1
|
Xiao X, Tontonoz P. PUFAs regulate SREBP1c through phosphorylation of Insig2. Proc Natl Acad Sci U S A 2024; 121:e2416363121. [PMID: 39312672 PMCID: PMC11459136 DOI: 10.1073/pnas.2416363121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Affiliation(s)
- Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA90095
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
3
|
Wu Y, Li C, Khan AA, Chen K, Su R, Xu S, Sun Y, Gao F, Wang K, Wang X, Lian Z, Wang S, Yu M, Hu X, Yang F, Zheng S, Qiu N, Liu Z, Xu X. Insulin-induced gene 2 protects against hepatic ischemia-reperfusion injury via metabolic remodeling. J Transl Med 2023; 21:739. [PMID: 37858181 PMCID: PMC10585752 DOI: 10.1186/s12967-023-04564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.
Collapse
Affiliation(s)
- Yichao Wu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Abid Ali Khan
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kangchen Chen
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yiyang Sun
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaodong Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shuo Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Mengyuan Yu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Hu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Fan Yang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Nasha Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Kim KM, Lim YJ, Jang WG. Policosanol Stimulates Osteoblast Differentiation via Adenosine Monophosphate-Activated Protein Kinase-Mediated Expression of Insulin-Induced Genes 1 and 2. Cells 2023; 12:1863. [PMID: 37508527 PMCID: PMC10378419 DOI: 10.3390/cells12141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Policosanol is known as a hypocholesterolemic compound and is derived from plants such as sugar cane and corn. Policosanol can lower blood pressure or inhibit adipogenesis, but its effect on osteogenic differentiation and the molecular mechanism is unclear. This study aims to investigate the effect of policosanol on osteogenic differentiation in MC3T3-E1 cells and zebrafish models. Administration of policosanol into MC3T3-E1 induced the expression of the osteogenic genes such as distal-less homeobox 5 (Dlx5) and runt-related transcription factor 2 (Runx2). Alkaline phosphatase activity and extracellular mineralization also increased. Policosanol promoted activation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-induced genes (INSIGs) expression and regulation of INSIGs modulated osteoblast differentiation. AMPK activation through transfection of the constitutively active form of AMPK (CA-AMPK) increased INSIGs expression, whereas policosanol-induced INSIGs expression was suppressed by inhibitor of AMPK (Com. C). Furthermore, the osteogenic effects of policosanol were verified in zebrafish. Amputated caudal fin rays were regenerated by policosanol treatment. Taken together, these results show that policosanol increases osteogenic differentiation and contributes to fin regeneration in zebrafish via AMPK-mediated INSIGs expression, suggesting that policosanol has potential as an osteogenic agent.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Young-Ju Lim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
5
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
He J, Liu F, Zhang Z. Functions of N6-methyladenosine in cancer metabolism: from mechanism to targeted therapy. Biomark Res 2023; 11:40. [PMID: 37055798 PMCID: PMC10100159 DOI: 10.1186/s40364-023-00483-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of eukaryotic mRNA and is involved in almost every stage of RNA metabolism. The m6A modification on RNA has been demonstrated to be a regulator of the occurrence and development of a substantial number of diseases, especially cancers. Increasing evidence has shown that metabolic reprogramming is a hallmark of cancer and is crucial for maintaining the homeostasis of malignant tumors. Cancer cells rely on altered metabolic pathways to support their growth, proliferation, invasion and metastasis in an extreme microenvironment. m6A regulates metabolic pathways mainly by either directly acting on metabolic enzymes and transporters or indirectly influencing metabolism-related molecules. This review discusses the functions of the m6A modification on RNAs, its role in cancer cell metabolic pathways, the possible underlying mechanisms of its effects and the implication of this modification in cancer therapy.
Collapse
Affiliation(s)
- Jiayi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Ramatchandirin B, Pearah A, He L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life (Basel) 2023; 13:life13020515. [PMID: 36836874 PMCID: PMC9962321 DOI: 10.3390/life13020515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is on the rise and NAFLD is becoming the most common cause of chronic liver disease. In the USA, NAFLD affects over 30% of the population, with similar occurrence rates reported from Europe and Asia. This is due to the global increase in obesity and type 2 diabetes mellitus (T2DM) because patients with obesity and T2DM commonly have NAFLD, and patients with NAFLD are often obese and have T2DM with insulin resistance and dyslipidemia as well as hypertriglyceridemia. Excessive accumulation of triglycerides is a hallmark of NAFLD and NAFLD is now recognized as the liver disease component of metabolic syndrome. Liver glucose and lipid metabolisms are intertwined and carbon flux can be used to generate glucose or lipids; therefore, in this review we discuss the important transcription factors and coactivators that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
| | - Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-502-5765; Fax: +1-410-502-5779
| |
Collapse
|
8
|
Heintz MM, Eccles JA, Olack EM, Maner-Smith KM, Ortlund EA, Baldwin WS. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS One 2022; 17:e0277053. [PMID: 36520866 PMCID: PMC9754190 DOI: 10.1371/journal.pone.0277053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Jazmine A. Eccles
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Emily M. Olack
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristal M. Maner-Smith
- Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Jiang SY, Yang X, Yang Z, Li JW, Xu MQ, Qu YX, Tang JJ, Li YF, Wang L, Shao YW, Meng XY, Hu H, Song BL, Rao Y, Qi W. Discovery of an insulin-induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory element-binding protein-mediated lipogenesis. Hepatology 2022; 76:1466-1481. [PMID: 35102596 DOI: 10.1002/hep.32381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS NASH is associated with high levels of cholesterol and triglyceride (TG) in the liver; however, there is still no approved pharmacological therapy. Synthesis of cholesterol and TG is controlled by sterol regulatory element-binding protein (SREBP), which is found to be abnormally activated in NASH patients. We aim to discover small molecules for treating NASH by inhibiting the SREBP pathway. APPROACH AND RESULTS Here, we identify a potent SREBP inhibitor, 25-hydroxylanosterol (25-HL). 25-HL binds to insulin-induced gene (INSIG) proteins, stimulates the interaction between INSIG and SCAP, and retains them in the endoplasmic reticulum, thereby suppressing SREBP activation and inhibiting lipogenesis. In NASH mouse models, 25-HL lowers levels of cholesterol and TG in serum and the liver, enhances energy expenditure to prevent obesity, and improves insulin sensitivity. 25-HL dramatically ameliorates hepatic steatosis, inflammation, ballooning, and fibrosis through down-regulating the expression of lipogenic genes. Furthermore, 25-HL exhibits both prophylactic and therapeutic efficacies of alleviating NASH and atherosclerosis in amylin liver NASH model diet-treated Ldlr-/- mice, and reduces the formation of cholesterol crystals and associated crown-like structures of Kupffer cells. Notably, 25-HL lowers lipid contents in serum and the liver to a greater extent than lovastatin or obeticholic acid. 25-HL shows a good safety and pharmacokinetics profile. CONCLUSIONS This study provides the proof of concept that inhibiting SREBP activation by targeting INSIG to lower lipids could be a promising strategy for treating NASH. It suggests the translational potential of 25-HL in human NASH and demonstrates the critical role of SREBP-controlled lipogenesis in the progression of NASH by pharmacological inhibition.
Collapse
Affiliation(s)
- Shi-You Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinglin Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Zimo Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Jue-Wan Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meng-Qiang Xu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-Xiu Qu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing-Jie Tang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liguo Wang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yi-Wen Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Xin-Yuan Meng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
10
|
Carvalho-Gontijo R, Han C, Zhang L, Zhang V, Hosseini M, Mekeel K, Schnabl B, Loomba R, Karin M, Brenner DA, Kisseleva T. Metabolic Injury of Hepatocytes Promotes Progression of NAFLD and AALD. Semin Liver Dis 2022; 42:233-249. [PMID: 36001995 PMCID: PMC9662188 DOI: 10.1055/s-0042-1755316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.
