1
|
Williams MD, Grace CR, Posgai AL, McGrail KM, Brusko MA, Haller MJ, Jacobsen L, Schatz D, Brusko TM, Atkinson M, Bacher R, Wasserfall CH. Serological markers of exocrine pancreatic function are differentially informative for distinguishing individuals progressing to type 1 diabetes. BMJ Open Diabetes Res Care 2025; 13:e004655. [PMID: 39755561 DOI: 10.1136/bmjdrc-2024-004655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Altered serum levels of growth hormones, adipokines, and exocrine pancreas enzymes have been individually linked with type 1 diabetes (T1D). We collectively evaluated seven such biomarkers, combined with islet autoantibodies (AAb) and genetic risk score (GRS2), for their utility in predicting AAb/T1D status. RESEARCH DESIGN AND METHODS Cross-sectional serum samples (n=154 T1D, n=56 1AAb+, n=77 ≥2AAb+, n=256 AAb-) were assessed for IGF1, IGF2, adiponectin, leptin, amylase, lipase, and trypsinogen (n=543, age range 2.7-30.0 years) using random forest modeling. RESULTS GRS2, age, lipase, trypsinogen, and AAb against ZnT8, GAD65, and insulin were the most informative markers. Notably, these variables were differentially informative according to AAb/T1D status. Higher GRS2 (p<0.001) and lower lipase levels (p=0.002) favored ≥2AAb+ versus AAb- classification. AAb against ZnT8 (p<0.01), GAD65 (p=0.021), or insulin (p=0.01) each independently favored ≥2AAb+ versus 1AAb+ classification. Reduced trypsinogen (p<0.001) and increased lipase levels (p<0.001) favored recent-onset T1D versus ≥2AAb+ classification. CONCLUSIONS Among the serological markers tested, lipase and trypsinogen levels were the most informative for differentiating among clinical groups, with the utility of each enzyme varying according to GRS2 and AAb/T1D status. These data support exocrine pancreas enzymes as candidates for longitudinal follow-up.
Collapse
Affiliation(s)
- MacKenzie D Williams
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Catherine Ramsey Grace
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Kieran M McGrail
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Laura Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Kawasaki E, Takahashi Y, Komeda T, Sakuma M. Evaluation of Biochemical Characteristics and Performance of the 3 Screen ICA ELISA Kit. Int J Mol Sci 2024; 25:12182. [PMID: 39596248 PMCID: PMC11595002 DOI: 10.3390/ijms252212182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
We conducted a fundamental evaluation of the 3 Screen ICA ELISA kit, which can simultaneously measure three major anti-islet autoantibodies important in diagnosing and predicting type 1 diabetes, to assess its usefulness as a measuring reagent. In autoantibody-positive samples, the coefficient of variation for intra-assay variation ranged from 1.37% to 2.50%, inter-assay variation from 2.81% to 3.61%, and lot-to-lot variation from 2.01% to 8.61%, demonstrating good reproducibility. Additionally, interfering substances did not affect the autoantibody titers, and satisfying performance was observed in tests examining the sample freeze-thaw stability. Notably, even when the titer of GAD autoantibodies was below the cut-off value of the GAD autoantibody ELISA, the 3 Screen ICA signal was completely absorbed by recombinant GAD65 protein, indicating that the detection sensitivity for GAD autoantibody in the 3 Screen ICA ELISA is higher than that of the GAD autoantibody ELISA kit. Furthermore, in a study using IASP2020 samples from the Immunology and Diabetes Society, which aims to standardize anti-islet autoantibody assays, this kit achieved excellent results with a sensitivity of 96.0%, specificity of 100%, and accuracy of 98.57%. Measuring multiple anti-islet autoantibodies in combination is crucial for diagnosing and predicting type 1 diabetes. The ELISA kit used in this study is highly versatile and can be used in any measurement facility, making it extremely useful for routine testing.
Collapse
Affiliation(s)
- Eiji Kawasaki
- Diabetes, Thyroid, and Endocrine Center, Shin-Koga Hospital, Kurume 830-8577, Japan
| | - Yukari Takahashi
- Quality Assurance Section, Cosmic Corporation, Tokyo 112-0002, Japan (M.S.)
| | - Tomoko Komeda
- Quality Assurance Section, Cosmic Corporation, Tokyo 112-0002, Japan (M.S.)
| | - Megumi Sakuma
- Quality Assurance Section, Cosmic Corporation, Tokyo 112-0002, Japan (M.S.)
| |
Collapse
|
3
|
O’Donovan AJ, Gorelik S, Nally LM. Shifting the paradigm of type 1 diabetes: a narrative review of disease modifying therapies. Front Endocrinol (Lausanne) 2024; 15:1477101. [PMID: 39568817 PMCID: PMC11576206 DOI: 10.3389/fendo.2024.1477101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
A new diagnosis of type 1 diabetes (T1D) may be accompanied by numerous lifelong financial, emotional, and physical challenges, thus advancements in therapies that can delay the onset of clinical disease are crucial. T1D is an autoimmune condition involving destruction of pancreatic beta cells leading to insulin deficiency, hyperglycemia, and long-term insulin dependence. The pathogenesis of T1D is classified into stages, with the first signal being the detection of autoantibodies without any glycemic changes. In the second stage, dysglycemia develops without symptoms, and in stage 3, symptoms of hyperglycemia become apparent, and at this time a clinical diagnosis of T1D is made. As a greater understanding of these stages of T1D have evolved, research efforts have been devoted to delaying the onset of clinical disease. To date, only one medication, teplizumab, has been approved by the Food and Drug Administration (FDA) for the treatment of stage 2 T1D. This narrative review present published trials and ongoing research on disease modifying therapies (DMT) in T1D, the mechanisms of action for each therapy, and the stages of T1D that these interventions are being studied.
Collapse
Affiliation(s)
- Alexander J. O’Donovan
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| | - Seth Gorelik
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
- Bowdoin College, Brunswick, ME, United States
| | - Laura M. Nally
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States
| |
Collapse
|
4
|
Tomic D, Harding JL, Jenkins AJ, Shaw JE, Magliano DJ. The epidemiology of type 1 diabetes mellitus in older adults. Nat Rev Endocrinol 2024:10.1038/s41574-024-01046-z. [PMID: 39448829 DOI: 10.1038/s41574-024-01046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Although type 1 diabetes mellitus (T1DM) is traditionally viewed as a youth-onset disorder, the number of older adults being diagnosed with this disease is growing. Improvements in the average life expectancy of people with T1DM have also contributed to the growing number of older people living with this disease. We summarize the evidence regarding the epidemiology (incidence, prevalence and excess mortality) of T1DM in older adults (ages ≥60 years) as well as the genetics, immunology and diagnostic challenges. Several studies report an incidence peak of T1DM in older adults of a similar size to or exceeding that in children, and population prevalence generally increases with increasing age. Glutamic acid decarboxylase antibody positivity is frequently observed in adult-onset T1DM. Guidelines for differentiating T1DM from type 2 diabetes mellitus in older adults recommend measuring levels of C-peptide and autoantibodies, including glutamic acid decarboxylase antibodies. However, there is no gold standard for differentiating T1DM from type 2 diabetes mellitus in people aged 60 years and over. As such, the global variation observed in T1DM epidemiology might be in part explained by misclassification, which increases with increasing age of diabetes mellitus onset. With a growing global population of older adults with T1DM, improved genetic and immunological evidence is needed to differentiate diabetes mellitus type at older ages so that a clear epidemiological picture can emerge.
Collapse
Affiliation(s)
- Dunya Tomic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Jessica L Harding
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia J Jenkins
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan E Shaw
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Dianna J Magliano
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Zhou T, Vicente R, Rivera-Gil P. Optical Monitoring of Labile Zinc inside Metastatic Cells with Plasmonic Chemonanosensors. ACS OMEGA 2024; 9:42183-42192. [PMID: 39431088 PMCID: PMC11483395 DOI: 10.1021/acsomega.4c03631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/22/2024]
Abstract
We report the development and characterization of an optical nanosensor for the detection of labile zinc in biological environments. The readout is based on surface-enhanced Raman scattering promoted by a Raman reporter conjugated to the inner plasmonic cavity of hollow silica nanocapsules. We quantify Zn2+ by obtaining the ratio between a Zn2+-sensitive band and a Zn2+-insensitive band. The Raman reporter measures within the range from 10-5 to 10-11 M and exhibits a limit of detection of 10-11.72 M. The nanosensor discriminates between intracellular and extracellular Zn2+ concentrations.
Collapse
Affiliation(s)
- Ting Zhou
- Integrative
Biomedical Materials and Nanomedicine Laboratory, Department of Medicine
and Life Sciences, Universitat Pompeu Fabra,
PRBB, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Rubén Vicente
- Molecular
Physiology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, PRBB, Carrer Doctor Aiguader 88, Barcelona 08003, Spain
| | - Pilar Rivera-Gil
- Integrative
Biomedical Materials and Nanomedicine Laboratory, Department of Medicine
and Life Sciences, Universitat Pompeu Fabra,
PRBB, Doctor Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
6
|
Medenica S, Stojanovic V, Capece U, Mazzilli R, Markovic M, Zamponi V, Vojinovic T, Migliaccio S, Defeudis G, Cinti F. The interlink between thyroid autoimmunity and type 1 diabetes and the impact on male and female fertility. Hormones (Athens) 2024; 23:429-437. [PMID: 38748060 DOI: 10.1007/s42000-024-00563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 09/28/2024]
Abstract
The aim of this review is to discuss the several interconnections between thyroid autoimmunity and type 1 diabetes in terms of epidemiology, immunoserology, genetic predisposition, and pathogenic mechanisms. We will also analyze the impact of these conditions on both male and female fertility. A literature search was carried out using the MEDLINE/PubMed, Scopus, Google Scholar, ResearchGate, and Clinical Trials Registry databases with a combination of keywords. It was found that the prevalence of thyroid autoantibodies in individuals with type 1 diabetes (T1DM) varied in different countries and ethnic groups from 7 to 35% in both sexes. There are several types of autoantibodies responsible for the immunoserological presentation of autoimmune thyroid diseases (AITDs) which can be either stimulating or inhibiting, which results in AITD being in the plus phase (thyrotoxicosis) or the minus phase (hypothyroidism). Different types of immune cells such as T cells, B cells, natural killer (NK) cells, antigen presenting cells (APCs), and other innate immune cells participate in the damage of the beta cells of the islets of Langerhans, which inevitably leads to T1D. Multiple genetic and environmental factors found in variable combinations are involved in the pathogenesis of AITD and T1D. In conclusion, although it is now well-known that both diabetes and thyroid diseases can affect fertility, only a few data are available on possible effects of autoimmune conditions. Recent findings nevertheless point to the importance of screening patients with immunologic infertility for AITDs and T1D, and vice versa.
