1
|
Yeewa R, Pohsa S, Yamsri T, Wongkummool W, Jantaree P, Potikanond S, Nimlamool W, Shotelersuk V, Lo Piccolo L, Jantrapirom S. The histone acylation reader ENL/AF9 regulates aging in Drosophila melanogaster. Neurobiol Aging 2024; 144:153-162. [PMID: 39405796 DOI: 10.1016/j.neurobiolaging.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Histone acylation plays a pivotal role in modulating gene expression, ensuring proper neurogenesis and responsiveness to various signals. Recently, the evolutionary conserved YAF9, ENL, AF9, TAF41, SAS5 (YEATS) domain found in four human paralogs, has emerged as a new class of histone acylation reader with a preference for the bulkier crotonyl group lysine over acetylation. Despite advancements, the role of either histone crotonylation or its readers in neurons remains unclear. In this study, we employed Drosophila melanogaster to investigate the role of ENL/AF9 (dENL/AF9) in the nervous system. Pan-neuronal dENL/AF9 knockdown not only extended the lifespan of flies but also enhanced their overall fitness during aging, including improved sleep quality and locomotion. Moreover, a decreased activity of dENL/AF9 in neurons led to an up-regulation of catalase gene expression which combined with reduced levels of malondialdehyde (MDA) and an enhanced tolerance to oxidative stress in aging flies. This study unveiled a novel function of histone crotonylation readers in aging with potential implications for understanding age-related conditions in humans.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasinee Wongkummool
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatcharida Jantaree
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Tang T, Li J, Zhang B, Wen L, Lu Y, Hu Q, Yu XQ, Zhang J. Loss of function in Drosophila transcription factor Dif delays brain development in larvae resulting in aging adult brain. Int J Biol Macromol 2024; 281:136491. [PMID: 39393722 DOI: 10.1016/j.ijbiomac.2024.136491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Drosophila NF-κB transcription factor Dif has been well known for its function in innate immunity, and recent study also reveals its role in neuronal cells. However, the underlying mechanisms of Dif in the brain remain elusive. In this study, we aim to investigate the function of Dif in Drosophila brain development and how Dif regulates structure and plasticity of the brain to affect aging and behaviors. Based on the analysis of differentially expressed genes, we identified key genes associated with cell division, development and aging in the brain of Dif1 loss of function mutant. In Dif1 larvae, we found that the metamorphosis and brain development were delayed, and cell division was decreased. In Dif1 adults, the number of neuron cells was reduced in the brain, the lifespan and locomotor activity were decreased, protein markers associated with aging-related neurodegenerative diseases in the brain were altered in abundance or activity. Our results indicated that Dif plays a crucial role in brain plasticity and neurogenesis, dysfunction of Dif delays larval brain development and impacts proliferation of neuronal cells, resulting in aging adult brain by regulating expression of key genes in multiple signaling pathways involved in cell division, neurogenesis and aging.
Collapse
Affiliation(s)
- Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bangwen Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Salis F, Belfiori M, Figorilli M, Mulas M, Puligheddu M, Mandas A. Sex Differences in Elderly People's Sleep: A Cross-Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1654. [PMID: 39459442 PMCID: PMC11509777 DOI: 10.3390/medicina60101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Sex differences are unclear in geriatric sleep medicine, and most evidence comes from inference from preclinical bases or clinical studies conducted on younger people. The aim of this study is to explore sex differences in sleep quality and daytime sleepiness in a cohort of elderly people. Materials and Methods: This cross-sectional study involved subjects aged 65 years or older undergoing multidimensional evaluation, including sleep quality and daytime sleepiness assessment with validated tools. Results: This study included 226 subjects (69.5% women), the majority of whom showed poor sleep quality (64.2%). A logistic regression model put one before the other sleep quality and gender. It initially showed that men were about half likely as women to have poor sleep quality (OR 0.48, 95%CI 0.27-0.86). Nonetheless, after adjusting for cognitive status and mood, the difference became smaller and insignificant (OR 0.72, 95%CI 0.38-1.38). Conclusions: Sex differences in elderly people's sleep quality seem to not be independent, appearing to be affected by alterations in cognitive status and mood.
Collapse
Affiliation(s)
- Francesco Salis
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Maristella Belfiori
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Michela Figorilli
- University Hospital “Azienda Ospedaliero-Universitaria” of Cagliari, 09042 Monserrato, Italy
- Sleep Disorder Centre, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Martina Mulas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
- Sleep Disorder Centre, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Monica Puligheddu
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
- University Hospital “Azienda Ospedaliero-Universitaria” of Cagliari, 09042 Monserrato, Italy
- Sleep Disorder Centre, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Antonella Mandas
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
- University Hospital “Azienda Ospedaliero-Universitaria” of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
4
|
Dos Santos E, Cochemé HM. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience 2024; 46:4003-4015. [PMID: 38642259 PMCID: PMC11336040 DOI: 10.1007/s11357-024-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The fruit fly Drosophila melanogaster is a common animal model in ageing research. Large populations of flies are used to study the impact of genetic, nutritional and pharmacological interventions on survival. However, the processes through which flies die and their relative prevalence in Drosophila populations are still comparatively unknown. Understanding the causes of death in an animal model is essential to dissect the lifespan-extending interventions that are organism- or disease-specific from those broadly applicable to ageing. Here, we review the pathophysiological processes that can lead to fly death and discuss their relation to ageing.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK.
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
5
|
Woodling N. Sex- and strain-dependent effects of ageing on sleep and activity patterns in Drosophila. PLoS One 2024; 19:e0308652. [PMID: 39150918 PMCID: PMC11329114 DOI: 10.1371/journal.pone.0308652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/27/2024] [Indexed: 08/18/2024] Open
Abstract
The fruit fly Drosophila is a major discovery platform in the biology of ageing due to its balance of relatively short lifespan and relatively complex physiology and behaviour. Previous studies have suggested that some important phenotypes of ageing, for instance increasingly fragmented sleep, are shared from humans to Drosophila and can be useful measures of behavioural change with age: these phenotypes therefore hold potential as readouts of healthy ageing for genetic or pharmacological interventions aimed at the underpinning biology of ageing. However, some age-related phenotypes in Drosophila show differing results among studies, leading to questions regarding the source of discrepancies among experiments. In this study, I have tested females and males from three common laboratory strains of Drosophila to determine the extent to which sex and background strain influence age-related behavioural changes in sleep and activity patterns. Surprisingly, I find that some phenotypes-including age-related changes in total activity, total sleep, and sleep fragmentation-depend strongly on sex and strain, to the extent that some phenotypes show opposing age-related changes in different sexes or strains. Conversely, I identify other phenotypes, including age-related decreases in morning and evening anticipation, that are more uniform across sexes and strains. These results reinforce the importance of controlling for background strain in both behavioural and ageing experiments, and they imply that caution should be used when drawing conclusions from studies on a single sex or strain of Drosophila. At the same time, these findings also offer suggestions for behavioural measures that merit further investigation as potentially more consistent phenotypes of ageing.
