significant negative correlation with HbA1c. CONCLUSION Aspects of accommodative and binocular vision performance are strongly affected by DM. There is also a significant correlation between accommodative and binocular disorders with the severity of DM. A significant percentage of young subjects with DM have severe vision-related symptoms.
Collapse
Affiliation(s)
- Payam Nabovati
- Department of Optometry, School of Rehabilitation Sciences, Rehabilitation Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Basic Sciences Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Fayaz
- Department of Optometry, School of Rehabilitation Sciences, Rehabilitation Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amir Asharlous
- Department of Optometry, School of Rehabilitation Sciences, Rehabilitation Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Starace V, Battista M, Brambati M, Cavalleri M, Bertuzzi F, Amato A, Lattanzio R, Bandello F, Cicinelli MV. The role of inflammation and neurodegeneration in diabetic macular edema. Ther Adv Ophthalmol 2021; 13:25158414211055963. [PMID: 34901746 PMCID: PMC8652911 DOI: 10.1177/25158414211055963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of diabetic macular edema (DME) is complex. Persistently high blood glucose activates multiple cellular pathways and induces inflammation, oxidation stress, and vascular dysfunction. Retinal ganglion cells, macroglial and microglial cells, endothelial cells, pericytes, and retinal pigment epithelium cells are involved. Neurodegeneration, characterized by dysfunction or apoptotic loss of retinal neurons, occurs early and independently from the vascular alterations. Despite the increasing knowledge on the pathways involved in DME, only limited therapeutic strategies are available. Besides antiangiogenic drugs and intravitreal corticosteroids, alternative therapeutic options tackling inflammation, oxidative stress, and neurodegeneration have been considered, but none of them has been currently approved.
Collapse
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Cavalleri
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Bertuzzi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Amato
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosangela Lattanzio
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, via Olgettina 60, 20132 Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
Gut microbiota: A potential therapeutic target for management of diabetic retinopathy? Life Sci 2021; 286:120060. [PMID: 34666038 DOI: 10.1016/j.lfs.2021.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is one of the main complications of Diabetes Mellitus (DM), drastically impacting individuals of working age over the years, being one of the main causes of blindness in the world. The existing therapies for its treatment consist of measures that aim only to alleviate the existing clinical signs, associated with the microvasculature. These treatments are limited only to the advanced stages and not to the preclinical ones. In response to a treatment with little resolution and limited for many patients with DM, investigations of alternative therapies that make possible the improvement of the glycemic parameters and the quality of life of subjects with DR, become extremely necessary. Recent evidence has shown that deregulation of the microbiota (dysbiosis) can lead to low-grade, local and systemic inflammation, directly impacting the development of DM and its microvascular complications, including DR, in an axis called the intestine-retina. In this regard, the present review seeks to comprehensively describe the biochemical pathways involved in DR as well as the association of the modulation of these mechanisms by the intestinal microbiota, since direct changes in the microbiota can have a drastic impact on various physiological processes. Finally, emphasize the strong potential for modulation of the gut-retina axis, as therapeutic and prophylactic target for the treatment of DR.