Collapse
Affiliation(s)
- Sanja Medenica
- Department of Endocrinology, Internal Medicine Clinic, Clinical Center of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Vukasin Stojanovic
- Emergency Medicine Center of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Umberto Capece
- UOS Centro Malattie Endocrine e Metaboliche, UOC Endocrinologia e Diabetologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - Milica Markovic
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Virginia Zamponi
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - Tanja Vojinovic
- Faculty of Medicine, University od Montenegro, Podgorica, Montenegro
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University Foro Italico of Rome, Rome, 00135, Italy
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppe Defeudis
- Department of Movement, Human and Health Sciences, University Foro Italico of Rome, Rome, 00135, Italy.
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy.
| | - Francesca Cinti
- UOS Centro Malattie Endocrine e Metaboliche, UOC Endocrinologia e Diabetologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Zhou YH, Yu LT, Wang XN, Li YJ, Xu KY, Li X, Pu CC, Xie FL, Xie BB, Gao Y, Luo C. Reg2 treatment is protective but the induced Reg2 autoantibody is destructive to the islets in NOD mice. Biochem Pharmacol 2024; 227:116444. [PMID: 39038551 DOI: 10.1016/j.bcp.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Regenerating family protein 2 (Reg2) is a trophic factor which stimulates β-cell replication and resists islet destruction. However, Reg2 also serves as an islet autoantigen, which makes it complicated to judge the effectiveness in treating diabetes. How Reg2 treatment behaves in non-obese diabetic (NOD) mice is to be investigated. NOD mice were treated with recombinant Reg2 protein, Complete Freund's adjuvant (CFA) + PBS and CFA+Reg2 vaccinations, CFA+PBS- and CFA+Reg2-immunized antisera, and single chain variable fragment (scFv)-Reg2 and mIgG2a-Reg2 antibodies. Glycemic level, bodyweight, serum Reg2 antibody titer, glucose tolerance, and insulin secretion were determined. Islet morphological characteristics, insulitis, cell apoptosis, islet cell components, and T cell infiltration were analyzed by histological examinations. The autoantigenicity of constructed Reg2C and Reg2X fragments was determined in healthy BALB/c mice, and the bioactivity in stimulating cell proliferation and survival was assessed in insulinoma MIN6 cells. Reg2 administration alleviated diabetes in NOD mice with improved glucose tolerance and insulin secretion but elevated serum Reg2 autoantibodies. Histomorphometry showed reduced inflammatory area, TUNEL signal and CD8 + T cell infiltration, and increased β-cell proportion in support of the islet-protective effect of Reg2 treatment. CFA+PBS and CFA+Reg2 immunizations prevented diabetic onset and alleviated insulitis while injections of the antisera offered mild protections. Antibody treatments accelerated diabetic onset without increasing the overall incidence. Reg2C fragment depletes antigenicity, but reserves protective activity in streptozotocin (STZ)-treated MIN6 cells. In conclusion, Reg2 treatment alleviates type 1 diabetes (T1D) by preserving islet β-cells, but induces Reg2 autoantibody production which poses a potential risk of accelerating diabetic progression.
Collapse
Affiliation(s)
- Yi-Han Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiao-Nan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - You-Jie Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ke-Yi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun-Cheng Pu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fei-Lu Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bing-Bing Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Gao
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou, China; Suzhou Institute of Advanced Study in Public Health, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Chen Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; Antibody Engineering Laboratory, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Bhat KA, Verma S, Bhatia E, Bhatia V, Sudhanshu S. Parietal Cell Antibodies in Type 1 Diabetes Mellitus and Its Implications for Iron Deficiency: A Tertiary Centre Experience from North India. Indian J Endocrinol Metab 2024; 28:536-541. [PMID: 39676778 PMCID: PMC11642518 DOI: 10.4103/ijem.ijem_176_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/16/2024] [Accepted: 07/20/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Parietal cell antibody (PCA)-mediated auto-immune gastritis is known to increase the risk of iron-deficiency and pernicious anaemia in adults with type 1 diabetes mellitus. However, in children and young adults with type 1 diabetes, these data are scarce. We aimed to study the prevalence of parietal cell antibodies (PCAs) and its clinical associations in people with type 1 diabetes with onset below 30 years. Methods In a cross-sectional study, 224 children and young adults with type 1 diabetes and 171 healthy controls were enrolled. We measured haemoglobin, serum ferritin, vitamin B12, PCA, thyroid peroxidase, and anti-tissue transglutaminase antibodies in all patients. Mann-Whitney U test for continuous data and Chi square test for categorical data were used. Linear regression analysis was performed with haemoglobin as a dependent variable. Results The prevalence of PCA was significantly higher in patients than in controls (22% vs 10.2%; P = 0.002). Patients with PCA had a higher frequency of anaemia (60% vs 30%, P < 0.001), lower haemoglobin [7.3 (1.6) vs 7.8 (1.1) mmol/L; P = 0.002], and lower serum ferritin [46.9 (70.8) pmol/L vs 66.0 (105.3) pmol/L; P = 0.04], as compared to those without PCA. On multivariate analysis, haemoglobin was associated with PCA (β = -0.174, P = 0.005) and serum ferritin (β =0.247, P < 0.001). Conclusion Presence of PCA was an independent risk factor for iron deficiency and anaemia in children and young adults with type 1 diabetes.
Collapse
Affiliation(s)
- Khurshid A. Bhat
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sonali Verma
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Eesh Bhatia
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vijayalakshmi Bhatia
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Siddhnath Sudhanshu
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
10
|
Andrade LJDO, de Oliveira GCM, de Oliveira LCM, Bittencourt AMV, Baumgarth Y, de Oliveira LM. Decoding the relationship between cow's milk proteins and development of type 1 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230248. [PMID: 39420935 PMCID: PMC11460975 DOI: 10.20945/2359-4292-2023-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/08/2024] [Indexed: 10/19/2024]
Abstract
Objective To analyze in silico the evidence of molecular mimicry between human beta-cell autoantigens and cow's milk proteins as a potential type 1 diabetes mellitus (T1DM) trigger. Materials and methods The in silico analysis was performed using bioinformatics tools to compare the amino acid sequences of cow's milk proteins (bovine serum albumin [BSA] and beta-lactoglobulin [BLG]) and human beta-cell autoantigens (glutamic acid decarboxylase-65 [GAD-65], insulin, and zinc transporter 8 [ZnT8]). The structural and functional characteristics of the proteins were analyzed to identify potential molecular mimicry mechanisms. Results The results of the in silico analysis showed significant sequence similarity between BSA/BLG and GAD-65/human insulin/ZnT8, ranging from 19.64% to 27.27%. The cow's milk proteins evaluated shared structural features with the beta-cell antigens selected for comparison, indicating a potential for molecular mimicry between these proteins. Conclusion The findings of this study provide further evidence for a potential role of cow's milk proteins in triggering T1DM. The in silico analysis suggests that molecular mimicry mechanisms between cow's milk proteins and human beta-cell antigens may contribute to the autoimmune response leading to T1DM.
Collapse
Affiliation(s)
- Luís Jesuino de Oliveira Andrade
- Departamento de Saúde Universidade Estadual de Santa Cruz IlhéusBA Brasil Departamento de Saúde, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
| | | | | | - Alcina Maria Vinhaes Bittencourt
- Faculdade de Medicina Universidade Federal da Bahia SalvadorBA Brasil Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Yvana Baumgarth
- Departamento de Saúde Universidade Estadual de Santa Cruz IlhéusBA Brasil Departamento de Saúde, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
| | - Luís Matos de Oliveira
- Escola Bahiana de Medicina e Saúde Pública SalvadorBA Brasil Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brasil
| |
Collapse
|
11
|
Cai Y, Qi X, Zheng Y, Zhang J, Su H. Lipid profile alterations and biomarker identification in type 1 diabetes mellitus patients under glycemic control. BMC Endocr Disord 2024; 24:149. [PMID: 39135021 PMCID: PMC11318335 DOI: 10.1186/s12902-024-01679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is well-known to trigger a disruption of lipid metabolism. This study aimed to compare lipid profile changes in T1DM patients after achieving glucose control and explore the underlying mechanisms. In addition, we seek to identify novel lipid biomarkers associated with T1DM under conditions of glycemic control. METHODS A total of 27 adults with T1DM (age: 34.3 ± 11.2 yrs) who had maintained glucose control for over a year, and 24 healthy controls (age: 35.1 + 5.56 yrs) were recruited. Clinical characteristics of all participants were analyzed and plasma samples were collected for untargeted lipidomic analysis using mass spectrometry. RESULTS We identified 594 lipid species from 13 major classes. Differential analysis of plasma lipid profiles revealed a general decline in lipid levels in T1DM patients with controlled glycemic levels, including a notable decrease in triglycerides (TAGs) and diglycerides (DAGs). Moreover, these T1DM patients exhibited lower levels of six phosphatidylcholines (PCs) and three phosphatidylethanolamines (PEs). Random forest analysis determined DAG(14:0/20:0) and PC(18:0/20:3) to be the most prominent plasma markers of T1DM under glycemic control (AUC = 0.966). CONCLUSIONS The levels of all metabolites from the 13 lipid classes were changed in T1DM patients under glycemic control, with TAGs, DAGs, PCs, PEs, and FFAs demonstrating the most significant decrease. This research identified DAG(14:0/20:0) and PC(18:0/20:3) as effective plasma biomarkers in T1DM patients with controled glycemic levels.
Collapse
Affiliation(s)
- Yunying Cai
- Department of Endocrinology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jinbi Road, Xishan District, Kunming, 650032, Yunnan Province, China
| | - Xiaojie Qi
- Department of Endocrinology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jinbi Road, Xishan District, Kunming, 650032, Yunnan Province, China
| | - Yongqin Zheng
- Department of Endocrinology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jinbi Road, Xishan District, Kunming, 650032, Yunnan Province, China
| | - Jie Zhang
- Department of Endocrinology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jinbi Road, Xishan District, Kunming, 650032, Yunnan Province, China
| | - Heng Su
- Department of Endocrinology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157, Jinbi Road, Xishan District, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
12
|
Azzollini L, Prete DD, Wolf G, Klimek C, Saggioro M, Ricci F, Christodoulaki E, Wiedmer T, Ingles-Prieto A, Superti-Furga G, Scarabottolo L. Development of a live cell assay for the zinc transporter ZnT8. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100166. [PMID: 38848895 DOI: 10.1016/j.slasd.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Zinc is an essential trace element that is involved in many biological processes and in cellular homeostasis. In pancreatic β-cells, zinc is crucial for the synthesis, processing, and secretion of insulin, which plays a key role in glucose homeostasis and which deficiency is the cause of diabetes. The accumulation of zinc in pancreatic cells is regulated by the solute carrier transporter SLC30A8 (or Zinc Transporter 8, ZnT8), which transports zinc from cytoplasm in intracellular vesicles. Allelic variants of SLC30A8 gene have been linked to diabetes. Given the physiological intracellular localization of SLC30A8 in pancreatic β-cells and the ubiquitous endogenous expression of other Zinc transporters in different cell lines that could be used as cellular model for SLC30A8 recombinant over-expression, it is challenging to develop a functional assay to measure SLC30A8 activity. To achieve this goal, we have firstly generated a HEK293 cell line stably overexpressing SLC30A8, where the over-expression favors the partial localization of SLC30A8 on the plasma membrane. Then, we used the combination of this cell model, commercial FluoZin-3 cell permeant zinc dye and live cell imaging approach to follow zinc flux across SLC30A8 over-expressed on plasma membrane, thus developing a novel functional imaging- based assay specific for SLC30A8. Our novel approach can be further explored and optimized, paving the way for future small molecule medium-throughput screening.