Collapse
Affiliation(s)
- Raquel Carvalho-Gontijo
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Cuijuan Han
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Lei Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Vivian Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla
| | - Kristin Mekeel
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Rohit Loomba
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla
| | - David A. Brenner
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla,Corresponding author: Tatiana Kisseleva, 9500 Gilman Drive, #0063, La Jolla, California 92093, USA. Phone: 858.822.5339,
| |
Collapse
|
11
|
Gosis BS, Wada S, Thorsheim C, Li K, Jung S, Rhoades JH, Yang Y, Brandimarto J, Li L, Uehara K, Jang C, Lanza M, Sanford NB, Bornstein MR, Jeong S, Titchenell PM, Biddinger SB, Arany Z. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022; 376:eabf8271. [PMID: 35420934 PMCID: PMC9811404 DOI: 10.1126/science.abf8271] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) remain without effective therapies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is a potential therapeutic target, but conflicting interpretations have been proposed for how mTORC1 controls lipid homeostasis. We show that selective inhibition of mTORC1 signaling in mice, through deletion of the RagC/D guanosine triphosphatase-activating protein folliculin (FLCN), promotes activation of transcription factor E3 (TFE3) in the liver without affecting other mTORC1 targets and protects against NAFLD and NASH. Disease protection is mediated by TFE3, which both induces lipid consumption and suppresses anabolic lipogenesis. TFE3 inhibits lipogenesis by suppressing proteolytic processing and activation of sterol regulatory element-binding protein-1c (SREBP-1c) and by interacting with SREBP-1c on chromatin. Our data reconcile previously conflicting studies and identify selective inhibition of mTORC1 as a potential approach to treat NASH and NAFLD.
Collapse
Affiliation(s)
- Bridget S Gosis
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shogo Wada
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chelsea Thorsheim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Joshua H Rhoades
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yifan Yang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Brandimarto
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan B Sanford
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc R Bornstein
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhye Jeong
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Yang Z, Yu GL, Zhu X, Peng TH, Lv YC. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis 2022; 9:51-61. [PMID: 35005107 PMCID: PMC8720706 DOI: 10.1016/j.gendis.2021.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
The goal this review is to clarify the effects of the fat mass and obesity-associated protein (FTO) in lipid metabolism regulation and related underlying mechanisms through the FTO-mediated demethylation of m6A modification. FTO catalyzes the demethylation of m6A to alter the processing, maturation and translation of the mRNAs of lipid-related genes. FTO overexpression in the liver promotes lipogenesis and lipid droplet (LD) enlargement and suppresses CPT-1–mediated fatty acid oxidation via the SREBP1c pathway, promoting excessive lipid storage and nonalcoholic fatty liver diseases (NAFLD). FTO enhances preadipocyte differentiation through the C/EBPβ pathway, and facilitates adipogenesis and fat deposition by altering the alternative splicing of RUNX1T1, the expression of PPARγ and ANGPTL4, and the phosphorylation of PLIN1, whereas it inhibits lipolysis by inhibiting IRX3 expression and the leptin pathway, causing the occurrence and development of obesity. Suppression of the PPARβ/δ and AMPK pathways by FTO-mediated m6A demethylation damages lipid utilization in skeletal muscles, leading to the occurrence of diabetic hyperlipidemia. m6A demethylation by FTO inhibits macrophage lipid influx by downregulating PPARγ protein expression and accelerates cholesterol efflux by phosphorylating AMPK, thereby impeding foam cell formation and atherosclerosis development. In summary, FTO-mediated m6A demethylation modulates the expression of lipid-related genes to regulate lipid metabolism and lipid disorder diseases.
Collapse
Affiliation(s)
- Zhou Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Guang-Li Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Tian-Hong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| |
Collapse
|
13
|
SREBP-1c and lipogenesis in the liver: an update1. Biochem J 2021; 478:3723-3739. [PMID: 34673919 DOI: 10.1042/bcj20210071] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Sterol Regulatory Element Binding Protein-1c is a transcription factor that controls the synthesis of lipids from glucose in the liver, a process which is of utmost importance for the storage of energy. Discovered in the early nineties by B. Spiegelman and by M. Brown and J. Goldstein, it has generated more than 5000 studies in order to elucidate its mechanism of activation and its role in physiology and pathology. Synthetized as a precursor found in the membranes of the endoplasmic reticulum, it has to be exported to the Golgi and cleaved by a mechanism called regulated intramembrane proteolysis. We reviewed in 2002 its main characteristics, its activation process and its role in the regulation of hepatic glycolytic and lipogenic genes. We particularly emphasized that Sterol Regulatory Element Binding Protein-1c is the mediator of insulin effects on these genes. In the present review, we would like to update these informations and focus on the response to insulin and to another actor in Sterol Regulatory Element Binding Protein-1c activation, the endoplasmic reticulum stress.
Collapse
|
14
|
Parlati L, Régnier M, Guillou H, Postic C. New targets for NAFLD. JHEP Rep 2021; 3:100346. [PMID: 34667947 PMCID: PMC8507191 DOI: 10.1016/j.jhepr.2021.100346] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease worldwide. It is characterised by steatosis, liver inflammation, hepatocellular injury and progressive fibrosis. Several preclinical models (dietary and genetic animal models) of NAFLD have deepened our understanding of its aetiology and pathophysiology. Despite the progress made, there are currently no effective treatments for NAFLD. In this review, we will provide an update on the known molecular pathways involved in the pathophysiology of NAFLD and on ongoing studies of new therapeutic targets.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- ASK1, apoptosis signal-regulating kinase 1
- CAP, controlled attenuation parameter
- ChREBP
- ChREBP, carbohydrate responsive element–binding protein
- FAS, fatty acid synthase
- FFA, free fatty acid
- FGF21, fibroblast growth factor-21
- FXR
- FXR, farnesoid X receptor
- GGT, gamma glutamyltransferase
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HSC, hepatic stellate cells
- HSL, hormone-sensitive lipase
- HVPG, hepatic venous pressure gradient
- IL-, interleukin-
- JNK, c-Jun N-terminal kinase
- LXR
- LXR, liver X receptor
- MCD, methionine- and choline-deficient
- MUFA, monounsaturated fatty acids
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- NEFA
- NEFA, non-esterified fatty acid
- PPARα
- PPARα, peroxisome proliferator-activated receptor-α
- PUFAs, polyunsaturated fatty acids
- PY, persons/years
- Phf2, histone demethylase plant homeodomain finger 2
- RCT, randomised controlled trial
- SCD1, stearoyl-CoA desaturase-1
- SFA, saturated fatty acid
- SREBP-1c
- SREBP-1c, sterol regulatory element–binding protein-1c
- TCA, tricarboxylic acid
- TLR4, Toll-like receptor 4
- TNF-α, tumour necrosis factor-α
- VLDL, very low-density lipoprotein
- animal models
- glucotoxicity
- lipotoxicity
Collapse
Affiliation(s)
- Lucia Parlati
- Université de Paris, Institut Cochin, CNRS, INSERM, F- 75014 Paris, France.,Hôpital Cochin, 24, rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Marion Régnier
- UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, F- 75014 Paris, France
| |
Collapse
|
15
|
Shen C, Chen JH, Oh HR, Park JH. Transcription factor SOX2 contributes to nonalcoholic fatty liver disease development by regulating the expression of the fatty acid transporter CD36. FEBS Lett 2021; 595:2493-2503. [PMID: 34536973 DOI: 10.1002/1873-3468.14193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) can lead to hepatocellular carcinoma (HCC). The level of the transcription factor SOX2 correlates with HCC progression, but its role in fat accumulation remains unclear. Here, a high-fat diet, with and without fructose, significantly upregulated SOX2 in murine liver tissue. Treatment with free fatty acids (FFAs) and fructose upregulated SOX2 in murine FL83B hepatocytes. SOX2 overexpression or knockdown regulated triglyceride synthesis and lipid accumulation after FFA stimulation. CD36, a fatty acid transporter, and Yes-associated protein (YAP), a downstream molecule of the Hippo signaling pathway, were upregulated by FFA/fructose in vivo and in vitro. Transcriptional regulation of CD36 by SOX2 suggested the involvement of CD36 in SOX2-mediated hepatic steatosis. Thus, SOX2 may be a target to prevent NAFLD development.