Collapse
|
30
|
Du J, Li J, Liu X, Liu H, Obel C, Shen H, Hu Z, Yu Y. Association of maternal diabetes during pregnancy with high refractive error in offspring: a nationwide population-based cohort study. Diabetologia 2021; 64:2466-2477. [PMID: 34401952 DOI: 10.1007/s00125-021-05526-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS We aimed to investigate the associations between maternal diabetes before or during pregnancy and the risk of high refractive error (RE) in offspring until the age of 25 years. METHODS This nationwide register-based cohort study comprised 2,470,580 individuals born in 1977-2016. The exposure was maternal diabetes during or before pregnancy (type 1 diabetes, type 2 diabetes and gestational diabetes). Cox regression was used to examine the association between maternal diabetes and the risk of high RE in offspring from birth until the age of 25 years, adjusting for multiple potential confounders. RESULTS During up to 25 years of follow-up, 553 offspring of mothers with diabetes and 19,695 offspring of mothers without diabetes were diagnosed with high RE. Prenatal exposure to maternal diabetes was associated with a 39% increased risk of high RE: HR 1.39 (95% CI 1.28, 1.51), p < 0.001; standardised cumulative incidence in unexposed offspring at 25 years of age 1.18% (95% CI 1.16%, 1.19%); cumulative incidence difference 0.72% (95% CI 0.51%, 0.94%). The elevated risks were observed for hypermetropia (HR 1.37 [95% CI 1.24, 1.51], p < 0.001), myopia (HR 1.34 [95% CI 1.08, 1.66], p = 0.007) and astigmatism (HR 1.58 [95% CI 1.29, 1.92], p < 0.001). The increased risks were more pronounced among offspring of mothers with diabetic complications (HR 2.05 [95% CI 1.60, 2.64], p < 0.001), compared with those of mothers with diabetes but no diabetic complications (HR 1.18 [95% CI 1.02, 1.37], p = 0.030). CONCLUSIONS/INTERPRETATION Our findings suggest that maternal diabetes during pregnancy is associated with an increased risk of high RE in offspring, in particular among those of mothers with diabetic complications. Early ophthalmological screening should be recommended in offspring of mothers with diabetes diagnosed before or during pregnancy.
Collapse
Affiliation(s)
- Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Xiaoqin Liu
- NCRR-National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Hu Liu
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Carsten Obel
- Section for General Medical Practice, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.
- The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
31
|
Abstract
Medicinal plants play a fundamental part in health sectors via the management of different infectious diseases because of their wide plenitude wellspring of bioactive phytochemicals. Research activities on them have got attention throughout the world in the present days in search of low-cost and safe compounds for the management of diabetes. This is the literature-based analysis of alkaloids from medicinal plants in preventive or treatment approaches to diabetes. The most abundant and diversified group of secondary metabolites, i.e., alkaloids, show antidiabetic activity through the inhibition of enzymes (α-amylase, α-glucosidase, aldose reductase, dipeptidyl peptidase-IV, and protein tyrosine phosphatase-1B); inhibition of advanced glycation end products; increment of insulin secretion and its sensitivity; enhancement of glucose uptake; and their antioxidant ability. The study is useful for the examination of dynamic alkaloids for the advancement of a new medication for mankind.
Collapse
|
32
|
Alrubaye A, Motovali-Bashi M, Miroliaei M. Rosmarinic acid inhibits DNA glycation and modulates the expression of Akt1 and Akt3 partially in the hippocampus of diabetic rats. Sci Rep 2021; 11:20605. [PMID: 34663861 PMCID: PMC8523555 DOI: 10.1038/s41598-021-99286-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Non-enzymatic glycation of DNA and the associated effects are among pathogenic factors in diabetes mellitus. Natural polyphenols have anti-diabetic activity. Herein, the protective role of one of the phytochemicals, rosmarinic acid (RA), was evaluated in glycation (with fructose) of human DNA and expression of Akt genes in the hippocampus of diabetic rats. In-vitro studies using fluorescence, agarose gel electrophoresis, fluorescence microscopy, and thermal denaturation analyses revealed that glycation causes DNA damage and that RA inhibits it. In-vivo studies were performed by induction of diabetes in rats using streptozotocin. The diabetic rats were given RA daily through gavage feeding. The expression of Akt genes (inhibitors of apoptosis) in the hippocampus was evaluated using RT-qPCR. In diabetic rats, Akt1 and Akt3 were significantly down-regulated compared to the control group. Treating the diabetic rats with RA returned the expression of Akt1 and Akt3 relatively to the normal condition. Past studies have shown that diabetes induces apoptosis in the hippocampal neurons. Given that glycation changes the genes expression and causes cell death, apoptosis of the hippocampal neurons can be due to the glycation of DNA. The results also suggest that RA has reliable potency against the gross modification of DNA under hyperglycemic conditions.