Collapse
Affiliation(s)
- Lucia Azzollini
- Axxam SpA, Openzone, Via Meucci 3 20091 Bresso, Milan, Italy.
| | | | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Klimek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mattia Saggioro
- Axxam SpA, Openzone, Via Meucci 3 20091 Bresso, Milan, Italy
| | - Fernanda Ricci
- Axxam SpA, Openzone, Via Meucci 3 20091 Bresso, Milan, Italy
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
13
|
Su YT, Chou YH, Chiu CF, Huang YC, Lo FS. Prevalence, diagnostic utility, and clinical characteristics of ZnT8 antibody in children with type 1 diabetes in Northern Taiwan. Pediatr Neonatol 2024; 65:395-398. [PMID: 38267283 DOI: 10.1016/j.pedneo.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/19/2023] [Accepted: 09/08/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The ZnT8 autoantibody is used to independently diagnose type 1 diabetes (T1D) and as a prediction factor in high-risk populations. This is the first report in Taiwan on the prevalence, diagnostic utility, and clinical characteristics of zinc transporter 8 autoantibody (ZnT8A) in children with T1D. METHODS We performed a retrospective analysis of 268 children (130 boys, 138 girls) newly diagnosed with T1D at three hospitals in North Taiwan from February 1994 to August 2021. RESULTS ZnT8A was detected in 117 patients (43.7 %). The combined diagnostic rate of the four antibodies, including glutamic acid decarboxylase autoantibody (GADA), islet antigen 2 autoantibody (IA2A), insulin autoantibody (IAA), and ZnT8A, can reach 86.19 % while that of the original three antibodies is 84.3 %. IA2A (64.9 %) showed the highest positive rate, followed by GADA (64.2 %), ZnT8A (43.7 %), and IAA (22.0 %). Of the 268 patients, five (1.9 %) were only ZnT8A+. All antibodies were positive in 19 (7.1 %) people, whereas 37 others (13.8 %) had all antibodies negative. ZnT8A has the strongest relationship with IA2A. 5 patients had ZnT8A positive only. 5/(37 + 5) (about 12 %) T1D patients were diagnosed by ZnT8A testing. CONCLUSIONS ZnT8A testing can diagnose up to 12 % more patients with T1D along with three other antibodies. Furthermore, since the ZnT8A titer decreased over time, it should be tested within six months of onset in Taiwanese patients with T1D.
Collapse
Affiliation(s)
- Ya-Ting Su
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsuan Chou
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Fan Chiu
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Chun Huang
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Sung Lo
- Division of Pediatric Endocrinology and Genetics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
14
|
Carry PM, Vanderlinden LA, Johnson RK, Buckner T, Steck AK, Kechris K, Yang IV, Fingerlin TE, Fiehn O, Rewers M, Norris JM. Longitudinal changes in DNA methylation during the onset of islet autoimmunity differentiate between reversion versus progression of islet autoimmunity. Front Immunol 2024; 15:1345494. [PMID: 38915393 PMCID: PMC11194352 DOI: 10.3389/fimmu.2024.1345494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Background Type 1 diabetes (T1D) is preceded by a heterogenous pre-clinical phase, islet autoimmunity (IA). We aimed to identify pre vs. post-IA seroconversion (SV) changes in DNAm that differed across three IA progression phenotypes, those who lose autoantibodies (reverters), progress to clinical T1D (progressors), or maintain autoantibody levels (maintainers). Methods This epigenome-wide association study (EWAS) included longitudinal DNAm measurements in blood (Illumina 450K and EPIC) from participants in Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, one or more islet autoantibodies on at least two consecutive visits. We compared reverters - individuals who sero-reverted, negative for all autoantibodies on at least two consecutive visits and did not develop T1D (n=41); maintainers - continued to test positive for autoantibodies but did not develop T1D (n=60); progressors - developed clinical T1D (n=42). DNAm data were measured before (pre-SV visit) and after IA (post-SV visit). Linear mixed models were used to test for differences in pre- vs post-SV changes in DNAm across the three groups. Linear mixed models were also used to test for group differences in average DNAm. Cell proportions, age, and sex were adjusted for in all models. Median follow-up across all participants was 15.5 yrs. (interquartile range (IQR): 10.8-18.7). Results The median age at the pre-SV visit was 2.2 yrs. (IQR: 0.8-5.3) in progressors, compared to 6.0 yrs. (IQR: 1.3-8.4) in reverters, and 5.7 yrs. (IQR: 1.4-9.7) in maintainers. Median time between the visits was similar in reverters 1.4 yrs. (IQR: 1-1.9), maintainers 1.3 yrs. (IQR: 1.0-2.0), and progressors 1.8 yrs. (IQR: 1.0-2.0). Changes in DNAm, pre- vs post-SV, differed across the groups at one site (cg16066195) and 11 regions. Average DNAm (mean of pre- and post-SV) differed across 22 regions. Conclusion Differentially changing DNAm regions were located in genomic areas related to beta cell function, immune cell differentiation, and immune cell function.
Collapse
Affiliation(s)
- Patrick M. Carry
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, United States
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
| | | | - Randi K. Johnson
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Teresa Buckner
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, CO, United States
| | - Andrea K. Steck
- Barbara Davis Center, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Katerina Kechris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
| | - Ivana V. Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Tasha E. Fingerlin
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Aurora, CO, United States
| | - Oliver Fiehn
- University of California Davis West Coast Metabolomics Center, Davis, CA, United States
| | - Marian Rewers
- Barbara Davis Center, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
| |
Collapse
|
15
|
Fuentes-Cantero S, González-Rodríguez C, Rodríguez-Chacón C, Galvan-Toribio R, Hermosín-Escudero J, Pérez-Pérez A, León-Justel A. Study of the diagnostic efficiency of anti-ZnT8 autoantibodies for type 1 diabetes in pediatric patients. Lab Med 2024; 55:299-303. [PMID: 37658812 DOI: 10.1093/labmed/lmad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Zinc transporter 8 autoantibodies (ZNt8A) are 1 of the 4 main autoantibodies used for the diagnosis of type 1 diabetes (T1D), with glutamic acid decarboxylase autoantibodies (GADA), islet antigen-2 autoantibodies (IA-2A), and insulin autoantibodies (IAA). The objective of this study is to evaluate the diagnostic efficiency of these autoantibodies for the diagnosis of T1D in pediatric patients. METHODS A retrospective analysis of patients under 16 years of age with suspected T1D was made between June 2020 and January 2021. A total of 80 patients were included in the study, with 1 sample per patient. Subjects were classified according to diagnosis. RESULTS Of the subjects included in the study, 50 developed T1D. The diagnostic efficacy was IA-2A (cutoff ≥ 28 U/L) sensitivity 0.26 (95% CI: 0.14-0.38) and specificity 0.97 (95% CI: 0.79-1.0); GADA (cutoff ≥ 17 U/mL) sensitivity 0.40 (95% CI: 0.26-0.54) and specificity 0.87 (95% CI: 0.75-0.99); ZnT8A (cut off ≥ 15 U/L) sensitivity 0.62 (95% CI: 0.49-0.75) and specificity 0.97 (95% CI: 0.90-1.0). ZnT8A obtained the most significantly global diagnostic accuracy (0.75), and GADA with ZnT8A showed the highest correlation. CONCLUSION The results obtained indicate a higher efficiency of anti-ZnT8 autoantibodies for the diagnosis of T1D in pediatric patients. Clinical efficiency of diabetic autoantibodies is method and assay dependent and influences combined diagnostic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Pérez-Pérez
- Unit of Clinical Biochemistry, University Hospital Virgen Macarena, Seville, Spain
| | - Antonio León-Justel
- Unit of Clinical Biochemistry, University Hospital Virgen Macarena, Seville, Spain
| |
Collapse
|
16
|
Kasinathan D, Guo Z, Sarver DC, Wong GW, Yun S, Michels AW, Yu L, Sona C, Poy MN, Golson ML, Fu D. Cell-Surface ZnT8 Antibody Prevents and Reverses Autoimmune Diabetes in Mice. Diabetes 2024; 73:806-818. [PMID: 38387059 PMCID: PMC11043063 DOI: 10.2337/db23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pathogenic lymphocytes target autoantigens expressed in pancreatic islets, leading to the destruction of insulin-producing β-cells. Zinc transporter 8 (ZnT8) is a major autoantigen abundantly present on the β-cell surface. This unique molecular target offers the potential to shield β-cells against autoimmune attacks in T1D. Our previous work showed that a monoclonal antibody (mAb43) against cell-surface ZnT8 could home in on pancreatic islets and prevent autoantibodies from recognizing β-cells. This study demonstrates that mAb43 binds to exocytotic sites on the β-cell surface, masking the antigenic exposure of ZnT8 and insulin after glucose-stimulated insulin secretion. In vivo administration of mAb43 to NOD mice selectively increased the proportion of regulatory T cells in the islet, resulting in complete and sustained protection against T1D onset as well as reversal of new-onset diabetes. The mAb43-induced self-tolerance was reversible after treatment cessation, and no adverse effects were exhibited during long-term monitoring. Our findings suggest that mAb43 masking of the antigenic exposure of β-cells suppresses the immunological cascade from B-cell antigen presentation to T cell-mediated β-cell destruction, providing a novel islet-targeted and antigen-specific immunotherapy to prevent and reverse clinical T1D. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Devi Kasinathan
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Zheng Guo
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - G. William Wong
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Shumei Yun
- Office of Graduate Medical Education, University of Maryland Medical System, Largo, MD
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Chandan Sona
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Institute for Fundamental Biomedical Research, Johns Hopkins School of Medicine, St. Petersburg, FL
| | - Matthew N. Poy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Institute for Fundamental Biomedical Research, Johns Hopkins School of Medicine, St. Petersburg, FL
| | - Maria L. Golson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
18
|
Maddaloni E, Amendolara R, Balena A, Latino A, Sessa RL, Buzzetti R. Immune checkpoint modulators in early clinical development for the treatment of type 1 diabetes. Expert Opin Investig Drugs 2024; 33:303-318. [PMID: 38427915 DOI: 10.1080/13543784.2024.2326036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Despite the improvements of insulin therapy, people with type 1 diabetes (T1D) still suffer from a decreased quality of life and life expectancy. The search toward a cure for T1D is therefore still a scorching open field of research. AREAS COVERED Tackling the immune checkpoint signaling pathways has gained importance in the field of cancer immunotherapy. The same pathways can be targeted in autoimmunity with an opposite principle: to dampen the exaggerated immune response. In this review, we report a comprehensive excursus on the cellular and molecular mechanisms that lead to loss of immunological tolerance, and recent evidence on the role of immune checkpoint molecules in the development of T1D and their potential application for the mitigation of autoimmune diabetes. EXPERT OPINION Contrasting results about the efficacy of immune checkpoint modulators for T1D have been published, with very few molecules from preclinical studies eligible for use in humans. The heterogeneous and complex pathophysiology of T1D may explain the conflicting evidence. Designing clinical trials that acknowledge the pathophysiological and clinical complexity of T1D and that forecast the need of simultaneously tackling different disease pathways will be crucial to enhance the benefits which may be gained by such compounds.
