1
|
Jang KK, Heaney T, London M, Ding Y, Putzel G, Yeung F, Ercelen D, Chen YH, Axelrad J, Gurunathan S, Zhou C, Podkowik M, Arguelles N, Srivastava A, Shopsin B, Torres VJ, Keestra-Gounder AM, Pironti A, Griffin ME, Hang HC, Cadwell K. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host Microbe 2023; 31:1450-1468.e8. [PMID: 37652008 PMCID: PMC10502928 DOI: 10.1016/j.chom.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/02/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1β (IL-1β) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
Collapse
Affiliation(s)
- Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Heaney
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mariya London
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA 17822, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Frank Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Defne Ercelen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying-Han Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sakteesh Gurunathan
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chaoting Zhou
- Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Magdalena Podkowik
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Natalia Arguelles
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anusha Srivastava
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - A Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Filipe Rosa L, Rings A, Stolzer I, Koeninger L, Wehkamp J, Beisner J, Günther C, Nordkild P, Jensen BAH, Bischoff SC. Human α-Defensin 5 1-9 and Human β-Defensin 2 Improve Metabolic Parameters and Gut Barrier Function in Mice Fed a Western-Style Diet. Int J Mol Sci 2023; 24:13878. [PMID: 37762180 PMCID: PMC10531064 DOI: 10.3390/ijms241813878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity and metabolic comorbidities are associated with gut permeability. While high-fructose and Western-style diet (WSD) disrupt intestinal barrier function, oral administration of human α-defensin 5 (HD5) and β-defensin 2 (hBD2) is believed to improve intestinal integrity and metabolic disorders. Eighty-four male C57BL/6J mice were fed a WSD or a control diet (CD) ± fructose (F) for 18 weeks. In week 13, mice were randomly divided into three intervention groups, receiving defensin fragment HD51-9, full-length hBD2, or bovine serum albumin (BSA)-control for six weeks. Subsequently, parameters of hepatic steatosis, glucose metabolism, and gut barrier function were assessed. WSDF increased body weight and hepatic steatosis (p < 0.01) compared to CD-fed mice, whereas peptide intervention decreased liver fat (p < 0.05) and number of hepatic lipid droplets (p < 0.01) compared to BSA-control. In addition, both peptides attenuated glucose intolerance by reducing blood glucose curves in WSDF-fed mice. Evaluation of gut barrier function revealed that HD51-9 and hBD2 improve intestinal integrity by upregulating tight junction and mucin expression. Moreover, peptide treatment restored ileal host defense peptides (HDP) expression, likely by modulating the Wnt, Myd88, p38, and Jak/STAT pathways. These findings strongly suggest that α- and β-defensin treatment improve hepatic steatosis, glucose metabolism, and gut barrier function.
Collapse
Affiliation(s)
- Louisa Filipe Rosa
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Andreas Rings
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Louis Koeninger
- Department of Internal Medicine I, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Julia Beisner
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Benjamin A. H. Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| |
Collapse
|
3
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Breaux WA, Bragg MA, M'Koma AE. Ubiquitous Colonic Ileal Metaplasia Consistent with the Diagnosis of Crohn's Colitis among Indeterminate Colitis Cohorts. MEDICAL RESEARCH ARCHIVES 2023; 11:4188. [PMID: 37854669 PMCID: PMC10584353 DOI: 10.18103/mra.v11i8.4188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Background Inadequate differentiated diagnostic features of predominantly colonic inflammatory bowel diseases i.e., ulcerative colitis and Crohn's colitis, may lead to inexact diagnosis of "indeterminate colitis". About 15% of indeterminate colitis patients are diagnosed at colonoscopy, in colonic biopsies, and/or at colectomy. Managing outcomes of indeterminate colitis, given its unpredictable clinical presentation, depends on future diagnosis of colitis, Crohn's colitis or ulcerative colitis. Objective Overview the diagnostic efficacy of ectopic colonic ileal metaplasia and human α-defens 5 (DEFA5 alias HD5) for accurate delineation of indeterminate colitis into authentic Crohn's colitis and/ or ulcerative colitis. Design We describe a targeted protein for potentially differentiating indeterminate colitis into an accurate clinical subtype diagnosis of inflammatory bowel diseases i.e., ulcerative colitis and Crohn's colitis. Patients Twenty-one patients with the clinically inexact diagnosis of indeterminate colitis were followed, reassessed and data analyzed. Main outcome measures We observed that (i) some patients had their original diagnosis changed from indeterminate colitis to either ulcerative colitis or Crohn's colitis; and (ii) human α-defensin 5 is aberrantly overexpressed in Crohn's colitis. Results Fifteen of the twenty-one (71.4%) patients with indeterminate colitis had their inconclusive diagnosis changed; nine patients changed to ulcerative colitis and six to Crohn's colitis. In human colon surgical samples, Human α-defensin-5 was significantly upregulated in Crohn's colitis. In addition, Human α-defensin 5 processing enzyme, matrix metalloptotease-7 was inversely expressed compared to Human α- Defensin 5. Limitation Due to the sequence homology of the α-defensin class of proteins, preceding efforts to raise antibodies (Abs) against DEFA5 have limitations to produce adequate specificity. The Abs used in previous assays recognizes the α-defensins, active α-defensins 5 and inactive pro- α-defensins 5. Monoclonal antibodies (mAbs) to determine specificity and sensitivity of α-defensins 5, which is diagnostic of CC disease, and NOT other α-defensins is the limitation to overcome. Conclusion It is feasible to differentiate ulcerative colitis from Crohn's colitis among patients with inexact diagnosis of indeterminate colitis using Human α-defensin 5 as a molecular biosignature delineator.
Collapse
Affiliation(s)
- William A. Breaux
- Schools of Medicine, Meharry Medical College, Division of Biomedical Sciences, Nashville, Tennessee, Unite States of America
| | - Maya A. Bragg
- Schools of Medicine, Meharry Medical College, Division of Biomedical Sciences, Nashville, Tennessee, Unite States of America
| | - Amosy E. M'Koma
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Nashville, Tennessee, Unite States of America
- Department of Surgery, Colon and Rectal Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, Unite States of America
| |
Collapse
|
5
|
Bakke DS, Zhang J, Zhang Y, Ogbu D, Xia Y, Sun J. Myeloid vitamin D receptor regulates Paneth cells and microbial homeostasis. FASEB J 2023; 37:e22957. [PMID: 37219463 PMCID: PMC10321143 DOI: 10.1096/fj.202202169rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Cross talk between immune cells and the intestinal crypt is critical in maintaining intestinal homeostasis. Recent studies highlight the direct impact of vitamin D receptor (VDR) signaling on intestinal and microbial homeostasis. However, the tissue-specific role of immune VDR signaling is not fully understood. Here, we generated a myeloid-specific VDR knockout (VDRΔLyz ) mouse model and used a macrophage/enteroids coculture system to examine tissue-specific VDR signaling in intestinal homeostasis. VDRΔLyz mice exhibited small intestine elongation and impaired Paneth cell in maturation and localization. Coculture of enteroids with VDR-/- macrophages increased the delocalization of Paneth cells. VDRΔLyz mice exhibited significant changes in the microbiota taxonomic and functional files, and susceptibility to Salmonella infection. Interestingly, loss of myeloid VDR impaired Wnt secretion in macrophages, thus inhibiting crypt β-catenin signaling and disrupting Paneth cell differentiation in the epithelium. Taken together, our data have demonstrated that myeloid cells regulate crypt differentiation and the microbiota in a VDR-dependent mechanism. Dysregulation of myeloid VDR led to high risks of colitis-associated diseases. Our study provided insight into the mechanism of immune/Paneth cell cross talk in regulating intestinal homeostasis.