Collapse
Affiliation(s)
- Ameer Alrubaye
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Motovali-Bashi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehran Miroliaei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
33
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
34
|
Szymanska M, Mahmood D, Yap TE, Cordeiro MF. Recent Advancements in the Medical Treatment of Diabetic Retinal Disease. Int J Mol Sci 2021; 22:ijms22179441. [PMID: 34502350 PMCID: PMC8430918 DOI: 10.3390/ijms22179441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinal disease remains one of the most common complications of diabetes mellitus (DM) and a leading cause of preventable blindness. The mainstay of management involves glycemic control, intravitreal, and laser therapy. However, intravitreal therapy commonly requires frequent hospital visits and some patients fail to achieve a significant improvement in vision. Novel and long-acting therapies targeting a range of pathways are warranted, while evidence to support optimal combinations of treatments is currently insufficient. Improved understanding of the molecular pathways involved in pathogenesis is driving the development of therapeutic agents not only targeting visible microvascular disease and metabolic derangements, but also inflammation and accelerated retinal neurodegeneration. This review summarizes the current and emerging treatments of diabetic retinal diseases and provides an insight into the future of managing this important condition.
Collapse
Affiliation(s)
- Maja Szymanska
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Daanyaal Mahmood
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Maria F. Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence:
| |
Collapse
|
35
|
Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021; 8:695792. [PMID: 34277669 PMCID: PMC8279779 DOI: 10.3389/fmed.2021.695792] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
36
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
37
|
Affiliation(s)
- Peter R Herse
- Department of Optometry, University of Auckland, New Zealand
| |
Collapse
|
38
|
Reduction of Glut1 in the Neural Retina But Not the RPE Alleviates Polyol Accumulation and Normalizes Early Characteristics of Diabetic Retinopathy. J Neurosci 2021; 41:3275-3299. [PMID: 33622781 DOI: 10.1523/jneurosci.2010-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Hyperglycemia is a key determinant for development of diabetic retinopathy (DR). Inadequate glycemic control exacerbates retinopathy, while normalization of glucose levels delays its progression. In hyperglycemia, hexokinase is saturated and excess glucose is metabolized to sorbitol by aldose reductase via the polyol pathway. Therapies to reduce retinal polyol accumulation for the prevention of DR have been elusive because of low sorbitol dehydrogenase levels in the retina and inadequate inhibition of aldose reductase. Using systemic and conditional genetic inactivation, we targeted the primary facilitative glucose transporter in the retina, Glut1, as a preventative therapeutic in diabetic male and female mice. Unlike WT diabetics, diabetic Glut1 +/- mice did not display elevated Glut1 levels in the retina. Furthermore, diabetic Glut1 +/- mice exhibited ameliorated ERG defects, inflammation, and oxidative stress, which was correlated with a significant reduction in retinal sorbitol accumulation. Retinal pigment epithelium-specific reduction of Glut1 did not prevent an increase in retinal sorbitol content or early hallmarks of DR. However, like diabetic Glut1 +/- mice, reduction of Glut1 specifically in the retina mitigated polyol accumulation and diminished retinal dysfunction and the elevation of markers for oxidative stress and inflammation associated with diabetes. These results suggest that modulation of retinal polyol accumulation via Glut1 in photoreceptors can circumvent the difficulties in regulating systemic glucose metabolism and be exploited to prevent DR.SIGNIFICANCE STATEMENT Diabetic retinopathy affects one-third of diabetic patients and is the primary cause of vision loss in adults 20-74 years of age. While anti-VEGF and photocoagulation treatments for the late-stage vision threatening complications can prevent vision loss, a significant proportion of patients do not respond to anti-VEGF therapies, and mechanisms to stop progression of early-stage symptoms remain elusive. Glut1 is the primary facilitative glucose transporter for the retina. We determined that a moderate reduction in Glut1 levels, specifically in the retina, but not the retinal pigment epithelium, was sufficient to prevent retinal polyol accumulation and the earliest functional defects to be identified in the diabetic retina. Our study defines modulation of Glut1 in retinal neurons as a targetable molecule for prevention of diabetic retinopathy.
