1
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025:10.1038/s41380-025-02943-z. [PMID: 40033044 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Liu J, Yang Y, Wu H, Dang F, Yu X, Wang F, Wang Y, Zhao Y, Shi X, Qin W, Zhang Y, Li Y, Wang C, Shao X, Wang Y. Hypoxia-Induced O-GlcNAcylation of GATA3 Leads to Excessive Testosterone Production in Preeclamptic Placentas. MedComm (Beijing) 2025; 6:e70115. [PMID: 39991625 PMCID: PMC11847629 DOI: 10.1002/mco2.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
The maintenance of endocrine homeostasis in the placenta is crucial for ensuring successful pregnancy. An abnormally elevated production of placental testosterone (T0) has been documented in patients with early-onset preeclamptic (E-PE). However, the underlying mechanisms remain unclear. In this study, we found that E-PE placentas exhibited significantly increased expressions of 3β-HSD1 (3β-Hydroxysteroid Dehydrogenase 1) and 17β-HSD3 (17β-Hydroxysteroid Dehydrogenase 3), the rate-limiting enzymes for T0 synthesis. This was strongly correlated with an elevated level of O-linked N-acetylglucosaminylation (O-GlcNAcylation) of GATA3 (GATA binding protein 3). In human trophoblast cells, O-linked-N-acetylglucosamine (O-GlcNAc) modification of GATA3 on Thr322 stabilized the protein and enhanced the transcriptional regulation of 3β-HSD1 and 17β-HSD3, thereby increasing T0 production. Hypoxia, a well-established pathological factor in PE, significantly enhanced the O-GlcNAcylation of GATA3 in human trophoblast cells. Our findings suggest that hypoxia-induced overactive O-GlcNAcylation of GATA3 contributes to the exacerbated T0 production in E-PE placentas. These findings provide a new perspective on the pathogenesis of E-PE from the standpoint of posttranslational regulation and may illuminate novel therapeutic strategies for adverse pregnancy outcomes such as E-PE.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Center for Disease Prevention and ControlBeijing Key Laboratory of Diagnostic and Traceability Technologies for Food PoisoningBeijingChina
| | - Yun Yang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Feihong Dang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Feiyang Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yongqing Wang
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Yangyu Zhao
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Xiaoming Shi
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Wei Qin
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yanling Zhang
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yu‐Xia Li
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Chu Wang
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute of Stem Cell and Regenerative MedicineBeijingChina
| | - Yan‐Ling Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute of Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
3
|
Maurer SV, Hing BWQ, Lussier S, Radhakrishna S, Davis JLB, Abbott PW, Michaelson JJ, Stevens HE. Prenatal stress alters mouse offspring dorsal striatal development and placental function in sex-specific ways. J Psychiatr Res 2025; 182:149-160. [PMID: 39809011 DOI: 10.1016/j.jpsychires.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Prenatal stress is a risk factor for neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). However, how early stress modification of brain development contributes to this pathophysiology is poorly understood. Ventral forebrain regions such as dorsal striatum are of particular interest: dorsal striatum modulates movement and cognition, is altered in NDDs, and has a primarily GABAergic population. Here, we examine effects of prenatal stress on adult movement, cognition, and dorsal striatum neurobiology in mice using striatal-dependent behavioral assays, immunohistochemistry, embryonic ventral forebrain transcriptomics, and placental transcriptomics. We found prenatal stress affected adult procedural, habit, and reversal learning in sex-specific ways. Stress also increased adult dorsal striatal GABAergic neurons - an effect largely driven by males. We sought to examine the developmental origins of these adult brain changes. We found similar sex-specific dorsal striatal cellular changes in earlier points of development. The dorsal striatum primordium--embryonic ventral forebrain-showed that prenatal stress increased DNA replication and cell cycle pathways in male but not female transcriptomics and cellular biology. Unique signatures may have arisen from male-female placental differences. Stress-induced placental transcriptomics showed upregulated morphogenesis pathways in males while females downregulated morphogenic, hormonal, and cellular response pathways. Our findings suggest that prenatal stress could affect placenta function and also alter the GABAergic population of dorsal striatum differentially between the sexes.
Collapse
Affiliation(s)
- Sara V Maurer
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Benjamin W Q Hing
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Stephanie Lussier
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA; SL is now with Moderna, USA
| | - Sreya Radhakrishna
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA; SR is now at Albert Einstein College of Medicine, USA
| | - Jada L B Davis
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Formichetti S, Sadowska A, Ascolani M, Hansen J, Ganter K, Lancrin C, Humphreys N, Boulard M. Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo. PLoS Genet 2025; 21:e1011507. [PMID: 39787076 PMCID: PMC11717234 DOI: 10.1371/journal.pgen.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees. The severity of the embryonic lethality was proportional to the extent of impairment of OGT's catalysis, demonstrating that the O-GlcNAc modification itself is required for early development. We identified hypomorphic Ogt alleles that perturb O-GlcNAc homeostasis while being compatible with embryogenesis. The analysis of the transcriptomes of the mutant embryos at different developmental stages suggested a sexually-dimorphic developmental delay caused by the decrease in O-GlcNAc. Furthermore, a mild reduction of OGT's enzymatic activity was sufficient to loosen the silencing of endogenous retroviruses in vivo.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Agnieszka Sadowska
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Michela Ascolani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Julia Hansen
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Kerstin Ganter
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Christophe Lancrin
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Neil Humphreys
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Mathieu Boulard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| |
Collapse
|
5
|
Zoubovsky SP, Muglia LJ. Transplacental signals involved in the programming effects of prenatal psychosocial stress on neurodevelopment. Neurotoxicol Teratol 2025; 107:107424. [PMID: 39755178 DOI: 10.1016/j.ntt.2025.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/03/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Exposure to psychosocial stress during pregnancy has been associated with the emergence of neurodevelopmental and neuropsychiatric disorders in offspring. The placenta is known to orchestrate various functions that are essential for normal fetal development, including the brain. It has therefore been postulated that alterations in such functions, and downstream signaling, have the potential to dramatically affect brain developmental trajectories and contribute to adverse neurodevelopmental outcomes. This review will focus on discussing various placental functions that have been proposed to be affected by exposure to prenatal psychosocial stress and the implications of such disruptions on long-term neurodevelopmental programming.
Collapse
Affiliation(s)
- Sandra P Zoubovsky
- Department of Pediatrics, University of Colorado, Denver, CO, United States
| | - Louis J Muglia
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Office of the President, Burroughs Wellcome Fund, Research Triangle Park, Durham, NC, United States.
| |
Collapse
|
6
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Duffy KA, Sammel MD, Johnson RL, Morrison KE, Bale TL, Epperson CN. Sex Differences in Stress-Induced Cortisol Response Among Infants of Mothers Exposed to Childhood Adversity. Biol Psychiatry 2024; 96:876-885. [PMID: 38821195 DOI: 10.1016/j.biopsych.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Adverse childhood experiences (ACEs) increase risk for mental illness in women and their children, and dysregulation of the hypothalamic-pituitary-adrenal axis may play a role. The impact of ACEs on the hypothalamic-pituitary-adrenal axis may be strongest when ACEs occur prepubertally and in people who are exposed to abuse ACEs. METHODS To test this, we measured salivary cortisol in 96 mother-infant dyads while mothers were separated from their infants, who were experiencing a laboratory stressor. Mothers completed the Adverse Childhood Experiences Questionnaire; ACEs that occurred prepubertally (pACEs) were measured, and mother-infant dyads were grouped based on maternal pACE history as follows: no pACEs, ≥1 pACEs with abuse, or ≥1 pACEs but no abuse. RESULTS Mothers with ≥1 pACEs exhibited decreases in cortisol (relative to preinfant stressor), which differed significantly from the cortisol increase experienced by mothers with no pACEs, regardless of abuse presence (p = .001) or absence (p = .002). These pACE groups did not differ from one another (p = .929). Significant sex differences in infant cortisol were observed in infants of mothers with ≥1 pACEs (regardless of abuse) but not in infants of mothers with no pACEs. When mothers had experienced ≥1 pACEs, males showed decreases in cortisol in response to a stressor whereas females demonstrated increases, and males and females differed significantly when their mothers had ≥1 pACEs with (p = .025) and without (p = .032) abuse. CONCLUSIONS Regardless of maternal exposure to childhood abuse, in response to a stressor, pACEs were associated with lower cortisol response in mothers and sex differences in 6-month-old infants, with males showing a lower cortisol response than females.
Collapse
Affiliation(s)
- Korrina A Duffy
- Department of Psychiatry, University of Colorado School of Medicine Anschutz, Medical Campus, Aurora, Colorado
| | - Mary D Sammel
- Department of Psychiatry, University of Colorado School of Medicine Anschutz, Medical Campus, Aurora, Colorado; Department of Biostatistics and Informatics, University of Colorado School of Public Health, Anschutz Medical Campus, Aurora, Colorado
| | - Rachel L Johnson
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen E Morrison
- Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado School of Medicine Anschutz, Medical Campus, Aurora, Colorado
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine Anschutz, Medical Campus, Aurora, Colorado; Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
8
|
Poudel SP, Behura SK. Sex-bias metabolism of fetal organs, and their relationship to the regulation of fetal brain-placental axis. Metabolomics 2024; 20:126. [PMID: 39495316 DOI: 10.1007/s11306-024-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION The placenta plays influential role in the fetal development of mammals. But how the metabolic need of the fetal organs is related to that of the placenta, and whether this relationship is influenced by the sex of the fetus remain poorly understood. OBJECTIVES This study used pigs to investigate metabolomic signatures of male and female fetal organs, and determine the relevance of gene expression of the placenta and brain to the metabolism of peripheral organs. METHODS Untargeted metabolomics analysis was performed with the day-45 placenta, kidney, heart, liver, lung and brain of male and female pig fetuses to model sex differences in the metabolism of the peripheral organs relative to that of the brain and placenta. Transcriptomic analysis was performed to investigate the expression of metabolic genes in the placenta and fetal brain of both sexes. RESULTS The results of this study show that the fetoplacental metabolic regulation was not only influenced by the fetal sex but also dependent on the metabolic requirement of the individual organs of the fetus. Neural network modeling of metabolomics data revealed differential relationship of the metabolic changes of the peripheral organs with the placenta and fetal brain between males and females. RNA sequencing further showed that genes associated with the metabolism of the peripheral organs were differentially expressed in the placenta and fetal brain. CONCLUSION The findings of this study suggest a regulatory role of the fetal brain and placenta axis in the sex-bias metabolism of the peripheral organs.