Collapse
Affiliation(s)
- Danika S Bakke
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Destiny Ogbu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
- UIC Cancer Center, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
6
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
7
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Jang KK, Heaney T, London M, Ding Y, Yeung F, Ercelen D, Chen YH, Axelrad J, Gurunathan S, Marijke Keestra-Gounder A, Griffin ME, Hang HC, Cadwell K. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526128. [PMID: 36778381 PMCID: PMC9915521 DOI: 10.1101/2023.01.29.526128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium ( Efm ) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA. Microbiota sensing by NOD2 in myeloid cells mediated IL-1β secretion and increased the proportion of IL-22-producing CD4 + T helper cells and innate lymphoid cells. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
Collapse
|
9
|
Vitamin A- and D-Deficient Diets Disrupt Intestinal Antimicrobial Peptide Defense Involving Wnt and STAT5 Signaling Pathways in Mice. Nutrients 2023; 15:nu15020376. [PMID: 36678247 PMCID: PMC9863741 DOI: 10.3390/nu15020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Vitamin A and D deficiencies are associated with immune modulatory effects and intestinal barrier impairment. However, the underlying mechanisms remain unclear. C57BL/6J mice were fed either a diet lacking in vitamin A (VAd), vitamin D (VDd) or a control diet (CD) for 12 weeks. Gut barrier function, antimicrobial peptide (AMP) defense and regulatory pathways were assessed. VAd mice compared to CD mice showed a reduced villus length in the ileum (p < 0.01) and decreased crypt depth in the colon (p < 0.05). In both VAd- and VDd-fed mice, ileal α-defensin 5 (p < 0.05/p < 0.0001 for VAd/VDd) and lysozyme protein levels (p < 0.001/p < 0.0001) were decreased. Moreover, mRNA expression of lysozyme (p < 0.05/p < 0.05) and total cryptdins (p < 0.001/p < 0.01) were reduced compared to controls. Furthermore, matrix metalloproteinase-7 (Mmp7) mRNA (p < 0.0001/p < 0.001) as well as components of the Wnt signaling pathway were decreased. VAd- and VDd-fed mice, compared to control mice, exhibited increased expression of pro-inflammatory markers and β-defensins in the colon. Organoid cell culture confirmed that vitamins A and D regulate AMP expression, likely through the Jak/STAT5 signaling pathway. In conclusion, our data show that vitamin A and D regulate intestinal antimicrobial peptide defense through Wnt and STAT5 signaling pathways.
Collapse
|
10
|
Ai LS, Yu YB. Role of Paneth cells-associated Crohn's disease susceptibility genes in development of Crohn's disease. Shijie Huaren Xiaohua Zazhi 2022; 30:1009-1015. [DOI: 10.11569/wcjd.v30.i23.1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory digestive tract disease, and its pathogenesis involves many factors such as genetics, environment, and flora. In terms of genetic factors, many susceptibility genes and pathogenic pathways of CD are associated with Paneth cells (PCs). Numerous studies have demonstrated that PCs are involved in the pathogenesis of CD by affecting the gut microbiota and inducing intestinal epithelial barrier dysfunction and immune abnormalities. These advances provide new ideas for the prevention of CD and potential therapeutic targets for this disease. This article reviews the role of PCs-associated CD susceptibility genes in the pathogenesis of CD.
Collapse
Affiliation(s)
- Li-Si Ai
- Qilu Hospital of Shandong University (First Clinical College), Jinan 250012, Shandong Province, China
| | - Yan-Bo Yu
- Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
11
|
Abstract
Inflammatory bowel diseases (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC), are lifelong and incurable chronic inflammatory diseases affecting 6.8 million people worldwide. By 2030, the prevalence of IBD is estimated to reach 1% of the population in Western countries, and thus there is an urgent need to develop effective therapies to reduce the burden of this disease. Microbiome dysbiosis is at the heart of the IBD pathophysiology, and current research and development efforts for IBD treatments have been focused on gut microbiome regulation. Diet can shape the intestinal microbiome. Diet is also preferred over medication, is safe, and has been proven to be an effective strategy for the management of IBD. Therefore, although often overlooked, dietary interventions targeting the microbiome represent ideal treatments for IBD. Here, I summarize the latest research on diet as a treatment for IBD from infancy to adulthood, compile evidence of the mechanisms of action behind diet as treatment, and, lastly, provide insights into future research focusing on culturally tailored diets for ethnic minority groups with increased incidence of IBD yet underrepresented in nutrition research.
Collapse
Affiliation(s)
- Ana Maldonado-Contreras
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Program of Microbiome Dynamics, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Cheng WX, Ren Y, Lu MM, Xu LL, Gao JG, Chen D, Kalyani FS, Lv ZY, Chen CX, Ji F, Lin HN, Jin X. Palmitoylation in Crohn’s disease: Current status and future directions. World J Gastroenterol 2021; 27:8201-8215. [PMID: 35068865 PMCID: PMC8717020 DOI: 10.3748/wjg.v27.i48.8201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
S-palmitoylation is one of the most common post-translational modifications in nature; however, its importance has been overlooked for decades. Crohn’s disease (CD), a subtype of inflammatory bowel disease (IBD), is an autoimmune disease characterized by chronic inflammation involving the entire gastrointestinal tract. Bowel damage and subsequent disabilities caused by CD are a growing global health issue. Well-acknowledged risk factors for CD include genetic susceptibility, environmental factors, such as a westernized lifestyle, and altered gut microbiota. However, the pathophysiological mechanisms of this disorder are not yet comprehensively understood. With the rapidly increasing global prevalence of CD and the evident role of S-palmitoylation in CD, as recently reported, there is a need to investigate the relationship between CD and S-palmitoylation. In this review, we summarize the concept, detection, and function of S-palmitoylation as well as its potential effects on CD, and provide novel insights into the pathogenesis and treatment of CD.
Collapse
Affiliation(s)
- Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Miao-Miao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Farhin Shaheed Kalyani
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zi-Yan Lv
- Wenzhou Medical University Renji College, Wenzhou 325035, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - He-Ning Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, United States
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
13
|
Han YM, Gao H, Hua RX, Liang C, Guo YX, Shang HW, Lu X, Xu JD. Paneth cells and intestinal health. Shijie Huaren Xiaohua Zazhi 2021; 29:1362-1372. [DOI: 10.11569/wcjd.v29.i23.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paneth cells (PC) are a group of secretory cells derived from intestinal stem cells (ISC) and colonized in the bottom of the small intestinal crypt. As an important "guardian" of intestinal health, PC can not only secrete a variety of antibacterial peptides and cytokines to regulate intestinal homeostasis and participate in immune responses, but also release growth factors to support the stem cell niche and regulate their proliferation and differentiation. Of particular concern, as a static stem cell pool, PC can acquire a stem cell-like transcriptome after the injury of intestinal tissue so as to promote regeneration and repair the damaged intestinal tissue. Particularly, PC are closely related to a number of diseases that affect intestinal health, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). The research of biological functions of PC may provide ideas for the treatment of these diseases. In summary, the role of PC in maintaining intestinal health should not be underestimated.
Collapse
Affiliation(s)
- Yi-Min Han
- 2019 Oral Medicine, Capital Medical University, Beijing 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Rong-Xuan Hua
- 2020 Clinical Medicine of "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Chen Liang
- Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yue-Xin Guo
- 2019 Oral Medicine of "5+3" Program, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Experimental Teaching Center of Basic Medical Morphology, Capital Medical University, Beijing 100069, China
| | - Xin Lu
- Experimental Teaching Center of Basic Medical Morphology, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Bamias G, Cominelli F. Exploring the Early Phase of Crohn's Disease. Clin Gastroenterol Hepatol 2021; 19:2469-2480. [PMID: 32949730 PMCID: PMC9217179 DOI: 10.1016/j.cgh.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
The development of Crohn's disease (CD) is characterized by a breakdown of homeostatic immune-bacterial communication, which takes place at the intestinal mucosa when environmental triggers impact genetically predisposed individuals. Converging lines of evidence support the hypothesis that this pathogenetic model develops through sequential, although inter-related, steps that indicate failure of mucosal defense mechanisms at various stages. In this context, immunologic phenomena that mediate the initial appearance of inflammatory lesions across the intestinal tissue may differ substantially from those that mediate and perpetuate chronic inflammatory responses. A compromise in the integrity of the epithelial barrier is among the earliest events and leads to accelerated influx of intraluminal antigens and intact microorganisms within the immunologically rich lamina propria. Inadequate clearance of invading microorganisms also may occur as a result of defects in innate immunity, preventing the timely and complete resolution of acute inflammatory responses. The final step is the development of persistent adaptive responses, which also differ between early and late Crohn's disease. Current progress in our ability to delineate single-cell transcriptomics and proteomics has allowed the discovery of cellular and molecular mechanisms that participate in each sequential step of CD development. This not only will advance our understanding of CD pathogenesis, but also facilitate the design of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI-Unit, 3 Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
15
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Ozaka S, Sonoda A, Ariki S, Kamiyama N, Hidano S, Sachi N, Ito K, Kudo Y, Minata M, Saechue B, Dewayani A, Chalalai T, Soga Y, Takahashi Y, Fukuda C, Mizukami K, Okumura R, Kayama H, Murakami K, Takeda K, Kobayashi T. Protease inhibitory activity of secretory leukocyte protease inhibitor ameliorates murine experimental colitis by protecting the intestinal epithelial barrier. Genes Cells 2021; 26:807-822. [PMID: 34379860 DOI: 10.1111/gtc.12888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Mizuki Minata
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Astri Dewayani
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuya Takahashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
18
|
Atreya R, Siegmund B. Location is important: differentiation between ileal and colonic Crohn's disease. Nat Rev Gastroenterol Hepatol 2021; 18:544-558. [PMID: 33712743 DOI: 10.1038/s41575-021-00424-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Crohn's disease can affect any part of the gastrointestinal tract; however, current European and national guidelines worldwide do not differentiate between small-intestinal and colonic Crohn's disease for medical treatment. Data from the past decade provide evidence that ileal Crohn's disease is distinct from colonic Crohn's disease in several intestinal layers. Remarkably, colonic Crohn's disease shows an overlap with regard to disease behaviour with ulcerative colitis, underlining the fact that there is more to inflammatory bowel disease than just Crohn's disease and ulcerative colitis, and that subtypes, possibly defined by location and shared pathophysiology, are also important. This Review provides a structured overview of the differentiation between ileal and colonic Crohn's disease using data in the context of epidemiology, genetics, macroscopic differences such as creeping fat and histological findings, as well as differences in regard to the intestinal barrier including gut microbiota, mucus layer, epithelial cells and infiltrating immune cell populations. We also discuss the translation of these basic findings to the clinic, emphasizing the important role of treatment decisions. Thus, this Review provides a conceptual outlook on a new mechanism-driven classification of Crohn's disease.