Collapse
|
39
|
Moiz B, Garcia J, Basehore S, Sun A, Li A, Padmanabhan S, Albus K, Jang C, Sriram G, Clyne AM. 13C Metabolic Flux Analysis Indicates Endothelial Cells Attenuate Metabolic Perturbations by Modulating TCA Activity. Metabolites 2021; 11:metabo11040226. [PMID: 33917224 PMCID: PMC8068087 DOI: 10.3390/metabo11040226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Disrupted endothelial metabolism is linked to endothelial dysfunction and cardiovascular disease. Targeted metabolic inhibitors are potential therapeutics; however, their systemic impact on endothelial metabolism remains unknown. In this study, we combined stable isotope labeling with 13C metabolic flux analysis (13C MFA) to determine how targeted inhibition of the polyol (fidarestat), pentose phosphate (DHEA), and hexosamine biosynthetic (azaserine) pathways alters endothelial metabolism. Glucose, glutamine, and a four-carbon input to the malate shuttle were important carbon sources in the baseline human umbilical vein endothelial cell (HUVEC) 13C MFA model. We observed two to three times higher glutamine uptake in fidarestat and azaserine-treated cells. Fidarestat and DHEA-treated HUVEC showed decreased 13C enrichment of glycolytic and TCA metabolites and amino acids. Azaserine-treated HUVEC primarily showed 13C enrichment differences in UDP-GlcNAc. 13C MFA estimated decreased pentose phosphate pathway flux and increased TCA activity with reversed malate shuttle direction in fidarestat and DHEA-treated HUVEC. In contrast, 13C MFA estimated increases in both pentose phosphate pathway and TCA activity in azaserine-treated cells. These data show the potential importance of endothelial malate shuttle activity and suggest that inhibiting glycolytic side branch pathways can change the metabolic network, highlighting the need to study systemic metabolic therapeutic effects.
Collapse
Affiliation(s)
- Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Jonathan Garcia
- School of Bioengineering, Science, and Heath Systems, Drexel University, Philadelphia, PA 19104, USA; (J.G.); (S.B.)
| | - Sarah Basehore
- School of Bioengineering, Science, and Heath Systems, Drexel University, Philadelphia, PA 19104, USA; (J.G.); (S.B.)
| | - Angela Sun
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Andrew Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Surya Padmanabhan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Kaitlyn Albus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA;
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA;
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
- Correspondence: ; Tel.: +1-301-405-9806
| |
Collapse
|
40
|
The Gracilis Muscle Flap: A “Work Horse” Free Flap in Diabetic Foot Reconstruction. World J Plast Surg 2021. [DOI: 10.52547/wjps.10.2.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Chen H, Zhang X, Zhang X, Liu W, Lei Y, Zhu C, Ma B. (5-Hydroxy-4-oxo-2-styryl-4 H-pyridin-1-yl)-acetic Acid Derivatives as Multifunctional Aldose Reductase Inhibitors. Molecules 2020; 25:E5135. [PMID: 33158254 PMCID: PMC7663616 DOI: 10.3390/molecules25215135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023] Open
Abstract
As rate-limited enzyme of polyol pathway, aldose reductase (ALR2) is one of the key inhibitory targets for alleviating diabetic complications. To reduce the toxic side effects of the inhibitors and to decrease the level of oxidative stress, the inhibitory selectivity towards ALR2 against detoxicating aldehyde reductase (ALR1) and antioxidant activity are included in the design of multifunctional ALR2 inhibitors. Hydroxypyridinone derivatives were designed, synthesized and evaluated their inhibitory behavior and antioxidant activity. Notably, {2-[2-(3,4-dihydroxy-phenyl)-vinyl]-5-hydroxy-4-oxo-4H-pyridin-1-yl}-acetic acid (7l) was the most potent, with IC50 values of 0.789 μM. Moreover, 7l showed excellent selectivity towards ALR2 with selectivity index 25.23, which was much higher than that of eparlestat (17.37), the positive control. More significantly, 7l performed powerful antioxidative action. At a concentration of 1 μM, phenolic compounds 7l scavenged DPPH radical with an inhibitory rate of 41.48%, which was much higher than that of the well-known antioxidant Trolox, at 11.89%. Besides, 7l remarkably suppressed lipid peroxidation with a rate of 88.76% at a concentration of 100 μM. The binding mode derived from molecular docking proved that the derivatives were tightly bound to the activate site, suggesting strongly inhibitory action of derivatives against ALR2. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors capable with potency for both selective ALR2 inhibition and as antioxidants.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.C.); (X.Z.); (X.Z.); (W.L.); (Y.L.)