Collapse
Affiliation(s)
- Shankar P Poudel
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- MU Institute for Data Science and Informatics, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- Interdisciplinary Reproduction and Health Group, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- Interdisciplinary Neuroscience Program, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Sánchez-Rubio M, Abarzúa-Catalán L, Del Valle A, Méndez-Ruette M, Salazar N, Sigala J, Sandoval S, Godoy MI, Luarte A, Monteiro LJ, Romero R, Choolani MA, Wyneken Ú, Illanes SE, Bátiz LF. Maternal stress during pregnancy alters circulating small extracellular vesicles and enhances their targeting to the placenta and fetus. Biol Res 2024; 57:70. [PMID: 39342314 PMCID: PMC11438166 DOI: 10.1186/s40659-024-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Maternal psychological distress during pregnancy can negatively impact fetal development, resulting in long-lasting consequences for the offspring. These effects show a sex bias. The mechanisms whereby prenatal stress induces functional and/or structural changes in the placental-fetal unit remain poorly understood. Maternal circulating small extracellular vesicles (sEVs) are good candidates to act as "stress signals" in mother-to-fetus communication. Using a repetitive restraint-based rat model of prenatal stress, we examined circulating maternal sEVs under stress conditions and tested whether they could target placental-fetal tissues. RESULTS Our mild chronic maternal stress during pregnancy paradigm induced anhedonic-like behavior in pregnant dams and led to intrauterine growth restriction (IUGR), particularly in male fetuses and placentas. The concentration and cargo of maternal circulating sEVs changed under stress conditions. Specifically, there was a significant reduction in neuron-enriched proteins and a significant increase in astrocyte-enriched proteins in blood-borne sEVs from stressed dams. To study the effect of repetitive restraint stress on the biodistribution of maternal circulating sEVs in the fetoplacental unit, sEVs from pregnant dams exposed to stress or control protocol were labeled with DiR fluorescent die and injected into pregnant females previously exposed to control or stress protocol. Remarkably, maternal circulating sEVs target placental/fetal tissues and, under stress conditions, fetal tissues are more receptive to sEVs. CONCLUSION Our results suggest that maternal circulating sEVs can act as novel mediators/modulators of mother-to-fetus stress communication. Further studies are needed to identify placental/fetal cellular targets of maternal sEVs and characterize their contribution to stress-induced sex-specific placental and fetal changes.
Collapse
Affiliation(s)
- Mario Sánchez-Rubio
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Lorena Abarzúa-Catalán
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Ana Del Valle
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Maxs Méndez-Ruette
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- PhD Program in Biomedicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Natalia Salazar
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Jacinta Sigala
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Soledad Sandoval
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Inés Godoy
- Department of Educational Assessment, Measurement, and Registry, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Lara J Monteiro
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Detroit, and Maryland, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mahesh A Choolani
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Úrsula Wyneken
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Sebastián E Illanes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- Department of Obstetrics and Gynecology, School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| | - Luis Federico Bátiz
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| |
Collapse
|
10
|
Roberts JM, Abimbola S, Bale TL, Barros A, Bhutta ZA, Browne JL, Celi AC, Dube P, Graves CR, Hollestelle MJ, Hopkins S, Khashan A, Koi-Larbi K, Lackritz E, Myatt L, Redman CW, Tunçalp Ö, Vermund SH, Gravett MG. Global inequities in adverse pregnancy outcomes: what can we do? AJOG GLOBAL REPORTS 2024; 4:100385. [PMID: 39253028 PMCID: PMC11381988 DOI: 10.1016/j.xagr.2024.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The Health Equity Leadership & Exchange Network states that "health equity exists when all people, regardless of race, sex, sexual orientation, disability, socioeconomic status, geographic location, or other societal constructs, have fair and just access, opportunity, and resources to achieve their highest potential for health." It is clear from the wide discrepancies in maternal and infant mortalities, by race, ethnicity, location, and social and economic status, that health equity has not been achieved in pregnancy care. Although the most obvious evidence of inequities is in low-resource settings, inequities also exist in high-resource settings. In this presentation, based on the Global Pregnancy Collaboration Workshop, which addressed this issue, the bases for the differences in outcomes were explored. Several different settings in which inequities exist in high- and low-resource settings were reviewed. Apparent causes include social drivers of health, such as low income, inadequate housing, suboptimal access to clean water, structural racism, and growing maternal healthcare deserts globally. In addition, a question is asked whether maternal health inequities will extend to and be partially due to current research practices. Our overview of inequities provides approaches to resolve these inequities, which are relevant to low- and high-resource settings. Based on the evidence, recommendations have been provided to increase health equity in pregnancy care. Unfortunately, some of these inequities are more amenable to resolution than others. Therefore, continued attention to these inequities and innovative thinking and research to seek solutions to these inequities are encouraged.
Collapse
Affiliation(s)
- James M. Roberts
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Epidemiology, and Clinical and Translational Research, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA (Roberts)
| | - Seye Abimbola
- The University of Sydney School of Public Health, Camperdown, Australia (Abimbola)
| | - Tracy L. Bale
- Department of Psychiatry, The University of Colorado Anschutz Medical Campus, Aurora, CO (Bale)
| | - Aluisio Barros
- International Center for Equity in Health, Federal University of Pelotas, Pelotas, Brazil (Barros)
| | - Zulfiqar A. Bhutta
- Departments of Paediatrics, Nutritional Sciences, and Public Health, University of Toronto, Toronto, Ontario, Canada (Bhutta)
| | - Joyce L. Browne
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands (Browne)
| | - Ann C. Celi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Celi)
| | - Polite Dube
- Cordaid Ethiopia Office, Addis Abada, Ethiopia (Dube)
| | - Cornelia R. Graves
- Tennessee Maternal Fetal Medicine, University of Tennessee College of Medicine and Ascension Health, Nashville, TN (Graves)
| | - Marieke J. Hollestelle
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands (Hollestelle)
| | - Scarlett Hopkins
- Department of Obstetrics and Gynecology, Oregon Health & Science University School of Nursing, Portland, OR (Hopkins)
| | - Ali Khashan
- INFANT Research Centre, School of Public Health, University College Cork, Cork, Ireland (Khashan)
| | | | - Eve Lackritz
- Rosebud Indian Health Service Hospital, Rosebud, SD (Lackritz)
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN (Lackritz)
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Moore Institute of Nutrition and Wellness, Oregon Health & Science University, Portland, OR (Myatt)
| | - Christopher W.G. Redman
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom (Redman)
| | - Özge Tunçalp
- Department of Sexual and Reproductive Health, World Health Organization, Geneva, Switzerland (Tunçalp)
| | - Sten H. Vermund
- Department of Pediatrics, School of Public Health, Yale University, New Haven, CT (Vermund)
| | - Michael G. Gravett
- Departments of Obstetrics and Gynecology and Global Health, University of Washington, Seattle, WA (Gravett)
| |
Collapse
|
11
|
Pereira-Carvalho D, Chagas Valim AC, Borba Vieira Andrade C, Bloise E, Fontes Dias A, Muller Oliveira Nascimento V, Silva Alves RK, Dos Santos RC, Lopes Brum F, Gomes Medeiros I, Antunes Coelho SV, Barros Arruda L, Regina Todeschini A, Barbosa Dias W, Ortiga-Carvalho TM. Sex-specific effect of antenatal Zika virus infection on murine fetal growth, placental nutrient transporters, and nutrient sensor signaling pathways. FASEB J 2024; 38:e23799. [PMID: 38979938 DOI: 10.1096/fj.202301951rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Maternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient-sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU-ZIKVPE243) or High (5 × 107 PFU-ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal-placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho-eIF2α. There were no differences in fetal-placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose-6-phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium-coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex-dependent differences in the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation in ZIKV-infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV-induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.
