1
|
Bowland AC, Melin AD, Hosken DJ, Hockings KJ, Carrigan MA. The evolutionary ecology of ethanol. Trends Ecol Evol 2025; 40:67-79. [PMID: 39482197 DOI: 10.1016/j.tree.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024]
Abstract
The consumption of ethanol has frequently been seen as largely restricted to humans. Here, we take a broad eco-evolutionary approach to understanding ethanol's potential impact on the natural world. There is growing evidence that ethanol is present in many wild fruits, saps, and nectars and that ethanol ingestion offers benefits that favour adaptations for its use in multiple taxa. Explanations for ethanol consumption span both the nutritional and non-nutritional, with potential medicinal value or cognitive effects (with social-behavioural benefits) explored. We conclude that ethanol is ecologically relevant and that it has shaped the evolution of many species and structured symbiotic relationships among organisms, including plants, yeast, bacteria, insects, and mammals.
Collapse
Affiliation(s)
- Anna C Bowland
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - David J Hosken
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - Kimberley J Hockings
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK.
| | | |
Collapse
|
2
|
Miler K. Ethanol and pollinators: expanding Bowland et al.'s framework. Trends Ecol Evol 2024:S0169-5347(24)00308-2. [PMID: 39667988 DOI: 10.1016/j.tree.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Krzysztof Miler
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland.
| |
Collapse
|
3
|
Witkiewitz K, Fernandez AC, Green EW, Mellinger JL. Diagnosis of Alcohol Use Disorder and Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:699-713. [PMID: 39362716 PMCID: PMC11463730 DOI: 10.1016/j.cld.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Harmful alcohol use and alcohol use disorder (AUD) are common worldwide, and rates of alcohol-associated liver disease (ALD) are also increasing. AUD is a disease that is treatable and can be diagnosed and managed, and recovery from AUD through abstinence or reductions in drinking is possible. Management of AUD among individuals with ALD is increasingly being addressed via integrated medical and psychosocial treatment teams that can support reductions in drinking and prevent progression of liver disease. Early diagnosis of AUD and ALD can improve lives and reduce mortality.
Collapse
Affiliation(s)
- Katie Witkiewitz
- Center on Alcohol, Substance Use, and Addictions, University of New Mexico, 2650 Yale Boulevard Southeast, Albuquerque, NM 87106, USA.
| | - Anne C Fernandez
- Department of Psychiatry, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ellen W Green
- Division of Gastroenterology & Hepatology, University of North Carolina, 130 Mason Farm Road, Bioinformatics Building CB# 7080, Chapel Hill, NC 27599-7080, USA
| | - Jessica L Mellinger
- Department of Psychiatry, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Medicine, University of Michigan
| |
Collapse
|
4
|
Pimentel G, Roder T, Bär C, Christensen S, Sattari Z, Kalbermatter C, von Ah U, Robert CAM, Mateo P, Bruggmann R, Ganal-Vonarburg SC, Vergères G. Maternal consumption of yoghurt activating the aryl hydrocarbon receptor increases group 3 innate lymphoid cells in murine offspring. Microbiol Spectr 2024; 12:e0039324. [PMID: 39472005 PMCID: PMC11619593 DOI: 10.1128/spectrum.00393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/25/2024] [Indexed: 12/08/2024] Open
Abstract
Indole derivatives are microbial metabolites of the tryptophan pathway involved in gut immune homeostasis. They bind to the aryl hydrocarbon receptor (AhR), thereby modulating development of intestinal group 3 innate lymphoid cells (ILC3) and subsequent interleukin-22 production. In mice, indole derivatives of the maternal microbiota can reach the milk and drive early postnatal ILC3 development. Apart from the gut microbiota, lactic acid bacteria (LAB) also produce indole compounds during milk fermentation. Using germ-free mice, the aim of our study was to test if maternal intake of a dairy product enriched in AhR-activating indoles produced by fermentation could boost maturation of the intestinal innate immune system in the offspring. A set of 631 LAB strains were genetically screened for their potential to produce indole compounds. Among these, 125 strains were tested in combination with standard strains to produce yoghurts that were screened for their ability to activate AhR in vitro using the HepG2-AhR-Luc cell line. The most active yoghurt and a control yoghurt were formulated as pellets and fed to germ-free dams during pregnancy and lactation. Analysis of the offspring on postnatal day 14 using flow cytometry revealed an increase in the frequency of small intestinal lamina propria NKp46 +ILC3 s in the pups born to dams that had consumed the purified diet containing an AhR-active yoghurt (AhrY-diet) compared to control yoghurt (ConY-diet). Selection of LABs based on their ability to produce a fermented dairy able to activate AhR appears to be an effective approach to produce a yoghurt with immunomodulatory properties. IMPORTANCE Key progresses in the sequencing and functional annotation of microbial organisms have revolutionized research in the fields of human metabolism and food biotechnology. In particular, the gut microbiome is now recognized as an important mediator of the impact of nutrition on human metabolism. Annotated genomes of a large number of bacteria are now available worldwide, which selectively transform food through fermentation to produce specific bioactive compounds with the potential to modulate human health. A previous research has demonstrated that the maternal microbiota shapes the neonatal immune system. Similarly, this report shows that lactic acid bacteria can be selected to produce fermented food that can also modulate postnatal intestinal immunity.
Collapse
Affiliation(s)
| | - Thomas Roder
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Cornelia Bär
- Agroscope, Schwarzenburgstrasse, Bern, Switzerland
| | - Sandro Christensen
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Zahra Sattari
- Agroscope, Schwarzenburgstrasse, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Cristina Kalbermatter
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ueli von Ah
- Agroscope, Schwarzenburgstrasse, Bern, Switzerland
| | | | - Pierre Mateo
- Institute of Plant Sciences, University of Bern, Switzerland, Bern
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Stephanie C. Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Guy Vergères
- Agroscope, Schwarzenburgstrasse, Bern, Switzerland
| |
Collapse
|
5
|
Lapish CC. Understanding How Acute Alcohol Impacts Neural Encoding in the Rodent Brain. Curr Top Behav Neurosci 2024. [PMID: 38858298 DOI: 10.1007/7854_2024_479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Alcohol impacts neural circuitry throughout the brain and has wide-ranging effects on the biophysical properties of neurons in these circuits. Articulating how these wide-ranging effects might eventually result in altered computational properties has the potential to provide a tractable working model of how alcohol alters neural encoding. This chapter reviews what is currently known about how acute alcohol influences neural activity in cortical, hippocampal, and dopaminergic circuits as these have been the primary focus of understanding how alcohol alters neural computation. While other neural systems have been the focus of exhaustive work on this topic, these brain regions are the ones where in vivo neural recordings are available, thus optimally suited to make the link between changes in neural activity and behavior. Rodent models have been key in developing an understanding of how alcohol impacts the function of these circuits, and this chapter therefore focuses on work from mice and rats. While progress has been made, it is critical to understand the challenges and caveats associated with experimental procedures, especially when performed in vivo, which are designed to answer this question and if/how to translate these data to humans. The hypothesis is discussed that alcohol impairs the ability of neural circuits to acquire states of neural activity that are transiently elevated and characterized by increased complexity. It is hypothesized that these changes are distinct from the traditional view of alcohol being a depressant of neural activity in the forebrain.
Collapse
Affiliation(s)
- Christopher C Lapish
- Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Hunt A, Merola GP, Carpenter T, Jaeggi AV. Evolutionary perspectives on substance and behavioural addictions: Distinct and shared pathways to understanding, prediction and prevention. Neurosci Biobehav Rev 2024; 159:105603. [PMID: 38402919 DOI: 10.1016/j.neubiorev.2024.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Addiction poses significant social, health, and criminal issues. Its moderate heritability and early-life impact, affecting reproductive success, poses an evolutionary paradox: why are humans predisposed to addictive behaviours? This paper reviews biological and psychological mechanisms of substance and behavioural addictions, exploring evolutionary explanations for the origin and function of relevant systems. Ancestrally, addiction-related systems promoted fitness through reward-seeking, and possibly self-medication. Today, psychoactive substances disrupt these systems, leading individuals to neglect essential life goals for immediate satisfaction. Behavioural addictions (e.g. video games, social media) often emulate ancestrally beneficial behaviours, making them appealing yet often irrelevant to contemporary success. Evolutionary insights have implications for how addiction is criminalised and stigmatised, propose novel avenues for interventions, anticipate new sources of addiction from emerging technologies such as AI. The emerging potential of glucagon-like peptide 1 (GLP-1) agonists targeting obesity suggest the satiation system may be a natural counter to overactivation of the reward system.