Collapse
Affiliation(s)
- Nathan Woodling
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Chaturvedi R, Emery P. Fly into tranquility: GABA's role in Drosophila sleep. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101219. [PMID: 38848811 PMCID: PMC11290982 DOI: 10.1016/j.cois.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Sleep is conserved across the animal kingdom, and Drosophila melanogaster is a prime model to understand its intricate circadian and homeostatic control. GABA (gamma-aminobutyric acid), the brain's main inhibitory neurotransmitter, plays a central role in sleep. This review delves into GABA's complex mechanisms of actions within Drosophila's sleep-regulating neural networks. We discuss how GABA promotes sleep, both by inhibiting circadian arousal neurons and by being a key neurotransmitter in sleep homeostatic circuits. GABA's impact on sleep is modulated by glia through astrocytic GABA recapture and metabolism. Interestingly, GABA can be coexpressed with other neurotransmitters in sleep-regulating neurons, which likely contributes to context-based sleep plasticity.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Lv P, Yang X, Du J. LKRSDH-dependent histone modifications of insulin-like peptide sites contribute to age-related circadian rhythm changes. Nat Commun 2024; 15:3336. [PMID: 38637528 PMCID: PMC11026460 DOI: 10.1038/s41467-024-47740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
To understand aging impact on the circadian rhythm, we screened for factors influencing circadian changes during aging. Our findings reveal that LKRSDH mutation significantly reduces rhythmicity in aged flies. RNA-seq identifies a significant increase in insulin-like peptides (dilps) in LKRSDH mutants due to the combined effects of H3R17me2 and H3K27me3 on transcription. Genetic evidence suggests that LKRSDH regulates age-related circadian rhythm changes through art4 and dilps. ChIP-seq analyzes whole genome changes in H3R17me2 and H3K27me3 histone modifications in young and old flies with LKRSDH mutation and controls. The results reveal a correlation between H3R17me2 and H3K27me3, underscoring the role of LKRSDH in regulating gene expression and modification levels during aging. Overall, our study demonstrates that LKRSDH-dependent histone modifications at dilps sites contribute to age-related circadian rhythm changes. This data offers insights and a foundational reference for aging research by unveiling the relationship between LKRSDH and H3R17me2/H3K27me3 histone modifications in aging.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xingzhuo Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Schwarz JE, Sengupta A, Guevara C, Barber AF, Hsu CT, Zhang SL, Weljie A, Sehgal A. Age-regulated cycling metabolites are relevant for behavior. Aging Cell 2024; 23:e14082. [PMID: 38204362 PMCID: PMC11019118 DOI: 10.1111/acel.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Circadian cycles of sleep:wake and gene expression change with age in all organisms examined. Metabolism is also under robust circadian regulation, but little is known about how metabolic cycles change with age and whether these contribute to the regulation of behavioral cycles. To address this gap, we compared cycling of metabolites in young and old Drosophila and found major age-related variations. A significant model separated the young metabolic profiles by circadian timepoint, but could not be defined for the old metabolic profiles due to the greater variation in this dataset. Of the 159 metabolites measured in fly heads, we found 17 that cycle by JTK analysis in young flies and 17 in aged. Only four metabolites overlapped in the two groups, suggesting that cycling metabolites are distinct in young and old animals. Among our top cyclers exclusive to young flies were components of the pentose phosphate pathway (PPP). As the PPP is important for buffering reactive oxygen species, and overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key component of the PPP, was previously shown to extend lifespan in Drosophila, we asked if this manipulation also affects sleep:wake cycles. We found that overexpression in circadian clock neurons decreases sleep in association with an increase in cellular calcium and mitochondrial oxidation, suggesting that altering PPP activity affects neuronal activity. Our findings elucidate the importance of metabolic regulation in maintaining patterns of neural activity, and thereby sleep:wake cycles.
Collapse
Affiliation(s)
- Jessica E. Schwarz
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Camilo Guevara
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Annika F. Barber
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
Waksman Institute and Department of Molecular Biology and Biochemistry, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| | - Cynthia T. Hsu
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shirley L. Zhang
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
Department of Cell BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Aalim Weljie
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Wen D, Xie J, Yuan Y, Shen L, Yang Y, Chen W. The endogenous antioxidant ability of royal jelly in Drosophila is independent of Keap1/Nrf2 by activating oxidoreductase activity. INSECT SCIENCE 2024; 31:503-523. [PMID: 37632209 DOI: 10.1111/1744-7917.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 08/27/2023]
Abstract
Royal jelly (RJ) is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees. It is widely claimed that RJ reduces oxidative stress. However, the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress. Whether RJ can clear the endogenous production of reactive oxygen species (ROS) in cells remains largely unknown. Here, we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila. We found that RJ enhanced sleep quality of aging Drosophila, which is decreased due to an increase of oxidative damage with age. RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat. Moreover, RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress. Sleep deprivation leads to accumulation of ROS in the gut cells, and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan. Mechanistically, RJ prevented cell oxidative damage caused by heat stress or sleep deprivation, with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling. RJ supplementation activated oxidoreductase activity in the guts of flies, suggesting its ability to inhibit endogenous oxidative stress and maintain health, possibly in humans.
Collapse
Affiliation(s)
- Dongjing Wen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiayu Xie
- School of Medicine, Chongqing University, Chongqing, China
| | - Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lirong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufeng Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
10
|
Chen H, Müller H, Rodovitis VG, Papadopoulos NT, Carey JR. Daily activity profiles over the lifespan of female medflies as biomarkers of aging and longevity. Aging Cell 2024; 23:e14080. [PMID: 38268242 PMCID: PMC11019124 DOI: 10.1111/acel.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
The relationship between the early-age activity of Mediterranean fruit flies (medflies) or other fruit flies and their lifespan has not been much studied, in contrast to the connections between lifespan and diet, sexual signaling, and reproduction. The objective of this study is to assess intra-day and day-to-day activity profiles of female Mediterranean fruit flies and their role as biomarker of longevity as well as to explore the relationships between these activity profiles, diet, and age-at-death throughout the lifespan. We use advanced statistical methods from functional data analysis (FDA). Three distinct patterns of activity variations in early-age activity profiles can be distinguished. A low-caloric diet is associated with a delayed activity peak, while a high-caloric diet is linked with an earlier activity peak. We find that age-at-death of individual medflies is connected to their activity profiles in early life. An increased risk of mortality is associated with increased activity in early age, as well as with a higher contrast between daytime and nighttime activity. Conversely, medflies are more likely to have a longer lifespan when they are fed a medium-caloric diet and when their daily activity is more evenly distributed across the early-age span and between daytime and nighttime. The before-death activity profile of medflies displays two characteristic before-death patterns, where one pattern is characterized by slowly declining daily activity and the other by a sudden decline in activity that is followed by death.
Collapse
Affiliation(s)
- Han Chen
- Department of StatisticsUniversity of California at DavisDavisCaliforniaUSA
| | - Hans‐Georg Müller
- Department of StatisticsUniversity of California at DavisDavisCaliforniaUSA
| | - Vasilis G. Rodovitis
- Department of Agriculture Crop Production and Rural EnvironmentUniversity of ThessalyVolosGreece
| | - Nikos T. Papadopoulos
- Department of Agriculture Crop Production and Rural EnvironmentUniversity of ThessalyVolosGreece
| | - James R. Carey
- Department of EntomologyUniversity of California at DavisDavisCaliforniaUSA
| |
Collapse
|
11
|
Tabuchi M. Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep. Neurosci Res 2024; 198:1-7. [PMID: 37385545 PMCID: PMC11033711 DOI: 10.1016/j.neures.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
How do neurons encode the information that underlies cognition, internal states, and behavior? This review focuses on the neural circuit mechanisms underlying sleep in Drosophila and, to illustrate the power of addressing neural coding in this system, highlights a specific circuit mediating the circadian regulation of sleep quality. This circuit exhibits circadian cycling of sleep quality, which depends solely on the pattern (not the rate) of spiking. During the night, the stability of spike waveforms enhances the reliability of spike timing in these neurons to promote sleep quality. During the day, instability of the spike waveforms leads to uncertainty of spike timing, which remarkably produces synaptic plasticity to induce arousal. Investigation of the molecular and biophysical basis of these changes was greatly facilitated by its study in Drosophila, revealing direct connections between genes, molecules, spike biophysical properties, neural codes, synaptic plasticity, and behavior. Furthermore, because these patterns of neural activity change with aging, this model system holds promise for understanding the interplay between the circadian clock, aging, and sleep quality. It is proposed here that neurophysiological investigations of the Drosophila brain present an exceptional opportunity to tackle some of the most challenging questions related to neural coding.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
12
|
Tower J. Markers and mechanisms of death in Drosophila. FRONTIERS IN AGING 2023; 4:1292040. [PMID: 38149028 PMCID: PMC10749947 DOI: 10.3389/fragi.2023.1292040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
Parameters correlated with age and mortality in Drosophila melanogaster include decreased negative geotaxis and centrophobism behaviors, decreased climbing and walking speed, and darkened pigments in oenocytes and eye. Cessation of egg laying predicts death within approximately 5 days. Endogenous green fluorescence in eye and body increases hours prior to death. Many flies exhibit erratic movement hours before death, often leading to falls. Loss of intestinal barrier integrity (IBI) is assayed by feeding blue dye ("Smurf" phenotype), and Smurf flies typically die within 0-48 h. Some studies report most flies exhibit Smurf, whereas multiple groups report most flies die without exhibiting Smurf. Transgenic reporters containing heat shock gene promoters and innate immune response gene promoters progressively increase expression with age, and partly predict remaining life span. Innate immune reporters increase with age in every fly, prior to any Smurf phenotype, in presence or absence of antibiotics. Many flies die on their side or supine (on their back) position. The data suggest three mechanisms for death of Drosophila. One is loss of IBI, as revealed by Smurf assay. The second is nervous system malfunction, leading to erratic behavior, locomotor malfunction, and falls. The aged fly is often unable to right itself after a fall to a side-ways or supine position, leading to inability to access the food and subsequent dehydration/starvation. Finally, some flies die upright without Smurf phenotype, suggesting a possible third mechanism. The frequency of these mechanisms varies between strains and culture conditions, which may affect efficacy of life span interventions.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Verma AK, Khan MI, Ashfaq F, Rizvi SI. Crosstalk Between Aging, Circadian Rhythm, and Melatonin. Rejuvenation Res 2023; 26:229-241. [PMID: 37847148 DOI: 10.1089/rej.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Circadian rhythms (CRs) are 24-hour periodic oscillations governed by an endogenous circadian pacemaker located in the suprachiasmatic nucleus (SCN), which organizes the physiology and behavior of organisms. Circadian rhythm disruption (CRD) is also indicative of the aging process. In mammals, melatonin is primarily synthesized in the pineal gland and participates in a variety of multifaceted intracellular signaling networks and has been shown to synchronize CRs. Endogenous melatonin synthesis and its release tend to decrease progressively with advancing age. Older individuals experience frequent CR disruption, which hastens the process of aging. A profound understanding of the relationship between CRs and aging has the potential to improve existing treatments and facilitate development of novel chronotherapies that target age-related disorders. This review article aims to examine the circadian regulatory mechanisms in which melatonin plays a key role in signaling. We describe the basic architecture of the molecular circadian clock and its functional decline with age in detail. Furthermore, we discuss the role of melatonin in regulation of the circadian pacemaker and redox homeostasis during aging. Moreover, we also discuss the protective effect of exogenous melatonin supplementation in age-dependent CR disruption, which sheds light on this pleiotropic molecule and how it can be used as an effective chronotherapeutic medicine.