Collapse
Affiliation(s)
- Daniela Pereira-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Enrrico Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ariane Fontes Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rakel Kelly Silva Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronan Christian Dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Lopes Brum
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | - Luciana Barros Arruda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Weng J, Zhu YY, Liao LY, Yang XT, Dong YH, Meng WD, Sun DJ, Liu Y, Peng WZ, Jiang Y. Distinct epigenetic modulation of differentially expressed genes in the adult mouse brain following prenatal exposure to low-dose bisphenol A. Cell Biol Toxicol 2024; 40:37. [PMID: 38777957 PMCID: PMC11111541 DOI: 10.1007/s10565-024-09875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Jie Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yue-Yan Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Li-Yong Liao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin-Tong Yang
- Shanghai Medical college, Fudan University, Shanghai, 200032, China
| | - Yu-Hao Dong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei-da Meng
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dai-Jing Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun Liu
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Zhu Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Chen E, da Cruz RS, Nascimento A, Joshi M, Pereira DG, Dominguez O, Fernandes G, Smith M, Paiva SPC, de Assis S. Paternal DDT exposure induces sex-specific programming of fetal growth, placenta development and offspring's health phenotypes in a mouse model. Sci Rep 2024; 14:7567. [PMID: 38555297 PMCID: PMC10981700 DOI: 10.1038/s41598-024-58176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Mounting evidence suggests that environmentally induced epigenetic inheritance occurs in mammals and that traits in the progeny can be shaped by parental environmental experiences. Epidemiological studies link parental exposure to environmental toxicants, such as the pesticide DDT, to health phenotypes in the progeny, including low birth and increased risk of chronic diseases later in life. Here, we show that the progeny of male mice exposed to DDT in the pre-conception period are born smaller and exhibit sexual dimorphism in metabolic function, with male, but not female, offspring developing severe glucose intolerance compared to controls. These phenotypes in DDT offspring were linked to reduced fetal growth and placenta size as well as placenta-specific reduction of glycogen levels and the nutrient sensor and epigenetic regulator OGT, with more pronounced phenotypes observed in male placentas. However, placenta-specific genetic reduction of OGT only partially replicates the metabolic phenotype observed in offspring of DDT-exposed males. Our findings reveal a role for paternal pre-conception environmental experiences in shaping placenta development and in fetal growth restriction. While many questions remain, our data raise the tantalizing possibility that placenta programming could be a mediator of environmentally induced intergenerational epigenetic inheritance of phenotypes and needs to be further evaluated.
Collapse
Affiliation(s)
- Elaine Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Raquel Santana da Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Aallya Nascimento
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Meghali Joshi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Duane Gischewski Pereira
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Odalys Dominguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Gabriela Fernandes
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Megan Smith
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Sara P C Paiva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
- Department of Obstetrics and Gynecology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
14
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
15
|
Sze Y, Brunton PJ. How is prenatal stress transmitted from the mother to the fetus? J Exp Biol 2024; 227:jeb246073. [PMID: 38449331 DOI: 10.1242/jeb.246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Prenatal stress programmes long-lasting neuroendocrine and behavioural changes in the offspring. Often this programming is maladaptive and sex specific. For example, using a rat model of maternal social stress in late pregnancy, we have demonstrated that adult prenatally stressed male, but not prenatally stressed female offspring display heightened anxiety-like behaviour, whereas both sexes show hyperactive hypothalamo-pituitary-adrenal (HPA) axis responses to stress. Here, we review the current knowledge of the mechanisms underpinning dysregulated HPA axis responses, including evidence supporting a role for reduced neurosteroid-mediated GABAergic inhibitory signalling in the brains of prenatally stressed offspring. How maternal psychosocial stress is signalled from the mother to the fetuses is unclear. Direct transfer of maternal glucocorticoids to the fetuses is often considered to mediate the programming effects of maternal stress on the offspring. However, protective mechanisms including attenuated maternal stress responses and placental 11β-hydroxysteroid dehydrogenase-2 (which inactivates glucocorticoids) should limit materno-fetal glucocorticoid transfer during pregnancy. Moreover, a lack of correlation between maternal stress, circulating maternal glucocorticoid levels and circulating fetal glucocorticoid levels is reported in several studies and across different species. Therefore, here we interrogate the evidence for a role for maternal glucocorticoids in mediating the effects of maternal stress on the offspring and consider the evidence for alternative mechanisms, including an indirect role for glucocorticoids and the contribution of changes in the placenta in signalling the stress status of the mother to the fetus.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
- Zhejiang University-University of Edinburgh Joint Institute, Haining, Zhejiang 314400, P.R. China
| |
Collapse
|
16
|
Cissé YM, Montgomery KR, Zierden HC, Hill EM, Kane PJ, Huang W, Kane MA, Bale TL. Maternal preconception stress produces sex-specific effects at the maternal:fetal interface to impact offspring development and phenotypic outcomes†. Biol Reprod 2024; 110:339-354. [PMID: 37971364 PMCID: PMC10873277 DOI: 10.1093/biolre/ioad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Hill
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Kane
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Christians JK, Reue K. The role of gonadal hormones and sex chromosomes in sex-dependent effects of early nutrition on metabolic health. Front Endocrinol (Lausanne) 2023; 14:1304050. [PMID: 38189044 PMCID: PMC10770830 DOI: 10.3389/fendo.2023.1304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Early-life conditions such as prenatal nutrition can have long-term effects on metabolic health, and these effects may differ between males and females. Understanding the biological mechanisms underlying sex differences in the response to early-life environment will improve interventions, but few such mechanisms have been identified, and there is no overall framework for understanding sex differences. Biological sex differences may be due to chromosomal sex, gonadal sex, or interactions between the two. This review describes approaches to distinguish between the roles of chromosomal and gonadal sex, and summarizes findings regarding sex differences in metabolism. The Four Core Genotypes (FCG) mouse model allows dissociation of the sex chromosome genotype from gonadal type, whereas the XY* mouse model can be used to distinguish effects of X chromosome dosage vs the presence of the Y chromosome. Gonadectomy can be used to distinguish between organizational (permanent) and activational (reversible) effects of sex hormones. Baseline sex differences in a variety of metabolic traits are influenced by both activational and organizational effects of gonadal hormones, as well as sex chromosome complement. Thus far, these approaches have not been widely applied to examine sex-dependent effects of prenatal conditions, although a number of studies have found activational effects of estradiol to be protective against the development of hypertension following early-life adversity. Genes that escape X chromosome inactivation (XCI), such as Kdm5c, contribute to baseline sex-differences in metabolism, while Ogt, another XCI escapee, leads to sex-dependent responses to prenatal maternal stress. Genome-wide approaches to the study of sex differences include mapping genetic loci influencing metabolic traits in a sex-dependent manner. Seeking enrichment for binding sites of hormone receptors among genes showing sexually-dimorphic expression can elucidate the relative roles of hormones. Using the approaches described herein to identify mechanisms underlying sex-dependent effects of early nutrition on metabolic health may enable the identification of fundamental mechanisms and potential interventions.
Collapse
Affiliation(s)
- Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Rock KD, Folts LM, Zierden HC, Marx-Rattner R, Leu NA, Nugent BM, Bale TL. Developmental transcriptomic patterns can be altered by transgenic overexpression of Uty. Sci Rep 2023; 13:21082. [PMID: 38030664 PMCID: PMC10687263 DOI: 10.1038/s41598-023-47977-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
The genetic material encoded on X and Y chromosomes provides the foundation by which biological sex differences are established. Epigenetic regulators expressed on these sex chromosomes, including Kdm6a (Utx), Kdm5c, and Ddx3x have far-reaching impacts on transcriptional control of phenotypic sex differences. Although the functionality of UTY (Kdm6c, the Y-linked homologue of UTX), has been supported by more recent studies, its role in developmental sex differences is not understood. Here we test the hypothesis that UTY is an important transcriptional regulator during development that could contribute to sex-specific phenotypes and disease risks across the lifespan. We generated a random insertion Uty transgenic mouse (Uty-Tg) to overexpress Uty. By comparing transcriptomic profiles in developmental tissues, placenta and hypothalamus, we assessed potential UTY functional activity, comparing Uty-expressing female mice (XX + Uty) with wild-type male (XY) and female (XX) mice. To determine if Uty expression altered physiological or behavioral outcomes, adult mice were phenotypically examined. Uty expression masculinized female gene expression patterns in both the placenta and hypothalamus. Gene ontology (GO) and gene set enrichment analysis (GSEA) consistently identified pathways including immune and synaptic signaling as biological processes associated with UTY. Interestingly, adult females expressing Uty gained less weight and had a greater glucose tolerance compared to wild-type male and female mice when provided a high-fat diet. Utilizing a Uty-overexpressing transgenic mouse, our results provide novel evidence as to a functional transcriptional role for UTY in developing tissues, and a foundation to build on its prospective capacity to influence sex-specific developmental and health outcomes.
Collapse
Affiliation(s)
- Kylie D Rock
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Lillian M Folts
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Biomedical Sciences Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hannah C Zierden
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Ruth Marx-Rattner
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bridget M Nugent
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Colorado School of Medicine, CU Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, CO, 80045, USA.
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
19
|
Kramer AC, Jansson T, Bale TL, Powell TL. Maternal-fetal cross-talk via the placenta: influence on offspring development and metabolism. Development 2023; 150:dev202088. [PMID: 37831056 PMCID: PMC10617615 DOI: 10.1242/dev.202088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Compelling epidemiological and animal experimental data demonstrate that cardiometabolic and neuropsychiatric diseases originate in a suboptimal intrauterine environment. Here, we review evidence suggesting that altered placental function may, at least in part, mediate the link between the maternal environment and changes in fetal growth and development. Emerging evidence indicates that the placenta controls the development and function of several fetal tissues through nutrient sensing, modulation of trophoblast nutrient transporters and by altering the number and cargo of released extracellular vesicles. In this Review, we discuss the development and functions of the maternal-placental-fetal interface (in humans and mice) and how cross-talk between these compartments may be a mechanism for in utero programming, focusing on mechanistic target of rapamycin (mTOR), adiponectin and O-GlcNac transferase (OGT) signaling. We also discuss how maternal diet and stress influences fetal development and metabolism and how fetal growth restriction can result in susceptibility to developing chronic disease later in life. Finally, we speculate how interventions targeting placental function may offer unprecedented opportunities to prevent cardiometabolic disease in future generations.