Collapse
Affiliation(s)
- Adam Hunt
- Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland.
| | | | - Tom Carpenter
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Adrian V Jaeggi
- Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Kleemann J, Cinatl J, Hoffmann S, Zöller N, Özistanbullu D, Zouboulis CC, Kaufmann R, Kippenberger S. Alcohol Promotes Lipogenesis in Sebocytes-Implications for Acne. Cells 2024; 13:328. [PMID: 38391942 PMCID: PMC10886960 DOI: 10.3390/cells13040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The oral consumption of alcohol (ethanol) has a long tradition in humans and is an integral part of many cultures. The causal relationship between ethanol consumption and numerous diseases is well known. In addition to the well-described harmful effects on the liver and pancreas, there is also evidence that ethanol abuse triggers pathological skin conditions, including acne. In the present study, we addressed this issue by investigating the effect of ethanol on the energy metabolism in human SZ95 sebocytes, with particular focus on qualitative and quantitative lipogenesis. It was found that ethanol is a strong trigger for lipogenesis, with moderate effects on cell proliferation and toxicity. We identified the non-oxidative metabolism of ethanol, which produced fatty acid ethyl esters (FAEEs), as relevant for the lipogenic effect-the oxidative metabolism of ethanol does not contribute to lipogenesis. Correspondingly, using the Seahorse extracellular flux analyzer, we found an inhibition of the mitochondrial oxygen consumption rate as a measure of mitochondrial ATP production by ethanol. The ATP production rate from glycolysis was not affected. These data corroborate that ethanol-induced lipogenesis is independent from oxygen. In sum, our results give a causal explanation for the prevalence of acne in heavy drinkers, confirming that alcoholism should be considered as a systemic disease. Moreover, the identification of key factors driving ethanol-dependent lipogenesis may also be relevant in the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Johannes Kleemann
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany;
- Dr. Petra Joh-Forschungshaus, 60528 Frankfurt am Main, Germany
| | - Stephanie Hoffmann
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Nadja Zöller
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Deniz Özistanbullu
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergy and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany;
| | - Roland Kaufmann
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| | - Stefan Kippenberger
- Departments of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany; (J.K.); (N.Z.); (D.Ö.); (R.K.)
| |
Collapse
|
9
|
Jelenkovic A, Ibáñez-Zamacona ME, Rebato E. Human adaptations to diet: Biological and cultural coevolution. ADVANCES IN GENETICS 2024; 111:117-147. [PMID: 38908898 DOI: 10.1016/bs.adgen.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Modern humans evolved in Africa some 200,000 years ago, and since then, human populations have expanded and diversified to occupy a broad range of habitats and use different subsistence modes. This has resulted in different adaptations, such as differential responses to diseases and different abilities to digest or tolerate certain foods. The shift from a subsistence strategy based on hunting and gathering during the Palaeolithic to a lifestyle based on the consumption of domesticated animals and plants in the Neolithic can be considered one of the most important dietary transitions of Homo sapiens. In this text, we review four examples of gene-culture coevolution: (i) the persistence of the enzyme lactase after weaning, which allows the digestion of milk in adulthood, related to the emergence of dairy farming during the Neolithic; (ii) the population differences in alcohol susceptibility, in particular the ethanol intolerance of Asian populations due to the increased accumulation of the toxic acetaldehyde, related to the spread of rice domestication; (iii) the maintenance of gluten intolerance (celiac disease) with the subsequent reduced fitness of its sufferers, related to the emergence of agriculture and (iv) the considerable variation in the biosynthetic pathway of long-chain polyunsaturated fatty acids in native populations with extreme diets.
Collapse
Affiliation(s)
- Aline Jelenkovic
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - María Eugenia Ibáñez-Zamacona
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Esther Rebato
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
10
|
McClellan JM, Zoghbi AW, Buxbaum JD, Cappi C, Crowley JJ, Flint J, Grice DE, Gulsuner S, Iyegbe C, Jain S, Kuo PH, Lattig MC, Passos-Bueno MR, Purushottam M, Stein DJ, Sunshine AB, Susser ES, Walsh CA, Wootton O, King MC. An evolutionary perspective on complex neuropsychiatric disease. Neuron 2024; 112:7-24. [PMID: 38016473 PMCID: PMC10842497 DOI: 10.1016/j.neuron.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
The forces of evolution-mutation, selection, migration, and genetic drift-shape the genetic architecture of human traits, including the genetic architecture of complex neuropsychiatric illnesses. Studying these illnesses in populations that are diverse in genetic ancestry, historical demography, and cultural history can reveal how evolutionary forces have guided adaptation over time and place. A fundamental truth of shared human biology is that an allele responsible for a disease in anyone, anywhere, reveals a gene critical to the normal biology underlying that condition in everyone, everywhere. Understanding the genetic causes of neuropsychiatric disease in the widest possible range of human populations thus yields the greatest possible range of insight into genes critical to human brain development. In this perspective, we explore some of the relationships between genes, adaptation, and history that can be illuminated by an evolutionary perspective on studies of complex neuropsychiatric disease in diverse populations.
Collapse
Affiliation(s)
- Jon M McClellan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Flint
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Conrad Iyegbe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | | | | | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Anna B Sunshine
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ezra S Susser
- Department of Epidemiology, Mailman School of Public Health, and New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA
| | - Christopher A Walsh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Wootton
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Bryant KL, Hansen C, Hecht EE. Fermentation technology as a driver of human brain expansion. Commun Biol 2023; 6:1190. [PMID: 37996482 PMCID: PMC10667226 DOI: 10.1038/s42003-023-05517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Brain tissue is metabolically expensive. Consequently, the evolution of humans' large brains must have occurred via concomitant shifts in energy expenditure and intake. Proposed mechanisms include dietary shifts such as cooking. Importantly, though, any new food source must have been exploitable by hominids with brains a third the size of modern humans'. Here, we propose the initial metabolic trigger of hominid brain expansion was the consumption of externally fermented foods. We define "external fermentation" as occurring outside the body, as opposed to the internal fermentation in the gut. External fermentation could increase the bioavailability of macro- and micronutrients while reducing digestive energy expenditure and is supported by the relative reduction of the human colon. We discuss the explanatory power of our hypothesis and survey external fermentation practices across human cultures to demonstrate its viability across a range of environments and food sources. We close with suggestions for empirical tests.
Collapse
Affiliation(s)
- Katherine L Bryant
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France.
| | - Christi Hansen
- Hungry Heart Farm and Dietary Consulting, Conley, GA, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Makopa TP, Modikwe G, Vrhovsek U, Lotti C, Sampaio JP, Zhou N. The marula and elephant intoxication myth: assessing the biodiversity of fermenting yeasts associated with marula fruits ( Sclerocarya birrea). FEMS MICROBES 2023; 4:xtad018. [PMID: 37854251 PMCID: PMC10581541 DOI: 10.1093/femsmc/xtad018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
The inebriation of wild African elephants from eating the ripened and rotting fruit of the marula tree is a persistent myth in Southern Africa. However, the yeasts responsible for alcoholic fermentation to intoxicate the elephants remain poorly documented. In this study, we considered Botswana, a country with the world's largest population of wild elephants, and where the marula tree is indigenous, abundant and protected, to assess the occurrence and biodiversity of yeasts with a potential to ferment and subsequently inebriate the wild elephants. We collected marula fruits from over a stretch of 800 km in Botswana and isolated 106 yeast strains representing 24 yeast species. Over 93% of these isolates, typically known to ferment simple sugars and produce ethanol comprising of high ethanol producers belonging to Saccharomyces, Brettanomyces, and Pichia, and intermediate ethanol producers Wickerhamomyces, Zygotorulaspora, Candida, Hanseniaspora, and Kluyveromyces. Fermentation of marula juice revealed convincing fermentative and aromatic bouquet credentials to suggest the potential to influence foraging behaviour and inebriate elephants in nature. There is insufficient evidence to refute the aforementioned myth. This work serves as the first work towards understanding the biodiversity marula associated yeasts to debunk the myth or approve the facts.