Collapse
Affiliation(s)
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
14
|
Brown EB, Zhang J, Lloyd E, Lanzon E, Botero V, Tomchik S, Keene AC. Neurofibromin 1 mediates sleep depth in Drosophila. PLoS Genet 2023; 19:e1011049. [PMID: 38091360 PMCID: PMC10763969 DOI: 10.1371/journal.pgen.1011049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 11/03/2023] [Indexed: 01/04/2024] Open
Abstract
Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth Lanzon
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seth Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Xu W, Rustenhoven J, Nelson CA, Dykstra T, Ferreiro A, Papadopoulos Z, Burnham CAD, Dantas G, Fremont DH, Kipnis J. A novel immune modulator IM33 mediates a glia-gut-neuronal axis that controls lifespan. Neuron 2023; 111:3244-3254.e8. [PMID: 37582366 PMCID: PMC10592285 DOI: 10.1016/j.neuron.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
Aging is a complex process involving various systems and behavioral changes. Altered immune regulation, dysbiosis, oxidative stress, and sleep decline are common features of aging, but their interconnection is poorly understood. Using Drosophila, we discover that IM33, a novel immune modulator, and its mammalian homolog, secretory leukocyte protease inhibitor (SLPI), are upregulated in old flies and old mice, respectively. Knockdown of IM33 in glia elevates the gut reactive oxygen species (ROS) level and alters gut microbiota composition, including increased Lactiplantibacillus plantarum abundance, leading to a shortened lifespan. Additionally, dysbiosis induces sleep fragmentation through the activation of insulin-producing cells in the brain, which is mediated by the binding of Lactiplantibacillus plantarum-produced DAP-type peptidoglycan to the peptidoglycan recognition protein LE (PGRP-LE) receptor. Therefore, IM33 plays a role in the glia-microbiota-neuronal axis, connecting neuroinflammation, dysbiosis, and sleep decline during aging. Identifying molecular mediators of these processes could lead to the development of innovative strategies for extending lifespan.
Collapse
Affiliation(s)
- Wangchao Xu
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zachary Papadopoulos
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Axelrod S, Li X, Sun Y, Lincoln S, Terceros A, O’Neil J, Wang Z, Nguyen A, Vora A, Spicer C, Shapiro B, Young MW. The Drosophila blood-brain barrier regulates sleep via Moody G protein-coupled receptor signaling. Proc Natl Acad Sci U S A 2023; 120:e2309331120. [PMID: 37831742 PMCID: PMC10589661 DOI: 10.1073/pnas.2309331120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sleep is vital for most animals, yet its mechanism and function remain unclear. We found that permeability of the BBB (blood-brain barrier)-the organ required for the maintenance of homeostatic levels of nutrients, ions, and other molecules in the brain-is modulated by sleep deprivation (SD) and can cell-autonomously effect sleep changes. We observed increased BBB permeability in known sleep mutants as well as in acutely sleep-deprived animals. In addition to molecular tracers, SD-induced BBB changes also increased the penetration of drugs used in the treatment of brain pathologies. After chronic/genetic or acute SD, rebound sleep or administration of the sleeping aid gaboxadol normalized BBB permeability, showing that SD effects on the BBB are reversible. Along with BBB permeability, RNA levels of the BBB master regulator moody are modulated by sleep. Conversely, altering BBB permeability alone through glia-specific modulation of moody, gαo, loco, lachesin, or neuroglian-each a well-studied regulator of BBB function-was sufficient to induce robust sleep phenotypes. These studies demonstrate a tight link between BBB permeability and sleep and indicate a unique role for the BBB in the regulation of sleep.
Collapse
Affiliation(s)
- Sofia Axelrod
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Xiaoling Li
- International Personalized Cancer Center, Tianjin Cancer Hospital Airport Hospital, Tianjin300308, China
| | - Yingwo Sun
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrea Terceros
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Jenna O’Neil
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrew Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Aabha Vora
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Carmen Spicer
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Benjamin Shapiro
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| |
Collapse
|
17
|
Li Y, Xu S, Wang L, Shi H, Wang H, Fang Z, Hu Y, Jin J, Du Y, Deng M, Wang L, Zhu Z. Gut microbial genetic variation modulates host lifespan, sleep, and motor performance. THE ISME JOURNAL 2023; 17:1733-1740. [PMID: 37550381 PMCID: PMC10504343 DOI: 10.1038/s41396-023-01478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Recent studies have shown that gut microorganisms can modulate host lifespan and activities, including sleep quality and motor performance. However, the role of gut microbial genetic variation in regulating host phenotypes remains unclear. In this study, we investigated the links between gut microbial genetic variation and host phenotypes using Saccharomyces cerevisiae and Drosophila melanogaster as research models. Our result suggested a novel role for peroxisome-related genes in yeast in regulating host lifespan and activities by modulating gut oxidative stress. Specifically, we found that deficiency in catalase A (CTA1) in yeast reduced both the sleep duration and lifespan of fruit flies significantly. Furthermore, our research also expanded our understanding of the relationship between sleep and longevity. Using a large sample size and excluding individual genetic background differences, we found that lifespan is associated with sleep duration, but not sleep fragmentation or motor performance. Overall, our study provides novel insights into the role of gut microbial genetic variation in regulating host phenotypes and offers potential new avenues for improving health and longevity.
Collapse
Affiliation(s)
- Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Liying Wang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Hao Shi
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Han Wang
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Ziyi Fang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yufan Hu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jiayu Jin
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yujie Du
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mengqiong Deng
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
- The Center for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
18
|
Holvoet H, Long DM, Yang L, Choi J, Marney L, Poeck B, Maier CS, Soumyanath A, Kretzschmar D, Strauss R. Chlorogenic Acids, Acting via Calcineurin, Are the Main Compounds in Centella asiatica Extracts That Mediate Resilience to Chronic Stress in Drosophila melanogaster. Nutrients 2023; 15:4016. [PMID: 37764799 PMCID: PMC10537055 DOI: 10.3390/nu15184016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Common symptoms of depressive disorders include anhedonia, sleep problems, and reduced physical activity. Drugs used to treat depression mostly aim to increase serotonin signaling but these can have unwanted side effects. Depression has also been treated by traditional medicine using plants like Centella asiatica (CA) and this has been found to be well tolerated. However, very few controlled studies have addressed CA's protective role in depression, nor have the active compounds or mechanisms that mediate this function been identified. To address this issue, we used Drosophila melanogaster to investigate whether CA can improve depression-associated symptoms like anhedonia and decreased climbing activity. We found that a water extract of CA provides resilience to stress induced phenotypes and that this effect is primarily due to mono-caffeoylquinic acids found in CA. Furthermore, we describe that the protective function of CA is due to a synergy between chlorogenic acid and one of its isomers also present in CA. However, increasing the concentration of chlorogenic acid can overcome the requirement for the second isomer. Lastly, we found that chlorogenic acid acts via calcineurin, a multifunctional phosphatase that can regulate synaptic transmission and plasticity and is also involved in neuronal maintenance.