Collapse
Affiliation(s)
- Avery C. Kramer
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Thomas Jansson
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Tracy L. Bale
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Theresa L. Powell
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Paul EN, Shubitidze S, Rahim R, Rucker I, Valin L, Apostle S, Pospisilik JA, Racicot KE, Smith AL. Exogenous corticosterone administration during pregnancy in mice alters placental and fetal thyroid hormone availability in females. Placenta 2023; 142:1-11. [PMID: 37579594 PMCID: PMC10763606 DOI: 10.1016/j.placenta.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Maternal prenatal psychological stress is associated with adverse pregnancy outcomes and increased risk of adverse health outcomes in children. While the molecular mechanisms that govern these associations has not been fully teased apart, stress-induced changes in placental function can drive sex-specific phenotypes in offspring. We sought to identify and examine molecular pathways in the placenta that are altered in response to maternal prenatal stress. METHODS We previously employed a mouse model of maternal prenatal stress where pregnant dams were treated with stress hormone (CORT) beginning in mid-gestation. Using this model, we conducted RNAseq analysis of whole placenta at E18.5. We used qRT-PCR to validate gene expression changes in the placenta and in a trophoblast cell line. ELISAs were used to measure the abundance of thyroid hormones in maternal and fetal serum and in the placenta. RESULTS Dio2 was amongst the top differentially expressed genes in response to exogenous stress hormone. Dio2 expression was more downregulated in placenta of female fetuses from CORT-treated dams than both control placenta from females and placenta from male fetuses. Consistent with Dio2's role in production of bioactive thyroid hormone (T3), we found that there was a reduction of T3 in placenta and serum of female embryos from CORT-treated dams at E18.5. Both T3 and T4 were reduced in the fetal compartment of the placenta of female fetuses from CORT-treated dams at E16.5. Exogenous stress hormone induced reduction in thyroid hormone in females was independent of circulating levels of TH in the dams. DISCUSSION The placental thyroid hormone synthesis pathway may be a target of elevated maternal stress hormone and modulate fetal programming of health and disease of offspring in a sex-specific fashion.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Dept of Obstetrics, Gynecology and Reproductive Sciences, Michigan State University, College of Human Medicine, Grand Rapids, MI, 49503, USA
| | | | - Rodaba Rahim
- Biology Department, Kenyon College, Gambier, OH, 43050, USA
| | - Imani Rucker
- Biology Department, Kenyon College, Gambier, OH, 43050, USA
| | - Liana Valin
- Biology Department, Kenyon College, Gambier, OH, 43050, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Karen E Racicot
- Dept of Obstetrics, Gynecology and Reproductive Sciences, Michigan State University, College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Arianna L Smith
- Biology Department, Kenyon College, Gambier, OH, 43050, USA.
| |
Collapse
|
21
|
de Lima Castro M, Dos Passos RR, Justina VD, do Amaral WN, Giachini FR. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta 2023; 141:43-50. [PMID: 37210277 DOI: 10.1016/j.placenta.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
O-GlcNAcylation is a dynamic and reversible post-translational modification (PTM) controlled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Changes in its expression lead to a breakdown in cellular homeostasis, which is linked to several pathological processes. Placentation and embryonic development are periods of high cell activity, and imbalances in cell signaling pathways can result in infertility, miscarriage, or pregnancy complications. O-GlcNAcylation is involved in cellular processes such as genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic pathways, signaling pathways, apoptosis, and stress response. Trophoblastic differentiation/invasion and placental vasculogenesis, as well as zygote viability and embryonic neuronal development, are all dependent on O-GlcNAcylation. This PTM is required for pluripotency, which is a required condition for embryonic development. Further, this pathway is a nutritional sensor and cell stress marker, which is primarily measured by the OGT enzyme and its product, protein O-GlcNAcylation. Yet, this post-translational modification is enrolled in metabolic and cardiovascular adaptations during pregnancy. Finally, evidence of how O-GlcNAc impacts pregnancy during pathological conditions such as hyperglycemia, gestational diabetes, hypertension, and stress disorders are reviewed. Considering this scenario, progress in understanding the role of O- GlcNAcylation in pregnancy is required.
Collapse
Affiliation(s)
- Marta de Lima Castro
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Waldemar Naves do Amaral
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.
| |
Collapse
|
22
|
Anamthathmakula P, Shallie PD, Nayak N, Dhal S, Vivian JL, Mor G, Soares MJ, Nayak NR. Variable Cre Recombination Efficiency in Placentas of Cyp19-Cre ROSA mT/mG Transgenic Mice. Cells 2023; 12:2096. [PMID: 37626906 PMCID: PMC10453067 DOI: 10.3390/cells12162096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The aromatase-Cre recombinase (Cyp19-Cre) transgenic mouse model has been extensively used for placenta-specific gene inactivation. In a pilot study, we observed unexpected phenotypes using this mouse strain, which prompted an extensive characterization of Cyp19-Cre placental phenotypes using ROSAmT/mG transgenic reporter mice. The two strains were mated to generate bi-transgenic Cyp19-Cre;ROSAmT/mG mice following a standard transgenic breeding scheme, and placental and fetal tissues were analyzed on embryonic day 17.5. Both maternal and paternal Cre inheritance were analyzed by mating the respective Cyp19-Cre and ROSAmT/mG males and females. The genotype results showed the expected percentage of Cyp19-Cre;ROSAmT/mG fetuses (73%) and Cre mRNA was expressed in all of the Cyp19-Cre placentas. However, surprisingly, only about 50% of the Cyp19-Cre;ROSAmT/mG placentas showed Cre-mediated recombinase activity as demonstrated by placental enhanced green fluorescent protein (EGFP) expression. Further genetic excision analysis of the placentas revealed consistent results showing the absence of excision of the tdTomato in all of the Cyp19-Cre;ROSAmT/mG placentas lacking EGFP expression. Moreover, among the EGFP-expressing placentas, there was wide variability in recombination efficiency, even in placentas from the same litter, leading to a mosaic pattern of EGFP expression in different zones and cell types of the placentas. In addition, we observed a significantly higher percentage of Cre recombination activity in placentas with maternal Cre inheritance. Our results show frequent mosaicism, inconsistent recombination activity, and parent-of-origin effects in placentas from Cyp19-Cre;ROSAmT/mG mice, suggesting that tail-biopsy genotype results may not necessarily indicate the excision of floxed genes in Cyp19-Cre positive placentas. Thus, placenta-specific mutagenesis studies using the Cyp19-Cre model require extensive characterization and careful interpretation of the placental phenotypes for each floxed allele.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Philemon D. Shallie
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Neha Nayak
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Sabita Dhal
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Jay L. Vivian
- Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO 64108, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO 64108, USA
| | - Nihar R. Nayak
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
23
|
Paul EN, Shubitidze S, Rahim R, Rucker I, Valin L, Apostle S, Andrew Pospisilik J, Racicot KE, Smithb AL. Exogenous corticosterone administration during pregnancy alters placental and fetal thyroid hormone availability in females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547278. [PMID: 37461599 PMCID: PMC10349991 DOI: 10.1101/2023.07.05.547278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Introduction Maternal prenatal stress is associated with adverse pregnancy outcomes and predisposition to long-term adverse health outcomes in children. While the molecular mechanisms that govern these associations has not been fully teased apart, stress-induced changes in placental function can drive sex-specific phenotypes in offspring. We sought to identify and examine molecular pathways in the placenta that are altered in response to maternal prenatal stress. Methods Using a mouse model of maternal prenatal stress, we conducted RNA-seq analysis of whole placenta at E18.5. We used qRT-PCR to validate gene expression changes in the placenta and in a trophoblast cell line. ELISAs were used to measure the abundance of thyroid hormones in maternal and fetal serum and in the placenta. Results Dio2 was amongst the top differentially expressed genes in response to elevated maternal stress hormone. Dio2 expression was more downregulated in female placenta from stressed dams than both female control and male placenta. Consistent with Dio2's role in production of bioactive thyroid hormone (T3), we found that there was a reduction of T3 in placenta and serum of female embryos from stressed dams at E18.5. Both T3 and T4 were reduced in the fetal compartment of the female placenta from stressed dams at E16.5. Stress hormone induced reduction in thyroid hormone in females was independent of circulating levels of TH in the dams. Discussion The placental thyroid hormone synthesis pathway may be a target of maternal stress and modulate fetal programming of health and disease of offspring in a sex-specific fashion.
Collapse
|
24
|
Frasch MG, Yoon BJ, Helbing DL, Snir G, Antonelli MC, Bauer R. Autism Spectrum Disorder: A Neuro-Immunometabolic Hypothesis of the Developmental Origins. BIOLOGY 2023; 12:914. [PMID: 37508346 PMCID: PMC10375982 DOI: 10.3390/biology12070914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Fetal neuroinflammation and prenatal stress (PS) may contribute to lifelong neurological disabilities. Astrocytes and microglia, among the brain's non-neuronal "glia" cell populations, play a pivotal role in neurodevelopment and predisposition to and initiation of disease throughout lifespan. One of the most common neurodevelopmental disorders manifesting between 1-4 years of age is the autism spectrum disorder (ASD). A pathological glial-neuronal interplay is thought to increase the risk for clinical manifestation of ASD in at-risk children, but the mechanisms remain poorly understood, and integrative, multi-scale models are needed. We propose a model that integrates the data across the scales of physiological organization, from genome to phenotype, and provides a foundation to explain the disparate findings on the genomic level. We hypothesize that via gene-environment interactions, fetal neuroinflammation and PS may reprogram glial immunometabolic phenotypes that impact neurodevelopment and neurobehavior. Drawing on genomic data from the recently published series of ovine and rodent glial transcriptome analyses with fetuses exposed to neuroinflammation or PS, we conducted an analysis on the Simons Foundation Autism Research Initiative (SFARI) Gene database. We confirmed 21 gene hits. Using unsupervised statistical network analysis, we then identified six clusters of probable protein-protein interactions mapping onto the immunometabolic and stress response networks and epigenetic memory. These findings support our hypothesis. We discuss the implications for ASD etiology, early detection, and novel therapeutic approaches. We conclude with delineation of the next steps to verify our model on the individual gene level in an assumption-free manner. The proposed model is of interest for the multidisciplinary community of stakeholders engaged in ASD research, the development of novel pharmacological and non-pharmacological treatments, early prevention, and detection as well as for policy makers.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Byung-Jun Yoon
- Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dario Lucas Helbing
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Gal Snir
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748 Garching, Germany
| | - Reinhard Bauer
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
25
|
Santos ED, Hernández MH, Sérazin V, Vialard F, Dieudonné MN. Human Placental Adaptive Changes in Response to Maternal Obesity: Sex Specificities. Int J Mol Sci 2023; 24:ijms24119770. [PMID: 37298720 DOI: 10.3390/ijms24119770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Maternal obesity is increasingly prevalent and is associated with elevated morbidity and mortality rates in both mothers and children. At the interface between the mother and the fetus, the placenta mediates the impact of the maternal environment on fetal development. Most of the literature presents data on the effects of maternal obesity on placental functions and does not exclude potentially confounding factors such as metabolic diseases (e.g., gestational diabetes). In this context, the focus of this review mainly lies on the impact of maternal obesity (in the absence of gestational diabetes) on (i) endocrine function, (ii) morphological characteristics, (iii) nutrient exchanges and metabolism, (iv) inflammatory/immune status, (v) oxidative stress, and (vi) transcriptome. Moreover, some of those placental changes in response to maternal obesity could be supported by fetal sex. A better understanding of sex-specific placental responses to maternal obesity seems to be crucial for improving pregnancy outcomes and the health of mothers and children.