Collapse
Affiliation(s)
- Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Sudhakar P, Verstockt B, Cremer J, Verstockt S, Sabino J, Ferrante M, Vermeire S. Understanding the Molecular Drivers of Disease Heterogeneity in Crohn's Disease Using Multi-omic Data Integration and Network Analysis. Inflamm Bowel Dis 2021; 27:870-886. [PMID: 33313682 PMCID: PMC8128416 DOI: 10.1093/ibd/izaa281] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease (IBD), is characterized by heterogeneity along multiple clinical axes, which in turn impacts disease progression and treatment modalities. Using advanced data integration approaches and systems biology tools, we studied the contribution of CD susceptibility variants and gene expression in distinct peripheral immune cell subsets (CD14+ monocytes and CD4+ T cells) to relevant clinical traits. Our analyses revealed that most clinical traits capturing CD heterogeneity could be associated with CD14+ and CD4+ gene expression rather than disease susceptibility variants. By disentangling the sources of variation, we identified molecular features that could potentially be driving the heterogeneity of various clinical traits of CD patients. Further downstream analyses identified contextual hub proteins such as genes encoding barrier functions, antimicrobial peptides, chemokines, and their receptors, which are either targeted by drugs used in CD or other inflammatory diseases or are relevant to the biological functions implicated in disease pathology. These hubs could be used as cell type-specific targets to treat specific subtypes of CD patients in a more individualized approach based on the underlying biology driving their disease subtypes. Our study highlights the importance of data integration and systems approaches to investigate complex and heterogeneous diseases such as IBD.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| |
Collapse
|
20
|
Zhao C, Wang D, Wu M, Luo Y, Yang M, Guo J, Zhang H, Zhang X. Tumor necrosis factor ligand-related molecule 1A affects the intestinal mucosal barrier function by promoting Th9/interleukin-9 expression. J Int Med Res 2021; 48:300060520926011. [PMID: 32567429 PMCID: PMC7309405 DOI: 10.1177/0300060520926011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objectives To investigate the effect of tumor necrosis factor ligand-related molecule 1A (TL1A) on the intestinal mucosal barrier in mice with chronic colitis. Methods Male TL1A-overexpressing transgenic mice and male C57BL/6 wild-type mice were used to establish a dextran sodium sulfate (DSS)-induced colitis model. The expression of occludin and claudin-1 was observed. Bacterial distribution in the intestinal mucosa and Th9/interleukin (IL)-9 expression were detected. In vitro co-culture systems of naive CD4+ T cells and Caco-2 cells were established and TL1A was added. Changes in transepithelial electrical resistance and IL-9 expression were measured. CD4+IL-9 cells were detected by flow cytometry. Results DSS mice showed a significant down-regulation of occludin and claudin-1 compared with controls. Expression levels of occludin, zonulin-1, and claudin-1 in the Caco-2+TGF-β+IL-4+TL1A group were significantly lower than in the Caco-2+TGF-β+IL-4 group. Bacterial distribution was clearly disordered in the DSS group. Transmembrane resistance of the Caco-2+TGF-β+IL-4+TL1A group was significantly lower and IL-9 expression significantly higher than in the Caco-2+TGF-β+IL-4 group. Conclusions TL1A overexpression promotes destruction of the intestinal mucosal barrier in mice with chronic colitis. The underlying mechanism may be associated with the promoting role of TL1A in Th9/IL-9 expression, which further destroys the mucosal barrier.
Collapse
Affiliation(s)
- Caihong Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China.,Department of Gastroenterology, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Dong Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Mengyao Wu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yuxin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Mingyue Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jinbo Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
21
|
Bischoff SC, Kaden-Volynets V, Filipe Rosa L, Guseva D, Seethaler B. Regulation of the gut barrier by carbohydrates from diet - Underlying mechanisms and possible clinical implications. Int J Med Microbiol 2021; 311:151499. [PMID: 33864957 DOI: 10.1016/j.ijmm.2021.151499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
The gut barrier has been recognized as being of relevance in the pathogenesis of multiple different diseases ranging from inflammatory bowel disease, irritable bowel syndrome, inflammatory joint disease, fatty liver disease, and cardiometabolic disorders. The regulation of the gut barrier is, however, poorly understood. Especially, the role of food components such as sugars and complex carbohydrates has been discussed controversially in this respect. More recently, the intestinal microbiota has been proposed as an important regulator of the gut barrier. Whether the microbiota affects the barrier by its own, or whether food components such as carbohydrates mediate their effects through alterations of the microbiota composition or its metabolites, is still not clear. In this review, we will summarize the current knowledge on this topic derived from both animal and human studies and discuss data for possible clinical impact.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Valentina Kaden-Volynets
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany; Acousia Therapeutics GmbH & Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Louisa Filipe Rosa
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Daria Guseva
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Benjamin Seethaler
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
22
|
Iftekhar A, Sigal M. Defence and adaptation mechanisms of the intestinal epithelium upon infection. Int J Med Microbiol 2021; 311:151486. [PMID: 33684844 DOI: 10.1016/j.ijmm.2021.151486] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a monolayer of polarized columnar cells that act as a border between the host and its environment and are the first line of defence against the luminal microbes. In addition to providing a physical barrier, the epithelium possesses a multitude of active mechanisms to fight invading pathogens and regulate the composition and spatial distribution of commensals. The different epithelial cell types have unique functions in this context, and crosstalk with the immune system further modulates their intricate antimicrobial responses. The epithelium is organized into clonal crypt units with a high cellular turnover that is driven by stem cells located at the base. There is increasing evidence that this anatomical organization, the stem cell turnover, and the lineage determination processes are essential for barrier maintenance. These processes can be modulated by microbes directly or by the immune responses to enteric pathogens, resulting in a rapid and efficient adaptation of the epithelium to environmental perturbations, injuries, and infections. Here we discuss the complex host-microbial interactions that shape the mucosa and how the epithelium maintains and re-establishes homeostasis after infection.
Collapse
Affiliation(s)
- Amina Iftekhar
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
23
|
The RNA helicase Dhx15 mediates Wnt-induced antimicrobial protein expression in Paneth cells. Proc Natl Acad Sci U S A 2021; 118:2017432118. [PMID: 33483420 PMCID: PMC7848544 DOI: 10.1073/pnas.2017432118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.
Collapse
|
24
|
Alkaissi LY, Winberg ME, Heil SDS, Haapaniemi S, Myrelid P, Stange EF, Söderholm JD, Keita ÅV. Antagonism of Adherent Invasive E. coli LF82 With Human α-defensin 5 in the Follicle-associated Epithelium of Patients With Ileal Crohn's Disease. Inflamm Bowel Dis 2020; 27:1116-1127. [PMID: 33336693 PMCID: PMC8205628 DOI: 10.1093/ibd/izaa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The first visible signs of Crohn's disease (CD) are microscopic erosions over the follicle-associated epithelium (FAE). The aim of the study was to investigate the effects of human α-defensin 5 (HD5) on adherent-invasive Escherichia coli LF82 translocation and HD5 secretion after LF82 exposure in an in vitro model of human FAE and in human FAE ex vivo. METHODS An in vitro FAE-model was set up by the coculture of Raji B cells and Caco-2-cl1 cells. Ileal FAE from patients with CD and controls were mounted in Ussing chambers. The effect of HD5 on LF82 translocation was studied by LF82 exposure to the cells or tissues with or without incubation with HD5. The HD5 secretion was measured in human FAE exposed to LF82 or Salmonella typhimurium. The HD5 levels were evaluated by immunofluorescence, immunoblotting, and ELISA. RESULTS There was an increased LF82 translocation across the FAE-model compared with Caco-2-cl1 (P < 0.05). Incubation of cell/tissues with HD5 before LF82 exposure reduced bacterial passage in both models. Human FAE showed increased LF82 translocation in CD compared with controls and attenuated passage after incubation with sublethal HD5 in both CD and controls (P < 0.05). LF82 exposure resulted in a lower HD5 secretion in CD FAE compared with controls (P < 0.05), whereas Salmonella exposure caused equal secretion on CD and controls. There were significantly lower HD5 levels in CD tissues compared with controls. CONCLUSIONS Sublethal HD5 reduces the ability of LF82 to translocate through FAE. The HD5 is secreted less in CD in response to LF82, despite a normal response to Salmonella. This further implicates the integrated role of antimicrobial factors and barrier function in CD pathogenesis.