Collapse
Affiliation(s)
- Helen Holvoet
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Dani M. Long
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Liping Yang
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Luke Marney
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Burkhard Poeck
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Doris Kretzschmar
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| |
Collapse
|
19
|
McKenzie-Smith GC, Wolf SW, Ayroles JF, Shaevitz JW. Capturing continuous, long timescale behavioral changes in Drosophila melanogaster postural data. ARXIV 2023:arXiv:2309.04044v1. [PMID: 37731659 PMCID: PMC10508836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Animal behavior spans many timescales, from short, seconds-scale actions to circadian rhythms over many hours to life-long changes during aging. Most quantitative behavior studies have focused on short-timescale behaviors such as locomotion and grooming. Analysis of these data suggests there exists a hierarchy of timescales; however, the limited duration of these experiments prevents the investigation of the full temporal structure. To access longer timescales of behavior, we continuously recorded individual Drosophila melanogaster at 100 frames per second for up to 7 days at a time in featureless arenas on sucrose-agarose media. We use the deep learning framework SLEAP to produce a full-body postural data set for 47 individuals resulting in nearly 2 billion pose instances. We identify stereotyped behaviors such as grooming, proboscis extension, and locomotion and use the resulting ethograms to explore how the flies' behavior varies across time of day and days in the experiment. We find distinct circadian patterns in all of our stereotyped behavior and also see changes in behavior over the course of the experiment as the flies weaken and die.
Collapse
Affiliation(s)
| | - Scott W. Wolf
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Julien F. Ayroles
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
20
|
Mishra S, Sharma N, Lone SR. Understanding the impact of sociosexual interactions on sleep using Drosophila melanogaster as a model organism. Front Physiol 2023; 14:1220140. [PMID: 37670770 PMCID: PMC10476103 DOI: 10.3389/fphys.2023.1220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Sleep is conserved across species, and it is believed that a fixed amount of sleep is needed for normal neurobiological functions. Sleep rebound follows sleep deprivation; however, continuous sleep deprivation for longer durations is believed to be detrimental to the animal's wellbeing. Under some physiologically demanding situations, such as migration in birds, the birth of new offspring in cetaceans, and sexual interactions in pectoral sandpipers, animals are known to forgo sleep. The mechanisms by which animals forgo sleep without having any obvious negative impact on the proper functioning of their neurobiological processes are yet unknown. Therefore, a simple assay is needed to study how animals forgo sleep. The assay should be ecologically relevant so it can offer insights into the physiology of the organisms. Equally important is that the organism should be genetically amenable, which helps in understanding the cellular and molecular processes that govern such behaviors. This paper presents a simple method of sociosexual interaction to understand the process by which animals forgo sleep. In the case of Drosophila melanogaster, when males and females are in proximity, they are highly active and lose a significant amount of sleep. In addition, there is no sleep rebound afterward, and instead, males engaged in sexual interactions continue to show normal sleep. Thus, sexual drive in the fruit flies is a robust assay to understand the underlying mechanism by which animals forgo sleep.
Collapse
|
21
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
22
|
Landis JE, Sungu K, Sipe H, Copeland JM. RNAi of Complex I and V of the electron transport chain in glutamate neurons extends life span, increases sleep, and decreases locomotor activity in Drosophila melanogaster. PLoS One 2023; 18:e0286828. [PMID: 37319260 PMCID: PMC10270625 DOI: 10.1371/journal.pone.0286828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
RNAi targeting the electron transport chain has been proven to prolong life span in many different species, and experiments specifically with Drosophila melanogaster and Caenorhabditis elegans have shown a distinct role for neurons. To determine which subset of neurons is implicated in this life span extension, we used the GAL4/UAS system to activate RNAi against genes of Complex I and Complex V. We found life span extension of 18-24% with two glutamate neuron (D42 and VGlut) GAL4 lines. We used the GAL80 system to determine if the overlapping set of glutamate neurons in these two GAL4 lines imparts the life span extension. Limiting GAL4 activity to non-VGlut glutamate neurons in the D42 background failed to extend life span, suggesting that glutamate neurons have an important role in aging. Interestingly, RNAi of the electron transport chain in D42 glutamate neurons also caused an increase in daytime and nighttime sleep and a decrease in nighttime locomotor activity. Changes to sleep patterns and prolonged life span were not accompanied by any changes in female fertility or response to starvation. Our findings demonstrate that a small subset of neurons can control life span, and further studies can look into the contributions made by glutamate neurons.
Collapse
Affiliation(s)
- Jessie E. Landis
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| | - Kevin Sungu
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| | - Hannah Sipe
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| | - Jeffrey M. Copeland
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| |
Collapse
|
23
|
Chen N, Zhang Y, Rivera-Rodriguez EJ, Yu AD, Hobin M, Rosbash M, Griffith LC. Widespread posttranscriptional regulation of cotransmission. SCIENCE ADVANCES 2023; 9:eadg9836. [PMID: 37267358 PMCID: PMC10413644 DOI: 10.1126/sciadv.adg9836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
While neurotransmitter identity was once considered singular and immutable for mature neurons, it is now appreciated that one neuron can release multiple neuroactive substances (cotransmission) whose identities can even change over time. To explore the mechanisms that tune the suite of transmitters a neuron releases, we developed transcriptional and translational reporters for cholinergic, glutamatergic, and GABAergic signaling in Drosophila. We show that many glutamatergic and GABAergic cells also transcribe cholinergic genes, but fail to accumulate cholinergic effector proteins. Suppression of cholinergic signaling involves posttranscriptional regulation of cholinergic transcripts by the microRNA miR-190; chronic loss of miR-190 function allows expression of cholinergic machinery, reducing and fragmenting sleep. Using a "translation-trap" strategy, we show that neurons in these populations have episodes of transient translation of cholinergic proteins, demonstrating that suppression of cotransmission is actively modulated. Posttranscriptional restriction of fast transmitter cotransmission provides a mechanism allowing reversible tuning of neuronal output.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuel J. Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Albert D. Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Hobin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Rosbash
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
24
|
Ko T, Murakami H, Kobayashi S, Kamikouchi A, Ishimoto H. Behavioral screening of sleep-promoting effects of human intestinal and food-associated bacteria on Drosophila melanogaster. Genes Cells 2023; 28:433-446. [PMID: 36914986 PMCID: PMC11447928 DOI: 10.1111/gtc.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Commensal microbes influence various aspects of vertebrate and invertebrate brain function. We previously reported that Lactiplantibacillus plantarum SBT2227 promotes sleep in the fruit fly, Drosophila melanogaster. However, how widely the sleep-promoting effects are conserved in gut bacterial species remains unknown. In this study, we orally administered human intestinal and food-associated bacterial species (39 in total) to flies and investigated their effects on sleep. Six species of bacteria were found to have significant sleep-promoting effects. Of these, we further investigated Bifidobacterium adolescentis, which had the greatest sleep-promoting effect, and found that the strength of the sleep effect varied among strains of the same bacterial species. The B. adolescentis strains BA2786 and BA003 showed strong and weak effects on sleep, respectively. Transcriptome characteristics compared between the heads of flies treated with BA2786 or BA003 revealed that the gene expression of the insulin-like receptor (InR) was increased in BA2786-fed flies. Furthermore, a heterozygous mutation in InR suppressed the sleep-promoting effect of BA2786. These results suggest that orally administered sleep-promoting bacteria (at least BA2786), may act on insulin signaling to modulate brain function for sleep.