Collapse
Affiliation(s)
- Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Amendolara
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Balena
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Latino
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario Luigi Sessa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Li SJ, Wu YL, Chen JH, Shen SY, Duan J, Xu HE. Autoimmune diseases: targets, biology, and drug discovery. Acta Pharmacol Sin 2024; 45:674-685. [PMID: 38097717 PMCID: PMC10943205 DOI: 10.1038/s41401-023-01207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/20/2023] [Indexed: 03/17/2024] Open
Abstract
Autoimmune diseases (AIDs) arise from a breakdown in immunological self-tolerance, wherein the adaptive immune system mistakenly attacks healthy cells, tissues and organs. AIDs impose excessive treatment costs and currently rely on non-specific and universal immunosuppression, which only offer symptomatic relief without addressing the underlying causes. AIDs are driven by autoantigens, targeting the autoantigens holds great promise in transforming the treatment of these diseases. To achieve this goal, a comprehensive understanding of the pathogenic mechanisms underlying different AIDs and the identification of specific autoantigens are critical. In this review, we categorize AIDs based on their underlying causes and compile information on autoantigens implicated in each disease, providing a roadmap for the development of novel immunotherapy regimens. We will focus on type 1 diabetes (T1D), which is an autoimmune disease characterized by irreversible destruction of insulin-producing β cells in the Langerhans islets of the pancreas. We will discuss insulin as possible autoantigen of T1D and its role in T1D pathogenesis. Finally, we will review current treatments of TID and propose a potentially effective immunotherapy targeting autoantigens.
Collapse
Affiliation(s)
- Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, 350000, China.
| | - Yan-Li Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Juan-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Yi Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
20
|
Redondo MJ, Harrall KK, Glueck DH, Tosur M, Uysal S, Muir A, Atkinson EG, Shapiro MR, Yu L, Winter WE, Weedon M, Brusko TM, Oram R, Vehik K, Hagopian W, Atkinson MA, Dabelea D. Diabetes Study of Children of Diverse Ethnicity and Race: Study design. Diabetes Metab Res Rev 2024; 40:e3744. [PMID: 37888801 PMCID: PMC10939959 DOI: 10.1002/dmrr.3744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
AIMS Determining diabetes type in children has become increasingly difficult due to an overlap in typical characteristics between type 1 diabetes (T1D) and type 2 diabetes (T2D). The Diabetes Study in Children of Diverse Ethnicity and Race (DISCOVER) programme is a National Institutes of Health (NIH)-supported multicenter, prospective, observational study that enrols children and adolescents with non-secondary diabetes. The primary aim of the study was to develop improved models to differentiate between T1D and T2D in diverse youth. MATERIALS AND METHODS The proposed models will evaluate the utility of three existing T1D genetic risk scores in combination with data on islet autoantibodies and other parameters typically available at the time of diabetes onset. Low non-fasting serum C-peptide (<0.6 nmol/L) between 3 and 10 years after diabetes diagnosis will be considered a biomarker for T1D as it reflects the loss of insulin secretion ability. Participating centres are enrolling youth (<19 years old) either with established diabetes (duration 3-10 years) for a cross-sectional evaluation or with recent onset diabetes (duration 3 weeks-15 months) for the longitudinal observation with annual visits for 3 years. Cross-sectional data will be used to develop models. Longitudinal data will be used to externally validate the best-fitting model. RESULTS The results are expected to improve the ability to classify diabetes type in a large and growing subset of children who have an unclear form of diabetes at diagnosis. CONCLUSIONS Accurate and timely classification of diabetes type will help establish the correct clinical management early in the course of the disease.
Collapse
Affiliation(s)
- Maria J. Redondo
- Diabetes and Endocrinology Division, Department of Pediatrics. Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Kylie K. Harrall
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deborah H. Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mustafa Tosur
- Diabetes and Endocrinology Division, Department of Pediatrics. Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Children’s Nutrition Research Center, USDA/ARS, Houston, TX, USA
| | - Serife Uysal
- Diabetes and Endocrinology Division, Department of Pediatrics. Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Elizabeth G. Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine; Aurora, CO, USA
| | - William E. Winter
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL, USA
| | - Michael Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Richard Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
21
|
Wenzlau JM, Peterson OJ, Vomund AN, DiLisio JE, Hohenstein A, Haskins K, Wan X. Mapping of a hybrid insulin peptide in the inflamed islet β-cells from NOD mice. Front Immunol 2024; 15:1348131. [PMID: 38455055 PMCID: PMC10917911 DOI: 10.3389/fimmu.2024.1348131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
There is accumulating evidence that pathogenic T cells in T1D recognize epitopes formed by post-translational modifications of β-cell antigens, including hybrid insulin peptides (HIPs). The ligands for several CD4 T-cell clones derived from the NOD mouse are HIPs composed of a fragment of proinsulin joined to peptides from endogenous β-cell granule proteins. The diabetogenic T-cell clone BDC-6.9 reacts to a fragment of C-peptide fused to a cleavage product of pro-islet amyloid polypeptide (6.9HIP). In this study, we used a monoclonal antibody (MAb) to the 6.9HIP to determine when and where HIP antigens are present in NOD islets during disease progression and with which immune cells they associate. Immunogold labeling of the 6.9HIP MAb and organelle-specific markers for electron microscopy were employed to map the subcellular compartment(s) in which the HIP is localized within β-cells. While the insulin B9-23 peptide was present in nearly all islets, the 6.9HIP MAb stained infiltrated islets only in NOD mice at advanced stages of T1D development. Islets co-stained with the 6.9HIP MAb and antibodies to mark insulin, macrophages, and dendritic cells indicate that 6.9HIP co-localizes within insulin-positive β-cells as well as intra-islet antigen-presenting cells (APCs). In electron micrographs, the 6.9HIP co-localized with granule structures containing insulin alone or both insulin and LAMP1 within β-cells. Exposing NOD islets to the endoplasmic reticulum (ER) stress inducer tunicamycin significantly increased levels of 6.9HIP in subcellular fractions containing crinosomes and dense-core granules (DCGs). This work demonstrates that the 6.9HIP can be visualized in the infiltrated islets and suggests that intra-islet APCs may acquire and present HIP antigens within islets.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Orion J. Peterson
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - Anthony N. Vomund
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| | - James E. DiLisio
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anita Hohenstein
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Williams CL, Marzinotto I, Brigatti C, Gillespie KM, Lampasona V, Williams AJK, Long AE. A novel, high-performance, low-volume, rapid luciferase immunoprecipitation system (LIPS) assay to detect autoantibodies to zinc transporter 8. Clin Exp Immunol 2024; 215:215-224. [PMID: 38150393 PMCID: PMC10876106 DOI: 10.1093/cei/uxad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Zinc transporter 8 autoantibodies (ZnT8A) are thought to appear close to type 1 diabetes (T1D) onset and can identify high-risk multiple (≥2) autoantibody positive individuals. Radiobinding assays (RBA) are widely used for ZnT8A measurement but have limited sustainability. We sought to develop a novel, high-performance, non-radioactive luciferase immunoprecipitation system (LIPS) assay to replace RBA. METHODS A custom dual C-terminal ZnT8 (aa268-369; R325/W325) heterodimeric antigen, tagged with a NanoluciferaseTM (Nluc-ZnT8) reporter, and LIPS assay was developed. Assay performance was evaluated by testing sera from new onset T1D (n = 573), healthy schoolchildren (n = 521), and selected first-degree relatives (FDRs) from the Bart's Oxford family study (n = 617; 164 progressed to diabetes). RESULTS In new-onset T1D, ZnT8A levels by LIPS strongly correlated with RBA (Spearman's r = 0.89; P < 0.0001), and positivity was highly concordant (94.3%). At a high specificity (95%), LIPS and RBA had comparable assay performance [LIPS pROC-AUC(95) 0.032 (95% CI: 0.029-0.036); RBA pROC-AUC(95) 0.031 (95% CI: 0.028-0.034); P = 0.376]. Overall, FDRs found positive by LIPS or RBA had a comparable 20-year diabetes risk (52.6% and 59.7%, respectively), but LIPS positivity further stratified T1D risk in FDRs positive for at least one other islet autoantibody detected by RBA (P = 0.0346). CONCLUSION This novel, high-performance, cheaper, quicker, higher throughput, low blood volume Nluc-ZnT8 LIPS assay is a safe, non-radioactive alternative to RBA with enhanced sensitivity and ability to discriminate T1D progressors. This method offers an advanced approach to current strategies to screen the general population for T1D risk for immunotherapy trials and to reduce rates of diabetic ketoacidosis at diagnosis.
Collapse
Affiliation(s)
- Claire L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Brigatti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alistair J K Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Anna E Long
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
23
|
Webb-Robertson BJM, Nakayasu ES, Dong F, Waugh KC, Flores JE, Bramer LM, Schepmoes AA, Gao Y, Fillmore TL, Onengut-Gumuscu S, Frazer-Abel A, Rich SS, Holers VM, Metz TO, Rewers MJ. Decrease in multiple complement proteins associated with development of islet autoimmunity and type 1 diabetes. iScience 2024; 27:108769. [PMID: 38303689 PMCID: PMC10831269 DOI: 10.1016/j.isci.2023.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic β cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.
Collapse
Affiliation(s)
- Bobbie-Jo M. Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathy C. Waugh
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Javier E. Flores
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M. Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L. Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ashley Frazer-Abel
- Divison of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - V. Michael Holers
- Divison of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
24
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Yu L, Zhou Y, Sun S, Wang R, Yu W, Xiao H, Yu Z, Luo C. Tumor-suppressive effect of Reg3A in COAD is mediated by T cell activation in nude mice. Biomed Pharmacother 2023; 169:115922. [PMID: 38011786 DOI: 10.1016/j.biopha.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Regenerating family protein 3 A (Reg3A) is highly expressed in a variety of organs and inflammatory tissues, and is closely related to tumorigenesis and cancer progression. However, clinical statistics show that high expression of Reg3A is associated with better prognosis in colorectal cancer (CRC) patients, suggesting a tumor-suppressive effect. The precise action and underlying mechanism of Reg3A in CRC remain controversial. The present study sought to investigate the relationship among Reg3A expression, CRC development, and immune cell alteration in patients using the TCGA, GEPIA, PrognoScan, TIMER and TISIDB databases. Reg3A-overexpressing LoVo cell line (LoVo-Reg3A), a representative of colon adenocarcinoma (COAD), was constructed and the action of Reg3A was assessed in a xenograft nude mouse model. Our bioinformatical analyses revealed that Reg3A upregulation is highly associated with CRC, along with increased frequency of immune cell infiltration. In the xenograft nude mice, Reg3A overexpression offered a tumor-suppressive effect by inhibiting cell proliferation and promoting apoptosis. The result of RNA-seq suggested a positive regulation of leukocytes and an upregulation of T cells in LoVo-Reg3A tumor tissue. CD4+ and CD8+ T cells in tumors, splenic Reg3A-reactive IFN-γ+/CD4+ T cells, and serum TNF-α, IFN-γ and IL-17 were significantly increased by Reg3A overexpression. In the ex vivo co-culture experiment, elevated cytotoxic effect, increased proportion of CD3ε+ T cells, and upregulated expressions of TNF-α, IFN-γ and IL-17 were detected in the PBMCs isolated from LoVo-Reg3A cell-xenografted nude mice. In conclusion, high expression of Reg3A could activate and recruit T cells in COAD leading to the cytotoxic tumor-suppressive effect.