Collapse
Affiliation(s)
- Esther Dos Santos
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - Marta Hita Hernández
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
| | - Valérie Sérazin
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - François Vialard
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - Marie-Noëlle Dieudonné
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
| |
Collapse
|
26
|
Rosario FJ, Chopra A, Biggar K, Powell TL, Gupta MB, Jansson T. Placental Remote Control of Fetal Metabolism: Trophoblast mTOR Signaling Regulates Liver IGFBP-1 Phosphorylation and IGF-1 Bioavailability. Int J Mol Sci 2023; 24:7273. [PMID: 37108437 PMCID: PMC10138459 DOI: 10.3390/ijms24087273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The mechanisms mediating the restricted growth in intrauterine growth restriction (IUGR) remain to be fully established. Mechanistic target of rapamycin (mTOR) signaling functions as a placental nutrient sensor, indirectly influencing fetal growth by regulating placental function. Increased secretion and the phosphorylation of fetal liver IGFBP-1 are known to markedly decrease the bioavailability of IGF-1, a major fetal growth factor. We hypothesized that an inhibition of trophoblast mTOR increases liver IGFBP-1 secretion and phosphorylation. We collected conditioned media (CM) from cultured primary human trophoblast (PHT) cells with a silenced RAPTOR (specific inhibition of mTOR Complex 1), RICTOR (inhibition of mTOR Complex 2), or DEPTOR (activates both mTOR Complexes). Subsequently, HepG2 cells, a well-established model for human fetal hepatocytes, were cultured in CM from PHT cells, and IGFBP-1 secretion and phosphorylation were determined. CM from PHT cells with either mTORC1 or mTORC2 inhibition caused the marked hyperphosphorylation of IGFBP-1 in HepG2 cells as determined by 2D-immunoblotting while Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS) identified increased dually phosphorylated Ser169 + Ser174. Furthermore, using the same samples, PRM-MS identified multiple CK2 peptides coimmunoprecipitated with IGFBP-1 and greater CK2 autophosphorylation, indicating the activation of CK2, a key enzyme mediating IGFBP-1 phosphorylation. Increased IGFBP-1 phosphorylation inhibited IGF-1 function, as determined by the reduced IGF-1R autophosphorylation. Conversely, CM from PHT cells with mTOR activation decreased IGFBP-1 phosphorylation. CM from non-trophoblast cells with mTORC1 or mTORC2 inhibition had no effect on HepG2 IGFBP-1 phosphorylation. Placental mTOR signaling may regulate fetal growth by the remote control of fetal liver IGFBP-1 phosphorylation.
Collapse
Affiliation(s)
- Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Madhulika B. Gupta
- Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Pediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Luo SS, Zhu H, Huang HF, Ding GL. Sex differences in glycolipidic disorders after exposure to maternal hyperglycemia during early development. J Endocrinol Invest 2023:10.1007/s40618-023-02069-5. [PMID: 36976483 DOI: 10.1007/s40618-023-02069-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE The aim of this review was to summarize sex differences in glycolipid metabolic phenotypes of human and animal models after exposure to maternal hyperglycemia and overview the underlying mechanisms, providing a new perspective on the maternal hyperglycemia-triggered risk of glycolipidic disorders in offspring. METHODS A comprehensive literature search within PubMed was performed. Selected publications related to studies on offspring exposed to maternal hyperglycemia investigating the sex differences of glycolipid metabolism were reviewed. RESULTS Maternal hyperglycemia increases the risk of glycolipid metabolic disorders in offspring, such as obesity, glucose intolerance and diabetes. Whether with or without intervention, metabolic phenotypes have been shown to exhibit sex differences between male and female offspring in response to maternal hyperglycemia, which may be related to gonadal hormones, organic intrinsic differences, placenta, and epigenetic modifications. CONCLUSION Sex may play a role in the different incidences and pathogenesis of abnormal glycolipid metabolism. More studies investigating both sexes are needed to understand how and why environmental conditions in early life affect long-term health between male and female individuals.
Collapse
Affiliation(s)
- S-S Luo
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - H Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - H-F Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - G-L Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
28
|
Zierden HC, Marx-Rattner R, Rock KD, Montgomery KR, Anastasiadis P, Folts L, Bale TL. Extracellular vesicles are dynamic regulators of maternal glucose homeostasis during pregnancy. Sci Rep 2023; 13:4568. [PMID: 36941297 PMCID: PMC10027885 DOI: 10.1038/s41598-023-31425-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023] Open
Abstract
Homeostatic regulation of the maternal milieu during pregnancy is critical for maternal and fetal health. The placenta facilitates critical communication between maternal and fetal compartments, in part, through the production of extracellular vesicles (EVs). EVs enable tissue synchrony via cell-cell and long-distance communication and are at their highest circulating concentration during pregnancy. While much work has been done investigating how physiological challenges in pregnancy affect the fetus, the role of placental communication in maternal health has not been well examined. We previously identified placental O-glycosyl transferase (OGT), a glucose-sensing enzyme, as a target of maternal stress where OGT levels and activity affected the O-glycosylation of proteins critical for EV cargo loading and secretion. Here, we hypothesized that placental OGT plays an essential role in maternal homeostatic regulation during pregnancy via its regulation of maternal circulating EV concentrations. Our studies found that changes to key metabolic factors over the circadian cycle, including glucocorticoids, insulin, and glucose, were significantly associated with changes in circulating EV concentration. Targeting placental OGT in mice, we found a novel significant positive relationship between placental OGT and maternal circulating EV concentration that was associated with improving maternal glucose tolerance during pregnancy. Finally, an intravenous elevation in EVs, matching the concentration of EVs during pregnancy, shifted non-pregnant female glucose sensitivity, blunted glucose variance, and improved synchrony of glucose uptake. These data suggest an important and novel role for circulating EVs as homeostatic regulators important in maternal health during pregnancy.
Collapse
Affiliation(s)
- Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Ruth Marx-Rattner
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kylie D Rock
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Lillian Folts
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Biomedical Sciences Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- The Anschutz Foundation Endowed Chair in Women's Integrated Mental and Physical Health Research at the Ludeman Center, Aurora, CO, USA.
- Department of Psychiatry, University of Colorado School of Medicine, CU Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
29
|
Abstract
O-GlcNAcylation is a dynamic post-translational modification performed by two opposing enzymes: O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation is generally believed to act as a metabolic integrator in numerous signalling pathways. The stoichiometry of this modification is tightly controlled throughout all stages of development, with both hypo/hyper O-GlcNAcylation resulting in broad defects. In this Primer, we discuss the role of O-GlcNAcylation in developmental processes from stem cell maintenance and differentiation to cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Ignacy Czajewski
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| |
Collapse
|
30
|
Jung B, Ahn K, Justice C, Norman L, Price J, Sudre G, Shaw P. Rare copy number variants in males and females with childhood attention-deficit/hyperactivity disorder. Mol Psychiatry 2023; 28:1240-1247. [PMID: 36517639 PMCID: PMC10010944 DOI: 10.1038/s41380-022-01906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
While childhood attention-deficit/hyperactivity disorder (ADHD) is more prevalent in males than females, genetic contributors to this effect have not been established. Here, we explore sex differences in the contribution of common and/or rare genetic variants to ADHD. Participants were from the Adolescent Brain and Cognitive Development study (N = 1253 youth meeting DSM-5 criteria for ADHD [mean age = 11.46 years [SD = 0.87]; 31% female] and 5577 unaffected individuals [mean age = 11.42 years [SD = 0.89]; 50% female], overall 66% White, non-Hispanic (WNH), 19% Black/African American, and 15% other races. Logistic regression tested for interactions between sex (defined genotypically) and both rare copy number variants (CNV) and polygenic (common variant) risk in association with ADHD. There was a significant interaction between sex and the presence of a CNV deletion larger than 200 kb, both in the entire cohort (β = -0.74, CI = [-1.27 to -0.20], FDR-corrected p = 0.048) and, at nominal significance levels in the WNH ancestry subcohort (β = -0.86, CI = [-1.51 to -0.20], p = 0.010). Additionally, the number of deleted genes interacted with sex in association with ADHD (whole cohort. β = -0.13, CI = [-0.23 to -0.029], FDR-corrected p = 0.048; WNH. β = -0.17, CI = [-0.29 to -0.050], FDR-corrected p = 0.044) as did the total length of CNV deletions (whole cohort. β = -0.12, CI = [-0.19 to -0.044], FDR-corrected p = 0.028; WNH. β = -0.17, CI = [-0.28 to -0.061], FDR-corrected p = 0.034). This sex effect was driven by increased odds of childhood ADHD for females but not males in the presence of CNV deletions. No similar sex effect was found for CNV duplications or polygenic risk scores. The association between CNV deletions and ADHD was partially mediated by measures of cognitive flexibility. In summary, CNV deletions were associated with increased odds for childhood ADHD in females, but not males.