Collapse
Affiliation(s)
- Chen Shen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Hong Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ha Ram Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ji Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
16
|
CREBH Systemically Regulates Lipid Metabolism by Modulating and Integrating Cellular Functions. Nutrients 2021; 13:nu13093204. [PMID: 34579081 PMCID: PMC8472586 DOI: 10.3390/nu13093204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor expressed in the liver and small intestine. The activity of CREBH is regulated not only at the transcriptional level but also at the posttranslational level. CREBH governs triglyceride metabolism in the liver by controlling gene expression, with effects including the oxidation of fatty acids, lipophagy, and the expression of apolipoproteins related to the lipoprotein lipase activation and suppression of lipogenesis. The activation and functions of CREBH are controlled in response to the circadian rhythm. On the other hand, intestinal CREBH downregulates the absorption of lipids from the diet. CREBH deficiency in mice leads to severe hypertriglyceridemia and fatty liver in the fasted state and while feeding a high-fat diet. Therefore, when crossing CREBH knockout (KO) mice with an atherosclerosis model, low-density lipoprotein receptor KO mice, these mice exhibit severe atherosclerosis. This phenotype is seen in both liver- and small intestine-specific CREBH KO mice, suggesting that CREBH controls lipid homeostasis in an enterohepatic interaction. This review highlights that CREBH has a crucial role in systemic lipid homeostasis to integrate cellular functions related to lipid metabolism.
Collapse
|
17
|
Narapareddy L, Rhon-Calderon EA, Vrooman LA, Baeza J, Nguyen DK, Mesaros C, Lan Y, Garcia BA, Schultz RM, Bartolomei MS. Sex-specific effects of in vitro fertilization on adult metabolic outcomes and hepatic transcriptome and proteome in mouse. FASEB J 2021; 35:e21523. [PMID: 33734487 DOI: 10.1096/fj.202002744r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023]
Abstract
Although in vitro fertilization (IVF) is associated with adverse perinatal outcomes, there is increasing concern about the long-term and sex-specific health implications. Augmenting our IVF mouse model to longitudinally investigate metabolic outcomes in offspring from optimal neonatal litter sizes, we found sex-specific metabolic outcomes in IVF offspring. IVF-conceived females had higher body weight and cholesterol levels compared to naturally conceived females, whereas IVF-conceived males had higher levels of triglycerides and insulin, and increased body fat composition. Through adult liver transcriptomics and proteomics, we identified sexually dimorphic dysregulation of the sterol regulatory element-binding protein (SREBP) pathways that are associated with the sex-specific phenotypes. We also found that global loss of DNA methylation in placenta was linked to higher cholesterol levels in IVF-conceived females. Our findings indicate that IVF procedures have long-lasting sex-specific effects on metabolic health of offspring and lay the foundation to utilize the placenta as a predictor of long-term outcomes.
Collapse
Affiliation(s)
- Laren Narapareddy
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.,Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric A Rhon-Calderon
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa A Vrooman
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josue Baeza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Duy K Nguyen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Kim KM, Kim CH, Cho KH, Jang WG. Policosanol attenuates Pi-induced calcification via AMPK-mediated INSIGs expression in rat VSMCs. Clin Exp Pharmacol Physiol 2021; 48:1336-1345. [PMID: 34053129 DOI: 10.1111/1440-1681.13530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Policosanol is a hypocholesterolemic derived from sugar cane and corn that downregulates blood cholesterol levels. It can further lower blood pressure and reduce liver inflammation. Policosanol can also affect vascular calcification, however, its molecular mechanisms are not well understood. This study investigated the effect of policosanol on vascular calcification and its molecular mechanism. Policosanol decreased the expression of inorganic phosphate (Pi)-induced osteogenic genes such as distal-less homeobox 5 (Dlx5) and runt-related transcription factor 2 (Runx2). In addition, following policosanol treatment, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation increased in a time-dependent manner. The constitutively active form of AMPK (CA-AMPK) dramatically suppressed Pi-induced Dlx5 and Runx2 protein levels. Inactivation of AMPK using compound C (Com. C; AMPK inhibitor) recovered policosanol-suppressed Alizarin Red S staining levels. Insulin-induced genes (INSIGs) were induced by CA-AMPK, their overexpression suppressed Pi-induced Dlx5 and Runx2 expression. Taken together, the results demonstrate that policosanol inhibits Pi-induced vascular calcification by regulating AMPK-induced INSIG expression in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | | | - Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| |
Collapse
|
19
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Salehpour A, Hedayati M, Shidfar F, Neshatbini Tehrani A, Farshad AA, Mohammadi S. 1,25-Dihydroxyvitamin D3 modulates adipogenesis of human adipose-derived mesenchymal stem cells dose-dependently. Nutr Metab (Lond) 2021; 18:29. [PMID: 33712053 PMCID: PMC7953614 DOI: 10.1186/s12986-021-00561-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose 1,25-dihydroxyvitamin D3 may regulate adipogenesis in adipocytes in-vitro, but little is known about possible molecular mechanisms related to the inhibitory effect of 1,25-dihydroxyvitamin D3 on adipogenesis in humans҆ adipose tissue. Methodology In this study, human adipose-derived mesenchymal stem cells (hASCs) were cultured for 14 days in adipogenic differentiation media containing concentrations of 1,25-dihydroxyvitamin D3 (10−10–10−8 M). The extent of adipogenic differentiation in ASCs was assessed by Oil Red O staining and quantitative polymerase chain reaction (PCR) to determine expression levels of key adipogenic markers. Results Our results showed that vitamin D receptor (VDR), as a mediator of most actions of 1,25-dihydroxyvitamin D3, glucose trasporter-4 (GLUT4),and fatty acid binding protein-4 (FABP4) was expressed in vitamin D-treated hASCs. However, the protein level of these markers was lower than the control group. Treatment of human preadipocytes with 1,25-dihydroxyvitamin D3 significantly altered expression of adipogenic markers and triglyceride accumulation in a dose-dependent manner. 1,25-dihydroxyvitamin D3 at concentration of 10−8 M enhanced expression of sterol regulatory element-binding protein-1c (SREBP1c), CCAAT-enhancer-binding protein-β (C/EBPβ), a mitotic clonal expansion, peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FASN), a marker of de novo lipogenesis,and lipoprotein lipase (LPL). Conclusion Our findings revealed that 1,25-dihydroxyvitamin D3 may provoke adipocyte development in critical periods of adipogenesis at concentration of 10−8 M, thereby leading to a greater risk of obesity in adulthood and an augmented risk of obesity-related diseases including diabetes, cardiovascular diseases, and some cancers.