Collapse
Affiliation(s)
- Luting Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China; School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Yihan Zhou
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Shaozheng Sun
- College of Science, Northeastern University, Boston, United States
| | - Runlin Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Weihong Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Hanyu Xiao
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhuxi Yu
- Department of critical care medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Jia X, Yu L. Understanding Islet Autoantibodies in Prediction of Type 1 Diabetes. J Endocr Soc 2023; 8:bvad160. [PMID: 38169963 PMCID: PMC10758755 DOI: 10.1210/jendso/bvad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/05/2024] Open
Abstract
As screening studies and preventive interventions for type 1 diabetes (T1D) advance rapidly, the utility of islet autoantibodies (IAbs) in T1D prediction comes with challenges for early and accurate disease progression prediction. Refining features of IAbs can provide more accurate risk assessment. The advances in islet autoantibodies assay techniques help to screen out islet autoantibodies with high efficiency and high disease specificity. Exploring new islet autoantibodies to neoepitopes/neoantigens remains a hot research field for improving prediction and disease pathogenesis. We will review the recent research progresses of islet autoantibodies to better understand the utility of islet autoantibodies in prediction of T1D.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Yang L, Zhang X, Liu Q, Wen Y, Wang Q. Update on the ZNT8 epitope and its role in the pathogenesis of type 1 diabetes. Minerva Endocrinol (Torino) 2023; 48:447-458. [PMID: 38099391 DOI: 10.23736/s2724-6507.22.03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Type 1 diabetes (T1D) is an organ-specific chronic autoimmune disease mediated by autoreactive T cells. ZnT8 is a pancreatic islet-specific zinc transporter that is mainly located in β cells. It not only participates in the synthesis, storage and secretion of insulin but also maintains the structural integrity of insulin. ZnT8 is the main autoantigen recognized by autoreactive CD8+ T cells in children and adults with T1D. This article summarizes the latest research results on the T lymphocyte epitope and B lymphocyte epitope of ZnT8 in the current literature. The structure and expression of ZnT8, the role of ZnT8 in insulin synthesis and its role in autoimmunity are reviewed. ZnT8 is the primary autoantigen of T1D and is specifically expressed in pancreatic islets. Thus, it is one of biomarkers for the diagnosis of T1D. It has broad prospects for further research on immunomodulators for the treatment of T1D.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Wen
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China -
| |
Collapse
|
29
|
Lian H, Gong S, Li M, Wang X, Wang F, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Ma Y, Ren Q, Zhang X, Chen J, Chen L, Wu J, Gao L, Zhou X, Li Y, Zhong L, Han X, Ji L. Prevalence and Clinical Characteristics of PDX1 Variant Induced Diabetes in Chinese Early-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2023; 108:e1686-e1694. [PMID: 37279936 DOI: 10.1210/clinem/dgad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
CONTEXT Maturity-onset diabetes of the young 4 (MODY4) is caused by mutations of PDX1; its prevalence and clinical features are not well known. OBJECTIVE This study aimed to investigate the prevalence and clinical characteristics of MODY4 in Chinese people clinically diagnosed with early-onset type 2 diabetes (EOD), and to evaluate the relationship between the PDX1 genotype and the clinical phenotype. METHOD The study cohort consisted of 679 patients with EOD. PDX1 mutations were screened by DNA sequencing, and their pathogenicity was evaluated by functional experiments and American College of Medical Genetics and Genomics guidelines. MODY4 was diagnosed in individuals with diabetes who carry a pathogenic or likely pathogenic PDX1 variant. All reported cases were reviewed for analyzing the genotype-phenotype relationship. RESULT 4 patients with MODY4 were identified, representing 0.59% of this Chinese EOD cohort. All the patients were diagnosed before 35 years old, either obese or not obese. Combined with previously reported cases, the analysis revealed that the carriers of homeodomain variants were diagnosed earlier than those with transactivation domain variants (26.10 ± 11.00 vs 41.85 ± 14.66 years old, P < .001), and the proportions of overweight and obese individuals with missense mutation were higher than those with nonsense or frameshift mutations (27/34 [79.4%] vs 3/8 [37.5%], P = .031). CONCLUSION Our study suggested that MODY4 was prevalent in 0.59% of patients with EOD in a Chinese population. It was more difficult to identify clinically than other MODY subtypes owning to its clinical similarity to EOD. Also, this study revealed that there is some relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Hong Lian
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xirui Wang
- Department of Endocrinology, Beijing Airport Hospital. No. 49, Beijing 101318, China
| | - Fang Wang
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital. No. 59, Beijing 101200, China
| | - Liyong Zhong
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| |
Collapse
|
30
|
Xie QY, Oh S, Wong A, Yau C, Herold KC, Danska JS. Immune responses to gut bacteria associated with time to diagnosis and clinical response to T cell-directed therapy for type 1 diabetes prevention. Sci Transl Med 2023; 15:eadh0353. [PMID: 37878676 DOI: 10.1126/scitranslmed.adh0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Immune-targeted therapies have efficacy for treatment of autoinflammatory diseases. For example, treatment with the T cell-specific anti-CD3 antibody teplizumab delayed disease onset in participants at high risk for type 1 diabetes (T1D) in the TrialNet 10 (TN-10) trial. However, heterogeneity in therapeutic responses in TN-10 and other immunotherapy trials identifies gaps in understanding disease progression and treatment responses. The intestinal microbiome is a potential source of biomarkers associated with future T1D diagnosis and responses to immunotherapy. We previously reported that antibody responses to gut commensal bacteria were associated with T1D diagnosis, suggesting that certain antimicrobial immune responses may help predict disease onset. Here, we investigated anticommensal antibody (ACAb) responses against a panel of taxonomically diverse intestinal bacteria species in sera from TN-10 participants before and after teplizumab or placebo treatment. We identified IgG2 responses to three species that were associated with time to T1D diagnosis and with teplizumab treatment responses that delayed disease onset. These antibody responses link human intestinal bacteria with T1D progression, adding predictive value to known T1D risk factors. ACAb analysis provides a new approach to elucidate heterogeneity in responses to immunotherapy and identify individuals who may benefit from teplizumab, recently approved by the U.S. Food and Drug Administration for delaying T1D onset.
Collapse
Affiliation(s)
- Quin Yuhui Xie
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Sean Oh
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Anthony Wong
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Christopher Yau
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Jayne S Danska
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| |
Collapse
|
31
|
Urrutia I, Martínez R, Calvo B, Saso-Jiménez L, González P, Fernández-Rubio E, Martín-Nieto A, Aguayo A, Rica I, Gaztambide S, Castano L. Autoimmune Diabetes From Childhood to Adulthood: The Role of Pancreatic Autoantibodies and HLA-DRB1 Genotype. J Clin Endocrinol Metab 2023; 108:e1341-e1346. [PMID: 37207452 DOI: 10.1210/clinem/dgad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
CONTEXT Autoimmune diabetes can develop at any age, but unlike early-onset diabetes, adult onset is less well documented. We aimed to compare, over a wide age range, the most reliable predictive biomarkers for this pathology: pancreatic-autoantibodies and HLA-DRB1 genotype. METHODS A retrospective study of 802 patients with diabetes (aged 11 months to 66 years) was conducted. Pancreatic autoantibodies at diagnosis: insulin autoantibodies (IAA), glutamate decarboxylase autoantibodies (GADA), islet tyrosine phosphatase 2 autoantibodies (IA2A), and zinc transporter-8 autoantibodies (ZnT8A) and HLA-DRB1 genotype were analyzed. RESULTS Compared with early-onset patients, adults had a lower frequency of multiple autoantibodies, with GADA being the most common. At early onset, IAA was the most frequent in those younger than 6 years and correlated inversely with age; GADA and ZnT8A correlated directly and IA2A remained stable.The absence of HLA-DRB1 risk genotype was associated with higher age at diabetes onset (27.5 years; interquartile range [IQR], 14.3-35.7), whereas the high-risk HLA-DR3/DR4 was significantly more common at lower age (11.9 years; IQR, 7.1-21.6). ZnT8A was associated with DR4/non-DR3 (odds ratio [OR], 1.91; 95% CI, 1.15-3.17), GADA with DR3/non-DR4 (OR, 2.97; 95% CI, 1.55-5.71), and IA2A with DR4/non-DR3 and DR3/DR4 (OR, 3.89; 95% CI, 2.28-6.64, and OR, 3.08; 95% CI, 1.83-5.18, respectively). No association of IAA with HLA-DRB1 was found. CONCLUSION Autoimmunity and HLA-DRB1 genotype are age-dependent biomarkers. Adult-onset autoimmune diabetes is associated with lower genetic risk and lower immune response to pancreatic islet cells compared with early-onset diabetes.