Collapse
Affiliation(s)
- Lina Y Alkaissi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Martin E Winberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stéphanie D S Heil
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Staffan Haapaniemi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Surgery, Vrinnevi Hospital, Norrköping, Sweden
| | - Pär Myrelid
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Surgery, Linköping University, Linköping, Sweden
| | - Eduard F Stange
- Department of Gastroenterology, Dept. Internal Medicine I, University of Tübingen, 72076 Tübingen, Germany
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Surgery, Linköping University, Linköping, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Address correspondence to: Åsa V. Keita, PhD, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics & Oncology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden. E-mail:
| |
Collapse
|
25
|
Yang E, Shen J. The roles and functions of Paneth cells in Crohn's disease: A critical review. Cell Prolif 2020; 54:e12958. [PMID: 33174662 PMCID: PMC7791172 DOI: 10.1111/cpr.12958] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Paneth cells (PCs) are located at the base of small intestinal crypts and secrete the α‐defensins, human α‐defensin 5 (HD‐5) and human α‐defensin 6 (HD‐6) in response to bacterial, cholinergic and other stimuli. The α‐defensins are broad‐spectrum microbicides that play critical roles in controlling gut microbiota and maintaining intestinal homeostasis. Inflammatory bowel disease, including ulcerative colitis and Crohn's disease (CD), is a complicated autoimmune disorder. The pathogenesis of CD involves genetic factors, environmental factors and microflora. Surprisingly, with regard to genetic factors, many susceptible genes and pathogenic pathways of CD, including nucleotide‐binding oligomerization domain 2 (NOD2), autophagy‐related 16‐like 1 (ATG16L1), immunity‐related guanosine triphosphatase family M (IRGM), wingless‐related integration site (Wnt), leucine‐rich repeat kinase 2 (LRRK2), histone deacetylases (HDACs), caspase‐8 (Casp8) and X‐box‐binding protein‐1 (XBP1), are relevant to PCs. As the underlying mechanisms are being unravelled, PCs are identified as the central element of CD pathogenesis, integrating factors among microbiota, intestinal epithelial barrier dysfunction and the immune system. In the present review, we demonstrate how these genes and pathways regulate CD pathogenesis via their action on PCs and what treatment modalities can be applied to deal with these PC‐mediated pathogenic processes.
Collapse
Affiliation(s)
- Erpeng Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
27
|
Ou J, Liang S, Guo XK, Hu X. α-Defensins Promote Bacteroides Colonization on Mucosal Reservoir to Prevent Antibiotic-Induced Dysbiosis. Front Immunol 2020; 11:2065. [PMID: 33013873 PMCID: PMC7509133 DOI: 10.3389/fimmu.2020.02065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
In addition to their established functions in host defense, accumulating evidence has suggested an emerging role for antimicrobial proteins (AMPs) in shaping commensal microbiota. However, the role of α-defensins, the most abundant AMPs of intestine, in regulating microbial ecology remains inconclusive. Here, we report that α-defensins promote commensal Bacteroides colonization by enhancing bacterial adhesion to the mucosal reservoir. Experiments utilizing mice deficient in matrix metalloproteinase 7 (MMP7), the α-defensin–activating enzyme, with rigorous littermate controls showed that α-defensin deficiency did not significantly influence steady-state intestinal microbiota. In contrast, α-defensins are essential for replenishment of commensal Bacteroides from the mucosal reservoir following antibiotics-induced dysbiosis, shown by markedly compromised recovery of Bacteroides in Mmp7−/− animals. Mechanistically, α-defensins promote Bacteroides colonization on epithelial surfaces in vivo and adhesion to epithelial cells in vitro. Moreover, α-defensins unexpectedly does not show any microbicidal activities against Bacteroides. Together, we propose that α-defensins promote commensal bacterial colonization and recovery to maintain microbial diversity upon environmental challenges.
Collapse
Affiliation(s)
- Jiayao Ou
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Shaonan Liang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xue-Kun Guo
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Wehkamp J, Stange EF. An Update Review on the Paneth Cell as Key to Ileal Crohn's Disease. Front Immunol 2020; 11:646. [PMID: 32351509 PMCID: PMC7174711 DOI: 10.3389/fimmu.2020.00646] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The Paneth cells reside in the small intestine at the bottom of the crypts of Lieberkühn, intermingled with stem cells, and provide a niche for their neighbors by secreting growth and Wnt-factors as well as different antimicrobial peptides including defensins, lysozyme and others. The most abundant are the human Paneth cell α-defensin 5 and 6 that keep the crypt sterile and control the local microbiome. In ileal Crohn's disease various mechanisms including established genetic risk factors contribute to defects in the production and ordered secretion of these peptides. In addition, life-style risk factors for Crohn's disease like tobacco smoking also impact on Paneth cell function. Taken together, current evidence suggest that defective Paneth cells may play the key role in initiating inflammation in ileal, and maybe ileocecal, Crohn's disease by allowing bacterial attachment and invasion.
Collapse
Affiliation(s)
- Jan Wehkamp
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| | - Eduard F Stange
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| |
Collapse
|
29
|
Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol 2020; 107:749-762. [PMID: 32108379 DOI: 10.1002/jlb.5mr0120-230r] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
This review focuses on recent developments related to asthma, chronic rhinosinusitis, atopic dermatitis (AD), eosinophilic esophagitis, and inflammatory bowel diseases (IBD), with a particular focus on tight junctions (TJs) and their role in the pathogenetic mechanisms of these diseases. Lung, skin, and intestinal surfaces are lined by epithelial cells that interact with environmental factors and immune cells. Therefore, together with the cellular immune system, the epithelium performs a pivotal role as the first line physical barrier against external antigens. Paracellular space is almost exclusively sealed by TJs and is maintained by complex protein-protein interactions. Thus, TJ dysfunction increases paracellular permeability, resulting in enhanced flux across TJs. Epithelial TJ dysfunction also causes immune cell activation and contributes to the pathogenesis of chronic lung, skin, and intestinal inflammation. Characterization of TJ protein alteration is one of the key factors for enhancing our understanding of allergic diseases as well as IBDs. Furthermore, TJ-based epithelial disturbance can promote immune cell behaviors, such as those in dendritic cells, Th2 cells, Th17 cells, and innate lymphoid cells (ILCs), thereby offering new insights into TJ-based targets. The purpose of this review is to illustrate how TJ dysfunction can lead to the disruption of the immune homeostasis in barrier tissues and subsequent inflammation. This review also highlights the various TJ barrier dysfunctions across different organ sites, which would help to develop future drugs to target allergic diseases and IBD.
Collapse
Affiliation(s)
- Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Koeninger L, Armbruster NS, Brinch KS, Kjaerulf S, Andersen B, Langnau C, Autenrieth SE, Schneidawind D, Stange EF, Malek NP, Nordkild P, Jensen BAH, Wehkamp J. Human β-Defensin 2 Mediated Immune Modulation as Treatment for Experimental Colitis. Front Immunol 2020; 11:93. [PMID: 32076420 PMCID: PMC7006816 DOI: 10.3389/fimmu.2020.00093] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Defensins represents an integral part of the innate immune system serving to ward off potential pathogens and to protect the intestinal barrier from microbial encroachment. In addition to their antimicrobial activities, defensins in general, and human β-defensin 2 (hBD2) in particular, also exhibit immunomodulatory capabilities. In this report, we assessed the therapeutic efficacy of systemically administered recombinant hBD2 to ameliorate intestinal inflammation in three distinct animal models of inflammatory bowel disease; i.e., chemically induced mucosal injury (DSS), loss of mucosal tolerance (TNBS), and T-cell transfer into immunodeficient recipient mice. Treatment efficacy was confirmed in all tested models, where systemically administered hBD2 mitigated inflammation, improved disease activity index, and hindered colitis-induced body weight loss on par with anti-TNF-α and steroids. Treatment of lipopolysaccharide (LPS)-activated human peripheral blood mononuclear cells with rhBD2 confirmed the immunomodulatory capacity in the circulatory compartment. Subsequent analyzes revealed dendritic cells (DCs) as the main target population. Suppression of LPS-induced inflammation was dependent on chemokine receptor 2 (CCR2) expression. Mechanistically, hBD2 engaged with CCR2 on its DC target cell to decrease NF-κB, and increase CREB phosphorylation, hence curbing inflammation. To our knowledge, this is the first study showing in vivo efficacy of a systemically administered defensin in experimental disease.