Collapse
Affiliation(s)
- Amin Salehpour
- Occupational Health Research Center, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 2nd Floor, Number 24, Parvaneh Street, Yemen Street, Chamran Exp, Tehran, Iran.
| | - Farzad Shidfar
- Occupational Health Research Center, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Asal Neshatbini Tehrani
- Department of Nutrition, School of Paramedical, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asghar Farshad
- Occupational Health Research Center, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Department of Biostatics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Moldavski O, Zushin PJH, Berdan CA, Van Eijkeren RJ, Jiang X, Qian M, Ory DS, Covey DF, Nomura DK, Stahl A, Weiss EJ, Zoncu R. 4β-Hydroxycholesterol is a prolipogenic factor that promotes SREBP1c expression and activity through the liver X receptor. J Lipid Res 2021; 62:100051. [PMID: 33631213 PMCID: PMC8042401 DOI: 10.1016/j.jlr.2021.100051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol that play regulatory roles in lipid biosynthesis and homeostasis. How oxysterol signaling coordinates different lipid classes such as sterols and triglycerides remains incompletely understood. Here, we show that 4β-hydroxycholesterol (HC) (4β-HC), a liver and serum abundant oxysterol of poorly defined functions, is a potent and selective inducer of the master lipogenic transcription factor, SREBP1c, but not the related steroidogenic transcription factor SREBP2. By correlating tracing of lipid synthesis with lipogenic gene expression profiling, we found that 4β-HC acts as a putative agonist for the liver X receptor (LXR), a sterol sensor and transcriptional regulator previously linked to SREBP1c activation. Unique among the oxysterol agonists of the LXR, 4β-HC induced expression of the lipogenic program downstream of SREBP1c and triggered de novo lipogenesis both in primary hepatocytes and in the mouse liver. In addition, 4β-HC acted in parallel to insulin-PI3K-dependent signaling to stimulate triglyceride synthesis and lipid-droplet accumulation. Thus, 4β-HC is an endogenous regulator of de novo lipogenesis through the LXR-SREBP1c axis.
Collapse
Affiliation(s)
- Ofer Moldavski
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; The Paul F. Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA, USA; Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Charles A Berdan
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Robert J Van Eijkeren
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; The Paul F. Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA, USA
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St Louis, MO, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Ethan J Weiss
- Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; The Paul F. Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
22
|
Correia MA, Kwon D. Why Hepatic CYP2E1-Elevation by Itself Is Insufficient for Inciting NAFLD/NASH: Inferences from Two Genetic Knockout Mouse Models. BIOLOGY 2020; 9:biology9120419. [PMID: 33255949 PMCID: PMC7760898 DOI: 10.3390/biology9120419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Hepatic cytochrome P450 CYP2E1 is an enzyme engaged in the metabolic biotransformation of various xenobiotics and endobiotics, resulting in both detoxification and/or metabolic activation of its substrates to more therapeutic or toxic products. Elevated hepatic CYP2E1 content is implicated in various metabolic diseases including alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), diabetes and obesity. While hepatic CYP2E1 elevation is considered essential to the pathogenesis of these liver diseases, our findings in two mouse models of E3 ubiquitin ligase genetic ablation fed a regular lab chow diet, argue that it is not sufficient for triggering NAFLD/NASH. Thus, albeit comparable hepatic CYP2E1 elevation and functional stabilization in these two models upon E3 ubiquitin ligase genetic ablation and consequent disruption of its ubiquitin-dependent proteasomal degradation, NAFLD/NASH was only observed in the mouse livers that exhibited concurrent SREBP1c-transcriptional upregulation of hepatic lipogenesis. These findings reinforce the critical complicity of an associated prolipogenic scenario induced by either an inherently upregulated hepatic lipogenesis or a high fat/high carbohydrate diet in CYP2E1-mediated NAFLD/NASH.
Collapse
Affiliation(s)
- Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, and The Liver Center, University of California San Francisco, San Francisco, CA 94158-2517, USA
- Correspondence: ; Tel.: +1-415-476-5292
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2517, USA;
| |
Collapse
|
23
|
Trusov NV, Apryatin SA, Shipelin VA, Gmoshinski IV. [Full transcriptome analysis of gene expression in liver of mice in a comparative study of quercetin efficiency on two obesity models]. ACTA ACUST UNITED AC 2020; 66:31-47. [PMID: 33369371 DOI: 10.14341/probl12561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Quercetin (Q; 3,3',4',5,7 - pentahydroxyflavone) can help alleviate the pathological effects of nutritional obesity and metabolic syndrome when taken as part of products for special dietary needs and food supplements. The mechanisms of action of Q at the genetic level are not well understood. AIMS To study gene expression in liver tissue of mice with alimentary and genetically determined obesity upon intake of Q with diet. MATERIALS AND METHODS During 46 days of the experiment on 32 male C57Bl/6J mice fed a diet with an excess of fat and fructose and 24 male genetically obese db/db mice the effect of Q in dose of 25 or 100 mg/kg of body weight was studied on differential expression of 39430 genes in mice livers by full transcriptome profiling on microchip according to the Agilent One-Color Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling protocol (version 6.8). To identify metabolic pathways (KEGGs) that were targets of Q exposure, transcriptomic data were analyzed using bioinformatics methods in an "R" environment. RESULTS Differences were revealed in the nature of Q supplementation action in animals with dietary induced and genetically determined obesity on a number of key metabolic pathways, including the metabolism of lipids and steroids (Saa3, Cidec, Scd1, Apoa4, Acss2, Fabp5, Car3, Acacb, Insig2 genes), amino acids and nitrogen bases (Ngef, Gls2), carbohydrates (G6pdx, Pdk4), regulation of cell growth, apoptosis and proliferation (Btg3, Cgref1, Fst, Nrep Tuba8), neurotransmission (Grin2d, Camk2b), immune system reactions (CD14i, Jchain, Ifi27l2b). CONCLUSIONS The data obtained help to explain the ambiguous effectiveness of Q, like other polyphenols, in the dietary treatment of various forms of obesity in humans, as well as to form a set of sensitive biomarkers that allow us to elucidate the effectiveness of minor biologically active food substances in preclinical trials of new means of metabolic correction of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- N V Trusov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - S A Apryatin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - V A Shipelin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety; Plekhanov Russian University of Economics
| | - I V Gmoshinski
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| |
Collapse
|
24
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
26
|
Abstract
Cholesterol is an important component of lipids in animal membranes. All living cells can synthesize cholesterol, but the amount of synthesis is not sufficient, and therefore cholesterol synthesized in the liver is delivered to extrahepatic tissues as a form of LDL. The liver is a primary organ to not only synthesize but also catabolize cholesterol into bile acids, which ends up to excrete with the feces. The synthetic and catabolic pathways are precisely regulated under the negative-feedback control system under the transcriptional regulation driven by several transcription factors such as the sterol regulatory element-binding proteins (SREBPs), the liver x receptor, and the farnesoid x receptor. This review summarizes various findings including our recent discoveries in the molecular mechanism of activation of SREBP that is involved in the regulation of hepatic cholesterol biosynthesis, and a novel function of the metabolic end product of cholesterol, bile acids, in skeletal muscles.