Collapse
Affiliation(s)
- Taro Ko
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd, Kawagoe, Saitama, Japan
| | - Hiroki Murakami
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd, Kawagoe, Saitama, Japan
| | - Shunjiro Kobayashi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd, Kawagoe, Saitama, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
25
|
Hou X, Hayashi R, Itoh M, Tonoki A. Small-molecule screening in aged Drosophila identifies mGluR as a regulator of age-related sleep impairment. Sleep 2023; 46:zsad018. [PMID: 36721967 DOI: 10.1093/sleep/zsad018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Indexed: 02/02/2023] Open
Abstract
As a normal physiological phenomenon, aging has a significant impact on sleep. Aging leads to sleep impairment, including sleep loss, fragmented sleep, and a lower arousal threshold, leading to various diseases. Because sleep regulates memory consolidation, age-dependent sleep impairment also affects memory. However, the mechanisms underlying age-related sleep dysregulation and its impact on memory remain unclear. Using male and female Drosophila as a model, which possesses sleep characteristics similar to those of mammals and exhibits age-dependent sleep impairment, we performed small-molecule screening to identify novel regulators of age-dependent decline in sleep. The screening identified 3,3'-difluorobenzaldazine (DFB), a positive allosteric modulator of the metabotropic glutamate receptor (mGluR) 5, as a novel sleep-promoting compound in aged flies. We found that mutant flies of mGluR, a single mGluR gene in Drosophila, and decreased mGluR expression had significant impairment in sleep and memory due to olfactory conditioning. The decreased sleep phenotype in the mGluR mutants was not promoted by DFB, suggesting that the effects of DFB on age-dependent sleep impairment are dependent on mGluR. Although aging decreases the expression of mGluR and the binding scaffold proteins Homer and Shank, the transient overexpression of mGluR in neurons improves sleep in both young and aged flies. Overall, these findings indicate that age-dependent decreased expression or function of mGluR impairs sleep and memory in flies, which could lead to age-related sleep and memory impairment.
Collapse
Affiliation(s)
- Xue Hou
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Reina Hayashi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
26
|
Yang S, Xiu M, Li X, Shi Y, Wang S, Wan S, Han S, Yang D, Liu Y, He J. The antioxidant effects of hedysarum polybotrys polysaccharide in extending lifespan and ameliorating aging-related diseases in Drosophila melanogaster. Int J Biol Macromol 2023; 241:124609. [PMID: 37105250 DOI: 10.1016/j.ijbiomac.2023.124609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Hedysarum polybotrys polysaccharide (HPS) is one of the main active ingredients of Hedysarum with many health-beneficial properties, including antioxidant property, immunomodulatory, anti-inflammatory, and anti-tumor. However, the effect of HPS on anti-aging is still unclear. This study was to explore the protective function of HPS on aging and age-related diseases using Drosophila melanogaster. The results demonstrated that HPS supplementation promoted hatchability and prolonged lifespan by enhancing the antioxidative capacity. Administraction of HPS ameliorated age-related symptoms such as imbalanced intestinal homeostasis, sleep disturbances, and beta-amyloid (Aβ) induced Alzheimer's disease (AD) in flies, but did not modulate neurobehavioral deficits in the AD model of tauopathy and the Parkinson's disease (PD) model of Pink1 mutation. Overall, this study reveals that HPS has strong potential in the prevention of aging and age-related diseases, and provided a new candidate for the development of anti-aging drugs.
Collapse
Affiliation(s)
- Shipei Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shengfang Wan
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Dan Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| |
Collapse
|
27
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
28
|
Li X, Yang S, Wang S, Shi Y, Dai Y, Zhang X, Liu Y, Guo Y, He J, Xiu M. Regulation and mechanism of Astragalus polysaccharide on ameliorating aging in Drosophila melanogaster. Int J Biol Macromol 2023; 234:123632. [PMID: 36801290 DOI: 10.1016/j.ijbiomac.2023.123632] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Astragalus polysaccharide (APS) is a notable bioactive component of Astragalus membranaceus and has been extensively investigated for its pharmacological activities, including antioxidant, neuroprotection, and anticancer effects. However, the beneficial effects and mechanisms of APS on anti-aging diseases remain largely unknown. Here, we utilized the classic model organism Drosophila melanogaster to investigate the beneficial effects and mechanism of APS on aging-related intestinal homeostasis imbalance, sleeping disorders, and neurodegenerative diseases. The results showed that administration of APS significantly attenuated age-associated disruption of the intestinal barrier, loss of gastrointestinal acid-base balance, reduction in intestinal length, overproliferation of the intestinal stem cells (ISCs), and sleeping disorders upon aging. Furthermore, APS supplementation delayed the onset of Alzheimer's phenotypes in Aβ42-induced Alzheimer's disease (AD) flies, including the extension of lifespan and the increase in motility, but without rescuing neurobehavioral deficits in the AD model of taupathy and Parkinson's disease (PD) model of Pink1 mutation. In addition, transcriptomics was used to dissect updated mechanisms of APS on anti-aging, such as JAK-STAT signaling, Toll signaling, and IMD signaling pathways. Taken together, these studies indicate that APS plays a beneficial role in modulating aging-related diseases, thereby as a potential natural drug to delay aging.
Collapse
Affiliation(s)
- Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Institute of Infection, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Shipei Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou 730000, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
29
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Chen N, Zhang Y, Rivera-Rodriguez EJ, Yu AD, Hobin M, Rosbash M, Griffith LC. Widespread post-transcriptional regulation of co-transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530653. [PMID: 36909471 PMCID: PMC10002718 DOI: 10.1101/2023.03.01.530653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
While neurotransmitter identity was once considered singular and immutable for mature neurons, it is now appreciated that one neuron can release multiple neuroactive substances (co-transmission) whose identities can even change over time. To explore the mechanisms that tune the suite of transmitters a neuron releases, we developed transcriptional and translational reporters for cholinergic, glutamatergic, and GABAergic signaling in Drosophila . We show that many glutamatergic and GABAergic cells also transcribe cholinergic genes, but fail to accumulate cholinergic effector proteins. Suppression of cholinergic signaling involves posttranscriptional regulation of cholinergic transcripts by the microRNA miR-190; chronic loss of miR-190 function allows expression of cholinergic machinery, reducing and fragmenting sleep. Using a "translation-trap" strategy we show that neurons in these populations have episodes of transient translation of cholinergic proteins, demonstrating that suppression of co-transmission is actively modulated. Posttranscriptional restriction of fast transmitter co-transmission provides a mechanism allowing reversible tuning of neuronal output. One-Sentence Summary Cholinergic co-transmission in large populations of glutamatergic and GABAergic neurons in the Drosophila adult brain is controlled by miR-190.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuel J. Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Albert D. Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Hobin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Rosbash
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
31
|
Li Q, Wang L, Cao Y, Wang X, Tang C, Zheng L. Stable Expression of dmiR-283 in the Brain Promises Positive Effects in Endurance Exercise on Sleep-Wake Behavior in Aging Drosophila. Int J Mol Sci 2023; 24:ijms24044180. [PMID: 36835595 PMCID: PMC9966282 DOI: 10.3390/ijms24044180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Sleep-wake stability is imbalanced with natural aging, and microRNAs (miRNAs) play important roles in cell proliferation, apoptosis, and aging; however, the biological functions of miRNAs in regulating aging-related sleep-wake behavior remain unexplored. This study varied the expression pattern of dmiR-283 in Drosophila and the result showed that the aging decline in sleep-wake behavior was caused by the accumulation of brain dmiR-283 expression, whereas the core clock genes cwo and Notch signaling pathway might be suppressed, which regulate the aging process. In addition, to identify exercise intervention programs of Drosophila that promote healthy aging, mir-283SP/+ and Pdf > mir-283SP flies were driven to perform endurance exercise for a duration of 3 weeks starting at 10 and 30 days, respectively. The results showed that exercise starting in youth leads to an enhanced amplitude of sleep-wake rhythms, stable periods, increased activity frequency upon awakening, and the suppression of aging brain dmiR-283 expression in mir-283SP/+ middle-aged flies. Conversely, exercise performed when the brain dmiR-283 reached a certain accumulation level showed ineffective or negative effects. In conclusion, the accumulation of dmiR-283 expression in the brain induced an age-dependent decline in sleep-wake behavior. Endurance exercise commencing in youth counteracts the increase in dmiR-283 in the aging brain, which ameliorates the deterioration of sleep-wake behavior during aging.