Collapse
Affiliation(s)
- Louis Koeninger
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Nicole S Armbruster
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | - Carolin Langnau
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Schneidawind
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Eduard F Stange
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | | | - Benjamin A H Jensen
- Department of Medicine, Faculty of Medicine, Cardiology Axis, Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.,Section for Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jan Wehkamp
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Abstract
Introduction: Inflammatory bowel diseases (IBD) are on the rise worldwide. This review covers the current concepts of the etiology of Crohn´s disease and ulcerative colitis by focusing on an unbalanced interaction between the intestinal microbiota and the mucosal barrier. Understanding these issues is of paramount importance for the development of targeted therapies aiming at the disease cause.Area covered: Gut microbiota alterations and a dysfunctional intestinal mucosa are associated with IBD. Here we focus on specific defense structures of the mucosal barrier, namely antimicrobial peptides and the mucus layer, which keep the gut microbiota at a distance under healthy conditions and are defective in IBD.Expert commentary: The microbiology of both forms of IBD is different but characterized by a reduced bacterial diversity and richness. Abundance of certain bacterial species is altered, and the compositional changes are related to disease activity. In IBD the mucus layer above the epithelium is contaminated by bacteria and the immune reaction is dominated by the antibacterial response. Human genetics suggest that many of the basic deficiencies in the mucosal response, due to Paneth cell, defensin and mucus defects, are primary. Nutrition may also be important but so far there is no therapy targeting the mucosal barrier.
Collapse
Affiliation(s)
- Eduard F Stange
- Innere Medizin I, Medizinische Universitätsklinik, Tübingen, Germany
| | - Bjoern O Schroeder
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, and Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Mergaert P. Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat Prod Rep 2019; 35:336-356. [PMID: 29393944 DOI: 10.1039/c7np00056a] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.
Collapse
Affiliation(s)
- P Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
33
|
Paneth cell α-defensins HD-5 and HD-6 display differential degradation into active antimicrobial fragments. Proc Natl Acad Sci U S A 2019; 116:3746-3751. [PMID: 30808760 PMCID: PMC6397583 DOI: 10.1073/pnas.1817376116] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paneth cells provide intestinal host defense against pathogens and control the healthy microbiota by secreting antimicrobial peptides. We show that the most abundant secreted Paneth cell products, human defensin HD-5 and HD-6, show a distinct susceptibility to proteolytic digestion by human duodenal fluid. While HD-5 is digested in many fragments, HD-6 is stable and still able to form nanonets. The occurring fragments of HD-5 were antimicrobially active against microorganisms. We provide proof of concept about microbiome modulating capacities in vivo, which includes an increase of Akkermansia sp. Our results indicate that fragmentation of defensins increases antimicrobial diversity and further adds to the complexity of host microbial interaction at interfaces. Fragmentation could lead to new antimicrobial peptides with possible therapeutic usage. Antimicrobial peptides, in particular α-defensins expressed by Paneth cells, control microbiota composition and play a key role in intestinal barrier function and homeostasis. Dynamic conditions in the local microenvironment, such as pH and redox potential, significantly affect the antimicrobial spectrum. In contrast to oxidized peptides, some reduced defensins exhibit increased vulnerability to proteolytic degradation. In this report, we investigated the susceptibility of Paneth-cell–specific human α-defensin 5 (HD-5) and -6 (HD-6) to intestinal proteases using natural human duodenal fluid. We systematically assessed proteolytic degradation using liquid chromatography–mass spectrometry and identified several active defensin fragments capable of impacting bacterial growth of both commensal and pathogenic origins. Of note, incubation of mucus with HD-5 resulted in 255–8,000 new antimicrobial combinations. In contrast, HD-6 remained stable with consistent preserved nanonet formation. In vivo studies demonstrated proof of concept that a HD-5 fragment shifted microbiota composition (e.g., increases of Akkermansia sp.) without decreasing diversity. Our data support the concept that secretion of host peptides results in an environmentally dependent increase of antimicrobial defense by clustering in active peptide fragments. This complex clustering mechanism dramatically increases the host’s ability to control pathogens and commensals. These findings broaden our understanding of host modulation of the microbiome as well as the complexity of human mucosal defense mechanisms, thus providing promising avenues to explore for drug development.
Collapse
|
34
|
Jang WH, Park A, Wang T, Kim CJ, Chang H, Yang BG, Kim MJ, Myung SJ, Im SH, Jang MH, Kim YM, Kim KH. Two-photon microscopy of Paneth cells in the small intestine of live mice. Sci Rep 2018; 8:14174. [PMID: 30242205 PMCID: PMC6155010 DOI: 10.1038/s41598-018-32640-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Paneth cells are one of the principal epithelial cell types in the small intestine, located at the base of intestinal crypts. Paneth cells play key roles in intestinal host-microbe homeostasis via granule secretion, and their dysfunction is implicated in pathogenesis of several diseases including Crohn’s disease. Despite their physiological importance, study of Paneth cells has been hampered by the limited accessibility and lack of labeling methods. In this study, we developed a simple in vivo imaging method of Paneth cells in the intact mouse small intestine by using moxifloxacin and two-photon microscopy (TPM). Moxifloxacin, an FDA-approved antibiotic, was used for labeling cells and its fluorescence was strongly observed in Paneth cell granules by TPM. Moxifloxacin labeling of Paneth cell granules was confirmed by molecular counterstaining. Comparison of Paneth cells in wild type, genetically obese (ob/ob), and germ-free (GF) mice showed different granule distribution. Furthermore, Paneth cell degranulation was observed in vivo. Our study suggests that TPM with moxifloxacin labeling can serve as a useful tool for studying Paneth cell biology and related diseases.
Collapse
Affiliation(s)
- Won Hyuk Jang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Areum Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Chan Johng Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hoonchul Chang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Bo-Gie Yang
- 507 Avison Biomedical Research Center, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.,Academy of Immunology and Microbiology, Institute for Basic Science (IBS), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Myoung Ho Jang
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea. .,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
35
|
Stebe-Frick S, Ostaff MJ, Stange EF, Malek NP, Wehkamp J. Histone deacetylase-mediated regulation of the antimicrobial peptide hBD2 differs in intestinal cell lines and cultured tissue. Sci Rep 2018; 8:12886. [PMID: 30150730 PMCID: PMC6110836 DOI: 10.1038/s41598-018-31125-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023] Open
Abstract
Histone deacetylase inhibition (HDACi) has been suggested as a promising approach to bolster TLR-mediated induction of antimicrobial peptides such as human β-defensin 2 (hBD2). In inflammatory bowel disease (IBD), Crohn’s disease (CD) patients display an attenuated expression of hBD2 as compared to ulcerative colitis (UC). Here, we aimed to study if combining HDACi with the therapeutic E. coli Nissle 1917 (EcN), a strong hBD2 inducer, might be a feasible strategy to further modify protective immune responses. Monolayer epithelial cell lines versus cultured human biopsies from healthy controls and CD and UC patients showed diverse effects. In mono-cell systems, we observed a strong NF-kB-dependent enhancement of TLR- but also IL1β-mediated hBD2 induction after HDACi. In contrast, multicellular colonic biopsy culture showed the opposite result and HDACi was associated with an abolished TLR-mediated hBD2 induction in all tested patient groups. Of note, CD patients showed an attenuated induction of hBD2 by E. coli Nissle as compared to UC. We conclude that the role of HDACs in hBD2 regulation is context-dependent and likely modified by different cell types. Differential induction in different IBD entities suggests different clinical response patterns based on still unknown hBD2-associated mechanisms.