Collapse
Affiliation(s)
- Ryuichiro Sato
- Department of Applied Biological Chemistry, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
27
|
Zhou ZS, Li MX, Liu J, Jiao H, Xia JM, Shi XJ, Zhao H, Chu L, Liu J, Qi W, Luo J, Song BL. Competitive oxidation and ubiquitylation on the evolutionarily conserved cysteine confer tissue-specific stabilization of Insig-2. Nat Commun 2020; 11:379. [PMID: 31953408 PMCID: PMC6969111 DOI: 10.1038/s41467-019-14231-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Insig-2 is an ER membrane protein negatively controlling lipid biosynthesis. Here, we find that Insig-2 is increased in the tissues, including liver, but unaltered in the muscle of gp78-deficient mice. In hepatocytes and undifferentiated C2C12 myoblasts, Insig-2 is ubiquitylated on Cys215 by gp78 and degraded. However, the C215 residue is oxidized by elevated reactive oxygen species (ROS) during C2C12 myoblasts differentiating into myotubes, preventing Insig-2 from ubiquitylation and degradation. The stabilized Insig-2 downregulates lipogenesis through inhibiting the SREBP pathway, helping to channel the carbon flux to ATP generation and protecting myotubes from lipid over-accumulation. Evolutionary analysis shows that the YECK (in which C represents Cys215 in human Insig-2) tetrapeptide sequence in Insig-2 is highly conserved in amniotes but not in aquatic amphibians and fishes, suggesting it may have been shaped by differential selection. Together, this study suggests that competitive oxidation-ubiquitylation on Cys215 of Insig-2 senses ROS and prevents muscle cells from lipid accumulation.
Collapse
Affiliation(s)
- Zhang-Sen Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengwu Jiao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Ming Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huabin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liping Chu
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Jingrong Liu
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
28
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
29
|
GPR40 activation initiates store-operated Ca 2+ entry and potentiates insulin secretion via the IP3R1/STIM1/Orai1 pathway in pancreatic β-cells. Sci Rep 2019; 9:15562. [PMID: 31664108 PMCID: PMC6820554 DOI: 10.1038/s41598-019-52048-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022] Open
Abstract
The long-chain fatty acid receptor GPR40 plays an important role in potentiation of glucose-induced insulin secretion (GIIS) from pancreatic β-cells. Previous studies demonstrated that GPR40 activation enhances Ca2+ release from the endoplasmic reticulum (ER) by activating inositol 1,4,5-triphosphate (IP3) receptors. However, it remains unknown how ER Ca2+ release via the IP3 receptor is linked to GIIS potentiation. Recently, stromal interaction molecule (STIM) 1 was identified as a key regulator of store-operated Ca2+ entry (SOCE), but little is known about its contribution in GPR40 signaling. We show that GPR40-mediated potentiation of GIIS is abolished by knockdown of IP3 receptor 1 (IP3R1), STIM1 or Ca2+-channel Orai1 in insulin-secreting MIN6 cells. STIM1 and Orai1 knockdown significantly impaired SOCE and the increase of intracellular Ca2+ by the GPR40 agonist, fasiglifam. Furthermore, β-cell-specific STIM1 knockout mice showed impaired fasiglifam-mediated GIIS potentiation not only in isolated islets but also in vivo. These results indicate that the IP3R1/STIM1/Orai1 pathway plays an important role in GPR40-mediated SOCE initiation and GIIS potentiation in pancreatic β-cells.
Collapse
|
30
|
Sun JJ, Zheng LG, Chen CY, Zhang JY, You CH, Zhang QH, Ma HY, Monroig Ó, Tocher DR, Wang SQ, Li YY. MicroRNAs Involved in the Regulation of LC-PUFA Biosynthesis in Teleosts: miR-33 Enhances LC-PUFA Biosynthesis in Siganus canaliculatus by Targeting insig1 which in Turn Upregulates srebp1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:475-487. [PMID: 31020472 DOI: 10.1007/s10126-019-09895-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulatory mechanisms play important roles in the regulation of LC-PUFA biosynthesis. Our previous study revealed that miR-33 could increase the expression of fatty acyl desaturases (fads2) in the rabbitfish Siganus canaliculatus, but the specific mechanism is unknown. Here, we confirmed that miR-33 could target the 3'UTR of insulin-induced gene 1 (insig1), resulting in downregulation of its protein level in the rabbitfish hepatocyte line (SCHL). In vitro overexpression of miR-33 inhibited the mRNA level of insig1 and increased the mRNA levels of Δ6Δ5 fads2 and elovl5, as well as srebp1. In SCHL cells, proteolytic activation of sterol-regulatory-element-binding protein-1 (Srebp1) was blocked by Insig1, with overexpression of insig1 decreasing mature Srebp1 level, while inhibition of insig1 led to the opposite effect. Srebp1 could enhance the promoter activity of Δ6Δ5 fads2 and elovl5, whose expression levels decreased with knockdown of srebp1 in SCHL. Overexpression of miR-33 also resulted in a higher conversion of 18:3n-3 to 18:4n-3 and 20:5n-3 to 22:5n-3, linked to desaturation and elongation via Δ6Δ5 Fads2 and Elovl5, respectively. The results suggested that the mechanism by which miR-33 regulates LC-PUFA biosynthesis in rabbitfish is through enhancing the expression of srebp1 by targeting insig1. The findings here provide more insight to the mechanism of miRNAs involvement in the regulation of LC-PUFA biosynthesis in teleosts.
Collapse
Affiliation(s)
- Jun Jun Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Li Guo Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Ying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jin Ying Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Hong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Qing Hao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hong Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Shu Qi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Yuan You Li
- School of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Tang M, Floyd S, Cai H, Zhang M, Yang R, Dang R. The status of ω-3 PUFAs influence chronic unpredicted mild stress-induced metabolic side effects in rats through INSIG/SREBP pathway. Food Funct 2019; 10:4649-4660. [PMID: 31292598 DOI: 10.1039/c9fo00076c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic disturbances, including lipid metabolism, bone metabolism, and glycometabolism, are common in depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which are reported to possess antidepressant effect, have also been shown to regulate metabolism. To further clarify the potential link between ω-3 PUFAs and stress-induced metabolic disturbances, metabolic-related parameters including body weight, visceral fat, fatty acid composition and serum parameters, such as serum lipids, free fatty acid (FFA), glucose (GLU), calcium and phosphorus in rats were measured. Moreover, hepatic insulin induced gene (INSIG)/sterol regulatory element binding protein (SREBP) pathway was also investigated. After 5 weeks of chronic unpredicted mild stress (CUMS) administration, rats were induced to a depressive-like state and exhibited decreased serum high-density lipoprotein (HDL-c), body weight and visceral fat, accompanied by altered C18:2n6c and ω-3/ω-6 PUFAs. Supplement of ω-3 PUFAs showed robust antidepressant effects and has beneficial effects on lipid profile. On the contrary, ω-3 PUFAs deficiency induced the visceral fat accumulation and decreased the serum calcium and phosphorus in stressed rats. Additionally, CUMS significantly increased hepatic expressions of SREBP-cleavage activating protein (SCAP)/SREBP-1 and decreased the expression of INSIG-1. This disturbance of SREBPs system is aggravated by ω-3 PUFAs deficiency and alleviated by ω-3 PUFAs supplementation. This study discloses the novel findings that ω-3 PUFAs deficiency will exacerbate the metabolic disturbances in stressed rats. Furthermore, supplementation of ω-3 PUFAs on individuals with a high risk of depression might be an effective way to prevent metabolic disorders accompanied by depression with the involvement of INSIG/SREBP pathway.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | |
Collapse
|
32
|
Zhang Y, Liu Y, Chen L, Wang Y, Han J. CRTC2 modulates hepatic SREBP1c cleavage by controlling Insig2a expression during fasting. Protein Cell 2019; 9:729-732. [PMID: 29679236 PMCID: PMC6053347 DOI: 10.1007/s13238-018-0538-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yuanyuan Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liqun Chen
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinbo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Makwana V, Ryan P, Patel B, Dukie SA, Rudrawar S. Essential role of O-GlcNAcylation in stabilization of oncogenic factors. Biochim Biophys Acta Gen Subj 2019; 1863:1302-1317. [PMID: 31034911 DOI: 10.1016/j.bbagen.2019.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
A reversible post-translational protein modification which involves addition of N-acetylglucosamine (GlcNAc) onto hydroxyl groups of serine and/or threonine residues which is known as O-GlcNAcylation, has emerged as a potent competitor of phosphorylation. This glycosyltransfer reaction is catalyzed by the enzyme O-linked β-N-acetylglucosamine transferase (OGT). This enzyme uses uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the end product of hexosamine biosynthetic pathway, to modify numerous nuclear and cytosolic proteins. O-GlcNAcylation influences cancer cell metabolism in such a way that hyper-O-GlcNAcylation is considered as a prominent trait of many cancers, and is proposed as a major factor enabling cancer cell proliferation and progression. Growing evidence supports a connection between O-GlcNAcylation and major oncogenic factors, including for example, c-MYC, HIF-1α, and NF-κB. A comprehensive study of the roles of O-GlcNAc modification of oncogenic factors is warranted as a thorough understanding may help drive advances in cancer diagnosis and therapy. The focus of this article is to highlight the interplay between oncogenic factors and O-GlcNAcylation along with OGT in cancer cell proliferation and survival. The prospects for OGT inhibitors will also be discussed.