Collapse
Affiliation(s)
- Tawanda Proceed Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Plot 10071, Boseja, Palapye, Botswana, 00267
| | - Gorata Modikwe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Plot 10071, Boseja, Palapye, Botswana, 00267
| | - Urska Vrhovsek
- Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Via E. Mach, 1, Italy, 38010
| | - Cesare Lotti
- Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Via E. Mach, 1, Italy, 38010
| | - José Paulo Sampaio
- UCIBIO, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal , 2829-516
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Plot 10071, Boseja, Palapye, Botswana, 00267
| |
Collapse
|
13
|
Fannin LD, Joy MS, Dominy NJ, McGraw WS, DeSilva JM. Downclimbing and the evolution of ape forelimb morphologies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230145. [PMID: 37680499 PMCID: PMC10480693 DOI: 10.1098/rsos.230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
The forelimbs of hominoid primates (apes) are decidedly more flexible than those of monkeys, especially at the shoulder, elbow and wrist joints. It is tempting to link the greater mobility of these joints to the functional demands of vertical climbing and below-branch suspension, but field-based kinematic studies have found few differences between chimpanzees and monkeys when comparing forelimb excursion angles during vertical ascent (upclimbing). There is, however, a strong theoretical argument for focusing instead on vertical descent (downclimbing), which motivated us to quantify the effects of climbing directionality on the forelimb kinematics of wild chimpanzees (Pan troglodytes) and sooty mangabeys (Cercocebus atys). We found that the shoulders and elbows of chimpanzees and sooty mangabeys subtended larger joint angles during bouts of downclimbing, and that the magnitude of this difference was greatest among chimpanzees. Our results cast new light on the functional importance of downclimbing, while also burnishing functional hypotheses that emphasize the role of vertical climbing during the evolution of apes, including the human lineage.
Collapse
Affiliation(s)
- Luke D. Fannin
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Ecology, Evolution, Environment and Society, Dartmouth College, Hanover, NH 03755, USA
| | - Mary S. Joy
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Nathaniel J. Dominy
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - W. Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, OH 43210, USA
| | - Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Ecology, Evolution, Environment and Society, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
14
|
Casorso JG, DePasquale AN, Romero Morales S, Cheves Hernandez S, Lopez Navarro R, Hockings KJ, Carrigan MA, Melin AD. Seed dispersal syndrome predicts ethanol concentration of fruits in a tropical dry forest. Proc Biol Sci 2023; 290:20230804. [PMID: 37464751 DOI: 10.1098/rspb.2023.0804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Studying fruit traits and their interactions with seed dispersers can improve how we interpret patterns of biodiversity, ecosystem function and evolution. Mounting evidence suggests that fruit ethanol is common and variable, and may exert selective pressures on seed dispersers. To test this, we comprehensively assess fruit ethanol content in a wild ecosystem and explore sources of variation. We hypothesize that both phylogeny and seed dispersal syndrome explain variation in ethanol levels, and we predict that fruits with mammalian dispersal traits will contain higher levels of ethanol than those with bird dispersal traits. We measured ripe fruit ethanol content in species with mammal- (n = 16), bird- (n = 14) or mixed-dispersal (n = 7) syndromes in a Costa Rican tropical dry forest. Seventy-eight per cent of fruit species yielded measurable ethanol concentrations. We detected a phylogenetic signal in maximum ethanol levels (Pagel's λ = 0.82). Controlling for phylogeny, we observed greater ethanol concentrations in mammal-dispersed fruits, indicating that dispersal syndrome helps explain variation in ethanol content, and that mammals may be more exposed to ethanol in their diets than birds. Our findings further our understanding of wild fruit ethanol and its potential role as a selective pressure on frugivore sensory systems and metabolism.
Collapse
Affiliation(s)
- Julia G Casorso
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Azizov V, Hübner M, Frech M, Hofmann J, Kubankova M, Lapuente D, Tenbusch M, Guck J, Schett G, Zaiss MM. Alcohol-sourced acetate impairs T cell function by promoting cortactin acetylation. iScience 2023; 26:107230. [PMID: 37485352 PMCID: PMC10362326 DOI: 10.1016/j.isci.2023.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Alcohol is among the most widely consumed dietary substances. Excessive alcohol consumption damages the liver, heart, and brain. Alcohol also has strong immunoregulatory properties. Here, we report how alcohol impairs T cell function via acetylation of cortactin, a protein that binds filamentous actin and facilitates branching. Upon alcohol consumption, acetate, the metabolite of alcohol, accumulates in lymphoid organs. T cells exposed to acetate, exhibit increased acetylation of cortactin. Acetylation of cortactin inhibits filamentous actin binding and hence reduces T cell migration, immune synapse formation and activation. While mutated, acetylation-resistant cortactin rescues the acetate-induced inhibition of T cell migration, primary mouse cortactin knockout T cells exhibited impaired migration. Acetate-induced cytoskeletal changes effectively inhibited activation, proliferation, and immune synapse formation in T cells in vitro and in vivo in an influenza infection model in mice. Together these findings reveal cortactin as a possible target for mitigation of T cell driven autoimmune diseases.
Collapse
Affiliation(s)
- Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michel Hübner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marketa Kubankova
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Müller CP, Schumann G, Rehm J, Kornhuber J, Lenz B. Self-management with alcohol over lifespan: psychological mechanisms, neurobiological underpinnings, and risk assessment. Mol Psychiatry 2023; 28:2683-2696. [PMID: 37117460 PMCID: PMC10615763 DOI: 10.1038/s41380-023-02074-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
Self-management includes all behavioural measures and cognitive activities aimed at coping with challenges arising throughout the lifespan. While virtually all of these challenges can be met without pharmacological means, alcohol consumption has long been instrumentalized as a supporting tool to help coping with problems arising selectively at adolescence, adulthood, and ageing. Here, we present, to our knowledge, the first systematic review of alcohol instrumentalization throughout lifespan. We searched MEDLINE, Google Scholar, PsycINFO and CINAHL (from Jan, 1990, to Dec, 2022) and analysed consumption patterns, goals and potential neurobiological mechanisms. Evidence shows a regular non-addictive use of alcohol to self-manage developmental issues during adolescence, adulthood, and ageing. Alcohol is selectively used to overcome problems arising from dysfunctional personality traits, which manifest in adolescence. A large range of psychiatric disorders gives rise to alcohol use for the self-management of distinct symptoms starting mainly in adulthood. We identify those neuropharmacological effects of alcohol that selectively serve self-management under specific conditions. Finally, we discuss the adverse effects and associated risks that arise from the use of alcohol for self-management. Even well-controlled alcohol use adversely impacts health. Based on these findings, we suggest the implementation of an entirely new view. Health policy action may actively embrace both sides of the phenomenon through a personalized informed use that allows for harm-controlled self-management with alcohol.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Gunter Schumann
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
- PONS Centre, Charite Mental Health, Department of Psychiatry and Psychotherapie, CCM, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Jürgen Rehm
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON, M5S 2S1, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5T 3M7, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
- Center for Interdisciplinary Addiction Research (ZIS), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Bernd Lenz
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| |
Collapse
|
17
|
Pinto SL, Janiak MC, Dutyschaever G, Barros MAS, Chavarria AG, Martin MP, Tuh FYY, Valverde CS, Sims LM, Barclay RMR, Wells K, Dominy NJ, Pessoa DMA, Carrigan MA, Melin AD. Diet and the evolution of ADH7 across seven orders of mammals. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230451. [PMID: 37448478 PMCID: PMC10336374 DOI: 10.1098/rsos.230451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Dietary variation within and across species drives the eco-evolutionary responsiveness of genes necessary to metabolize nutrients and other components. Recent evidence from humans and other mammals suggests that sugar-rich diets of floral nectar and ripe fruit have favoured mutations in, and functional preservation of, the ADH7 gene, which encodes the ADH class 4 enzyme responsible for metabolizing ethanol. Here we interrogate a large, comparative dataset of ADH7 gene sequence variation, including that underlying the amino acid residue located at the key site (294) that regulates the affinity of ADH7 for ethanol. Our analyses span 171 mammal species, including 59 newly sequenced. We report extensive variation, especially among frugivorous and nectarivorous bats, with potential for functional impact. We also report widespread variation in the retention and probable pseudogenization of ADH7. However, we find little statistical evidence of an overarching impact of dietary behaviour on putative ADH7 function or presence of derived alleles at site 294 across mammals, which suggests that the evolution of ADH7 is shaped by complex factors. Our study reports extensive new diversity in a gene of longstanding ecological interest, offers new sources of variation to be explored in functional assays in future study, and advances our understanding of the processes of molecular evolution.