Collapse
Affiliation(s)
- Sabrina Stebe-Frick
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany
| | - Maureen J Ostaff
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, 70376, Stuttgart, Germany.,Scientific Affairs - Philips Image guided therapy devices, Colorado Springs, Colorado, USA
| | - Eduard F Stange
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany
| | - Nisar P Malek
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany
| | - Jan Wehkamp
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany.
| |
Collapse
|
36
|
Klag T, Thomas M, Ehmann D, Courth L, Mailänder-Sanchez D, Weiss TS, Dayoub R, Abshagen K, Vollmar B, Thasler WE, Stange EF, Berg CP, Malek NP, Zanger UM, Wehkamp J. β-Defensin 1 Is Prominent in the Liver and Induced During Cholestasis by Bilirubin and Bile Acids via Farnesoid X Receptor and Constitutive Androstane Receptor. Front Immunol 2018; 9:1735. [PMID: 30100908 PMCID: PMC6072844 DOI: 10.3389/fimmu.2018.01735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background & aims Knowledge about innate antimicrobial defense of the liver is limited. We investigated hepatic expression and regulation of antimicrobial peptides with focus on the human beta defensin-1 (hBD-1). Methods Radial diffusion assay was used to analyze antimicrobial activity of liver tissue. Different defensins including hBD-1 and its activator thioredoxin-1 (TXN) were analyzed in healthy and cholestatic liver samples by qPCR and immunostaining. Regulation of hBD-1 expression was studied in vitro and in vivo using bile duct-ligated mice. Regulation of hBD-1 via bilirubin and bile acids (BAs) was studied using siRNA. Results We found strong antimicrobial activity of liver tissue against Escherichia coli. As a potential mediator of this antimicrobial activity we detected high expression of hBD-1 and TXN in hepatocytes, whereas other defensins were minimally expressed. Using a specific antibody for the reduced, antimicrobially active form of hBD-1 we found hBD-1 in co-localization with TXN within hepatocytes. hBD-1 was upregulated in cholestasis in a graded fashion. In cholestatic mice hepatic AMP expression (Defb-1 and Hamp) was enhanced. Bilirubin and BAs were able to induce hBD-1 in hepatic cell cultures in vitro. Treatment with siRNA and/or agonists demonstrated that the farnesoid X receptor (FXR) mediates basal expression of hBD-1, whereas both constitutive androstane receptor (CAR) and FXR seem to be responsible for the induction of hBD-1 by bilirubin. Conclusion hBD-1 is prominently expressed in hepatocytes. It is induced during cholestasis through bilirubin and BAs, mediated by CAR and especially FXR. Reduction by TXN activates hBD-1 to a potential key player in innate antimicrobial defense of the liver.
Collapse
Affiliation(s)
- Thomas Klag
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Dirk Ehmann
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Lioba Courth
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | | | - Thomas S Weiss
- University Children Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Rania Dayoub
- University Children Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Kerstin Abshagen
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Wolfgang E Thasler
- Department of Surgery, Grosshadern Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eduard F Stange
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Christoph P Berg
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun 2018; 9:1272. [PMID: 29593242 PMCID: PMC5871851 DOI: 10.1038/s41467-018-03638-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinal lamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium, and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5+ intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced, whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens.
Collapse
Affiliation(s)
- Anuj Sehgal
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David S Donaldson
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Clare Pridans
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- MRC Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Kristin A Sauter
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- MRC Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, QL, 4102, Australia
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
38
|
Cerrillo E, Moret I, Iborra M, Ramos D, Busó E, Tortosa L, Sáez-González E, Nos P, Beltrán B. Alpha-defensins (α-Defs) in Crohn's disease: decrease of ileal α-Def 5 via permanent methylation and increase in plasma α-Def 1-3 concentrations offering biomarker utility. Clin Exp Immunol 2018; 192:120-128. [PMID: 29193023 DOI: 10.1111/cei.13085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
An impaired expression of α-defensins (α-Defs) in the ileal mucosa and, conversely, increased levels in plasma, have been reported in Crohn's disease (CD). However, the specificity and correlation of these findings with the degree of inflammation are unclear. We aimed to characterize the concentration and utility of ileal and plasma α-Defs in CD and to analyse a potential epigenetic mechanism of α-Def expression. Peripheral blood samples and ileal biopsies were obtained from patients at disease onset (aCD), from those who achieved remission (iCD) and from two control groups (healthy controls and non-CD-aetiology ileitis patients). Plasma α-Defs 1-3 and 4 were detected by enzyme-linked immunosorbent assay (ELISA); α-Def 5 by immunolocalization. Methylation analysis of the α-Def 5 gene was performed using the MassARRAY EpiTYPER system. Plasma α-Defs 1-3 concentrations were significantly higher in aCD with ileal involvement (L1, L3) versus iCD or the control groups. The α-Defs 1-3 concentrations were also similar to healthy controls in patients with non-CD ileitis. There was a significant positive correlation between plasma α-Defs 1-3 levels in aCD and the endoscopic index, as well as with C-reactive protein (CRP) levels. The immunopositivity scoring showed significantly reduced α-Def 5 expression in ileal inflamed (aCD) versus non-inflamed mucosa (iCD and healthy controls). The α-Def 5 gene showed a higher methylation status in CD patients than controls, regardless of the inflammation. Plasma α-Defs 1-3 concentrations correlate with the degree of inflammation and appear to be specific biomarkers of ileal-CD at diagnosis. Ileal α-Def 5 expression is down-regulated permanently by methylation.
Collapse
Affiliation(s)
- E Cerrillo
- Gastroenterology Department, IBD Unit La Fe University and Polytechnic Hospital, Valencia, Spain.,Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de investigación biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - I Moret
- Gastroenterology Department, IBD Unit La Fe University and Polytechnic Hospital, Valencia, Spain.,Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de investigación biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - M Iborra
- Gastroenterology Department, IBD Unit La Fe University and Polytechnic Hospital, Valencia, Spain.,Centro de investigación biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - D Ramos
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - E Busó
- Laboratory of Epigenetics and Genotyping, UCIM, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - L Tortosa
- Gastroenterology Department, IBD Unit La Fe University and Polytechnic Hospital, Valencia, Spain.,Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de investigación biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - E Sáez-González
- Gastroenterology Department, IBD Unit La Fe University and Polytechnic Hospital, Valencia, Spain
| | - P Nos
- Gastroenterology Department, IBD Unit La Fe University and Polytechnic Hospital, Valencia, Spain.,Centro de investigación biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - B Beltrán
- Gastroenterology Department, IBD Unit La Fe University and Polytechnic Hospital, Valencia, Spain.,Centro de investigación biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
39
|
Kusaka S, Nishida A, Takahashi K, Bamba S, Yasui H, Kawahara M, Inatomi O, Sugimoto M, Andoh A. Expression of human cathelicidin peptide LL-37 in inflammatory bowel disease. Clin Exp Immunol 2017; 191:96-106. [PMID: 28872665 DOI: 10.1111/cei.13047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Cathelicidin peptide LL-37 plays an important role in the early host response against invading pathogens via its broad-spectrum anti-microbial activity. In this study, we investigated LL-37 expression in the inflamed mucosa of inflammatory bowel disease (IBD) patients. Furthermore, the regulatory mechanism of LL-37 induction was investigated in human colonic subepithelial myofibroblasts (SEMFs). LL-37 mRNA expression and protein secretion were analysed using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Intracellular signalling pathways were analysed using immunoblotting and specific small interference RNA (siRNA). The expression of LL-37 mRNA was increased significantly in the inflamed mucosa of ulcerative colitis and Crohn's disease. The Toll-like receptor (TLR)-3 ligand, polyinosinic-polycytidylic acid (poly(I:C), induced LL-37 mRNA expression and stimulated LL-37 secretion in colonic SEMFs. The transfection of siRNAs specific for intracellular signalling proteins [Toll/IL-1R domain-containing adaptor-inducing interferon (IFN) (TRIF), tumour necrosis factor receptor-associated factor (TRAF)6, transforming growth factor β-activated kinase (TAK)1] suppressed the poly(I:C)-induced LL-37 mRNA expression significantly. Poly(I:C)-induced phosphorylation of mitogen-activated protein kinases (MAPKs) and activated nuclear factor kappa B (NF-κB) and activating factor protein (AP)-1. siRNAs specific for NF-κB and c-Jun inhibited poly(I:C)-induced LL-37 mRNA expression. LL-37 suppressed lipopolysaccharide (LPS)-induced interleukin (IL)-6 and IL-8 expression significantly in colonic SEMFs. The expression of LL-37 was up-regulated in the inflamed mucosa of IBD patients. LL-37 was induced by TLR-3 stimulation and exhibited an anti-microbial effect via interaction with lipopolysaccharide (LPS).
Collapse
Affiliation(s)
- S Kusaka
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.,Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - A Nishida
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - K Takahashi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - S Bamba
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - H Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - M Kawahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - O Inatomi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - M Sugimoto
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - A Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
40
|
Armbruster NS, Stange EF, Wehkamp J. In the Wnt of Paneth Cells: Immune-Epithelial Crosstalk in Small Intestinal Crohn's Disease. Front Immunol 2017; 8:1204. [PMID: 29018451 PMCID: PMC5622939 DOI: 10.3389/fimmu.2017.01204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
Paneth cells, specialized secretory epithelial cells of the small intestine, play a pivotal role in host defense and regulation of microbiota by producing antimicrobial peptides especially-but not only-the human α-defensin 5 (HD5) and HD6. In small intestinal Crohn's disease (CD) which is an entity of inflammatory bowel diseases, the expression of HD5 and HD6 is specifically compromised leading to a disturbed barrier and change in the microbial community. Different genetically driven but also non-genetic defects associated with small intestinal CD affect different lines of antimicrobial Paneth cell functions. In this review, we focus on the mechanisms and the crosstalk of Paneth cells and bone marrow-derived cells and highlight recent studies about the role of the Wnt signaling pathway in this connection of ileal CD. In summary, different lines of investigations led by us but also now numerous other groups support and reconfirm the proposed classification of this disease entity as Paneth's disease.