Collapse
Affiliation(s)
- Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Shailendra-Anoopkumar Dukie
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia.
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia.
| |
Collapse
|
34
|
Vantaggiato C, Panzeri E, Citterio A, Orso G, Pozzi M. Antipsychotics Promote Metabolic Disorders Disrupting Cellular Lipid Metabolism and Trafficking. Trends Endocrinol Metab 2019; 30:189-210. [PMID: 30718115 DOI: 10.1016/j.tem.2019.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antipsychotics frequently cause obesity and related metabolic disorders that current psychopharmacological/endocrinological theories do not explain consistently. An integrative/alternative theory implies metabolic alterations happening at the cellular level. Many observations in vitro and in vivo, and pivotal observations in humans, point towards chemical properties of antipsychotics, independent of receptor binding characteristics. Being amphiphilic weak bases, antipsychotics can disrupt lysosomal function, affecting cholesterol trafficking; moreover, by chemical mimicry, antipsychotics can inhibit cholesterol biosynthesis. These two molecular adverse effects may trigger a cascade of transcriptional and biochemical events, ultimately reducing available cholesterol while increasing cholesterol precursors and fatty acids. The macroscopic manifestation of these molecular alterations includes decreased high-density lipoprotein and increased very low-density lipoprotein and triglycerides that may translate into obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Andrea Citterio
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Genny Orso
- Department of Pharmacological Sciences, University of Padova (PD), 35131, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy.
| |
Collapse
|
35
|
Li C, Wang M, Zhang T, He Q, Shi H, Luo J, Loor JJ. Insulin-induced gene 1 and 2 isoforms synergistically regulate triacylglycerol accumulation, lipid droplet formation, and lipogenic gene expression in goat mammary epithelial cells. J Dairy Sci 2019; 102:1736-1746. [DOI: 10.3168/jds.2018-15492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
|
36
|
Mohan H, Brandt SL, Kim JH, Wong F, Lai M, Prentice KJ, Al Rijjal D, Magomedova L, Batchuluun B, Burdett E, Bhattacharjee A, Cummins CL, Belsham DD, Cox B, Liu Y, Wheeler MB. 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) prevents high fat diet-induced insulin resistance via maintenance of hepatic lipid homeostasis. Diabetes Obes Metab 2019; 21:61-72. [PMID: 30062833 DOI: 10.1111/dom.13483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023]
Abstract
AIM Omega-3 fatty acid ethyl ester supplements, available by prescription, are common in the treatment of dyslipidaemia in humans. Recent studies show that 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), a metabolite formed from fish oil supplementation, was able to prevent and reverse high fat diet (HFD)-induced fatty liver in mice. In the present study, we investigated the underlying molecular mechanisms responsible for CMPF's hepatic lipid-lowering effects. MATERIALS AND METHODS CD1 male mice were i.p. injected with CMPF (dosage, 6 mg/kg) for 7 days, followed by 5 weeks of a 60% HFD to induce a fatty liver phenotype. Metabolic parameters, liver morphology, lipid content, protein expression and microarray analysis were assessed. We also utilized primary hepatocytes, an in vitro model, to further investigate the direct effects of CMPF on hepatic lipid utilization and biosynthesis. RESULTS CMPF-treated mice display enhanced hepatic lipid clearance while hepatic lipid storage is prevented, thereby protecting against liver lipid accumulation and development of HFD-induced hepatic insulin resistance. Mechanistically, as CMPF enters the liver, it acts as an allosteric acetyl-coA carboxylase (ACC) inhibitor, which directly induces both fatty acid oxidation and hepatic production of fibroblast growth factor 21 (FGF21). A feed-back loop is initiated by CMPF, which exists between ACC inhibition, fatty acid oxidation and production of FGF21. As a consequence, an adaptive decrease in Insig2/SREBP-1c/FAS protein expression results in priming of the liver to prevent a HFD-induced fatty liver phenotype. CONCLUSION CMPF is a potential driver of hepatic lipid metabolism, preventing diet-induced hepatic lipid deposition and insulin resistance in the long term.
Collapse
Affiliation(s)
- Haneesha Mohan
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Sydney L Brandt
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Ja Hyun Kim
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Frances Wong
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Mi Lai
- Department of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Kacey J Prentice
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Lilia Magomedova
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | | - Elena Burdett
- Department of Physiology, University of Toronto, Toronto, Canada
| | | | - Carolyn L Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Brian Cox
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Ying Liu
- Department of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
37
|
Le F, Lou HY, Wang QJ, Wang N, Wang LY, Li LJ, Yang XY, Zhan QT, Lou YY, Jin F. Increased hepatic INSIG-SCAP-SREBP expression is associated with cholesterol metabolism disorder in assisted reproductive technology-conceived aged mice. Reprod Toxicol 2018; 84:9-17. [PMID: 30562550 DOI: 10.1016/j.reprotox.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022]
Abstract
Although most children conceived by assisted reproductive technology (ART) are healthy, there are concerns regarding the potential long-term health implications of ART. It has been reported that alterations in insulin-induced gene (INSIG), sterol regulatory element binding protein (SREBP), and SREBP cleavage-activating protein (SCAP) are involved in cardiometabolic changes. Thus, ART mouse models were established via in vitro fertilization (IVF), intracytoplasmic injection (ICSI), and in vitro oocyte maturation (IVM). A significantly higher systolic blood pressure was identified in the IVM aged female mice. In addition, abnormalities in the blood lipids and liver function were identified in the IVM- or ICSI-conceived elderly mice. Furthermore, ICSI or IVM significantly affected the hepatic expression and methylation of INSIG-SCAP-SREBP from a young to old age. Our animal data indicated that ICSI or IVM result in a higher risk of cholesterol metabolism dysfunction in older mice, which may be associated with long-term alterations of INSIG-SCAP-SREBP.