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.C.); (X.Z.); (X.Z.); (W.L.); (Y.L.)
| |
Collapse
|
42
|
Chen H, Zhang X, Zhang X, Fan Z, Liu W, Lei Y, Zhu C, Ma B. Dihydrobenzoxazinone derivatives as aldose reductase inhibitors with antioxidant activity. Bioorg Med Chem 2020; 28:115699. [PMID: 33069078 DOI: 10.1016/j.bmc.2020.115699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 01/29/2023]
Abstract
Dihydrobenzoxazinone based design and synthesis produced two series of compounds as aldose reductase (ALR2) inhibitor candidates. In particular, phenolic residues were embodied into the compounds for the combination of strengthening the inhibitory acitvity and antioxidant ability to retard the progression of diabetic complications. Most of the derivatives with styryl side chains exhibited excellent activities on selective ALR2 inhibition with IC50 values ranging from 0.082 to 0.308 μM, and {8-[2-(4-hydroxy-phenyl)-vinyl]-2-oxo-2,3-dihydro-benzo[1,4]oxazin-4-yl}-acetic acid (3a) was the most potent. More significantly, most of dihydrobenzoxazinone compounds revealed not only good inhibitory effect on ALR2, but also showed powerful antioxidant activity. Notably, phenolic compound 3a was even comparable to the well-known antioxidant Trolox, confirming that the C8 p-hydroxystyryl substitution was key structure of lowering oxidative stress. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors possessing capacities for both ALR2 inhibition and as antioxidants.
Collapse
Affiliation(s)
- Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xiaonan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Zhenya Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Yanqi Lei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| |
Collapse
|
43
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
44
|
Primer KR, Psaltis PJ, Tan JT, Bursill CA. The Role of High-Density Lipoproteins in Endothelial Cell Metabolism and Diabetes-Impaired Angiogenesis. Int J Mol Sci 2020; 21:E3633. [PMID: 32455604 PMCID: PMC7279383 DOI: 10.3390/ijms21103633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus affects millions of people worldwide and is associated with devastating vascular complications. A number of these complications, such as impaired wound healing and poor coronary collateral circulation, are characterised by impaired ischaemia-driven angiogenesis. There is increasing evidence that high-density lipoproteins (HDL) can rescue diabetes-impaired angiogenesis through a number of mechanisms, including the modulation of endothelial cell metabolic reprogramming. Endothelial cell metabolic reprogramming in response to tissue ischaemia is a driver of angiogenesis and is dysregulated by diabetes. Specifically, diabetes impairs pathways that allow endothelial cells to upregulate glycolysis in response to hypoxia adequately and impairs suppression of mitochondrial respiration. HDL rescues the impairment of the central hypoxia signalling pathway, which regulates these metabolic changes, and this may underpin several of its known pro-angiogenic effects. This review discusses the current understanding of endothelial cell metabolism and how diabetes leads to its dysregulation whilst examining the various positive effects of HDL on endothelial cell function.
Collapse
Affiliation(s)
- Khalia R. Primer
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
- Centre for Nanoscale Biophotonics, Adelaide, South Australia 5000, Australia
| | - Peter J. Psaltis
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
| | - Joanne T.M. Tan
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
| | - Christina A. Bursill
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
- Centre for Nanoscale Biophotonics, Adelaide, South Australia 5000, Australia
| |
Collapse
|
45
|
Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev 2020; 24:279-299. [PMID: 30349977 DOI: 10.1007/s10741-018-9749-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTARCT Diabetic complications are among the largely exigent health problems currently. Cardiovascular complications, including diabetic cardiomyopathy (DCM), account for more than 80% of diabetic deaths. Investigators are exploring new therapeutic targets to slow or abate diabetes because of the growing occurrence and augmented risk of deaths due to its complications. Research on rodent models of type 1 and type 2 diabetes mellitus, and the use of genetic engineering techniques in mice and rats have significantly sophisticated for our understanding of the molecular mechanisms in human DCM. DCM is featured by pathophysiological mechanisms that are hyperglycemia, insulin resistance, oxidative stress, left ventricular hypertrophy, damaged left ventricular systolic and diastolic functions, myocardial fibrosis, endothelial dysfunction, myocyte cell death, autophagy, and endoplasmic reticulum stress. A number of molecular and cellular pathways, such as cardiac ubiquitin proteasome system, FoxO transcription factors, hexosamine biosynthetic pathway, polyol pathway, protein kinase C signaling, NF-κB signaling, peroxisome proliferator-activated receptor signaling, Nrf2 pathway, mitogen-activated protein kinase pathway, and micro RNAs, play a major role in DCM. Currently, there are a few drugs for the management of DCM and some of them have considerable adverse effects. So, researchers are focusing on the natural products to ameliorate it. Hence, in this review, we discuss the pathogical, molecular, and cellular mechanisms of DCM; the current diagnostic methods and treatments; adverse effects of conventional treatment; and beneficial effects of natural product-based therapeutics, which may pave the way to new treatment strategies. Graphical Abstract.