Collapse
Affiliation(s)
| | - Eduard F Stange
- Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Jan Wehkamp
- Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Weber D, Frauenschläger K, Ghimire S, Peter K, Panzer I, Hiergeist A, Weber M, Kutny D, Wolff D, Grube M, Huber E, Oefner P, Gessner A, Hehlgans T, Herr W, Holler E. The association between acute graft-versus-host disease and antimicrobial peptide expression in the gastrointestinal tract after allogeneic stem cell transplantation. PLoS One 2017; 12:e0185265. [PMID: 28934349 PMCID: PMC5608405 DOI: 10.1371/journal.pone.0185265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022] Open
Abstract
Intestinal microbiota disruption is associated with acute gastrointestinal (GI) Graft-versus-Host Disease (GvHD) and poor outcome after allogeneic stem cell transplantation (ASCT). Here, in a retrospective analysis of 200 patients undergoing ASCT at the Regensburg University Medical Center, we assessed the relative expression of Paneth cell antimicrobial peptides (AMPs), Human Defensins (HD) 5 and 6 and regenerating islet-derived 3α (Reg3α), in 292 human intestinal biopsies as well as Reg3α serum levels in relation to acute GI GvHD. In the absence of GI GvHD, the relative expression of Paneth cell AMPs was significantly higher in the small intestine (duodenum to ileum) than in the stomach and large intestine (cecum to rectum) for Reg3α (p≤0.001), HD5 (p≤0.002) and HD6 (p≤0.02). Acute stage 2-4 GI GvHD was associated with reduced expression of AMPs in the small intestine (p≤0.01) in comparison to stage 0-1 disease, accompanied by a decrease in Paneth cell count in case of severe acute GI GvHD (p<0.001). The opposite held true for the large intestine as we found stage 2-4 GI GvHD correlated with significantly higher expression of HD5, HD6, and Reg3α compared to mild or no acute GI GvHD (p≤0.002). Severe GI GvHD in both the lower and the upper GI tract also correlated with higher serum concentrations of Reg3α (p = 0.002). As indirect markers of intestinal microbiome diversity low levels of urinary 3-indoxyl sulfate levels were associated with severe stages of acute GI GvHD compared to mild stage or no acute GI GvHD (p = 0.05). In conclusion, acute GI GvHD correlates with intestinal expression of HD5, HD6 and Reg3α as well as Reg3α serum levels and is associated with intestinal dysbiosis.
Collapse
Affiliation(s)
- Daniela Weber
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
- * E-mail:
| | | | - Sakhila Ghimire
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| | - Katrin Peter
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| | - Isabella Panzer
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Markus Weber
- Department of Orthopedic Surgery, University Medical Center, Regensburg, Germany
| | - Daniel Kutny
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| | - Daniel Wolff
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| | - Matthias Grube
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| | - Elisabeth Huber
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Peter Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Thomas Hehlgans
- Institute of Immunology, Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Germany
| | - Wolfgang Herr
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| | - Ernst Holler
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany
| |
Collapse
|
42
|
Mend Your Fences: The Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2017; 4:33-46. [PMID: 28560287 PMCID: PMC5439240 DOI: 10.1016/j.jcmgh.2017.03.007] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium can be easily disrupted during gut inflammation as seen in inflammatory bowel disease (IBD), such as ulcerative colitis or Crohn's disease. For a long time, research into the pathophysiology of IBD has been focused on immune cell-mediated mechanisms. Recent evidence, however, suggests that the intestinal epithelium might play a major role in the development and perpetuation of IBD. It is now clear that IBD can be triggered by disturbances in epithelial barrier integrity via dysfunctions in intestinal epithelial cell-intrinsic molecular circuits that control the homeostasis, renewal, and repair of intestinal epithelial cells. The intestinal epithelium in the healthy individual represents a semi-permeable physical barrier shielding the interior of the body from invasions of pathogens on the one hand and allowing selective passage of nutrients on the other hand. However, the intestinal epithelium must be considered much more than a simple physical barrier. Instead, the epithelium is a highly dynamic tissue that responds to a plenitude of signals including the intestinal microbiota and signals from the immune system. This epithelial response to these signals regulates barrier function, the composition of the microbiota, and mucosal immune homeostasis within the lamina propria. The epithelium can thus be regarded as a translator between the microbiota and the immune system and aberrant signal transduction between the epithelium and adjacent immune cells might promote immune dysregulation in IBD. This review summarizes the important cellular and molecular barrier components of the intestinal epithelium and emphasizes the mechanisms leading to barrier dysfunction during intestinal inflammation.
Collapse
Key Words
- BMP, bone morphogenic protein
- CD, Crohn's disease
- Fz, frizzled
- HD, humans α-defensin
- IBD, inflammatory bowel disease
- IECs, intestinal epithelial cells
- IL, interleukin
- Immune-Epithelial Crosstalk
- Intestinal Epithelial Barrier
- Intestinal Inflammation
- JAMs, junctional adhesion molecules
- Lgr5, leucine rich repeat containing G-protein coupled receptor 5
- MARVEL, myelin and lymphocyte and related proteins for vesicle trafficking and membrane link
- MLCK, myosin light chain kinase
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD-2, nucleotide-binding oligomerization domain-containing protein 2
- STAT, signal transducer and activator of transcription
- TAMP, tight junction–associated MARVEL protein
- TJ, tight junction
- TNF, tumor necrosis factor
- TSLP, thymic stromal lymphopoietin
- UC, ulcerative colitis
Collapse
|
43
|
Usarek E, Barańczyk-Kuźma A, Kaźmierczak B, Gajewska B, Kuźma-Kozakiewicz M. Validation of qPCR reference genes in lymphocytes from patients with amyotrophic lateral sclerosis. PLoS One 2017; 12:e0174317. [PMID: 28328930 PMCID: PMC5362213 DOI: 10.1371/journal.pone.0174317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) is the most specific and reliable method for determination of mRNA gene expression. Crucial point for its accurate normalization is the choice of appropriate internal control genes (ICGs). In the present work we determined and compare the expression of eight commonly used ICGs in lymphocytes from 26 patients with amyotrophic lateral sclerosis (ALS) and 30 control subjects. Peripheral blood mononuclear cells (PBMCs) before and after immortalization by EBV transfection (lymphoblast cell lines—LCLs) were used for qPCR analysis. LCLs were studied before and after liquid nitrogen cryopreservation and culturing (groups LCL1 and LCL2, respectively). qPCR data of 8 ICGs expression was analyzed by BestKeeper, NormFinder and geNorm methods. All studied genes (18SRNA, ACTB, B2M, GUSB,GAPDH, HPRT1, MT-ATP6 and RPS17) were expressed in PBMCs, whereas only first four in LCLs. LCLs cryopreservation had no effect on ICGs expression. Comprehensive ranking indicated RPS17 with MT-ATP6 as the best ICGs for qPCR in PBMCs of control and ALS subjects, and RPS17 with 18RNA or MT-ATP6 in LCLs from ALS. In PBMCs 18RNA shouldn’t be used as ICG.
Collapse
Affiliation(s)
- Ewa Usarek
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Barańczyk-Kuźma
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaźmierczak
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Beata Gajewska
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Kuźma-Kozakiewicz
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
44
|
López-Posadas R, Neurath MF, Atreya I. Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cell Mol Life Sci 2017; 74:803-826. [PMID: 27624395 PMCID: PMC11107577 DOI: 10.1007/s00018-016-2363-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
Abstract
Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
45
|
Stappenbeck TS, McGovern DP. Paneth Cell Alterations in the Development and Phenotype of Crohn's Disease. Gastroenterology 2017; 152:322-326. [PMID: 27729212 PMCID: PMC5209278 DOI: 10.1053/j.gastro.2016.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
Pathogenesis of Crohn's disease (CD) involves immune and microbial dysregulation, induced by environmental factors in genetically susceptible individuals. There are believed to be multiple subtypes of CD, which contributes to its observed clinical heterogeneity. This concept has been reinforced by recognition of the complexity of the genetic, microbial, immune, and environmental factors that affect risk for CD. Paneth cells mediate immunity and maintain the small intestinal epithelium; defects in activities of these cells have been observed in high proportions of patients with CD, and are associated with a more aggressive CD phenotype. Paneth cells integrate complex genetic, immune, and environmental signals, therefore alterations in their function could lead to different subtypes of CD, as observed in studies in cohorts of primarily European descent. Subtypes of CD associated with Paneth cell function have been observed even among patients from different genetic backgrounds. We discuss genetic susceptibility loci for CD and how these affect Paneth cell activity.