Collapse
Affiliation(s)
- Swellan L. Pinto
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Mareike C. Janiak
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Gwen Dutyschaever
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Marília A. S. Barros
- BE Bioinsight & Ecoa, Nilo Peçanha 730, conj. 505, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Maria Pia Martin
- Kids Saving the Rainforest Wildlife Rescue Center, 60601 Quepos, Costa Rica
| | | | | | - Lisa M. Sims
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | - Robert M. R. Barclay
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | - Konstans Wells
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | - Daniel M. A. Pessoa
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matthew A. Carrigan
- BioTork, Gainesville, FL, USA
- Department of Anatomy & Physiology, College of Central Florida, Ocala, FL, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Alberta, Canada
| |
Collapse
|
18
|
Brown AR, Branthwaite HE, Farahbakhsh ZZ, Mukerjee S, Melugin PR, Song K, Noamany H, Siciliano CA. Structured tracking of alcohol reinforcement (STAR) for basic and translational alcohol research. Mol Psychiatry 2023; 28:1585-1598. [PMID: 36849824 PMCID: PMC10208967 DOI: 10.1038/s41380-023-01994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
There is inherent tension between methodologies developed to address basic research questions in model species and those intended for preclinical to clinical translation: basic investigations require flexibility of experimental design as hypotheses are rapidly tested and revised, whereas preclinical models emphasize standardized protocols and specific outcome measures. This dichotomy is particularly relevant in alcohol research, which spans a diverse range of basic sciences in addition to intensive efforts towards understanding the pathophysiology of alcohol use disorder (AUD). To advance these goals there is a great need for approaches that facilitate synergy across basic and translational areas of nonhuman alcohol research. In male and female mice, we establish a modular alcohol reinforcement paradigm: Structured Tracking of Alcohol Reinforcement (STAR). STAR provides a robust platform for quantitative assessment of AUD-relevant behavioral domains within a flexible framework that allows direct crosstalk between translational and mechanistically oriented studies. To achieve cross-study integration, despite disparate task parameters, a straightforward multivariate phenotyping analysis is used to classify subjects based on propensity for heightened alcohol consumption and insensitivity to punishment. Combining STAR with extant preclinical alcohol models, we delineate longitudinal phenotype dynamics and reveal putative neuro-biomarkers of heightened alcohol use vulnerability via neurochemical profiling of cortical and brainstem tissues. Together, STAR allows quantification of time-resolved biobehavioral processes essential for basic research questions simultaneous with longitudinal phenotyping of clinically relevant outcomes, thereby providing a framework to facilitate cohesion and translation in alcohol research.
Collapse
Affiliation(s)
- Alex R Brown
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hannah E Branthwaite
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zahra Z Farahbakhsh
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Snigdha Mukerjee
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Keaton Song
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Habiba Noamany
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
19
|
Carlberg C. Nutrigenomics in the context of evolution. Redox Biol 2023; 62:102656. [PMID: 36933390 PMCID: PMC10036735 DOI: 10.1016/j.redox.2023.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Nutrigenomics describes the interaction between nutrients and our genome. Since the origin of our species most of these nutrient-gene communication pathways have not changed. However, our genome experienced over the past 50,000 years a number of evolutionary pressures, which are based on the migration to new environments concerning geography and climate, the transition from hunter-gatherers to farmers including the zoonotic transfer of many pathogenic microbes and the rather recent change of societies to a preferentially sedentary lifestyle and the dominance of Western diet. Human populations responded to these challenges not only by specific anthropometric adaptations, such as skin color and body stature, but also through diversity in dietary intake and different resistance to complex diseases like the metabolic syndrome, cancer and immune disorders. The genetic basis of this adaptation process has been investigated by whole genome genotyping and sequencing including that of DNA extracted from ancient bones. In addition to genomic changes, also the programming of epigenomes in pre- and postnatal phases of life has an important contribution to the response to environmental changes. Thus, insight into the variation of our (epi)genome in the context of our individual's risk for developing complex diseases, helps to understand the evolutionary basis how and why we become ill. This review will discuss the relation of diet, modern environment and our (epi)genome including aspects of redox biology. This has numerous implications for the interpretation of the risks for disease and their prevention.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Juliana Tuwima 10, PL-10748, Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
20
|
De Guidi I, Legras JL, Galeote V, Sicard D. Yeast domestication in fermented food and beverages: past research and new avenues. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep 2023; 42:111945. [PMID: 36640362 PMCID: PMC10484211 DOI: 10.1016/j.celrep.2022.111945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Elliott Ferris
- Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alun Thomas
- Department of Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Clites BL, Hofmann HA, Pierce JT. The Promise of an Evolutionary Perspective of Alcohol Consumption. Neurosci Insights 2023; 18:26331055231163589. [PMID: 37051560 PMCID: PMC10084549 DOI: 10.1177/26331055231163589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
The urgent need for medical treatments of alcohol use disorders has motivated the search for novel molecular targets of alcohol response. Most studies exploit the strengths of lab animals without considering how these and other species may have adapted to respond to alcohol in an ecological context. Here, we provide an evolutionary perspective on the molecular and genetic underpinnings of alcohol consumption by reviewing evidence that alcohol metabolic enzymes have undergone adaptive evolution at 2 evolutionary junctures: first, to enable alcohol consumption accompanying the advent of a frugivorous diet in a primate ancestor, and second, to decrease the likelihood of excessive alcohol consumption concurrent with the spread of agriculture and fermentation in East Asia. By similarly considering how diverse vertebrate and invertebrate species have undergone natural selection for alcohol responses, novel conserved molecular targets of alcohol are likely be discovered that may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Benjamin L Clites
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Hans A Hofmann
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jonathan T Pierce
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
McKenney EA, Hale AR, Anderson J, Larsen R, Grant C, Dunn RR. Hidden diversity: comparative functional morphology of humans and other species. PeerJ 2023; 11:e15148. [PMID: 37123005 PMCID: PMC10135406 DOI: 10.7717/peerj.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Gastrointestinal (GI) morphology plays an important role in nutrition, health, and epidemiology; yet limited data on GI variation have been collected since 1885. Here we demonstrate that students can collect reliable data sets on gut morphology; when they do, they reveal greater morphological variation for some structures in the GI tract than has been documented in the published literature. We discuss trait variability both within and among species, and the implications of that variability for evolution and epidemiology. Our results show that morphological variation in the GI tract is associated with each organ's role in food processing. For example, the length of many structures was found to vary significantly with feeding strategy. Within species, the variability illustrated by the coefficients of variation suggests that selective constraints may vary with function. Within humans, we detected significant Pearson correlations between the volume of the liver and the length of the appendix (t-value = 2.5278, df = 28, p = 0.0174, corr = 0.4311) and colon (t-value = 2.0991, df = 19, p = 0.0494, corr = 0.4339), as well as between the lengths of the small intestine and colon (t-value = 2.1699, df = 17, p = 0.0445, corr = 0.4657), which are arguably the most vital organs in the gut for nutrient absorption. Notably, intraspecific variation in the small intestine can be associated with life history traits. In humans, females demonstrated consistently and significantly longer small intestines than males (t-value15 = 2.245, p = 0.0403). This finding supports the female canalization hypothesis, specifically, increased female investment in the digestion and absorption of lipids.