Collapse
Affiliation(s)
- Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Lingxiao Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yurou Cao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
- Correspondence: ; Tel.: +86-731-88631-351
| |
Collapse
|
32
|
Segu A, Kannan NN. The duration of caffeine treatment plays an essential role in its effect on sleep and circadian rhythm. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad014. [PMID: 37193284 PMCID: PMC10108652 DOI: 10.1093/sleepadvances/zpad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Sleep is regulated by the homeostatic system and the circadian clock. Caffeine intake promotes wakefulness in Drosophila. In humans, caffeine is consumed on a daily basis and hence it is important to understand the effect of prolonged caffeine intake on both circadian and homeostatic regulation of sleep. Furthermore, sleep changes with age and the impact of caffeine on age-dependent sleep fragmentation are yet to be understood. Hence in the present study, we examined the effect of short exposure to caffeine on homeostatic sleep and age-dependent sleep fragmentation in Drosophila. We further assessed the effect of prolonged exposure to caffeine on homeostatic sleep and circadian clock. The results of our study showed that short exposure to caffeine reduces sleep and food intake in mature flies. It also enhances sleep fragmentation with increasing age. However, we have not assessed the effect of caffeine on food intake in older flies. On the other hand, prolonged caffeine exposure did not exert any significant effect on the duration of sleep and food intake in mature flies. Nevertheless, prolonged caffeine ingestion decreased the morning and evening anticipatory activity in these flies indicating that it affects the circadian rhythm. These flies also exhibited phase delay in the clock gene timeless transcript oscillation and exhibited either behavioral arrhythmicity or a longer free-running period under constant darkness. In summary, the results of our studies showed that short exposure to caffeine increases the sleep fragmentation with age whereas prolonged caffeine exposure disrupts the circadian clock.
Collapse
Affiliation(s)
- Aishwarya Segu
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| |
Collapse
|
33
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
34
|
Huang S, Piao C, Beuschel CB, Zhao Z, Sigrist SJ. A brain-wide form of presynaptic active zone plasticity orchestrates resilience to brain aging in Drosophila. PLoS Biol 2022; 20:e3001730. [PMID: 36469518 PMCID: PMC9721493 DOI: 10.1371/journal.pbio.3001730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 12/10/2022] Open
Abstract
The brain as a central regulator of stress integration determines what is threatening, stores memories, and regulates physiological adaptations across the aging trajectory. While sleep homeostasis seems to be linked to brain resilience, how age-associated changes intersect to adapt brain resilience to life history remains enigmatic. We here provide evidence that a brain-wide form of presynaptic active zone plasticity ("PreScale"), characterized by increases of active zone scaffold proteins and synaptic vesicle release factors, integrates resilience by coupling sleep, longevity, and memory during early aging of Drosophila. PreScale increased over the brain until mid-age, to then decreased again, and promoted the age-typical adaption of sleep patterns as well as extended longevity, while at the same time it reduced the ability of forming new memories. Genetic induction of PreScale also mimicked early aging-associated adaption of sleep patterns and the neuronal activity/excitability of sleep control neurons. Spermidine supplementation, previously shown to suppress early aging-associated PreScale, also attenuated the age-typical sleep pattern changes. Pharmacological induction of sleep for 2 days in mid-age flies also reset PreScale, restored memory formation, and rejuvenated sleep patterns. Our data suggest that early along the aging trajectory, PreScale acts as an acute, brain-wide form of presynaptic plasticity to steer trade-offs between longevity, sleep, and memory formation in a still plastic phase of early brain aging.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Christine B. Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Zhiying Zhao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
35
|
Sleep Modulates Alcohol Toxicity in Drosophila. Int J Mol Sci 2022; 23:ijms232012091. [PMID: 36292943 PMCID: PMC9603330 DOI: 10.3390/ijms232012091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol abuse is a significant public health problem. While considerable research has shown that alcohol use affects sleep, little is known about the role of sleep deprivation in alcohol toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila melanogaster, a model for studies of sleep, alcohol, and aging. Following 24 h of sleep deprivation using a paradigm that similarly affects males and females and induces rebound sleep, flies were given binge-like alcohol exposures. Sleep deprivation increased mortality, with no sex-dependent differences. Sleep deprivation also abolished functional tolerance measured at 24 h after the initial alcohol exposure, although there was no effect on alcohol absorbance or clearance. We investigated the effect of chronic sleep deprivation using mutants with decreased sleep, insomniac and insulin-like peptide 2, finding increased alcohol mortality. Furthermore, we investigated whether pharmacologically inducing sleep prior to alcohol exposure using the GABAA-receptor agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) mitigated the effects of alcohol toxicity on middle-aged flies, flies with environmentally disrupted circadian clocks, and flies with short sleep. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-induced mortality. Thus, sleep prior to binge-like alcohol exposure affects alcohol-induced mortality, even in vulnerable groups such as aging flies and those with circadian dysfunction.
Collapse
|
36
|
Holvoet H, Long DM, Law A, McClure C, Choi J, Yang L, Marney L, Poeck B, Strauss R, Stevens JF, Maier CS, Soumyanath A, Kretzschmar D. Withania somnifera Extracts Promote Resilience against Age-Related and Stress-Induced Behavioral Phenotypes in Drosophila melanogaster; a Possible Role of Other Compounds besides Withanolides. Nutrients 2022; 14:nu14193923. [PMID: 36235577 PMCID: PMC9573261 DOI: 10.3390/nu14193923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (WS) extracts have been used in traditional medicine for millennia to promote healthy aging and wellbeing. WS is now also widely used in Western countries as a nutritional supplement to extend healthspan and increase resilience against age-related changes, including sleep deficits and depression. Although human trials have supported beneficial effects of WS, the study designs have varied widely. Plant material is intrinsically complex, and extracts vary widely with the origin of the plant material and the extraction method. Commercial supplements can contain various other ingredients, and the characteristics of the study population can also be varied. To perform maximally controlled experiments, we used plant extracts analyzed for their composition and stability. We then tested these extracts in an inbred Drosophila line to minimize effects of the genetic background in a controlled environment. We found that a water extract of WS (WSAq) was most potent in improving physical fitness, while an ethanol extract (WSE) improved sleep in aged flies. Both extracts provided resilience against stress-induced behavioral changes. WSE contained higher levels of withanolides, which have been proposed to be active ingredients, than WSAq. Therefore, withanolides may mediate the sleep improvement, whereas so-far-unknown ingredients enriched in WSAq likely mediate the effects on fitness and stress-related behavior.
Collapse
Affiliation(s)
- Helen Holvoet
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Dani M. Long
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alexander Law
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Christine McClure
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jaewoo Choi
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Liping Yang
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Luke Marney
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Burkhard Poeck
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Roland Strauss
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Doris Kretzschmar
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
37
|
Xiong X, Hu T, Yin Z, Zhang Y, Chen F, Lei P. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease. Front Aging Neurosci 2022; 14:944283. [PMID: 36062143 PMCID: PMC9428322 DOI: 10.3389/fnagi.2022.944283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although there are still no satisfactory answers to the question of why we need to sleep, a better understanding of its function will help to improve societal attitudes toward sleep. Sleep disorders are very common in neurodegenerative diseases and are a key factor in the quality of life of patients and their families. Alzheimer’s disease (AD) is an insidious and irreversible neurodegenerative disease. Along with progressive cognitive impairment, sleep disorders and disturbances in circadian rhythms play a key role in the progression of AD. Sleep and circadian rhythm disturbances are more common in patients with AD than in the general population and can appear early in the course of the disease. Therefore, this review discusses the bidirectional relationships among circadian rhythm disturbances, sleep disorders, and AD. In addition, pharmacological and non-pharmacological treatment options for patients with AD and sleep disorders are outlined.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaodan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Ping Lei,
| |
Collapse
|
38
|
Rodovitis VG, Papanastasiou SA, Bataka EP, Nakas CT, Koulousis NA, Carey JR, Papadopoulos NT. Electronic recording of lifetime locomotory activity patterns of adult medflies. PLoS One 2022; 17:e0269940. [PMID: 35877614 PMCID: PMC9312368 DOI: 10.1371/journal.pone.0269940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Age-specific and diurnal patterns of locomotory activity, can be considered as biomarkers of aging in model organisms and vary across the lifetime of individuals. Τhe Mediterranean fruit fly (medfly), Ceratitis capitata, is a commonly used model-species in studies regarding demography and aging. In the present study, we introduce a modification of the automated locomotory activity electronic device LAM25system (Locomotory Activity Monitor)-Trikinetics, commonly used in short time studies, to record the daily locomotory activity patterns of adult medflies throughout the life. Additionally, fecundity rates and survival of adult medflies were recorded. Male and female medflies were kept in the system tubes and had access to an agar-based gel diet, which provided water and nutrients. The locomotory activity was recorded at every minute by three monitors in the electronic device. The locomotory activity of females was higher than that of males across the different ages. For both sexes locomotory rates were high during the first 20 days of the adult life and decreased in older ages. The activity of males was high in the morning and late afternoon hours, while that of females was constantly high throughout the photophase. Negligible locomotory activity was recorded for both sexes during the nighttime. Males outlived females. Fecundity of females was higher in younger ages. Our results support the adoption of LAM25system in studies addressing aging of insects using medfly as a model organism.