Collapse
Affiliation(s)
- Benjamin Jung
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwangmi Ahn
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cristina Justice
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Luke Norman
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jolie Price
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Dong Y, Weng J, Zhu Y, Sun D, He W, Chen Q, Cheng J, Zhu Y, Jiang Y. Transcriptomic profiling of the developing brain revealed cell-type and brain-region specificity in a mouse model of prenatal stress. BMC Genomics 2023; 24:86. [PMID: 36829105 PMCID: PMC9951484 DOI: 10.1186/s12864-023-09186-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Prenatal stress (PS) is considered as a risk factor for many mental disorders. PS-induced transcriptomic alterations may contribute to the functional dysregulation during brain development. Here, we used RNA-seq to explore changes of gene expression in the mouse fetal brain after prenatal exposure to chronic unpredictable mild stress (CUMS). RESULTS We compared the stressed brains to the controls and identified groups of significantly differentially expressed genes (DEGs). GO analysis on up-regulated DEGs revealed enrichment for the cell cycle pathways, while down-regulated DEGs were mostly enriched in the neuronal pathways related to synaptic transmission. We further performed cell-type enrichment analysis using published scRNA-seq data from the fetal mouse brain and revealed cell-type-specificity for up- and down-regulated DEGs, respectively. The up-regulated DEGs were highly enriched in the radial glia, while down-regulated DEGs were enriched in different types of neurons. Cell deconvolution analysis further showed altered cell fractions in the stressed brain, indicating accumulation of neuroblast and impaired neurogenesis. Moreover, we also observed distinct brain-region expression pattern when mapping DEGs onto the developing Allen brain atlas. The up-regulated DEGs were primarily enriched in the dorsal forebrain regions including the cortical plate and hippocampal formation. Surprisingly, down-regulated DEGs were found excluded from the cortical region, but highly expressed on various regions in the ventral forebrain, midbrain and hindbrain. CONCLUSION Taken together, we provided an unbiased data source for transcriptomic alterations of the whole fetal brain after chronic PS, and reported differential cell-type and brain-region vulnerability of the developing brain in response to environmental insults during the pregnancy.
Collapse
Affiliation(s)
- Yuhao Dong
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jie Weng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yueyan Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Daijing Sun
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Wei He
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Qi Chen
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jin Cheng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Ying Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
32
|
Duffy KA, Sammel MD, Johnson RL, Kim DR, Wang EY, Ewing G, Hantsoo L, Kornfield SL, Bale TL, Epperson CN. Maternal adverse childhood experiences impact fetal adrenal volume in a sex-specific manner. Biol Sex Differ 2023; 14:7. [PMID: 36803442 PMCID: PMC9936707 DOI: 10.1186/s13293-023-00492-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The mechanisms by which parental early life stress can be transmitted to the next generation, in some cases in a sex-specific manner, are unclear. Maternal preconception stress may increase susceptibility to suboptimal health outcomes via in utero programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis. METHODS We recruited healthy pregnant women (N = 147), dichotomized into low (0 or 1) and high (2+) adverse childhood experience (ACE) groups based on the ACE Questionnaire, to test the hypothesis that maternal ACE history influences fetal adrenal development in a sex-specific manner. At a mean (standard deviation) of 21.5 (1.4) and 29.5 (1.4) weeks gestation, participants underwent three-dimensional ultrasounds to measure fetal adrenal volume, adjusting for fetal body weight (waFAV). RESULTS At ultrasound 1, waFAV was smaller in high versus low ACE males (b = - 0.17; z = - 3.75; p < .001), but females did not differ significantly by maternal ACE group (b = 0.09; z = 1.72; p = .086). Compared to low ACE males, waFAV was smaller for low (b = - 0.20; z = - 4.10; p < .001) and high ACE females (b = - 0.11; z = 2.16; p = .031); however, high ACE males did not differ from low (b = 0.03; z = .57; p = .570) or high ACE females (b = - 0.06; z = - 1.29; p = .196). At ultrasound 2, waFAV did not differ significantly between any maternal ACE/offspring sex subgroups (ps ≥ .055). Perceived stress did not differ between maternal ACE groups at baseline, ultrasound 1, or ultrasound 2 (ps ≥ .148). CONCLUSIONS We observed a significant impact of high maternal ACE history on waFAV, a proxy for fetal adrenal development, but only in males. Our observation that the waFAV in males of mothers with a high ACE history did not differ from the waFAV of females extends preclinical research demonstrating a dysmasculinizing effect of gestational stress on a range of offspring outcomes. Future studies investigating intergenerational transmission of stress should consider the influence of maternal preconception stress on offspring outcomes.
Collapse
Affiliation(s)
- Korrina A. Duffy
- grid.430503.10000 0001 0703 675XDepartment of Psychiatry, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Psychiatry, University of Colorado – Anschutz Medical Campus, 1890 N. Revere Court, Aurora, CO 80045 USA
| | - Mary D. Sammel
- grid.430503.10000 0001 0703 675XDepartment of Psychiatry, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Biostatistics and Informatics, University of Colorado School of Public Health – Anschutz Medical Campus, Aurora, CO USA
| | - Rachel L. Johnson
- grid.430503.10000 0001 0703 675XDepartment of Biostatistics and Informatics, University of Colorado School of Public Health – Anschutz Medical Campus, Aurora, CO USA
| | - Deborah R. Kim
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Eileen Y. Wang
- grid.25879.310000 0004 1936 8972Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Grace Ewing
- grid.266826.e0000 0000 9216 5478University of New England College of Osteopathic Medicine, Biddeford, ME USA
| | - Liisa Hantsoo
- grid.21107.350000 0001 2171 9311Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sara L. Kornfield
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Tracy L. Bale
- grid.430503.10000 0001 0703 675XDepartment of Psychiatry, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO USA
| | - C. Neill Epperson
- grid.430503.10000 0001 0703 675XDepartment of Psychiatry, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Family Medicine, University of Colorado School of Medicine – Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
33
|
Cui Y, Cruz M, Palatnik A, Olivier-Van Stichelen S. O-GlcNAc transferase contributes to sex-specific placental deregulation in gestational diabetes. Placenta 2023; 131:1-12. [PMID: 36442303 PMCID: PMC9839643 DOI: 10.1016/j.placenta.2022.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Gestational diabetes (GDM) is traditionally thought to emerge from placental endocrine dysregulations, but recent evidence suggests that fetal sex can also impact GDM development. Understanding the molecular mechanisms through which sex modulates placenta physiology can help identify novel molecular targets for future clinical care. Thus, we investigated the nutrient-sensing O-GlcNAc pathway as a potential mediator of sex-specific placenta dysfunction in GDM. METHODS Expression levels of O-GlcNAc enzymes were measured in male and female (n = 9+/gender) human placentas based on the maternal diagnosis of GDM. We then simulated the observed differences in both BeWo cells and human syncytiotrophoblasts primary cells (SCT) from male and female origins (n = 6/gender). RNA sequencing and targeted qPCR were performed to characterize the subsequent changes in the placenta transcriptome related to gestational diabetes. RESULTS O-GlcNAc transferase (OGT) expression was significantly reduced only in male placenta collected from mothers with GDM compared to healthy controls. Similar downregulation of OGT in trophoblast-like BeWo male cells demonstrated significant gene expression deregulations that overlapped with known GDM-related genes. Notably, placental growth hormone (GH) production was significantly elevated, while compensatory factors against GH-related insulin resistance were diminished. Inflammatory and immunologic factors with toxic effects on pancreatic β cell mass were also increased, altogether leaning toward a decompensatory diabetic profile. Similar changes in hormone expression were confirmed in male human primary SCTs transfected with siOGT. However, down-regulating OGT in female primary SCTs did not impact hormone production. CONCLUSION Our study demonstrated the significant deregulation of placental OGT levels in mothers with GDM carrying a male fetus. When simulated in vitro, such deregulation impacted hormonal production in BeWo trophoblast cells and primary SCTs purified from male placentas. Interestingly, female placentas were only modestly impacted by OGT downregulation, suggesting that the sex-specific presentation observed in gestational diabetes could be related to O-GlcNAc-mediated regulation of placental hormone production.