Collapse
Affiliation(s)
- Erin A. McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States of America
| | - Amanda R. Hale
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- SNA International for the Defense POW/MIA Accounting Agency, Joint Base Pearl Harbor-Hickam, HI, United States of America
| | - Janiaya Anderson
- Department of Psychology, North Carolina State University, Raleigh, NC, United States of America
| | - Roxanne Larsen
- Office of Curricular Affairs, Duke University School of Medicine, Durham, NC, United States of America
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States of America
| | - Colleen Grant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
24
|
Hager M, Pöhler MT, Reinhardt F, Wellner K, Hübner J, Betat H, Prohaska S, Mörl M. Substrate Affinity Versus Catalytic Efficiency: Ancestral Sequence Reconstruction of tRNA Nucleotidyltransferases Solves an Enzyme Puzzle. Mol Biol Evol 2022; 39:6835633. [PMID: 36409584 PMCID: PMC9728577 DOI: 10.1093/molbev/msac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In tRNA maturation, CCA-addition by tRNA nucleotidyltransferase is a unique and highly accurate reaction. While the mechanism of nucleotide selection and polymerization is well understood, it remains a mystery why bacterial and eukaryotic enzymes exhibit an unexpected and surprisingly low tRNA substrate affinity while they efficiently catalyze the CCA-addition. To get insights into the evolution of this high-fidelity RNA synthesis, the reconstruction and characterization of ancestral enzymes is a versatile tool. Here, we investigate a reconstructed candidate of a 2 billion years old CCA-adding enzyme from Gammaproteobacteria and compare it to the corresponding modern enzyme of Escherichia coli. We show that the ancestral candidate catalyzes an error-free CCA-addition, but has a much higher tRNA affinity compared with the extant enzyme. The consequence of this increased substrate binding is an enhanced reverse reaction, where the enzyme removes the CCA end from the mature tRNA. As a result, the ancestral candidate exhibits a lower catalytic efficiency in vitro as well as in vivo. Furthermore, the efficient tRNA interaction leads to a processive polymerization, while the extant enzyme catalyzes nucleotide addition in a distributive way. Thus, the modern enzymes increased their polymerization efficiency by lowering the binding affinity to tRNA, so that CCA synthesis is efficiently promoted due to a reduced reverse reaction. Hence, the puzzling and at a first glance contradicting and detrimental weak substrate interaction represents a distinct activity enhancement in the evolution of CCA-adding enzymes.
Collapse
Affiliation(s)
| | | | - Franziska Reinhardt
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Jessica Hübner
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Sonja Prohaska
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA,Complexity Science Hub Vienna, Josefstädter Str. 39, 1080 Wien, Austria
| | | |
Collapse
|
25
|
Ayuso-Fernández I, Molpeceres G, Camarero S, Ruiz-Dueñas FJ, Martínez AT. Ancestral sequence reconstruction as a tool to study the evolution of wood decaying fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1003489. [PMID: 37746217 PMCID: PMC10512382 DOI: 10.3389/ffunb.2022.1003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 09/26/2023]
Abstract
The study of evolution is limited by the techniques available to do so. Aside from the use of the fossil record, molecular phylogenetics can provide a detailed characterization of evolutionary histories using genes, genomes and proteins. However, these tools provide scarce biochemical information of the organisms and systems of interest and are therefore very limited when they come to explain protein evolution. In the past decade, this limitation has been overcome by the development of ancestral sequence reconstruction (ASR) methods. ASR allows the subsequent resurrection in the laboratory of inferred proteins from now extinct organisms, becoming an outstanding tool to study enzyme evolution. Here we review the recent advances in ASR methods and their application to study fungal evolution, with special focus on wood-decay fungi as essential organisms in the global carbon cycling.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gonzalo Molpeceres
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | | | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| |
Collapse
|
26
|
Li J, Yang J, Cao J, Nan P, Gao J, Shi D, Han B, Yang Y. Characterization of liquor remains in Beibaie site, central China during the 8th century BCE. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
28
|
Frank HER, Amato K, Trautwein M, Maia P, Liman ER, Nichols LM, Schwenk K, Breslin PAS, Dunn RR. The evolution of sour taste. Proc Biol Sci 2022; 289:20211918. [PMID: 35135352 PMCID: PMC8826303 DOI: 10.1098/rspb.2021.1918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/05/2022] [Indexed: 01/05/2023] Open
Abstract
The evolutionary history of sour taste has been little studied. Through a combination of literature review and trait mapping on the vertebrate phylogenetic tree, we consider the origin of sour taste, potential cases of the loss of sour taste, and those factors that might have favoured changes in the valence of sour taste-from aversive to appealing. We reconstruct sour taste as having evolved in ancient fish. By contrast to other tastes, sour taste does not appear to have been lost in any major vertebrate taxa. For most species, sour taste is aversive. Animals, including humans, that enjoy the sour taste triggered by acidic foods are exceptional. We conclude by considering why sour taste evolved, why it might have persisted as vertebrates made the transition to land and what factors might have favoured the preference for sour-tasting, acidic foods, particularly in hominins, such as humans.
Collapse
Affiliation(s)
- Hannah E. R. Frank
- Department of Crop and Soil Sciences North Carolina State University, Raleigh, USA
| | - Katie Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, USA
| | - Paula Maia
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Emily R. Liman
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Lauren M. Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, USA
| | - Kurt Schwenk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Paul A. S. Breslin
- Department of Nutritional Sciences, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, USA
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Shima C, Lee R, Coccaro EF. Associations of agression and use of caffeine, alcohol and nicotine in healthy and aggressive individuals. J Psychiatr Res 2022; 146:21-27. [PMID: 34942448 DOI: 10.1016/j.jpsychires.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Caffeine, alcohol, and nicotine are the three most commonly used psychoactive substances in the world. Given the known propensity of these substances to influence behavior, the relationship between these substances and aggressive and impulsive behaviors, in particular is of interest. METHODS 1062 adult individuals participated in this study including those with Intermittent Explosive Disorder (IED) and non-aggressive healthy (HC) and psychiatric (PC) controls. Data regarding current and life use of caffeine, alcohol, and nicotine were recorded as were responses on measures of aggression, anger, and impulsivity. RESULTS Dimensional measures of aggression, anger, and impulsiveness were variably but significantly related to the consumption of these commonly used psychoactive substances. These findings were generally mirrored when using the categorical construct of IED. Finally, these findings were not due to comorbidity with other psychiatric disorders. CONCLUSIONS These data confirm a link between these externalizing behaviors and these three legal and commonly consumed psychoactive substances in clinically relevant individuals.
Collapse
Affiliation(s)
- Carolyn Shima
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral, Neuroscience, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Royce Lee
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral, Neuroscience, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Emil F Coccaro
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner, Medical Center, Columbus, OH, USA.
| |
Collapse
|
30
|
Garcia AK, Fer E, Sephus C, Kacar B. An Integrated Method to Reconstruct Ancient Proteins. Methods Mol Biol 2022; 2569:267-281. [PMID: 36083453 DOI: 10.1007/978-1-0716-2691-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Proteins have played a fundamental role throughout life's history on Earth. Despite their biological importance, ancient origin, early function, and evolution of proteins are seldom able to be directly studied because few of these attributes are preserved across geologic timescales. Ancestral sequence reconstruction (ASR) provides a method to infer ancestral amino acid sequences and determine the evolutionary predecessors of modern-day proteins using phylogenetic tools. Laboratory application of ASR allows ancient sequences to be deduced from genetic information available in extant organisms and then experimentally resurrected to elucidate ancestral characteristics. In this article, we provide a generalized, stepwise protocol that considers the major elements of a well-designed ASR study and details potential sources of reconstruction bias that can reduce the relevance of historical inferences. We underscore key stages in our approach so that it may be broadly utilized to reconstruct the evolutionary histories of proteins.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Evrim Fer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Cathryn Sephus
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Betul Kacar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Robinson K, Shah VH. Alcohol-Related Liver Disease. Clin Liver Dis (Hoboken) 2021; 18:93-106. [PMID: 34745586 PMCID: PMC8555460 DOI: 10.1002/cld.1162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Author Interview and Audio Recording.