Collapse
Affiliation(s)
- Vasilis G. Rodovitis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Stella A. Papanastasiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Evmorfia P. Bataka
- Laboratory of Biometry, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christos T. Nakas
- Laboratory of Biometry, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikos A. Koulousis
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - James R. Carey
- Department of Entomology University of California Davis, Davis, California, United States of America
- Center for the Economics and Demography of Aging University of California Berkeley, Berkeley, California, United States of America
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
39
|
Brown EB, Klok J, Keene AC. Measuring metabolic rate in single flies during sleep and waking states via indirect calorimetry. J Neurosci Methods 2022; 376:109606. [PMID: 35483506 PMCID: PMC9310448 DOI: 10.1016/j.jneumeth.2022.109606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Drosophila melanogaster is a leading genetic model for studying the neural regulation of sleep. Sleep is associated with changes in behavior and physiological state that are largely conserved across species. The investigation of sleep in flies has predominantly focused on behavioral readouts of sleep because physiological measurements, including changes in brain activity and metabolic rate, are less accessible. We have previously used stop-flow indirect calorimetry to measure whole body metabolic rate in single flies and have shown that in flies, like mammals, metabolic rate is reduced during sleep. NEW METHOD Here, we describe a modified version of this system that allows for efficient and highly sensitive acquisition of CO2 output from single flies. RESULTS In this modified system, we show that sleep-dependent changes in metabolic rate are diminished in aging flies, supporting the notion that sleep quality is reduced as flies age. We also describe a modification that allows for simultaneous acquisition of CO2 and O2 levels, providing a respiratory quotient that quantifies how metabolic stores are utilized. We find that the respiratory quotient identified in flies on an all-sugar diet is suggestive of lipogenesis, where the dietary sugar provided to the flies is being converted to fat. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS Taken together, the measurement of metabolic rate via indirect calorimetry not only provides a physiological readout of sleep depth, but also provides insight the metabolic regulation of nutrient utilization, with broad applications to genetic studies in flies.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Jaco Klok
- Sable Systems International, Las Vegas, NV 89032, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
40
|
Hafycz JM, Strus E, Naidoo N. Reducing ER stress with chaperone therapy reverses sleep fragmentation and cognitive decline in aged mice. Aging Cell 2022; 21:e13598. [PMID: 35488730 PMCID: PMC9197403 DOI: 10.1111/acel.13598] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
As the aging population grows, the need to understand age-related changes in health is vital. Two prominent behavioral changes that occur with age are disrupted sleep and impaired cognition. Sleep disruptions lead to perturbations in proteostasis and endoplasmic reticulum (ER) stress in mice. Further, consolidated sleep and protein synthesis are necessary for memory formation. With age, the molecular mechanisms that relieve cellular stress and ensure proper protein folding become less efficient. It is unclear if a causal relationship links proteostasis, sleep quality, and cognition in aging. Here, we used a mouse model of aging to determine if supplementing chaperone levels reduces ER stress and improves sleep quality and memory. We administered the chemical chaperone 4-phenyl butyrate (PBA) to aged and young mice, and monitored sleep and cognitive behavior. We found that chaperone treatment consolidates sleep and wake, and improves learning in aged mice. These data correlate with reduced ER stress in the cortex and hippocampus of aged mice. Chaperone treatment increased p-CREB, which is involved in memory formation and synaptic plasticity, in hippocampi of chaperone-treated aged mice. Hippocampal overexpression of the endogenous chaperone, binding immunoglobulin protein (BiP), improved cognition, reduced ER stress, and increased p-CREB in aged mice, suggesting that supplementing BiP levels are sufficient to restore some cognitive function. Together, these results indicate that restoring proteostasis improves sleep and cognition in a wild-type mouse model of aging. The implications of these results could have an impact on the development of therapies to improve health span across the aging population.
Collapse
Affiliation(s)
- Jennifer M. Hafycz
- Chronobiology and Sleep Institute and Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ewa Strus
- Chronobiology and Sleep Institute and Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nirinjini Naidoo
- Chronobiology and Sleep Institute and Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
41
|
Nguyen DL, Hutson AN, Zhang Y, Daniels SD, Peard AR, Tabuchi M. Age-Related Unstructured Spike Patterns and Molecular Localization in Drosophila Circadian Neurons. Front Physiol 2022; 13:845236. [PMID: 35356078 PMCID: PMC8959858 DOI: 10.3389/fphys.2022.845236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 01/02/2023] Open
Abstract
Aging decreases sleep quality by disrupting the molecular machinery that regulates the circadian rhythm. However, we do not fully understand the mechanism that underlies this process. In Drosophila, sleep quality is regulated by precisely timed patterns of spontaneous firing activity in posterior DN1 (DN1p) circadian clock neurons. How aging affects the physiological function of DN1p neurons is unknown. In this study, we found that aging altered functional parameters related to neural excitability and disrupted patterned spike sequences in DN1p neurons during nighttime. We also characterized age-associated changes in intrinsic membrane properties related to spike frequency adaptations and synaptic properties, which may account for the unstructured spike patterns in aged DN1p neurons. Because Slowpoke binding protein (SLOB) and the Na+/K+ ATPase β subunit (NaKβ) regulate clock-dependent spiking patterns in circadian networks, we compared the subcellular organization of these factors between young and aged DN1p neurons. Young DN1p neurons showed circadian cycling of HA-tagged SLOB and myc-tagged NaKβ targeting the plasma membrane, whereas aged DN1p neurons showed significantly disrupted subcellular localization patterns of both factors. The distribution of SLOB and NaKβ signals also showed greater variability in young vs. aged DN1p neurons, suggesting aging leads to a loss of actively formed heterogeneity for these factors. These findings showed that aging disrupts precisely structured molecular patterns that regulate structured neural activity in the circadian network, leading to age-associated declines in sleep quality. Thus, it is possible to speculate that a recovery of unstructured neural activity in aging clock neurons could help to rescue age-related poor sleep quality.
Collapse
|
42
|
Chiang MH, Ho SM, Wu HY, Lin YC, Tsai WH, Wu T, Lai CH, Wu CL. Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases. Biomedicines 2022; 10:596. [PMID: 35327401 PMCID: PMC8945323 DOI: 10.3390/biomedicines10030596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
Mounting evidence indicates that the gut microbiota is linked to several physiological processes and disease development in mammals; however, the underlying mechanisms remained unexplored mostly due to the complexity of the mammalian gut microbiome. The fruit fly, Drosophila melanogaster, is a valuable animal model for studying host-gut microbiota interactions in translational aspects. The availability of powerful genetic tools and resources in Drosophila allowed the scientists to unravel the mechanisms by which the gut microbes affect fitness, health, and behavior of their hosts. Drosophila models have been extensively used not only to study animal behaviors (i.e., courtship, aggression, sleep, and learning & memory), but also some human related neurodegenerative diseases (i.e., Alzheimer's disease and Parkinson's disease) in the past. This review comprehensively summarizes the current understanding of the gut microbiota of Drosophila and its impact on fly behavior, physiology, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Shuk-Man Ho
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Hui-Yu Wu
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 74144, Taiwan;
| | - Tony Wu
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Neurology, New Taipei Municipal Tucheng Hospital, Tucheng 23652, Taiwan
- Department of Neurology, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Medical Research, Graduate Institute of Biomedical Sciences, China Medical University and Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, Department of Microbiology, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (S.-M.H.); (H.-Y.W.); (Y.-C.L.)