Collapse
Affiliation(s)
- Fang Le
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Hang-Ying Lou
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi-Jing Wang
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ning Wang
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Li-Ya Wang
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Le-Jun Li
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xin-Yun Yang
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi-Tao Zhan
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yi-Yun Lou
- Department of Gynecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Fan Jin
- Center of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou 310006, China
| |
Collapse
|
38
|
McCarty MF, DiNicolantonio JJ. Minimizing Membrane Arachidonic Acid Content as a Strategy for Controlling Cancer: A Review. Nutr Cancer 2018; 70:840-850. [DOI: 10.1080/01635581.2018.1470657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - James J. DiNicolantonio
- Preventive Cardiology Department, St. Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
39
|
Zhang F, Hu Z, Li G, Huo S, Ma F, Cui A, Xue Y, Han Y, Gong Q, Gao J, Bian H, Meng Z, Wu H, Long G, Tan Y, Zhang Y, Lin X, Gao X, Xu A, Li Y. Hepatic CREBZF couples insulin to lipogenesis by inhibiting insig activity and contributes to hepatic steatosis in diet-induced insulin-resistant mice. Hepatology 2018; 68:1361-1375. [PMID: 29637572 DOI: 10.1002/hep.29926] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
UNLABELLED Insulin is critical for the regulation of de novo fatty acid synthesis, which converts glucose to lipid in the liver. However, how insulin signals are transduced into the cell and then regulate lipogenesis remains to be fully understood. Here, we identified CREB/ATF bZIP transcription factor (CREBZF) of the activating transcription factor/cAMP response element-binding protein (ATF/CREB) gene family as a key regulator for lipogenesis through insulin-Akt signaling. Insulin-induced gene 2a (Insig-2a) decreases during refeeding, allowing sterol regulatory element binding protein 1c to be processed to promote lipogenesis; but the mechanism of reduction is unknown. We show that Insig-2a inhibition is mediated by insulin-induced CREBZF. CREBZF directly inhibits transcription of Insig-2a through association with activating transcription factor 4. Liver-specific knockout of CREBZF causes an induction of Insig-2a and Insig-1 and resulted in repressed lipogenic program in the liver of mice during refeeding or upon treatment with streptozotocin and insulin. Moreover, hepatic CREBZF deficiency attenuates hepatic steatosis in high-fat, high-sucrose diet-fed mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced insulin resistance or genetically obese ob/ob mice and humans with hepatic steatosis, which may underscore the potential role of CREBZF in the development of sustained lipogenesis in the liver under selective insulin resistance conditions. CONCLUSION These findings uncover an unexpected mechanism that couples changes in extracellular hormonal signals to hepatic lipid homeostasis; disrupting CREBZF function may have the therapeutic potential for treating fatty liver disease and insulin resistance. (Hepatology 2018).
Collapse
Affiliation(s)
- Feifei Zhang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaopeng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Shaofeng Huo
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qi Gong
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yi Tan
- Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY
| | - Yan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Li
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Tran M, Liu Y, Huang W, Wang L. Nuclear receptors and liver disease: Summary of the 2017 basic research symposium. Hepatol Commun 2018; 2:765-777. [PMID: 30129636 PMCID: PMC6049066 DOI: 10.1002/hep4.1203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
The nuclear receptor superfamily contains important transcriptional regulators that play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. Many nuclear receptors are ligand-activated transcription factors that regulate the expression of their target genes by modulating transcriptional activities and epigenetic changes. Additionally, the protein complex associated with nuclear receptors consists of a multitude of coregulators, corepressors, and noncoding RNAs. Therefore, acquiring new information on nuclear receptors may provide invaluable insight into novel therapies and shed light on new interventions to reduce the burden and incidence of liver diseases. (Hepatology Communications 2018;2:765-777).
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope National Medical Center Duarte CA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope National Medical Center Duarte CA
| | - Li Wang
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT.,Veterans Affairs Connecticut Healthcare System West Haven CT.,Department of Internal Medicine, Section of Digestive Diseases Yale University New Haven CT
| |
Collapse
|
41
|
CREBH Regulates Systemic Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19051396. [PMID: 29738435 PMCID: PMC5983805 DOI: 10.3390/ijms19051396] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/23/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.
Collapse
|
42
|
Chen A, Chen X, Cheng S, Shu L, Yan M, Yao L, Wang B, Huang S, Zhou L, Yang Z, Liu G. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:538-548. [PMID: 29486327 DOI: 10.1016/j.bbalip.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/06/2018] [Accepted: 02/17/2018] [Indexed: 10/17/2022]
|
43
|
Menon B, Guo X, Garcia N, Gulappa T, Menon KMJ. miR-122 Regulates LHR Expression in Rat Granulosa Cells by Targeting Insig1 mRNA. Endocrinology 2018; 159:2075-2082. [PMID: 29579170 PMCID: PMC5905391 DOI: 10.1210/en.2017-03270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Luteinizing hormone/chorionic gonadotropin receptor (LHR) expression in the ovary is regulated by a messenger RNA (mRNA) binding protein, which specifically binds to the coding region of LHR mRNA. We have shown that miR-122, a short noncoding RNA, mediates LHR mRNA levels by modulating the expression of LHR mRNA-binding protein (LRBP) through the regulation of sterol regulatory element binding protein (SREBP) activation. The present results show that miR-122 regulates LRBP levels by increasing the processing of SREBP through the degradation of Insig1, the anchoring protein of SREBP. We present evidence showing that mRNA and protein levels of Insig1 undergo a time-dependent increase following the treatment of rat granulosa cells with follicle-stimulating hormone (FSH), which leads to a decrease in LRBP levels. Furthermore, overexpression of miR-122 using an adenoviral vector (AdmiR-122) abolished FSH-induced increases in Insig1 mRNA and protein. We further confirmed the role of Insig1 by showing that inhibition of Insig1 using a specific small interfering RNA prior to FSH treatment resulted in the abrogation of LHR upregulation. Silencing of Insig1 also reversed FSH-mediated decreases in SREBP and LRBP activation. These results show that decreased levels of miR-122 increase Insig1 and suppress SREBP processing in response to FSH stimulation of rat granulosa cells.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| | - Xingzi Guo
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Natalia Garcia
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thippeswamy Gulappa
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - K M J Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
44
|
Li D, Long W, Huang R, Chen Y, Xia M. 27-Hydroxycholesterol Inhibits Sterol Regulatory Element-Binding Protein 1 Activation and Hepatic Lipid Accumulation in Mice. Obesity (Silver Spring) 2018; 26:713-722. [PMID: 29476609 DOI: 10.1002/oby.22130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/18/2017] [Accepted: 01/06/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Although 27-hydroxycholesterol (27-HC) has been reported as a potent regulator of lipid homeostasis, its role in hepatic lipogenesis remains obscure. The present study was designed to investigate the impact of 27-HC on sterol regulatory element-binding protein 1 (SREBP-1) and hepatic steatosis. METHODS In this study, the 27-HC level in mice was upregulated by overexpressing CYP27A1 or treating primary hepatocytes with 27-HC, and then the hepatic lipid accumulation was detected. RESULTS 27-HC inhibited hepatic lipid accumulation and decreased the levels of the mature active form of SREBP-1. The expression of lipogenic genes, including acetyl coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, and glycerol-3-phosphate acyltransferase, were also suppressed after 27-HC intervention. Furthermore, 27-HC induced expression of insulin-induced gene-2 (Insig-2), an endoplasmic reticulum protein that prevents SREBP activation, both in vivo and in vitro. The inhibitory effect of 27-HC on SREBP-1 activation was absent when Insig-2 was silenced. Finally, coimmunoprecipitation showed that 27-HC promoted the binding of Insig-2 to SREBP-1. CONCLUSIONS These studies demonstrated the suppressive effect of 27-HC on hepatic lipid accumulation and revealed a novel mechanism by which 27-HC regulates lipogenesis.