Collapse
Affiliation(s)
- Inés Urrutia
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Rosa Martínez
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Begona Calvo
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Medical Oncology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Laura Saso-Jiménez
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Pedro González
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Elsa Fernández-Rubio
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Alicia Martín-Nieto
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Anibal Aguayo
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
- Department of Pediatric Endocrinology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Sonia Gaztambide
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Luis Castano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| |
Collapse
|
32
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
33
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023; 46:e151-e199. [PMID: 37471273 PMCID: PMC10516260 DOI: 10.2337/dci23-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA
| | - George L. Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, IL
| | - David E. Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA
| | - Andrea R. Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E. Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - David M. Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA
| | - M. Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
34
|
Bulum T, Vučić Lovrenčić M, Knežević Ćuća J, Tomić M, Vučković-Rebrina S, Duvnjak L. Relationship between β-Cell Autoantibodies and Their Combination with Anthropometric and Metabolic Components and Microvascular Complications in Latent Autoimmune Diabetes in Adults. Biomedicines 2023; 11:2561. [PMID: 37761002 PMCID: PMC10526032 DOI: 10.3390/biomedicines11092561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
AIMS Our study aimed to investigate the relationship between three autoantibodies and their combination with anthropometric and metabolic components and microvascular complications in patients with latent autoimmune diabetes in adults (LADA). METHODS Our study included 189 LADA patients divided into four subgroups according to the autoantibodies present: glutamic acid decarboxylase autoantibodies (GADA) only; zinc transporter-8 autoantibodies (ZnT8A)+GADA; insulinoma-associated-2 autoantibodies (IA-2)+GADA; and ZnT8+IA-2+GADA. RESULTS Compared to GADA positivity only, patients with ZnT8+GADA positivity and ZnT8+IA-2+GADA positivity had a shorter diabetes duration and lower body mass index (BMI); patients with ZnT8+GADA positivity were younger and showed an increase in glomerular filtration rate, while those with ZnT8+IA-2+GADA positivity had lower C-peptide and lower insulin resistance measured with HOMA2-IR. In a multiple regression analysis, ZnT8 positivity was associated with lower BMI (p = 0.0024), female sex (p = 0.0005), and shorter duration of disease (p = 0.0034), while IA-2 positivity was associated with lower C-peptide levels (p = 0.0034) and shorter diabetes duration (p = 0.02). No association between antibody positivity and microvascular complications of diabetes, including retinopathy, neuropathy, and microalbuminuria, as well as with variables of glucose control and β-cell function were found. CONCLUSION The results of our study suggest that ZnT8 and IA-2 autoantibodies are present in a significant number of LADA patients and associated with clinical and metabolic characteristics resembling classic type 1 diabetes. Due to increased LADA prevalence, earlier identification of patients requiring frequent monitoring with the earlier intensification of insulin therapy might be of special clinical interest.
Collapse
Affiliation(s)
- Tomislav Bulum
- Department of Diabetes and Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijana Vučić Lovrenčić
- Clinical Department of Medical Biochemistry and Laboratory Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
- Scientific Research Unit, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Jadranka Knežević Ćuća
- Clinical Department of Medical Biochemistry and Laboratory Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Martina Tomić
- Department of Ophthalmology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Sandra Vučković-Rebrina
- Department of Neurology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Lea Duvnjak
- Department of Diabetes and Endocrinology, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Wenzlau JM, Gu Y, Michels A, Rewers M, Haskins K, Yu L. Identification of Autoantibodies to a Hybrid Insulin Peptide in Type 1 Diabetes. Diagnostics (Basel) 2023; 13:2859. [PMID: 37685398 PMCID: PMC10487141 DOI: 10.3390/diagnostics13172859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that attacks the insulin-producing b cells of the pancreatic islets. Autoantibodies to b cell proteins typically appear in the circulation years before disease onset, and serve as the most accurate biomarkers of T1D risk. Our laboratory has recently discovered novel b cell proteins comprising hybrid proinsulin:islet amyloid polypeptide peptides (IAPP). T cells from a diabetic mouse model and T1D patients are activated by these hybrid peptides. In this study, we asked whether these hybrid molecules could serve as antigens for autoantibodies in T1D and prediabetic patients. We analyzed sera from T1D patients, prediabetics and healthy age-matched donors. Using a highly sensitive electrochemiluminescence assay, sera were screened for binding to recombinant proinsulin:IAPP probes or truncated derivatives. Our results show that sera from T1D patients contain antibodies that bind larger hybrid proinsulin:IAPP probes, but not proinsulin or insulin, at significantly increased frequencies compared to normal donors. Examination of sera from prediabetic patients confirms titers of antibodies to these hybrid probes in more than 80% of individuals, often before seroconversion. These results suggest that hybrid insulin peptides are common autoantigens in T1D and prediabetic patients, and that antibodies to these peptides may serve as valuable early biomarkers of the disease.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA; (J.M.W.); (K.H.)
| | - Yong Gu
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA; (J.M.W.); (K.H.)
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| |
Collapse
|
36
|
Hara N, Suwanai H, Yakou F, Ishii K, Iwasaki H, Abe H, Shikuma J, Sakai H, Miwa T, Suzuki R. Clinical characteristics and human leukocyte antigens in patients with immune checkpoint inhibitor-induced type 1 diabetes and pituitary dysfunction: a single center prospective study. Endocrine 2023; 81:477-483. [PMID: 37178310 DOI: 10.1007/s12020-023-03394-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE Immune checkpoint inhibitor (ICI) induced type 1 diabetes (T1D) and pituitary dysfunction are life-threatening adverse events, yet there is little clinical data available. We aimed to investigate the clinical characteristics of patients with these adverse events and report their human leukocyte antigen (HLA) profile to determine its relevance. METHODS This is a single-center prospective study. We enrolled patients with cancers who were administered ICI and diagnosed as ICI induced T1D (ICI-T1D) and pituitary dysfunction (ICI-PD). Clinical data and extracted DNA from blood samples were collected. HLA typing was performed using next-generation sequencing. We compared our results with those previously reported in healthy controls and investigated the correlation between HLA and the occurrence of ICI-T1D and ICI-PD. RESULTS We identified 914 patients treated with ICI in our facility from 1st September, 2017 to 30th June, 2022. Six of these patients developed T1D and 15 developed pituitary dysfunction. The duration from the initiation of ICI treatment to the onset of T1D or pituitary dysfunction averaged 492 ± 196 days and 191 ± 169 days. Among the six patients with T1D, two were positive for anti-GAD antibody. The frequencies of HLA-DR11, -Cw10, -B61, -DRB1*11:01, and -C*03:04 were significantly higher in patients with ICI-T1D than in controls. The frequencies of HLA-DR15 and -DRB*15:02 were significantly higher in patients with ICI-PD than in controls. CONCLUSION This study revealed the clinical characteristics of ICI-T1D and ICI-PD and the association between specific HLAs and these adverse events.
Collapse
Affiliation(s)
- Natsuko Hara
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Hirotsugu Suwanai
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan.
| | - Fumiyoshi Yakou
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University Hachioji Medical Center, Tokyo, 193-0998, Japan
| | - Keitaro Ishii
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Hajime Iwasaki
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Hironori Abe
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Jumpei Shikuma
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Hiroyuki Sakai
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Takashi Miwa
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Ryo Suzuki
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, 160-0023, Japan
| |
Collapse
|
37
|
Trabucchi A, Bombicino SS, Sabljic AV, Marfía JI, Targovnik AM, Iacono RF, Miranda MV, Valdez SN. Development of an immunoassay for the simultaneous detection of GADA and ZnT8A in autoimmune diabetes using a ZnT8/GAD65 chimeric molecule. Front Immunol 2023; 14:1219857. [PMID: 37600804 PMCID: PMC10435855 DOI: 10.3389/fimmu.2023.1219857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The combined presence of autoantibodies to the 65 kDa isoform of glutamic acid decarboxylase (GADA) and to the islet-specific cation efflux transporter ZnT8 (ZnT8A) in serum is the best predictive sign of the loss of immune tolerance and the clinical manifestation of autoimmune diabetes mellitus (DM). The screening of GADA and ZnT8A could help to reach to a correct diagnosis and to start an early and adequate treatment. The aim of the study was to develop an immunoassay for the simultaneous detection of these autoantibodies using a chimera molecule that includes the immunodominant regions of ZnT8 and GAD65, expressed by baculovirus-insect cells system. Materials and Methods ZnT8/GAD65 was expressed using the Bac to Bac™ baculovirus expression system. The recombinant chimera was purified by an His6-tag and identified by SDS-PAGE and western blot analysis, and by an indirect ELISA using specific antibodies against ZnT8 and GAD65. A fraction of ZnT8/GAD65 was biotinylated. A bridge ELISA (b-ELISA) was developed using ZnT8/GAD65 immobilized in polystyrene microplates, human sera samples from healthy individuals (n = 51) and diabetic patients (n = 49) were then incubated, and afterwards ZnT8/GAD65-biotin was added. Immune complexes were revealed with Streptavidin-Horseradish Peroxidase. Results were calculated as specific absorbance and expressed as standard deviation scores: SDs. Results ZnT8/GAD65 was efficiently produced, yielding 30 mg/L culture medium, 80% pure. This recombinant chimera retains the immunoreactive conformation of the epitopes that are recognized by their specific antibodies, so it was used for the development of a high sensitivity (75.51%) and specificity (98.04%) b-ELISA for the detection of ZnT8A and/or GADA, in a one-step screening assay. The ROC curves demonstrated that this method had high accuracy to distinguish between samples from healthy individuals and diabetic patients (AUC = 0.9488); the cut-off value was stablished at 2 SDs. Conclusions This immunoassay is useful either to confirm autoimmune diabetes or for detection in routine screening of individuals at risk of autoimmune DM. As DM is a slow progress disease, remaining asymptomatic for a long preclinical period, serological testing is of importance to establish a preventive treatment.
Collapse
Affiliation(s)
- Aldana Trabucchi
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral “Prof. Ricardo A. Margni” (IDEHU), Buenos Aires, Argentina
| | - Silvina Sonia Bombicino
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral “Prof. Ricardo A. Margni” (IDEHU), Buenos Aires, Argentina
| | - Adriana Victoria Sabljic
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral “Prof. Ricardo A. Margni” (IDEHU), Buenos Aires, Argentina
| | - Juan Ignacio Marfía
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral “Prof. Ricardo A. Margni” (IDEHU), Buenos Aires, Argentina
| | - Alexandra Marisa Targovnik
- Universidad de Buenos (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Rubén Francisco Iacono
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral “Prof. Ricardo A. Margni” (IDEHU), Buenos Aires, Argentina
| | - María Victoria Miranda
- Universidad de Buenos (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvina Noemí Valdez
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral “Prof. Ricardo A. Margni” (IDEHU), Buenos Aires, Argentina
| |
Collapse
|
38
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Clin Chem 2023:hvad080. [PMID: 37473453 DOI: 10.1093/clinchem/hvad080] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA, United States
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, ILUnited States
| | - David E Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA, United States
| | - Andrea R Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, United States
| | - David M Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
39
|
Webb-Robertson BJM, Nakayasu ES, Dong F, Waugh KC, Flores J, Bramer LM, Schepmoes A, Gao Y, Fillmore T, Onengut-Gumuscu S, Frazer-Abel A, Rich SS, Holers VM, Metz TO, Rewers MJ. Decrease in multiple complement protein levels is associated with the development of islet autoimmunity and type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292628. [PMID: 37502972 PMCID: PMC10370226 DOI: 10.1101/2023.07.13.23292628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic β-cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies - biomarkers of autoimmunity - is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar timeframe. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.