Collapse
Affiliation(s)
- Yiwen Cui
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meredith Cruz
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anna Palatnik
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
34
|
Wenzel DM, Olivier-Van Stichelen S. The O-GlcNAc cycling in neurodevelopment and associated diseases. Biochem Soc Trans 2022; 50:1693-1702. [PMID: 36383066 PMCID: PMC10462390 DOI: 10.1042/bst20220539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Proper neuronal development is essential to growth and adult brain function. Alterations at any step of this highly organized sequence of events, due to genetic mutations or environmental factors, triggers brain malformations, which are leading causes of diseases including epilepsy, intellectual disabilities, and many others. The role of glycosylation in neuronal development has been emphasized for many years, notably in studying human congenital disorders of glycosylation (CDGs). These diseases highlight that genetic defects in glycosylation pathways are almost always associated with severe neurological abnormalities, suggesting that glycosylation plays an essential role in early brain development. Congenital disorders of O-GlcNAcylation are no exception, and all mutations of the O-GlcNAc transferase (OGT) are associated with X-linked intellectual disabilities (XLID). In addition, mouse models and in vitro mechanistic studies have reinforced the essential role of O-GlcNAcylation in neuronal development and signaling. In this review, we give an overview of the role of O-GlcNAcylation in this critical physiological process and emphasize the consequences of its dysregulation.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | | |
Collapse
|
35
|
Sze Y, Fernandes J, Kołodziejczyk ZM, Brunton PJ. Maternal glucocorticoids do not directly mediate the effects of maternal social stress on the fetus. J Endocrinol 2022; 255:143-158. [PMID: 36256689 PMCID: PMC9716396 DOI: 10.1530/joe-22-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Stress during pregnancy negatively affects the fetus and increases the risk for affective disorders in adulthood. Excess maternal glucocorticoids are thought to mediate fetal programming; however, whether they exert their effects directly or indirectly remains unclear. During pregnancy, protective mechanisms including maternal hypothalamic-pituitary-adrenal (HPA) axis hyporesponsiveness and placental 11β-hydroxysteroid dehydrogenase (11βHSD) type 2, which inactivates glucocorticoids, limit mother-to-fetus glucocorticoid transfer. However, whether repeated stress negatively impacts these mechanisms is not known. Pregnant rats were exposed to repeated social stress on gestational days (GD) 16-20 and several aspects of HPA axis and glucocorticoid regulation, including concentrations of glucocorticoids, gene expression for their receptors (Nr3c1, Nr3c2), receptor chaperones (Fkbp51, Fkbp52) and enzymes that control local glucocorticoid availability (Hsd11b1, Hsd11b2), were investigated in the maternal, placental and fetal compartments on GD20. The maternal HPA axis was activated following stress, though the primary driver was vasopressin, rather than corticotropin-releasing hormone. Despite the stress-induced increase in circulating corticosterone in the dams, only a modest increase was detected in the circulation of female fetuses, with no change in the fetal brain of either sex. Moreover, there was no change in the expression of genes that mediate glucocorticoid actions or modulate local concentrations in the fetal brain. In the placenta labyrinth zone, stress increased Hsd11b2 expression only in males and Fkbp51 expression only in females. Our results indicate that any role glucocorticoids play in fetal programming is likely indirect, perhaps through sex-dependent alterations in placental gene expression, rather than exerting effects via direct crossover into the fetal brain.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Joana Fernandes
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | | | - Paula J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
- Zhejiang University-University of Edinburgh Institute, International Campus, Haining, Zhejiang, P.R. China
- Correspondence should be addressed to P J Brunton:
| |
Collapse
|
36
|
Wilson EN, Mabry S, Bradshaw JL, Gardner JJ, Rybalchenko N, Engelland R, Fadeyibi O, Osikoya O, Cushen SC, Goulopoulou S, Cunningham RL. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol Sex Differ 2022; 13:54. [PMID: 36175941 PMCID: PMC9524087 DOI: 10.1186/s13293-022-00463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).
Collapse
Affiliation(s)
- E Nicole Wilson
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
37
|
Abstract
Understanding sex differences in physiology and disease requires the identification of the molecular agents that cause phenotypic sex differences. Two groups of such agents are genes located on the sex chromosomes, and gonadal hormones. The former have coherent linkage to chromosomes that form differently in the two sexes under the influence of genomic forces that are not related to reproductive function, whereas the latter have a direct or indirect relationship to reproduction. Evidence published in the past 5 years supports the identification of several agents of sexual differentiation encoded by the X chromosome in mice, including Kdm5c, Kdm6a, Ogt and Xist. These X chromosome agents have wide pleiotropic effects, potentially influencing sex differences in many different tissues, a characteristic shared with the gonadal hormones. The identification of X chromosome agents of sexual differentiation will facilitate understanding of complex intersecting gene pathways underlying sex differences in disease.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Kaur K, Lesseur C, Deyssenroth MA, Kloog I, Schwartz JD, Marsit CJ, Chen J. PM 2.5 exposure during pregnancy is associated with altered placental expression of lipid metabolic genes in a US birth cohort. ENVIRONMENTAL RESEARCH 2022; 211:113066. [PMID: 35248564 PMCID: PMC9177798 DOI: 10.1016/j.envres.2022.113066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 05/31/2023]
Abstract
Inhalation of ambient PM2.5, shown to be able to cross the placenta, has been linked to adverse obstetric and postnatal metabolic health outcomes. The placenta regulates fetal growth and influences postnatal development via fetal programming. Placental gene expression may be influenced by intrauterine exposures to PM2.5. Herein, we explore whether maternal PM2.5 exposure during pregnancy alters placental gene expression related to lipid and glucose metabolism in a U.S. birth cohort, the Rhode Island Child Health Study (RICHS). Average PM2.5 exposure level was estimated linking residential addresses and satellite data across the three trimesters using spatio-temporal models. Based on Gene Ontology annotations, we curated a list of 657 lipid and glucose metabolism genes. We conducted a two-staged analysis by leveraging placental RNA-Seq data from 148 subjects to identify top dysregulated metabolic genes associated with PM2.5 (Phase I) and then validated the results in placental samples from 415 participants of the cohort using RT-qPCR (Phase II). Associations between PM2.5 and placental gene expression were explored using multivariable linear regression models in the overall population and in sex-stratified analyses. The average level of PM2.5 exposure across pregnancy was 8.0μg/m3, which is below the national standard of 12μg/m3. Phase I revealed that expression levels of 32 out of the curated list of 657 genes were significantly associated with PM2.5 exposure (FDR P<0.01), 28 genes showed differential expression modified by sex of the infant. Five of these genes (ABHD3, ATP11A, CLTCL1, ST6GALNAC4 and PSCA) were validated using RT-qPCR. Associations were stronger in placentas from male births compared to females, indicating a sex-dependent effect. These genes are involved in inflammation, lipid transport, cell-cell communication or cell invasion. Our results suggest that gestational PM2.5 exposure may alter placental metabolic function. However, whether it confers long-term programming effects postnatally, especially in a sex-specific matter, warrants further studies.
Collapse
Affiliation(s)
- Kirtan Kaur
- Department of Environmental Medicine, School of Medicine, NYU Langone Health, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maya A Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben Gurion University, Beersheba, 8410501, Israel
| | - Joel D Schwartz
- Department of Environmental Health, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
39
|
Placental sex-dependent spermine synthesis regulates trophoblast gene expression through acetyl-coA metabolism and histone acetylation. Commun Biol 2022; 5:586. [PMID: 35705689 PMCID: PMC9200719 DOI: 10.1038/s42003-022-03530-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Placental function and dysfunction differ by sex but the mechanisms are unknown. Here we show that sex differences in polyamine metabolism are associated with escape from X chromosome inactivation of the gene encoding spermine synthase (SMS). Female placental trophoblasts demonstrate biallelic SMS expression, associated with increased SMS mRNA and enzyme activity. Polyamine depletion in primary trophoblasts reduced glycolysis and oxidative phosphorylation resulting in decreased acetyl-coA availability and global histone hypoacetylation in a sex-dependent manner. Chromatin-immunoprecipitation sequencing and RNA-sequencing identifies progesterone biosynthesis as a target of polyamine regulated gene expression, and polyamine depletion reduced progesterone release in male trophoblasts. The effects of polyamine depletion can be attributed to spermine as SMS-silencing recapitulated the effects on energy metabolism, histone acetylation, and progesterone release. In summary, spermine metabolism alters trophoblast gene expression through acetyl-coA biosynthesis and histone acetylation, and SMS escape from X inactivation explains some features of human placental sex differences.
Collapse
|
40
|
Chatterjee S, Zeng X, Ouidir M, Tesfaye M, Zhang C, Tekola-Ayele F. Sex-specific placental gene expression signatures of small for gestational age at birth. Placenta 2022; 121:82-90. [PMID: 35303517 PMCID: PMC9010378 DOI: 10.1016/j.placenta.2022.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Small for gestational age at birth (SGA), often a consequence of placental dysfunction, is a risk factor for neonatal morbidity and later life cardiometabolic diseases. There are sex differences in placental gene expression and fetal growth. Here, we investigated sex-specific associations between gene expression in human placenta measured using RNA sequencing and SGA status using data from ethnic diverse pregnant women in the NICHD Fetal Growth Studies cohort (n = 74). METHODS Gene expression measures were obtained using RNA-Sequencing and differential gene expression between SGA (birthweight <10th percentile) and appropriate for gestational age (AGA: ≥10th and <90th percentile) was tested separately in males (12 SGA and 27 AGA) and females (9 SGA and 26 AGA) using a weighted mean of log ratios method with adjustment for mode of delivery and ethnicity. RESULTS At 5% false discovery rate (FDR), we identified 40 differentially expressed genes (DEGs) related to SGA status among males (95% up- and 5% down-regulated) and 314 DEGs among females (32.5% up- and 67.5% down-regulated). Seven female-specific DEGs overlapped with known imprinted genes (AXL, CYP24A1, GPR1, PLAGL1, CMTM1, DLX5, LY6D). The DEGs in males were significantly enriched for immune response and inflammation signaling pathways whereas the DEGs in females were enriched for organ development signaling pathways (FDR<0.05). Sex-combined analysis identified no additional DEGs, rather 98% of the sex-specific DEGs were no longer significant and the remaining 2% were attenuated. DISCUSSION This study revealed sex-specific human placental gene expression changes and molecular pathways associated with SGA and underscored that unravelling the pathogenesis of SGA warrants consideration of fetal sex as a biological variable. TRIAL REGISTRATION https://www. CLINICALTRIALS gov, Unique identifier: NCT00912132.