Collapse
Affiliation(s)
- Kyle Robinson
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMN
| | - Vijay H. Shah
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMN
| |
Collapse
|
32
|
Amato KR, Mallott EK, D’Almeida Maia P, Savo Sardaro ML. Predigestion as an Evolutionary Impetus for Human Use of Fermented Food. CURRENT ANTHROPOLOGY 2021. [DOI: 10.1086/715238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
34
|
Craig OE. Prehistoric Fermentation, Delayed-Return Economies, and the Adoption of Pottery Technology. CURRENT ANTHROPOLOGY 2021. [DOI: 10.1086/716610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Hendy J, Rest M, Aldenderfer M, Warinner C. Cultures of Fermentation: Living with Microbes. CURRENT ANTHROPOLOGY 2021. [DOI: 10.1086/715476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
|
37
|
Carn D, Lanaspa MA, Benner SA, Andrews P, Dudley R, Andres-Hernando A, Tolan DR, Johnson RJ. The role of thrifty genes in the origin of alcoholism: A narrative review and hypothesis. Alcohol Clin Exp Res 2021; 45:1519-1526. [PMID: 34120350 PMCID: PMC8429132 DOI: 10.1111/acer.14655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023]
Abstract
In this narrative review, we present the hypothesis that key mutations in two genes, occurring 15 and 10 million years ago (MYA), were individually and then collectively adaptive for ancestral humans during periods of starvation, but are maladaptive in modern civilization (i.e., "thrifty genes"), with the consequence that these genes not only increase our risk today for obesity, but also for alcoholism. Both mutations occurred when ancestral apes were experiencing loss of fruit availability during periods of profound climate change or environmental upheaval. The silencing of uricase (urate oxidase) activity 15 MYA enhanced survival by increasing the ability for fructose present in dwindling fruit to be stored as fat, a consequence of enhanced uric acid production during fructose metabolism that stimulated lipogenesis and blocked fatty acid oxidation. Likewise, a mutation in class IV alcohol dehydrogenase ~10 MYA resulted in a remarkable 40-fold increase in the capacity to oxidize ethanol (EtOH), which allowed our ancestors to ingest fallen, fermenting fruit. In turn, the EtOH ingested could activate aldose reductase that stimulates the conversion of glucose to fructose, while uric acid produced during EtOH metabolism could further enhance fructose production and metabolism. By aiding survival, these mutations would have allowed our ancestors to generate more fat, primarily from fructose, to survive changing habitats due to the Middle Miocene disruption and also during the late-Miocene aridification of East Africa. Unfortunately, the enhanced ability to metabolize and utilize EtOH may now be acting to increase our risk for alcoholism, which may be yet another consequence of once-adaptive thrifty genes.
Collapse
Affiliation(s)
| | - Miguel A. Lanaspa
- Division of Nephrology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Steven A. Benner
- The Foundation for Applied Molecular Evolution, Alachua, FL, USA
| | - Peter Andrews
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ana Andres-Hernando
- Division of Nephrology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Dean R. Tolan
- Department of Biochemistry, Boston University, Boston, MA, USA
| | - Richard J. Johnson
- Division of Nephrology, University of Colorado Anschutz Medical Center, Aurora, CO, USA,The Rocky Mountain VA Medical Center, Aurora CO, USA
| |
Collapse
|
38
|
Human Evolution and Dietary Ethanol. Nutrients 2021; 13:nu13072419. [PMID: 34371928 PMCID: PMC8308604 DOI: 10.3390/nu13072419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The "drunken monkey" hypothesis posits that attraction to ethanol derives from an evolutionary linkage among the sugars of ripe fruit, associated alcoholic fermentation by yeast, and ensuing consumption by human ancestors. First proposed in 2000, this concept has received increasing attention from the fields of animal sensory biology, primate foraging behavior, and molecular evolution. We undertook a review of English language citations subsequent to publication of the original paper and assessed research trends and future directions relative to natural dietary ethanol exposure in primates and other animals. Two major empirical themes emerge: attraction to and consumption of fermenting fruits (and nectar) by numerous vertebrates and invertebrates (e.g., Drosophila flies), and genomic evidence for natural selection consistent with sustained exposure to dietary ethanol in diverse taxa (including hominids and the genus Homo) over tens of millions of years. We also describe our current field studies in Uganda of ethanol content within fruits consumed by free-ranging chimpanzees, which suggest chronic low-level exposure to this psychoactive molecule in our closest living relatives.
Collapse
|
39
|
Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R. Hof P. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021; 11:biom11060823. [PMID: 34072960 PMCID: PMC8228195 DOI: 10.3390/biom11060823] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
- Correspondence:
| | - Mladenka Tkalčić
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, 51000 Rijeka, Croatia;
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Damir Mulc
- University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia;
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Marina Šagud
- Department of Psychiatry, Clinical Hospital Center Zagreb and University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | | | - Mario Vukšić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 07305, USA;
| |
Collapse
|
40
|
Amato KR, Chaves ÓM, Mallott EK, Eppley TM, Abreu F, Baden AL, Barnett AA, Bicca-Marques JC, Boyle SA, Campbell CJ, Chapman CA, De la Fuente MF, Fan P, Fashing PJ, Felton A, Fruth B, Fortes VB, Grueter CC, Hohmann G, Irwin M, Matthews JK, Mekonnen A, Melin AD, Morgan DB, Ostner J, Nguyen N, Piel AK, Pinacho-Guendulain B, Quintino-Arêdes EP, Razanaparany PT, Schiel N, Sanz CM, Schülke O, Shanee S, Souto A, Souza-Alves JP, Stewart F, Stewart KM, Stone A, Sun B, Tecot S, Valenta K, Vogel ER, Wich S, Zeng Y. Fermented food consumption in wild nonhuman primates and its ecological drivers. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:513-530. [PMID: 33650680 DOI: 10.1002/ajpa.24257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Although fermented food use is ubiquitous in humans, the ecological and evolutionary factors contributing to its emergence are unclear. Here we investigated the ecological contexts surrounding the consumption of fruits in the late stages of fermentation by wild primates to provide insight into its adaptive function. We hypothesized that climate, socioecological traits, and habitat patch size would influence the occurrence of this behavior due to effects on the environmental prevalence of late-stage fermented foods, the ability of primates to detect them, and potential nutritional benefits. MATERIALS AND METHODS We compiled data from field studies lasting at least 9 months to describe the contexts in which primates were observed consuming fruits in the late stages of fermentation. Using generalized linear mixed-effects models, we assessed the effects of 18 predictor variables on the occurrence of fermented food use in primates. RESULTS Late-stage fermented foods were consumed by a wide taxonomic breadth of primates. However, they generally made up 0.01%-3% of the annual diet and were limited to a subset of fruit species, many of which are reported to have mechanical and chemical defenses against herbivores when not fermented. Additionally, late-stage fermented food consumption was best predicted by climate and habitat patch size. It was more likely to occur in larger habitat patches with lower annual mean rainfall and higher annual mean maximum temperatures. DISCUSSION We posit that primates capitalize on the natural fermentation of some fruits as part of a nutritional strategy to maximize periods of fruit exploitation and/or access a wider range of plant species. We speculate that these factors contributed to the evolutionary emergence of the human propensity for fermented foods.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Óscar M Chaves
- Escuela de Biología, Universidad de Costa Rica, UCR, San José, Costa Rica
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Timothy M Eppley
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California, USA.,Department of Anthropology, Portland State University, Portland, Oregon, USA
| | - Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), City University of New York, New York, New York, USA
| | - Adrian A Barnett
- Amazon Mammals Research Group, National Amazon Research Institute (INPA), Manaus, AM, Brazil & Department of. Zoology, Federal University of Pernambuco, Recife, Prince Edward Island, Brazil
| | - Julio Cesar Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Sarah A Boyle
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
| | - Christina J Campbell
- Department of Anthropology, California State University Northridge, Northridge, California, USA
| | - Colin A Chapman
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA.,School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | | | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peter J Fashing
- Department of Anthropology and Environmental Studies Program, California State University Fullerton, Fullerton, California, USA.,Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Annika Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Barbara Fruth
- Department of Human Behavior, Ecology and Culture, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Vanessa B Fortes
- Laboratório de Primatologia, Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, Palmeira das Missões, RS, Brazil
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, Australia.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Gottfried Hohmann