Collapse
|
40
|
Heath KE, Feduska JM, Taylor JP, Houp JA, Botta D, Lund FE, Mick GJ, McGwin G, McCormick KL, Tse HM. GABA and Combined GABA with GAD65-Alum Treatment Alters Th1 Cytokine Responses of PBMCs from Children with Recent-Onset Type 1 Diabetes. Biomedicines 2023; 11:1948. [PMID: 37509587 PMCID: PMC10377053 DOI: 10.3390/biomedicines11071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic cells. There is a need for the development of novel antigen-specific strategies to delay cell destruction, including combinatorial strategies that do not elicit systemic immunosuppression. Gamma-aminobutyric acid (GABA) is expressed by immune cells, β-cells, and gut bacteria and is immunomodulatory. Glutamic-acid decarboxylase 65 (GAD65), which catalyzes GABA from glutamate, is a T1D autoantigen. To test the efficacy of combinatorial GABA treatment with or without GAD65-immunization to dampen autoimmune responses, we enrolled recent-onset children with T1D in a one-year clinical trial (ClinicalTrials.gov NCT02002130) and examined T cell responses. We isolated peripheral blood mononuclear cells and evaluated cytokine responses following polyclonal activation and GAD65 rechallenge. Both GABA alone and GABA/GAD65-alum treatment inhibited Th1 cytokine responses over the 12-month study with both polyclonal and GAD65 restimulation. We also investigated whether patients with HLA-DR3-DQ2 and HLA-DR4-DQ8, the two highest-risk human leukocyte antigen (HLA) haplotypes in T1D, exhibited differences in response to GABA alone and GABA/GAD65-alum. HLA-DR4-DQ8 patients possessed a Th1-skewed response compared to HLA-DR3-DQ2 patients. We show that GABA and GABA/GAD65-alum present an attractive immunomodulatory treatment for children with T1D and that HLA haplotypes should be considered.
Collapse
Affiliation(s)
- Katie E. Heath
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Joseph M. Feduska
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Jared P. Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Julie A. Houp
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Davide Botta
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Frances E. Lund
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA (J.M.F.); (J.P.T.); (D.B.); (F.E.L.)
| | - Gail J. Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.J.M.); (K.L.M.)
| | - Gerald McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Kenneth L. McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.J.M.); (K.L.M.)
| | - Hubert M. Tse
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Mail Stop 3029, 1012 Wahl Hall West, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
41
|
Kawasaki E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int J Mol Sci 2023; 24:10012. [PMID: 37373160 PMCID: PMC10298549 DOI: 10.3390/ijms241210012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Anti-islet autoantibodies serve as key markers in immune-mediated type 1 diabetes (T1D) and slowly progressive T1D (SPIDDM), also known as latent autoimmune diabetes in adults (LADA). Autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), tyrosine phosphatase-like protein IA-2 (IA-2A), and zinc transporter 8 (ZnT8A) are currently employed in the diagnosis, pathological analysis, and prediction of T1D. GADA can also be detected in non-diabetic patients with autoimmune diseases other than T1D and may not necessarily reflect insulitis. Conversely, IA-2A and ZnT8A serve as surrogate markers of pancreatic β-cell destruction. A combinatorial analysis of these four anti-islet autoantibodies demonstrated that 93-96% of acute-onset T1D and SPIDDM cases were diagnosed as immune-mediated T1D, while the majority of fulminant T1D cases were autoantibody-negative. Evaluating the epitopes and immunoglobulin subclasses of anti-islet autoantibodies help distinguish between diabetes-associated and non-diabetes-associated autoantibodies and is valuable for predicting future insulin deficiency in SPIDDM (LADA) patients. Additionally, GADA in T1D patients with autoimmune thyroid disease reveals the polyclonal expansion of autoantibody epitopes and immunoglobulin subclasses. Recent advancements in anti-islet autoantibody assays include nonradioactive fluid-phase assays and the simultaneous determination of multiple biochemically defined autoantibodies. Developing a high-throughput assay for detecting epitope-specific or immunoglobulin isotype-specific autoantibodies will facilitate a more accurate diagnosis and prediction of autoimmune disorders. The aim of this review is to summarize what is known about the clinical significance of anti-islet autoantibodies in the pathogenesis and diagnosis of T1D.
Collapse
Affiliation(s)
- Eiji Kawasaki
- Diabetes Center, Shin-Koga Hospital, Kurume 830-8577, Japan
| |
Collapse
|
42
|
Wu M, Zhang Y, Markley M, Cassidy C, Newman N, Porter A. COVID-19 knowledge deconstruction and retrieval: an intelligent bibliometric solution. Scientometrics 2023:1-31. [PMID: 37360228 PMCID: PMC10230150 DOI: 10.1007/s11192-023-04747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood continues surging, researchers have been disadvantaged by not having access to a platform that can quickly synthesize emerging information and link the new knowledge to the latent knowledge foundation. Aiming to fill this gap, we propose a research framework and develop a dashboard that can assist scientists in identifying, retrieving, and understanding COVID-19 knowledge from the ocean of scholarly articles. Incorporating principal component decomposition (PCD), a knowledge mode-based search approach, and hierarchical topic tree (HTT) analysis, the proposed framework profiles the COVID-19 research landscape, retrieves topic-specific latent knowledge foundation, and visualizes knowledge structures. The regularly updated dashboard presents our research results. Addressing 127,971 COVID-19 research papers from PubMed, the PCD topic analysis identifies 35 research hotspots, along with their inner correlations and fluctuating trends. The HTT result segments the global knowledge landscape of COVID-19 into clinical and public health branches and reveals the deeper exploration of those studies. To supplement this analysis, we additionally built a knowledge model from research papers on the topic of vaccination and fetched 92,286 pre-Covid publications as the latent knowledge foundation for reference. The HTT analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization.
Collapse
Affiliation(s)
- Mengjia Wu
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Yi Zhang
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | | | | | | | - Alan Porter
- Search Technology, Inc., Norcross, USA
- Science, Technology & Innovation Policy, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
43
|
Fyvie MJ, Gillespie KM. The importance of biomarker development for monitoring type 1 diabetes progression rate and therapeutic responsiveness. Front Immunol 2023; 14:1158278. [PMID: 37256143 PMCID: PMC10225507 DOI: 10.3389/fimmu.2023.1158278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune condition of children and adults in which immune cells target insulin-producing pancreatic β-cells for destruction. This results in a chronic inability to regulate blood glucose levels. The natural history of T1D is well-characterized in childhood. Evidence of two or more autoantibodies to the islet antigens insulin, GAD, IA-2 or ZnT8 in early childhood is associated with high risk of developing T1D in the future. Prediction of risk is less clear in adults and, overall, the factors controlling the progression rate from multiple islet autoantibody positivity to onset of symptoms are not fully understood. An anti-CD3 antibody, teplizumab, was recently shown to delay clinical progression to T1D in high-risk individuals including adults and older children. This represents an important proof of concept for those at risk of future T1D. Given their role in risk assessment, islet autoantibodies might appear to be the most obvious biomarkers to monitor efficacy. However, monitoring islet autoantibodies in clinical trials has shown only limited effects, although antibodies to the most recently identified autoantigen, tetraspanin-7, have not yet been studied in this context. Measurements of beta cell function remain fundamental to assessing efficacy and different models have been proposed, but improved biomarkers are required for both progression studies before onset of diabetes and in therapeutic monitoring. In this mini-review, we consider some established and emerging predictive and prognostic biomarkers, including markers of pancreatic function that could be integrated with metabolic markers to generate improved strategies to measure outcomes of therapeutic intervention.
Collapse
Affiliation(s)
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
44
|
Siddiqui K, Nawaz SS, Alfadda AA, Mujammami M. Islet Autoantibodies to Pancreatic Insulin-Producing Beta Cells in Adolescent and Adults with Type 1 Diabetes Mellitus: A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13101736. [PMID: 37238221 DOI: 10.3390/diagnostics13101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the destruction of pancreatic insulin-producing beta cells. T1D is one of the most common endocrine and metabolic disorders occurring in children. Autoantibodies against pancreatic insulin-producing beta cells are important immunological and serological markers of T1D. Zinc transporter 8 autoantibody (ZnT8) is a recently identified autoantibody in T1D; however, no data on ZnT8 autoantibody in the Saudi Arabian population have been reported. Thus, we aimed to investigate the prevalence of islet autoantibodies (IA-2 and ZnT8) in adolescents and adults with T1D according to age and disease duration. (2) Methods: In total, 270 patients were enrolled in this cross-sectional study. After meeting the study's inclusion and exclusion criteria, 108 patients with T1D (50 men and 58 women) were assessed for T1D autoantibody levels. Serum ZnT8 and IA-2 autoantibodies were measured using commercial enzyme-linked immunosorbent assay kits. (3) Results: IA-2 and ZnT8 autoantibodies were present in 67.6% and 54.6% of patients with T1D, respectively. Autoantibody positivity was found in 79.6% of the patients with T1D. Both the IA-2 and ZnT8 autoantibodies were frequently observed in adolescents. The prevalence of IA-2 and ZnT8 autoantibodies in patients with a disease duration < 1 year was 100% and 62.5%, respectively, which declined with an increase in disease duration (p < 0.020). Logistic regression analysis revealed a significant relationship between age and autoantibodies (p < 0.004). (4) Conclusions: The prevalence of IA-2 and ZnT8 autoantibodies in the Saudi Arabian T1D population appears to be higher in adolescents. The current study also showed that the prevalence of autoantibodies decreased with disease duration and age. IA-2 and ZnT8 autoantibodies are important immunological and serological markers for T1D diagnosis in the Saudi Arabian population.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Muhammad Mujammami
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
45
|
Papadimitriou DT, Dermitzaki E, Christopoulos P, Papagianni M, Kleanthous K, Marakaki C, Papadimitriou A, Mastorakos G. Secondary Prevention of Diabetes Type 1 with Oral Calcitriol and Analogs, the PRECAL Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050862. [PMID: 37238410 DOI: 10.3390/children10050862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Screening for Type 1 Diabetes (T1D, incidence 1:300) with T1D autoantibodies (T1Ab) at ages 2 and 6, while sensitive, lacks a preventive strategy. Cholecalciferol 2000 IU daily since birth reduced T1D by 80% at 1 year. T1D-associated T1Ab negativized within 0.6 years with oral calcitriol in 12 children. To further investigate secondary prevention of T1D with calcitriol and its less calcemic analog, paricalcitol, we initiated a prospective interventional non-randomized clinical trial, the PRECAL study (ISRCTN17354692). In total, 50 high-risk children were included: 44 were positive for T1Ab, and 6 had predisposing for T1D HLA genotypes. Nine T1Ab+ patients had variable impaired glucose tolerance (IGT), four had pre-T1D (3 T1Ab+, 1 HLA+), nine had T1Ab+ new-onset T1D not requiring insulin at diagnosis. T1Ab, thyroid/anti-transglutaminase Abs, glucose/calcium metabolism were determined prior and q3-6 months on calcitriol, 0.05 mcg/Kg/day, or paricalcitol 1-4 mcg × 1-3 times/day p.o. while on cholecalciferol repletion. Available data on 42 (7 dropouts, 1 follow-up < 3 months) patients included: all 26 without pre-T1D/T1D followed for 3.06 (0.5-10) years negativized T1Ab (15 +IAA, 3 IA2, 4 ICA, 2 +GAD, 1 +IAA/+GAD, 1 +ICA/+GAD) within 0.57 (0.32-1.3) years or did not develop to T1D (5 +HLA, follow-up 3 (1-4) years). From four pre-T1D cases, one negativized T1Ab (follow-up 1 year), one +HLA did not progress to T1D (follow-up 3.3 years) and two +T1Ab patients developed T1D in 6 months/3 years. Three out of nine T1D cases progressed immediately to overt disease, six underwent complete remission for 1 year (1 month-2 years). Five +T1Ab patients relapsed and negativized again after resuming therapy. Four (aged <3 years) negativized anti-TPO/TG, and two anti-transglutaminase-IgA. Eight presented mild hypercalciuria/hypercalcemia, resolving with dose titration/discontinuation. Secondary prevention of T1D with calcitriol and paricalcitol seems possible and reasonably safe, if started soon enough after seroconversion.