Collapse
Affiliation(s)
- Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Xuehuo Zeng
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
| |
Collapse
|
41
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
42
|
Fan J, Zhong QL, Mo R, Lu CL, Ren J, Mo JW, Guo F, Wen YL, Cao X. Proteomic Profiling of Astrocytic O-GlcNAc Transferase-Related Proteins in the Medial Prefrontal Cortex. Front Mol Neurosci 2021; 14:729975. [PMID: 34803603 PMCID: PMC8600230 DOI: 10.3389/fnmol.2021.729975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The medial prefrontal cortex (mPFC), a key part of the brain networks that are closely related to the regulation of behavior, acts as a key regulator in emotion, social cognition, and decision making. Astrocytes are the majority cell type of glial cells, which play a significant role in a number of processes and establish a suitable environment for the functioning of neurons, including the brain energy metabolism. Astrocyte’s dysfunction in the mPFC has been implicated in various neuropsychiatric disorders. Glucose is a major energy source in the brain. In glucose metabolism, part of glucose is used to convert UDP-GlcNAc as a donor molecule for O-GlcNAcylation, which is controlled by a group of enzymes, O-GlcNAc transferase enzyme (OGT), and O-GlcNAcase (OGA). However, the role of O-GlcNAcylation in astrocytes is almost completely unknown. Our research showed that astrocytic OGT could influence the expression of proteins in the mPFC. Most of these altered proteins participate in metabolic processes, transferase activity, and biosynthetic processes. GFAP, an astrocyte maker, was increased after OGT deletion. These results provide a framework for further study on the role of astrocytic OGT/O-GlcNAcylation in the mPFC.
Collapse
Affiliation(s)
- Jun Fan
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Qiu-Ling Zhong
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Ran Mo
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Cheng-Lin Lu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Jing Ren
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Jia-Wen Mo
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Fang Guo
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - You-Lu Wen
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xiong Cao
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China.,National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
44
|
Burt RA, Dejanovic B, Peckham HJ, Lee KA, Li X, Ounadjela JR, Rao A, Malaker SA, Carr SA, Myers SA. Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Mol Cell Proteomics 2021; 20:100167. [PMID: 34678516 PMCID: PMC8605273 DOI: 10.1016/j.mcpro.2021.100167] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease. Anti-O-GlcNAc antibodies are fast and simple enrichment reagents. Anti-O-GlcNAc antibodies are sensitive and achieve significant depth of coverage. Anti-O-GlcNAc antibodies are specific for singular O-GlcNAc modifications. Anti-O-GlcNAc antibody enrichment techniques can be applied to cells and tissues. HCD product-triggered EThcD data acquisition improves depth of coverage.
Collapse
Affiliation(s)
- Rajan A Burt
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Borislav Dejanovic
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Kimberly A Lee
- Cell Signaling Technology, Inc, Danvers, Massachusetts, USA
| | - Xiang Li
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Anjana Rao
- La Jolla Institute for Immunology, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA; Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Samuel A Myers
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
45
|
Ruigrok SR, Yim K, Emmerzaal TL, Geenen B, Stöberl N, den Blaauwen JL, Abbink MR, Kiliaan AJ, van Schothorst EM, Kozicz T, Korosi A. Effects of early-life stress on peripheral and central mitochondria in male mice across ages. Psychoneuroendocrinology 2021; 132:105346. [PMID: 34274734 DOI: 10.1016/j.psyneuen.2021.105346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 01/06/2023]
Abstract
Exposure to early-life stress (ES) increases the vulnerability to develop metabolic diseases as well as cognitive dysfunction, but the specific biological underpinning of the ES-induced programming is unknown. Metabolic and cognitive disorders are often comorbid, suggesting possible converging underlying pathways. Mitochondrial dysfunction is implicated in both metabolic diseases and cognitive dysfunction and chronic stress impairs mitochondrial functioning. However, if and how mitochondria are impacted by ES and whether they are implicated in the ES-induced programming remains to be determined. ES was applied by providing mice with limited nesting and bedding material from postnatal day (P)2-P9, and metabolic parameters, cognitive functions and multiple aspects of mitochondria biology (i.e. mitochondrial electron transport chain (ETC) complex activity, mitochondrial DNA copy number, expression of genes relevant for mitochondrial function, and the antioxidant capacity) were studied in muscle, hypothalamus and hippocampus at P9 and late adulthood (10-12 months of age). We show that ES altered bodyweight (gain), adiposity and glucose levels at P9, but not in late adulthood. At this age, however, ES exposure led to cognitive impairments. ES affected peripheral and central mitochondria in an age-dependent manner. At P9, both muscle and hypothalamic ETC activity were affected by ES, while in hippocampus, ES altered the expression of genes involved in fission and antioxidant defence. In adulthood, alterations in ETC complex activity were observed in the hypothalamus specifically, whereas in muscle and hippocampus ES affected the expression of genes involved in mitophagy and fission, respectively. Our study demonstrates that ES affects peripheral and central mitochondria biology throughout life, thereby uncovering a converging mechanism that might contribute to the ES-induced vulnerability for both metabolic diseases and cognitive dysfunction, which could serve as a novel target for intervention.
Collapse
Affiliation(s)
- S R Ruigrok
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - K Yim
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - T L Emmerzaal
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - B Geenen
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - N Stöberl
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J L den Blaauwen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A J Kiliaan
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - E M van Schothorst
- Human and Animal Physiology, Wageningen University, 6700AH Wageningen, The Netherlands
| | - T Kozicz
- Department of Medical Imaging - Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - A Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Akhaphong B, Baumann DC, Beetch M, Lockridge AD, Jo S, Wong A, Zemanovic T, Mohan R, Fondevilla DL, Sia M, Pineda-Cortel MRB, Alejandro EU. Placental mTOR complex 1 regulates fetal programming of obesity and insulin resistance in mice. JCI Insight 2021; 6:149271. [PMID: 34032632 PMCID: PMC8410096 DOI: 10.1172/jci.insight.149271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Fetal growth restriction, or low birth weight, is a strong determinant for eventual obesity and type 2 diabetes. Clinical studies suggest placental mechanistic target of rapamycin (mTOR) signaling regulates fetal birth weight and the metabolic health trajectory of the offspring. In the current study, we used a genetic model with loss of placental mTOR function (mTOR-KOPlacenta) to test the direct role of mTOR signaling on birth weight and metabolic health in the adult offspring. mTOR-KOPlacenta animals displayed reduced placental area and total weight, as well as fetal body weight at embryonic day (E) 17.5. Birth weight and serum insulin levels were reduced; however, β cell mass was normal in mTOR-KOPlacenta newborns. Adult mTOR-KOPlacenta offspring, under a metabolic high-fat challenge, displayed exacerbated obesity and metabolic dysfunction compared with littermate controls. Subsequently, we tested whether enhancing placental mTOR complex 1 (mTORC1) signaling, via genetic ablation of TSC2, in utero would improve glucose homeostasis in the offspring. Indeed, increased placental mTORC1 conferred protection from diet-induced obesity in the offspring. In conclusion, placental mTORC1 serves as a mechanistic link between placental function and programming of obesity and insulin resistance in the adult offspring.
Collapse
Affiliation(s)
- Brian Akhaphong
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Daniel C Baumann
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan Beetch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Amber D Lockridge
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Alicia Wong
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tate Zemanovic
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ramkumar Mohan
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Danica L Fondevilla
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Michelle Sia
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Maria Ruth B Pineda-Cortel
- Research Center for the Natural and Applied Sciences and.,Department of Medical Technology, University of Santo Tomas, Manila, Philippines
| | - Emilyn U Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
47
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
48
|
Disruption of O-Linked N-Acetylglucosamine Signaling in Placenta Induces Insulin Sensitivity in Female Offspring. Int J Mol Sci 2021; 22:ijms22136918. [PMID: 34203166 PMCID: PMC8267851 DOI: 10.3390/ijms22136918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of placental insufficiency in the setting of prenatal stress, however, its role in the fetal programming of metabolism and glucose homeostasis remains unknown. We aim to determine the long-term metabolic outcomes of offspring with a reduction in placental OGT. Mice with a partial reduction and a full knockout of placenta-specific OGT were generated utilizing the Cre-Lox system. Glucose homeostasis and metabolic parameters were assessed on a normal chow and a high-fat diet in both male and female adult offspring. A reduction in placental OGT did not demonstrate differences in the metabolic parameters or glucose homeostasis compared to the controls on a standard chow. The high-fat diet provided a metabolic challenge that revealed a decrease in body weight gain (p = 0.02) and an improved insulin tolerance (p = 0.03) for offspring with a partially reduced placental OGT but not when OGT was fully knocked out. Changes in body weight were not associated with changes in energy homeostasis. Offspring with a partial reduction in placental OGT demonstrated increased hepatic Akt phosphorylation in response to insulin treatment (p = 0.02). A partial reduction in placental OGT was protective from weight gain and insulin intolerance when faced with the metabolic challenge of a high-fat diet. This appears to be, in part, due to increased hepatic insulin signaling. The findings of this study contribute to the greater understanding of fetal metabolic programming and the effect of placental OGT on peripheral insulin sensitivity and provides a target for future investigation and clinical applications.
Collapse
|
49
|
Dick A, Chen A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol Stress 2021; 15:100352. [PMID: 34189192 PMCID: PMC8220100 DOI: 10.1016/j.ynstr.2021.100352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Such changes may therefore perpetuate stable and dynamic transcriptional patterns within neuronal populations required for neuroplasticity and behavioural adaptation. In this review, we will highlight recent evidence supporting a role of TET protein function and active demethylation in stress-induced neuroepigenetic and behavioural adaptations. We further explore potential mechanisms by which TET proteins may mediate both the basal and pathological embedding of stressful life experiences within the brain of relevance to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Alec Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Corresponding author.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Haq SU, Bhat UA, Kumar A. Prenatal stress effects on offspring brain and behavior: Mediators, alterations and dysregulated epigenetic mechanisms. J Biosci 2021. [DOI: 10.1007/s12038-021-00153-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|