Collapse
|
46
|
Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Experimental Approach to Peritoneal Morphology. Perit Dial Int 2020. [DOI: 10.1177/089686089401403s02] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lazaro Gotloib
- Department of Nephrology and the Kornach Laboratory for Experimental Nephrology, Central Emek Hospital, Afula, Israel
| | - Valeri Wajsbrot
- Department of Nephrology and the Kornach Laboratory for Experimental Nephrology, Central Emek Hospital, Afula, Israel
| | - Avshalom Shostak
- Department of Nephrology and the Kornach Laboratory for Experimental Nephrology, Central Emek Hospital, Afula, Israel
| | - Raisa Kushnier
- Department of Nephrology and the Kornach Laboratory for Experimental Nephrology, Central Emek Hospital, Afula, Israel
| |
Collapse
|
47
|
Godisela KK, Reddy SS, Reddy PY, Kumar CU, Reddy VS, Ayyagari R, Reddy GB. Role of sorbitol-mediated cellular stress response in obesity-associated retinal degeneration. Arch Biochem Biophys 2020; 679:108207. [PMID: 31760123 DOI: 10.1016/j.abb.2019.108207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Obesity is a global health problem associated with several diseases including ocular complications. Earlier we reported progressive retinal degeneration because of obesity in a spontaneous obese rat (WNIN/Ob) model. In the current study, we examined the molecular mechanisms leading to retinal degeneration in WNIN/Ob rat. METHODS Sorbitol was estimated by the fluorometric method in the retina of WNIN/Ob rats at different age (3-, 6- and 12- months), along with their respective lean rats. Immunoblotting was performed in the retina to assess the status of the insulin signaling pathway, ER stress and cellular stress (p38MAPK and ERK1/2). Human SK-N-SH cells were treated with 0.5 and 1.0 M sorbitol for 30 min to study insulin signaling, ER stress, and cellular stress. TUNEL assay was done to measure apoptosis. The retinal function in the rats was determined by electroretinogram. RESULTS A gradual but significantly higher intracellular sorbitol accumulation was observed in the retina of obese rats from 3- to 12-months. The cellular osmotic stress has activated the insulin signaling mechanism without activating AKT and also triggered ER stress. Both the stresses activated the ERK and p38MAPK signaling causing apoptosis in the retina leading to retinal degeneration. Retinal dysfunction was confirmed by altered scotopic and photopic electroretinogram responses. These in vivo results were mimicked in SK-N-SH cells when exposed to sorbitol in vitro. CONCLUSIONS These results suggest cellular stress due to sorbitol accumulation impairing the ER function, thereby leading to progressive retinal degeneration under obese conditions.