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mitchell Irwin
- Department of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaya K Matthews
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Australia.,Africa Research & Engagement Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Addisu Mekonnen
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | - Julia Ostner
- Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Nga Nguyen
- Department of Anthropology and Environmental Studies Program, California State University Fullerton, Fullerton, California, USA.,Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Alex K Piel
- Department of Anthropology, University College London, London, United Kingdom
| | - Braulio Pinacho-Guendulain
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Lerma, Mexico.,Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Oaxaca, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Erika Patricia Quintino-Arêdes
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Patrick Tojotanjona Razanaparany
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan.,Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA.,Congo Program, Wildlife Conservation Society, Brazzaville, Congo
| | - Oliver Schülke
- Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Sam Shanee
- Neotropical Primate Conservation, Cornwall, United Kingdom
| | - Antonio Souto
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - João Pedro Souza-Alves
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fiona Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kathrine M Stewart
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Anita Stone
- Biology Department, California Lutheran University, Thousand Oaks, California, USA
| | - Binghua Sun
- School of Resource and Environmental Engineering, Anhui University, Hefei, China
| | - Stacey Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Kim Valenta
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | - Erin R Vogel
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Serge Wich
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
41
|
Mukamal KJ. A safe level of alcohol consumption: the right answer demands the right question. J Intern Med 2020; 288:550-559. [PMID: 32529652 DOI: 10.1111/joim.13129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Alcohol has been produced by humans for nearly ten millennia, but gold-standard evidence by which to judge the health effects of limited alcohol consumption remains elusive, introducing serious difficulty in considering the safety of alcohol consumption. To do so, physicians and policymakers must consider the population, dose and context of alcohol consumption and the end-point, preferably a holistic composite, of interest. The limitations of new research trends, such as mega-cohorts, genetic instrumental variable analysis and modelling studies, must also be viewed against the much larger backdrop of existing evidence. Some existing guidelines, such as the 2015-2020 Dietary Guidelines for Americans, succeed remarkably in this task. Nonetheless, large-scale randomized trials are urgently needed if future generations are to enjoy any greater insight into the health effects of population-wide alcohol consumption than the current one has.
Collapse
Affiliation(s)
- K J Mukamal
- From the, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
42
|
Oei JL. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020; 115:2148-2163. [PMID: 32149441 DOI: 10.1111/add.15036] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
AIMS To review the impact of prenatal alcohol exposure on the outcomes of the mother and child. DESIGN Narrative review. SETTING Review of literature. PARTICIPANTS Mothers and infants affected by prenatal alcohol use. MEASUREMENTS Outcomes of mothers and children. FINDINGS Prenatal alcohol exposure is one of the most important causes of preventable cognitive impairment in the world. The developing neurological system is exquisitely sensitive to harm from alcohol and there is now also substantial evidence that alcohol-related harm can extend beyond the individual person, leading to epigenetic changes and intergenerational vulnerability and disadvantage. There is no known safe level or timing of drinking for pregnant or lactating women and binge drinking (> four drinks within 2 hours for women) is the most harmful. Alcohol-exposure increases the risk of congenital problems, including Fetal Alcohol Spectrum Disorder (FASD) and its most severe form, Fetal Alcohol Syndrome (FAS). CONCLUSION The impact of FASD and FAS is enduring and life-long with no current treatment or cure. Emerging therapeutic options may mitigate the worst impact of alcohol exposure but significant knowledge gaps remain. This review discusses the history, epidemiology and clinical presentations of prenatal alcohol exposure, focusing on FASD and FAS, and the impact of evidence on future research, practice and policy directions.
Collapse
Affiliation(s)
- Ju Lee Oei
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia.,Department of Newborn Care, the Royal Hospital for Women, Randwick, NSW, Australia.,Drug and Alcohol Services, Murrumbidgee Local Health District, NSW, Australia
| |
Collapse
|
43
|
Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii. Sci Rep 2020; 10:14716. [PMID: 32895409 PMCID: PMC7477236 DOI: 10.1038/s41598-020-71663-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Over the course of human history and in most societies, fermented beverages have had a unique economic and cultural importance. Before the arrival of the first Europeans in Australia, Aboriginal people reportedly produced several fermented drinks including mangaitch from flowering cones of Banksia and way-a-linah from Eucalyptus tree sap. In the case of more familiar fermented beverages, numerous microorganisms, including fungi, yeast and bacteria, present on the surface of fruits and grains are responsible for the conversion of the sugars in these materials into ethanol. Here we describe native microbial communities associated with the spontaneous fermentation of sap from the cider gum Eucalyptus gunnii, a Eucalyptus tree native to the remote Central Plateau of Tasmania. Amplicon-based phylotyping showed numerous microbial species in cider gum samples, with fungal species differing greatly to those associated with winemaking. Phylotyping also revealed several fungal sequences which do not match known fungal genomes suggesting novel yeast species. These findings highlight the vast microbial diversity associated with the Australian Eucalyptus gunnii and the native alcoholic beverage way-a-linah.
Collapse
|
44
|
Haass-Koffler CL, Cannella N, Ciccocioppo R. Translational dynamics of alcohol tolerance of preclinical models and human laboratory studies. Exp Clin Psychopharmacol 2020; 28:417-425. [PMID: 32212746 PMCID: PMC7390673 DOI: 10.1037/pha0000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing sensitivity due to alcohol intake has been explored using molecular and cellular mechanisms of sensitization and adaptive biobehavioral changes as well as through negative experiences of altered function during withdrawal. However, within both a preclinical and human laboratory setting, little has been elucidated toward understanding the neural substrates of decreased sensitivity to alcohol effects, that is, alcohol tolerance. More paradigms assessing alcohol tolerance are needed. Tolerance can be assessed through both self-reported response (subjective) and observed (objective) measurements. Therefore, sensitivity to alcohol is an exploitable variable that can be utilized to disentangle the diverse alcohol use disorder (AUD) phenotypical profile. This literature review focuses on preclinical models and human laboratory studies to evaluate alcohol tolerance and its modulating factors. Increased understanding of alcohol tolerance has the potential to reduce gaps between preclinical models and human laboratory studies to better evaluate the development of alcohol-related biobehavioral responses. Furthermore, alcohol tolerance can be used as an AUD phenotypic variable in randomized clinical trials designed for developing AUD therapies. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University
| | | | | |
Collapse
|
45
|
Janiak MC, Pinto SL, Duytschaever G, Carrigan MA, Melin AD. Genetic evidence of widespread variation in ethanol metabolism among mammals: revisiting the 'myth' of natural intoxication. Biol Lett 2020; 16:20200070. [PMID: 32343936 DOI: 10.1098/rsbl.2020.0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Humans have a long evolutionary relationship with ethanol, pre-dating anthropogenic sources, and possess unusually efficient ethanol metabolism, through a mutation that evolved in our last common ancestor with African great apes. Increased exposure to dietary ethanol through fermenting fruits and nectars is hypothesized to have selected for this in our lineage. Yet, other mammals have frugivorous and nectarivorous diets, raising the possibility of natural ethanol exposure and adaptation in other taxa. We conduct a comparative genetic analysis of alcohol dehydrogenase class IV (ADH IV) across mammals to provide insight into their evolutionary history with ethanol. We find genetic variation and multiple pseudogenization events in ADH IV, indicating the ability to metabolize ethanol is variable. We suggest that ADH enzymes are evolutionarily plastic and show promise for revealing dietary adaptation. We further highlight the derived condition of humans and draw attention to problems with modelling the physiological responses of other mammals on them, a practice that has led to potentially erroneous conclusions about the likelihood of natural intoxication in wild animals. It is a fallacy to assume that other animals share our metabolic adaptations, rather than taking into consideration each species' unique physiology.