Collapse
Affiliation(s)
- Dimitrios T Papadimitriou
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Eleni Dermitzaki
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, University of Thessaly, 42132 Trikala, Greece
- Unit of Endocrinology, Diabetes and Metabolism, Third Department of Pediatrics, Aristotle University of Thessaloniki, Hippokrateion Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Kleanthis Kleanthous
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Chrysanthi Marakaki
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Anastasios Papadimitriou
- Pediatric Endocrinology Unit, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Haidari, Greece
| | - George Mastorakos
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
46
|
Takehana N, Fukui T, Mori Y, Hiromura M, Terasaki M, Ohara M, Takada M, Tomoyasu M, Ito Y, Kobayashi T, Yamagishi SI. Comparison of positive rates between glutamic acid decarboxylase antibodies and ElisaRSR™ 3 Screen ICA™ in recently obtained sera from patients who had been previously diagnosed with slowly progressive type 1 diabetes. J Diabetes Investig 2023. [PMID: 37082800 DOI: 10.1111/jdi.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS/INTRODUCTION This study aimed to compare the positivity rates of glutamic acid decarboxylase autoantibodies (GADA) and ElisaRSR™ 3 Screen ICA™ (3 Screen ICA), a newly developed assay for the simultaneous measurement of GADA, insulinoma-associated antigen-2 autoantibodies (IA-2A), and zinc transporter 8 autoantibodies (ZnT8A), in recently obtained sera from patients who had been previously diagnosed with slowly progressive type 1 diabetes (SPIDDM). MATERIALS AND METHODS We enrolled 53 patients with SPIDDM who were positive for GADA at the diagnosis and 98 non-diabetic individuals, and investigated the diagnostic accuracy of the 3 Screen ICA (cutoff index ≥30 units) compared with that of GADA. In addition, we compared the clinical characteristics of patients with SPIDDM who were negative or positive on 3 Screen ICA. RESULTS The positivity rates of 3 Screen ICA, GADA, IA-2A, and ZnT8A were 88.7, 86.8, 24.5, and 13.2%, respectively. The respective sensitivity, specificity, and positive and negative predictive values for SPIDDM were 88.7, 100, 100, and 94.2% by 3 Screen ICA and 86.8, 100, 100.0, and 93.3% by GADA. There were no significant differences in age at onset, duration of diabetes, body mass index, glycated hemoglobin and C-peptide levels, and the prevalence of autoimmune thyroiditis between patients with SPIDDM who were positive or negative on 3 Screen ICA. However, the prevalence of insulin users was significantly higher in those who were positive than in those who were negative on 3 Screen ICA. CONCLUSIONS Similar to GADA, 3 Screen ICA may be a useful diagnostic tool for detecting patients with SPIDDM.
Collapse
Affiliation(s)
- Nobuaki Takehana
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yusaku Mori
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Anti-glycation Research Section, Showa University School of Medicine, Tokyo, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Michiya Takada
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masako Tomoyasu
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | | | - Tetsuro Kobayashi
- Division of Immunology and Molecular Medicine, Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Rodríguez Escobedo R, Mozo Avellaned L, Delgado Álvarez E, Menéndez Torre E. Pancreatic autoimmunity in the diagnosis of type 1 diabetes: Usefulness of anti-zinc transporter 8 antibody and proposed stepwise assessment. ENDOCRINOL DIAB NUTR 2023; 70:286-288. [PMID: 37041091 DOI: 10.1016/j.endien.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 04/13/2023]
Affiliation(s)
- Raúl Rodríguez Escobedo
- Servicio de Endocrinología y Nutrición, Hospitales Universitarios San Roque, Las Palmas de Gran Canaria, Spain; Grupo de investigación en Endocrinología, Nutrición, Diabetes y Obesidad (ENDO), Instituto de Investigación del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Lourdes Mozo Avellaned
- Servicio de Inmunología, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Elías Delgado Álvarez
- Grupo de investigación en Endocrinología, Nutrición, Diabetes y Obesidad (ENDO), Instituto de Investigación del Principado de Asturias (ISPA), Oviedo, Asturias, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Endocrinología y Nutrición, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Edelmiro Menéndez Torre
- Grupo de investigación en Endocrinología, Nutrición, Diabetes y Obesidad (ENDO), Instituto de Investigación del Principado de Asturias (ISPA), Oviedo, Asturias, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Endocrinología y Nutrición, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
48
|
Sui L, Du Q, Romer A, Su Q, Chabosseau PL, Xin Y, Kim J, Kleiner S, Rutter GA, Egli D. ZnT8 Loss of Function Mutation Increases Resistance of Human Embryonic Stem Cell-Derived Beta Cells to Apoptosis in Low Zinc Condition. Cells 2023; 12:903. [PMID: 36980244 PMCID: PMC10047077 DOI: 10.3390/cells12060903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The rare SLC30A8 mutation encoding a truncating p.Arg138* variant (R138X) in zinc transporter 8 (ZnT8) is associated with a 65% reduced risk for type 2 diabetes. To determine whether ZnT8 is required for beta cell development and function, we derived human pluripotent stem cells carrying the R138X mutation and differentiated them into insulin-producing cells. We found that human pluripotent stem cells with homozygous or heterozygous R138X mutation and the null (KO) mutation have normal efficiency of differentiation towards insulin-producing cells, but these cells show diffuse granules that lack crystalline zinc-containing insulin granules. Insulin secretion is not compromised in vitro by KO or R138X mutations in human embryonic stem cell-derived beta cells (sc-beta cells). Likewise, the ability of sc-beta cells to secrete insulin and maintain glucose homeostasis after transplantation into mice was comparable across different genotypes. Interestingly, sc-beta cells with the SLC30A8 KO mutation showed increased cytoplasmic zinc, and cells with either KO or R138X mutation were resistant to apoptosis when extracellular zinc was limiting. These findings are consistent with a protective role of zinc in cell death and with the protective role of zinc in T2D.
Collapse
Affiliation(s)
- Lina Sui
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qian Du
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Anthony Romer
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Sandra Kleiner
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Guy A. Rutter
- CR-CHUM, Faculté de Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Section of Cell Biology, Hammersmith Hospital, Imperial College, London WI2 ONN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Dieter Egli
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| |
Collapse
|
49
|
Mistry S, Gouripeddi R, Raman V, Facelli JC. Stratifying risk for onset of type 1 diabetes using islet autoantibody trajectory clustering. Diabetologia 2023; 66:520-534. [PMID: 36446887 PMCID: PMC10097474 DOI: 10.1007/s00125-022-05843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022]
Abstract
AIMS/HYPOTHESIS Islet autoantibodies can be detected prior to the onset of type 1 diabetes and are important tools for aetiologic studies, prevention trials and disease screening. Current risk stratification models rely on the positivity status of islet autoantibodies alone, but additional autoantibody characteristics may be important for understanding disease onset. This work aimed to determine if a data-driven model incorporating characteristics of islet autoantibody development, including timing, type and titre, could stratify risk for type 1 diabetes onset. METHODS Data on autoantibodies against GAD (GADA), tyrosine phosphatase islet antigen-2 (IA-2A) and insulin (IAA) were obtained for 1,415 children enrolled in The Environmental Determinants of Diabetes in the Young study with at least one positive autoantibody measurement from years 1 to 12 of life. Unsupervised machine learning algorithms were trained to identify clusters of autoantibody development based on islet autoantibody timing, type and titre. Risk for type 1 diabetes across each identified cluster was evaluated using time-to-event analysis. RESULTS We identified 2-4 clusters in each year cohort that differed by autoantibody timing, titre and type. During the first 3 years of life, risk for type 1 diabetes onset was driven by membership in clusters with high titres of all three autoantibodies (1-year risk: 20.87-56.25%, 5-year risk: 67.73-69.19%). Type 1 diabetes risk transitioned to type-specific titres during ages 4 to 8, as clusters with high titres of IA-2A (1-year risk: 20.88-28.93%, 5-year risk: 62.73-78.78%) showed faster progression to diabetes compared with high titres of GADA (1-year risk: 4.38-6.11%, 5-year risk: 25.06-31.44%). The importance of high GADA titres decreased during ages 9 to 12, with clusters containing high titres of IA-2A alone (1-year risk: 14.82-30.93%) or both GADA and IA-2A (1-year risk: 8.27-25.00%) demonstrating increased risk. CONCLUSIONS/INTERPRETATION This unsupervised machine learning approach provides a novel tool for stratifying risk for type 1 diabetes onset using multiple autoantibody characteristics. These findings suggest that age-dependent changes in IA-2A titres modulate risk for type 1 diabetes onset across 12 years of life. Overall, this work supports incorporation of islet autoantibody timing, type and titre in risk stratification models for aetiologic studies, prevention trials and disease screening.
Collapse
Affiliation(s)
- Sejal Mistry
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Ramkiran Gouripeddi
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
- Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA
| | - Vandana Raman
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Julio C Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
- Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
50
|
Zhang S, Fu C, Luo Y, Xie Q, Xu T, Sun Z, Su Z, Zhou X. Cryo-EM structure of a eukaryotic zinc transporter at a low pH suggests its Zn 2+-releasing mechanism. J Struct Biol 2023; 215:107926. [PMID: 36464198 DOI: 10.1016/j.jsb.2022.107926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Zinc transporter 8 (ZnT8) is mainly expressed in pancreatic islet β cells and is responsible for H+-coupled uptake (antiport) of Zn2+ into the lumen of insulin secretory granules. Structures of human ZnT8 and its prokaryotic homolog YiiP have provided structural basis for constructing a plausible transport cycle for Zn2+. However, the mechanistic role that protons play in the transport process remains unclear. Here we present a lumen-facing cryo-EM structure of ZnT8 from Xenopus tropicalis (xtZnT8) in the presence of Zn2+ at a luminal pH (5.5). Compared to a Zn2+-bound xtZnT8 structure at a cytosolic pH (7.5), the low-pH structure displays an empty transmembrane Zn2+-binding site with a disrupted coordination geometry. Combined with a Zn2+-binding assay our data suggest that protons may disrupt Zn2+ coordination at the transmembrane Zn2+-binding site in the lumen-facing state, thus facilitating Zn2+ release from ZnT8 into the lumen.
Collapse
Affiliation(s)
- Senfeng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chunting Fu
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingrong Xie
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Xu
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoming Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|