Collapse
Affiliation(s)
- Kishore K Godisela
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | | | - P Yadagiri Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - Ch Uday Kumar
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
48
|
Lu WL, Shen PC, Lee CH, Su YT, Chen LM. High Risk of Early Cataracts in Young Type 1 Diabetes Group: A Nationwide Cohort Study. Int J Endocrinol 2020; 2020:8160256. [PMID: 33133186 PMCID: PMC7568800 DOI: 10.1155/2020/8160256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic hyperglycemia in type 1 diabetes (T1D) patients results in ocular problems over time, but only a few studies emphasized on cataracts. AIM To evaluate the epidemiology of cataracts in the T1D population. METHOD A two-part study was conducted using data from the National Health Insurance Research Database in Taiwan. Information from the Longitudinal Health Insurance Database (LHID) was served as a template of the general population. In the first part, a total of 3,622 T1D cases registered between 1998 and 2007 were enrolled and compared with a matched group from the LHID. For identifying risk factors of cataracts in the T1D population in the second part, a total of 9032 T1D cases registered between 1998 and 2013 were included. RESULT Compared to the LHID, the hazard ratio (HR) of cataracts in the T1D group was 5.81 (95% CI 4.60-7.33), and the HR was higher in females (6.29, 95% CI 4.63-8.55). The peak incidence of cataracts occurred between age 20 and 29 in the T1D group, while in the LHID, it was after 60. The overall incidence of cataracts in the T1D group was 9.1%. In T1D patients with cataracts, they were found with higher rates of associated diabetic complications. CONCLUSION Compared to the nondiabetic population, cataracts seemed more rampant and premature in T1D patients, especially those of female gender. Early ophthalmologic examination should be considered in T1D patients.
Collapse
Affiliation(s)
- Wen-Li Lu
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan
| | - Po-Chih Shen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Tsun Su
- Department of Pediatrics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Li-Min Chen
- Department of Pediatrics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4940825. [PMID: 31814880 PMCID: PMC6878793 DOI: 10.1155/2019/4940825] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is a disease that can be treated with oral antidiabetic agents and/or insulin. However, patients' metabolic control is inadequate in a high percentage of them and a major cause of chronic diseases like diabetic retinopathy. Approximately 15% of patients have some degree of diabetic retinopathy when diabetes is first diagnosed, and most will have developed this microvascular complication after 20 years. Early diagnosis of the disease is the best tool to prevent or delay vision loss and reduce the involved costs. However, diabetic retinopathy is an asymptomatic disease and its development to advanced stages reduces the effectiveness of treatments. Today, the recommended treatment for severe nonproliferative and proliferative diabetic retinopathy is photocoagulation with an argon laser and intravitreal injections of anti-VEGF associated with, or not, focal laser for diabetic macular oedema. The use of these therapeutic approaches is severely limited, such as uncomfortable administration for patients, long-term side effects, the costs they incur, and the therapeutic effectiveness of the employed management protocols. Hence, diabetic retinopathy is the widespread diabetic eye disease and a leading cause of blindness in adults in developed countries. The growing interest in using polyphenols, e.g., resveratrol, in treatments related to oxidative stress diseases has spread to diabetic retinopathy. This review focuses on analysing the sources and effects of oxidative stress and inflammation on vascular alterations and diabetic retinopathy development. Furthermore, current and antioxidant therapies, together with new molecular targets, are postulated for diabetic retinopathy treatment.
Collapse
|
50
|
Chhetri DR. Myo-Inositol and Its Derivatives: Their Emerging Role in the Treatment of Human Diseases. Front Pharmacol 2019; 10:1172. [PMID: 31680956 PMCID: PMC6798087 DOI: 10.3389/fphar.2019.01172] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Myo-inositol has been established as an important growth-promoting factor of mammalian cells and animals. The role of myo-inositol as a lipotropic factor has been proven, in addition to its involvement as co-factors of enzymes and as messenger molecules in signal transduction. Myo-inositol deficiency leads to intestinal lipodystrophy in animals and "inositol-less death" in some fungi. Of late, diverse uses of myo-inositol and its derivatives have been discovered in medicinal research. These compounds are used in the treatment of a variety of ailments from diabetes to cancer, and continued research in this direction promises a new future in therapeutics. In different diseases, inositols implement different strategies for therapeutic actions such as tissue specific increase or decrease in inositol products, production of inositol phosphoglycans (IPGs), conversion of myo-inositol (MI) to D-chiro-inositol (DCI), modulation of signal transduction, regulation of reactive oxygen species (ROS) production, etc. Though inositol pharmacology is a relatively lesser-known field, recent years of research has generated a critical mass of information on the subject. This review aims to summarize our current understanding on the role of inositol derivatives in ameliorating the symptoms of different diseases.
Collapse
Affiliation(s)
- Dhani Raj Chhetri
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|