Collapse
Affiliation(s)
- Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Swellan L Pinto
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, AB, Canada
| |
Collapse
|
46
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
47
|
Dunn RR, Amato KR, Archie EA, Arandjelovic M, Crittenden AN, Nichols LM. The Internal, External and Extended Microbiomes of Hominins. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Amato KR, Mallott EK, McDonald D, Dominy NJ, Goldberg T, Lambert JE, Swedell L, Metcalf JL, Gomez A, Britton GAO, Stumpf RM, Leigh SR, Knight R. Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol 2019; 20:201. [PMID: 31590679 PMCID: PMC6781418 DOI: 10.1186/s13059-019-1807-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Comparative data from non-human primates provide insight into the processes that shaped the evolution of the human gut microbiome and highlight microbiome traits that differentiate humans from other primates. Here, in an effort to improve our understanding of the human microbiome, we compare gut microbiome composition and functional potential in 14 populations of humans from ten nations and 18 species of wild, non-human primates. RESULTS Contrary to expectations from host phylogenetics, we find that human gut microbiome composition and functional potential are more similar to those of cercopithecines, a subfamily of Old World monkey, particularly baboons, than to those of African apes. Additionally, our data reveal more inter-individual variation in gut microbiome functional potential within the human species than across other primate species, suggesting that the human gut microbiome may exhibit more plasticity in response to environmental variation compared to that of other primates. CONCLUSIONS Given similarities of ancestral human habitats and dietary strategies to those of baboons, these findings suggest that convergent ecologies shaped the gut microbiomes of both humans and cercopithecines, perhaps through environmental exposure to microbes, diet, and/or associated physiological adaptations. Increased inter-individual variation in the human microbiome may be associated with human dietary diversity or the ability of humans to inhabit novel environments. Overall, these findings show that diet, ecology, and physiological adaptations are more important than host-microbe co-diversification in shaping the human microbiome, providing a key foundation for comparative analyses of the role of the microbiome in human biology and health.
Collapse
Affiliation(s)
- Katherine R. Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208 USA
| | - Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208 USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, San Diego, 92093 USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, 92093 USA
| | | | - Tony Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, 53706 USA
| | - Joanna E. Lambert
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, 80302 USA
| | - Larissa Swedell
- Department of Anthropology, City University of New York - Queens College, New York, 11367 USA
| | - Jessica L. Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, 80521 USA
| | - Andres Gomez
- Department of Animal Sciences, University of Minnesota, Minneapolis, 55108 USA
| | | | - Rebecca M. Stumpf
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, 61801 USA
| | - Steven R. Leigh
- Department of Anthropology, University of Colorado Boulder, Boulder, 80302 USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, 92093 USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, 92093 USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, 92093 USA
- Department of Bioengineering, University of California San Diego, San Diego, 92093 USA
| |
Collapse
|
49
|
Garcia AK, Kaçar B. How to resurrect ancestral proteins as proxies for ancient biogeochemistry. Free Radic Biol Med 2019; 140:260-269. [PMID: 30951835 DOI: 10.1016/j.freeradbiomed.2019.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/11/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Throughout the history of life, enzymes have served as the primary molecular mediators of biogeochemical cycles by catalyzing the metabolic pathways that interact with geochemical substrates. The byproducts of enzymatic activities have been preserved as chemical and isotopic signatures in the geologic record. However, interpretations of these signatures are limited by the assumption that such enzymes have remained functionally conserved over billions of years of molecular evolution. By reconstructing ancient genetic sequences in conjunction with laboratory enzyme resurrection, preserved biogeochemical signatures can instead be related to experimentally constrained, ancestral enzymatic properties. We may thereby investigate instances within molecular evolutionary trajectories potentially tied to significant biogeochemical transitions evidenced in the geologic record. Here, we survey recent enzyme resurrection studies to provide a reasoned assessment of areas of success and common pitfalls relevant to ancient biogeochemical applications. We conclude by considering the Great Oxidation Event, which provides a constructive example of a significant biogeochemical transition that warrants investigation with ancestral enzyme resurrection. This event also serves to highlight the pitfalls of facile interpretation of paleophenotype models and data, as applied to two examples of enzymes that likely both influenced and were influenced by the rise of atmospheric oxygen - RuBisCO and nitrogenase.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
50
|
Peters A, Krumbholz P, Jäger E, Heintz-Buschart A, Çakir MV, Rothemund S, Gaudl A, Ceglarek U, Schöneberg T, Stäubert C. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet 2019; 15:e1008145. [PMID: 31120900 PMCID: PMC6532841 DOI: 10.1371/journal.pgen.1008145] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
The interplay of microbiota and the human host is physiologically crucial in health and diseases. The beneficial effects of lactic acid bacteria (LAB), permanently colonizing the human intestine or transiently obtained from food, have been extensively reported. However, the molecular understanding of how LAB modulate human physiology is still limited. G protein-coupled receptors for hydroxycarboxylic acids (HCAR) are regulators of immune functions and energy homeostasis under changing metabolic and dietary conditions. Most mammals have two HCAR (HCA1, HCA2) but humans and other hominids contain a third member (HCA3) in their genomes. A plausible hypothesis why HCA3 function was advantageous in hominid evolution was lacking. Here, we used a combination of evolutionary, analytical and functional methods to unravel the role of HCA3in vitro and in vivo. The functional studies included different pharmacological assays, analyses of human monocytes and pharmacokinetic measurements in human. We report the discovery of the interaction of D-phenyllactic acid (D-PLA) and the human host through highly potent activation of HCA3. D-PLA is an anti-bacterial metabolite found in high concentrations in LAB-fermented food such as Sauerkraut. We demonstrate that D-PLA from such alimentary sources is well absorbed from the human gut leading to high plasma and urine levels and triggers pertussis toxin-sensitive migration of primary human monocytes in an HCA3-dependent manner. We provide evolutionary, analytical and functional evidence supporting the hypothesis that HCA3 was consolidated in hominids as a new signaling system for LAB-derived metabolites. Although it has been known for 15 years that HCA3 is present in humans and other hominids but absent in all other mammals, no study so far aimed to understand why HCA3 was functionally preserved during evolution. Here, we take advantage of evolutionary analyses which we combine with functional assays of hominid HCA3 orthologs. In search for a reasonable scenario explaining the accumulated amino acid changes in HCA3 of hominids we discovered D-phenyllactic acid (D-PLA), a metabolite produced by lactic acid bacteria (LAB), as the so far most potent agonist specifically activating HCA3. Further, oral ingestion of Sauerkraut, known to contain high levels of D-PLA, caused subsequent plasma concentrations sufficient to activate HCA3. Our data interpreted in an evolutionary context suggests that the availability of a new food repertoire under changed ecological conditions triggered the fixation of HCA3 which took over new functions in hominids. These findings are particularly important because they unveiled HCA3, which is not only expressed in various immune cells but also adipocytes, lung and skin, as a player that transfers signals of LAB-derived metabolites into a physiological response in humans. This opens up new directions towards the understanding of the versatile beneficial effects of LAB and their metabolites for humans.
Collapse
Affiliation(s)
- Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Elisabeth Jäger
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Leipzig, Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Soil Ecology, Halle (Saale), Germany
| | - Mehmet Volkan Çakir
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Sven Rothemund
- Core Unit Peptide-Technologies, Leipzig University, Leipzig, Germany
| | - Alexander Gaudl
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|