Collapse
Affiliation(s)
- Di Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| | - Weiqing Long
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| | - Ying Chen
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| | - Min Xia
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| |
Collapse
|
45
|
Key CCC, Liu M, Kurtz CL, Chung S, Boudyguina E, Dinh TA, Bashore A, Phelan PE, Freedman BI, Osborne TF, Zhu X, Ma L, Sethupathy P, Biddinger SB, Parks JS. Hepatocyte ABCA1 Deletion Impairs Liver Insulin Signaling and Lipogenesis. Cell Rep 2018; 19:2116-2129. [PMID: 28591582 DOI: 10.1016/j.celrep.2017.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
Plasma membrane (PM) free cholesterol (FC) is emerging as an important modulator of signal transduction. Here, we show that hepatocyte-specific knockout (HSKO) of the cellular FC exporter, ATP-binding cassette transporter A1 (ABCA1), leads to decreased PM FC content and defective trafficking of lysosomal FC to the PM. Compared with controls, chow-fed HSKO mice had reduced hepatic (1) insulin-stimulated Akt phosphorylation, (2) activation of the lipogenic transcription factor Sterol Regulatory Element Binding Protein (SREBP)-1c, and (3) lipogenic gene expression. Consequently, Western-type diet-fed HSKO mice were protected from steatosis. Surprisingly, HSKO mice had intact glucose metabolism; they showed normal gluconeogenic gene suppression in response to re-feeding and normal glucose and insulin tolerance. We conclude that: (1) ABCA1 maintains optimal hepatocyte PM FC, through intracellular FC trafficking, for efficient insulin signaling; and (2) hepatocyte ABCA1 deletion produces a form of selective insulin resistance so that lipogenesis is suppressed but glucose metabolism remains normal.
Collapse
Affiliation(s)
- Chia-Chi C Key
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mingxia Liu
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Elena Boudyguina
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy A Dinh
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Bashore
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Peter E Phelan
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy F Osborne
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Xuewei Zhu
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Lijun Ma
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02062, USA
| | - John S Parks
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
46
|
Ling AV, Gearing ME, Semova I, Shin DJ, Clements R, Lai ZW, Biddinger SB. FoxO1 Is Required for Most of the Metabolic and Hormonal Perturbations Produced by Hepatic Insulin Receptor Deletion in Male Mice. Endocrinology 2018; 159:1253-1263. [PMID: 29300910 PMCID: PMC5802805 DOI: 10.1210/en.2017-00870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Abstract
Insulin coordinates the complex response to feeding, affecting numerous metabolic and hormonal pathways. Forkhead box protein O1 (FoxO1) is one of several signaling molecules downstream of insulin; FoxO1 drives gluconeogenesis and is suppressed by insulin. To determine the role of FoxO1 in mediating other actions of insulin, we studied mice with hepatic deletion of the insulin receptor, FoxO1, or both. We found that mice with deletion of the insulin receptor alone showed not only hyperglycemia but also a 70% decrease in plasma insulin-like growth factor 1 and delayed growth during the first 2 months of life, a 24-fold increase in the soluble leptin receptor and a 19-fold increase in plasma leptin levels. Deletion of the insulin receptor also produced derangements in fatty acid metabolism, with a decrease in the expression of the lipogenic enzymes, hepatic diglycerides, and plasma triglycerides; in parallel, it increased expression of the fatty acid oxidation enzymes. Mice with deletion of both insulin receptor and FoxO1 showed a much more modest phenotype, with normal or near-normal glucose levels, growth, leptin levels, hepatic diglycerides, and fatty acid oxidation gene expression; however, lipogenic gene expression remained low. Taken together, these data reveal the pervasive role of FoxO1 in mediating the effects of insulin on not only glucose metabolism but also other hormonal signaling pathways and even some aspects of lipid metabolism.
Collapse
Affiliation(s)
- Alisha V. Ling
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E. Gearing
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ivana Semova
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Dong-Ju Shin
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rebecca Clements
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Zon W. Lai
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Sudha B. Biddinger
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
47
|
DeBose-Boyd RA, Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem Sci 2018; 43:358-368. [PMID: 29500098 DOI: 10.1016/j.tibs.2018.01.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that activate genes encoding enzymes required for synthesis of cholesterol and unsaturated fatty acids. SREBPs are controlled by multiple mechanisms at the level of mRNA synthesis, proteolytic activation, and transcriptional activity. In this review, we summarize the recent findings that contribute to the current understanding of the regulation of SREBPs and their physiologic roles in maintenance of lipid homeostasis, insulin signaling, innate immunity, and cancer development.
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| |
Collapse
|
48
|
Khound R, Shen J, Song Y, Santra D, Su Q. Phytoceuticals in Fenugreek Ameliorate VLDL Overproduction and Insulin Resistance via the Insig Signaling Pathway. Mol Nutr Food Res 2018; 62. [DOI: 10.1002/mnfr.201700541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Rituraj Khound
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| | - Jing Shen
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| | - Yongyan Song
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| | - Dipak Santra
- Panhandle Research and Extension Center; University of Nebraska-Lincoln; Scottsbluff NE USA
| | - Qiaozhu Su
- The Department of Nutrition and Health Sciences; University of Nebraska-Lincoln; Lincoln NE USA
| |
Collapse
|
49
|
Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver. Proc Natl Acad Sci U S A 2018; 115:E1916-E1925. [PMID: 29432155 PMCID: PMC5828596 DOI: 10.1073/pnas.1715225115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rhythms in gene expression propelled by the circadian clock and environmental signals are ubiquitous across cells and tissues. In particular, in mouse tissues, thousands of transcripts show oscillations with a period of 24 hours. Keys question are how such rhythms propagate and eventually exert functions, but also how these are generated. Here, we developed a mathematical model based on total RNA-seq to classify genes according to the respective contributions of transcriptional and posttranscriptional regulation toward mRNA expression profiles. We found that about one-third of rhythmically accumulating mRNA are under posttranscriptional regulation. Such regulation is only partially dependent on the circadian clock, showing that systemic pathways and feeding patterns contribute important posttranscriptional control of gene expression in liver. The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver.
Collapse
|
50
|
Linden AG, Li S, Choi HY, Fang F, Fukasawa M, Uyeda K, Hammer RE, Horton JD, Engelking LJ, Liang G. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res 2018; 59:475-487. [PMID: 29335275 PMCID: PMC5832931 DOI: 10.1194/jlr.m081836] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Lipogenesis in liver is highest in the postprandial state; insulin activates SREBP-1c, which transcriptionally activates genes involved in FA synthesis, whereas glucose activates carbohydrate-responsive element-binding protein (ChREBP), which activates both glycolysis and FA synthesis. Whether SREBP-1c and ChREBP act independently of one another is unknown. Here, we characterized mice with liver-specific deletion of ChREBP (L-Chrebp−/− mice). Hepatic ChREBP deficiency resulted in reduced mRNA levels of glycolytic and lipogenic enzymes, particularly in response to sucrose refeeding following fasting, a dietary regimen that elicits maximal lipogenesis. mRNA and protein levels of SREBP-1c, a master transcriptional regulator of lipogenesis, were also reduced in L-Chrebp−/− livers. Adeno-associated virus-mediated restoration of nuclear SREBP-1c in L-Chrebp−/− mice normalized expression of a subset of lipogenic genes, while not affecting glycolytic genes. Conversely, ChREBP overexpression alone failed to support expression of lipogenic genes in the livers of mice lacking active SREBPs as a result of Scap deficiency. Together, these data show that SREBP-1c and ChREBP are both required for coordinated induction of glycolytic and lipogenic mRNAs. Whereas SREBP-1c mediates insulin’s induction of lipogenic genes, ChREBP mediates glucose’s induction of both glycolytic and lipogenic genes. These overlapping, but distinct, actions ensure that the liver synthesizes FAs only when insulin and carbohydrates are both present.
Collapse
Affiliation(s)
- Albert G Linden
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Shili Li
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hwa Y Choi
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Fei Fang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Masashi Fukasawa
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Veterans Affairs Medical Center, Dallas, TX 75216
| | - Kosaku Uyeda
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Veterans Affairs Medical Center, Dallas, TX 75216
| | - Robert E Hammer
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jay D Horton
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390 .,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Guosheng Liang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|