- Department of Neurology, Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
43
|
Kaladchibachi S, Negelspach DC, Zeitzer JM, Fernandez FX. Investigation of the aging clock's intermittent-light responses uncovers selective deficits to green millisecond flashes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112389. [PMID: 35086027 DOI: 10.1016/j.jphotobiol.2022.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The central pacemaker of flies, rodents, and humans generates less robust circadian output signals across normative aging. It is not well understood how changes in light sensitivity might contribute to this phenomenon. In the present study, we summarize results from an extended data series (n = 5681) showing that the locomotor activity rhythm of aged Drosophila can phase-shift normally to intermittently spaced episodes of bright polychromatic light exposure (600 lx) but that deficits emerge in response to 8, 16, and 120-millisecond flashes of narrowband blue (λm, 452 nm) and green (λm, 525 nm) LED light. For blue, phase-resetting of the activity rhythm of older flies is not as energy efficient as it is in younger flies at the fastest flash-exposures tested (8 milliseconds), suggesting there might be different floors of light duration necessary to incur photohabituation in each age group. For green, the responses of older flies are universally crippled relative to those of younger flies across the slate of protocols we tested. The difference in green flash photosensitivity is one of the most salient age-related phenotypes that has been documented in the circadian phase-shifting literature thus far. These data provide further impetus for investigations on pacemaker aging and how it might relate to changes in the circadian system's responses to particular sequences of light exposure tuned for wavelength, intensity, duration, and tempo.
Collapse
Affiliation(s)
| | | | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences and Stanford Center for Sleep Sciences and Medicine, Stanford University, Stanford, CA, USA; Mental Illness Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 and McKnight Brain Research Institutes, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
44
|
Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022; 375:eabh3021. [PMID: 35201886 PMCID: PMC9107327 DOI: 10.1126/science.abh3021] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
| | | | - Hiroshi Yamaguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Eckehart Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Mutations in trpγ, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Mol Psychiatry 2022; 27:3328-3342. [PMID: 35501408 PMCID: PMC9708601 DOI: 10.1038/s41380-022-01555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.
Collapse
|
46
|
Delfino L, Campesan S, Fedele G, Green EW, Giorgini F, Kyriacou CP, Rosato E. Visualization of Mutant Aggregates from Clock Neurons by Agarose Gel Electrophoresis (AGERA) in Drosophila melanogaster. Methods Mol Biol 2022; 2482:373-383. [PMID: 35610440 DOI: 10.1007/978-1-0716-2249-0_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The clock neurons of the fruit fly Drosophila melanogaster have become a useful model for expressing misfolded protein aggregates that accumulate in several human neurodegenerative diseases. One advantage of such an approach is that the behavioral effects can be readily quantified on circadian locomotor rhythms, sleep or activity levels via automated, highly reliable and objective procedures. Therefore, a rapid assay is required to visualize whether these neurons develop aggregates. Here we describe a modified immunoblot method, agarose gel electrophoresis (AGERA) that has been optimized for resolving aggregates from fly clock neurons.
Collapse
Affiliation(s)
- Laura Delfino
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Giorgio Fedele
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
47
|
Epiney DG, Salameh C, Cassidy D, Zhou LT, Kruithof J, Milutinović R, Andreani TS, Schirmer AE, Bolterstein E. Characterization of Stress Responses in a Drosophila Model of Werner Syndrome. Biomolecules 2021; 11:1868. [PMID: 34944512 PMCID: PMC8699552 DOI: 10.3390/biom11121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
As organisms age, their resistance to stress decreases while their risk of disease increases. This can be shown in patients with Werner syndrome (WS), which is a genetic disease characterized by accelerated aging along with increased risk of cancer and metabolic disease. WS is caused by mutations in WRN, a gene involved in DNA replication and repair. Recent research has shown that WRN mutations contribute to multiple hallmarks of aging including genomic instability, telomere attrition, and mitochondrial dysfunction. However, questions remain regarding the onset and effect of stress on early aging. We used a fly model of WS (WRNexoΔ) to investigate stress response during different life stages and found that stress sensitivity varies according to age and stressor. While larvae and young WRNexoΔ adults are not sensitive to exogenous oxidative stress, high antioxidant activity suggests high levels of endogenous oxidative stress. WRNexoΔ adults are sensitive to stress caused by elevated temperature and starvation suggesting abnormalities in energy storage and a possible link to metabolic dysfunction in WS patients. We also observed higher levels of sleep in aged WRNexoΔ adults suggesting an additional adaptive mechanism to protect against age-related stress. We suggest that stress response in WRNexoΔ is multifaceted and evokes a systemic physiological response to protect against cellular damage. These data further validate WRNexoΔ flies as a WS model with which to study mechanisms of early aging and provide a foundation for development of treatments for WS and similar diseases.
Collapse
Affiliation(s)
- Derek G. Epiney
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Charlotte Salameh
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Deirdre Cassidy
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Luhan T. Zhou
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Joshua Kruithof
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Rolan Milutinović
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Tomas S. Andreani
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA;
| | - Aaron E. Schirmer
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| |
Collapse
|
48
|
Nakagawa H, Nakane S, Ban G, Tomita J, Kume K. Effects of D-amino acids on sleep in Drosophila. Biochem Biophys Res Commun 2021; 589:180-185. [PMID: 34922200 DOI: 10.1016/j.bbrc.2021.11.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
Abstract
Sleep and metabolism are closely related and nutritional elements such as sugars and amino acids are known to regulate sleep differently. Here we comprehensively investigated the effects of D-amino acids fed in the diet on the sleep of Drosophila melanogaster. Among 19 amino acids examined, both D-serine (Ser) and D-glutamine (Gln) induced a significant increase in sleep amount and the effect of D-Ser was the largest at the same concentration of 1% of the food. The effects were proportional to its concentration and significant above 0.5% (about 50 mM). D-Ser is known to bind NR1 subunit of NMDA type glutamate receptor (NMDAR) and activate it. D-Ser did not increase the sleep of the NR1 hypomorphic mutant flies indicating its effects on sleep is mediated by NMDAR. In addition, hypomorphic mutants of D-amino acid oxidase (Daao1), which catabolizes D-amino acids and its disruption is known to increase D-Ser in the brain, showed increase in sleep. These results altogether suggested that D-Ser activated NMDAR in the brain thus increase sleep, and that D-Ser work physiologically to regulate sleep.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Shin Nakane
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Gosuke Ban
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
49
|
Fagan RR, Kearney PJ, Luethi D, Bolden NC, Sitte HH, Emery P, Melikian HE. Dopaminergic Ric GTPase activity impacts amphetamine sensitivity and sleep quality in a dopamine transporter-dependent manner in Drosophila melanogaster. Mol Psychiatry 2021; 26:7793-7802. [PMID: 34471250 PMCID: PMC8881384 DOI: 10.1038/s41380-021-01275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) is required for movement, sleep, and reward, and DA signaling is tightly controlled by the presynaptic DA transporter (DAT). Therapeutic and addictive psychostimulants, including methylphenidate (Ritalin; MPH), cocaine, and amphetamine (AMPH), markedly elevate extracellular DA via their actions as competitive DAT inhibitors (MPH, cocaine) and substrates (AMPH). DAT silencing in mice and invertebrates results in hyperactivity, reduced sleep, and blunted psychostimulant responses, highlighting DAT's essential role in DA-dependent behaviors. DAT surface expression is not static; rather it is dynamically regulated by endocytic trafficking. PKC-stimulated DAT endocytosis requires the neuronal GTPase, Rit2, and Rit2 silencing in mouse DA neurons impacts psychostimulant sensitivity. However, it is unknown whether or not Rit2-mediated changes in psychostimulant sensitivity are DAT-dependent. Here, we leveraged Drosophila melanogaster to test whether the Drosophila Rit2 ortholog, Ric, impacts dDAT function, trafficking, and DA-dependent behaviors. Orthologous to hDAT and Rit2, dDAT and Ric directly interact, and the constitutively active Ric mutant Q117L increased dDAT surface levels and function in cell lines and ex vivo Drosophila brains. Moreover, DAergic RicQ117L expression caused sleep fragmentation in a DAT-dependent manner but had no effect on total sleep and daily locomotor activity. Importantly, we found that Rit2 is required for AMPH-stimulated DAT internalization in mouse striatum, and that DAergic RicQ117L expression significantly increased Drosophila AMPH sensitivity in a DAT-dependent manner, suggesting a conserved impact of Ric-dependent DAT trafficking on AMPH sensitivity. These studies support that the DAT/Rit2 interaction impacts both baseline behaviors and AMPH sensitivity, potentially by regulating DAT trafficking.
Collapse
Affiliation(s)
- Rita R. Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Dino Luethi
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Harald H. Sitte
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Patrick Emery
- Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA,Address correspondence to: Haley Melikian, Ph.D., Department of Neurobiology, UMASS Medical School, LRB 726, 364 Plantation St., Worcester, MA 01605, 774-455-4308 (phone), 508-856-6266 (fax),
| |
Collapse
|
50
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|