Collapse
Affiliation(s)
| | - Dermot P.B. McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
46
|
The Interplay between Defensins and Microbiota in Crohn's Disease. Mediators Inflamm 2017; 2017:8392523. [PMID: 28246439 PMCID: PMC5299173 DOI: 10.1155/2017/8392523] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammation of the intestinal mucosa, characterized by periods of acute recurrence and remission. Depending on the specific region affected, CD is classified as ileal CD or colonic CD. It is largely accepted that the intestinal microbiota is involved in the onset of the pathology. Indeed, a reduced immune tolerance to components of the intestinal commensal microbiota and inflammation of the intestinal barrier typifies patients with CD. Several studies have shown defective expression of intestinal antimicrobial peptides (AMPs) in patients with CD compared to controls, particularly defensins. A reduction in α-defensins is observed in ileal CD, while β-defensins are increased in colonic CD. In addition to an immunological basis, the disease is frequently associated with genetic alterations including mutations of NOD2 gene. Several therapeutic strategies to circumvent the dysfunction observed in CD are currently under investigation. These include the use of delivery systems to administer endogenous AMPs and the engineering of peptidomimetics that could ameliorate the severity of CD. In this review, the role defensins play in CD and the strategies aimed at overcoming bacterial resistance will be discussed.
Collapse
|
47
|
Lee J, Park EJ, Kiyono H. MicroRNA-orchestrated pathophysiologic control in gut homeostasis and inflammation. BMB Rep 2017; 49:263-9. [PMID: 26923304 PMCID: PMC5070705 DOI: 10.5483/bmbrep.2016.49.5.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 12/14/2022] Open
Abstract
The intestine represents the largest and most elaborate immune system organ, in which dynamic and reciprocal interplay among numerous immune and epithelial cells, commensal microbiota, and external antigens contributes to establishing both homeostatic and pathologic conditions. The mechanisms that sustain gut homeostasis are pivotal in maintaining gut health in the harsh environment of the gut lumen. Intestinal epithelial cells are critical players in creating the mucosal platform for interplay between host immune cells and luminal stress inducers. Thus, knowledge of the epithelial interface between immune cells and the luminal environment is a prerequisite for a better understanding of gut homeostasis and pathophysiologies such as inflammation. In this review, we explore the importance of the epithelium in limiting or promoting gut inflammation (e.g., inflammatory bowel disease). We also introduce recent findings on how small RNAs such as microRNAs orchestrate pathophysiologic gene regulation. [BMB Reports 2016; 49(5): 263-269]
Collapse
Affiliation(s)
- Juneyoung Lee
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Eun Jeong Park
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
48
|
Wehkamp J, Götz M, Herrlinger K, Steurer W, Stange EF. Inflammatory Bowel Disease. DEUTSCHES ARZTEBLATT INTERNATIONAL 2017; 113:72-82. [PMID: 26900160 DOI: 10.3238/arztebl.2016.0072] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammatory bowel diseases are common in Europe, with prevalences as high as 1 in 198 persons (ulcerative colitis) and 1 in 310 persons (Crohn's disease). METHODS This review is based on pertinent articles retrieved by a search in PubMed and in German and European guidelines and Cochrane reviews of controlled trials. RESULTS Typically, the main clinical features of inflammatory bowel diseases are diarrhea, abdominal pain, and, in the case of ulcerative colitis, peranal bleeding. These diseases are due to a complex immunological disturbance with both genetic and environmental causes. A defective mucosal barrier against commensal bowel flora plays a major role in their pathogenesis. The diagnosis is based on laboratory testing, ultrasonography, imaging studies, and, above all, gastrointestinal endoscopy. Most patients with Crohn's disease respond to budesonide or systemic steroids; aminosalicylates are less effective. Refractory exacerbations may be treated with antibodies against tumor necrosis factor (TNF) or, more recently, antibodies against integrin, a protein of the cell membrane. In ulcerative colitis, aminosalicylates are given first; if necessary, steroids or antibodies against TNF-α or integrin are added. Maintenance therapy to prevent further relapses often involves immunosuppression with thiopurines and/or antibodies. Once all conservative treatment options have been exhausted, surgery may be necessary. CONCLUSION The treatment of chronic inflammatory bowel diseases requires individually designed therapeutic strategies and the close interdisciplinary collaboration of internists and surgeons.
Collapse
Affiliation(s)
- Jan Wehkamp
- Department of Internal Medicine I - Gastroenterology, Hepatology, Infectiology, University Hospital of Tübingen, Asklepios Klinik Nord - Heidberg, Hamburg, Department of Internal Medicine I (Gastroenterology, Hepatology and Endocrinology), Robert-Bosch-Krankenhaus, Stuttgart
| | | | | | | | | |
Collapse
|
49
|
Williams AD, Korolkova OY, Sakwe AM, Geiger TM, James SD, Muldoon RL, Herline AJ, Goodwin JS, Izban MG, Washington MK, Smoot DT, Ballard BR, Gazouli M, M'Koma AE. Human alpha defensin 5 is a candidate biomarker to delineate inflammatory bowel disease. PLoS One 2017; 12:e0179710. [PMID: 28817680 PMCID: PMC5560519 DOI: 10.1371/journal.pone.0179710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/03/2017] [Indexed: 02/06/2023] Open
Abstract
Inability to distinguish Crohn's colitis from ulcerative colitis leads to the diagnosis of indeterminate colitis. This greatly effects medical and surgical care of the patient because treatments for the two diseases vary. Approximately 30 percent of inflammatory bowel disease patients cannot be accurately diagnosed, increasing their risk of inappropriate treatment. We sought to determine whether transcriptomic patterns could be used to develop diagnostic biomarker(s) to delineate inflammatory bowel disease more accurately. Four patients groups were assessed via whole-transcriptome microarray, qPCR, Western blot, and immunohistochemistry for differential expression of Human α-Defensin-5. In addition, immunohistochemistry for Paneth cells and Lysozyme, a Paneth cell marker, was also performed. Aberrant expression of Human α-Defensin-5 levels using transcript, Western blot, and immunohistochemistry staining levels was significantly upregulated in Crohn's colitis, p< 0.0001. Among patients with indeterminate colitis, Human α-Defensin-5 is a reliable differentiator with a positive predictive value of 96 percent. We also observed abundant ectopic crypt Paneth cells in all colectomy tissue samples of Crohn's colitis patients. In a retrospective study, we show that Human α-Defensin-5 could be used in indeterminate colitis patients to determine if they have either ulcerative colitis (low levels of Human α-Defensin-5) or Crohn's colitis (high levels of Human α-Defensin-5). Twenty of 67 patients (30 percent) who underwent restorative proctocolectomy for definitive ulcerative colitis were clinically changed to de novo Crohn's disease. These patients were profiled by Human α-Defensin-5 immunohistochemistry. All patients tested strongly positive. In addition, we observed by both hematoxylin and eosin and Lysozyme staining, a large number of ectopic Paneth cells in the colonic crypt of Crohn's colitis patient samples. Our experiments are the first to show that Human α-Defensin-5 is a potential candidate biomarker to molecularly differentiate Crohn's colitis from ulcerative colitis, to our knowledge. These data give us both a potential diagnostic marker in Human α-Defensin-5 and insight to develop future mechanistic studies to better understand crypt biology in Crohn's colitis.
Collapse
Affiliation(s)
- Amanda D. Williams
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
- Department of Biology, Lipscomb University, Nashville, Tennessee, United States of America
| | - Olga Y. Korolkova
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Amos M. Sakwe
- School of Graduate Studies and Research, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy M. Geiger
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Samuel D. James
- Department of Pathology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology Tennessee Valley Health Systems VA Medical Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Roberta L. Muldoon
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alan J. Herline
- Department of Surgery, Augusta University Medical Center, Augusta, Georgia, United States of America
| | - J. Shawn Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Michael G. Izban
- Department of Pathology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Mary K. Washington
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Duane T. Smoot
- Department of Medicine, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Billy R. Ballard
- Department of Pathology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Amosy E. M'Koma
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
There is consensus that inflammatory bowel diseases (IBDs) are the result of
“dysregulated” immune reactivity towards commensal microorganisms
in the intestine. This gut microbiome is clearly altered in IBD, but its primary
or secondary role is still debated. The focus has shifted from adaptive to
innate immunity, with its multitude of receptor molecules (Toll-like and NOD
receptors) and antibacterial effector molecules (defensins, cathelicidin, and
others). The latter appear to be at least partly deficient at different
intestinal locations. Host genetics also support the notion that
microbe–host interaction at the mucosa is the prime site of pathogenesis.
In contrast, even the latest therapeutic antibodies are directed against
secondary targets like cytokines and integrins identified decades ago. These
so-called “biologicals” have disappointing long-term results, with
the majority of patients not achieving remission in the long run. A promising
approach is the development of novel drugs like defensin-derived molecules that
substitute for the missing endogenous antibacterials.
Collapse
Affiliation(s)
- Eduard F Stange
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| |
Collapse
|