1
|
Michelson AD, Frelinger AL, Haynes RL, Kinney HC, Gremmel T. Platelet Pathophysiology: Unexpected New Research Directions. Semin Thromb Hemost 2024; 50:1187-1190. [PMID: 38889800 PMCID: PMC11471377 DOI: 10.1055/s-0044-1787663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Affiliation(s)
- Alan D. Michelson
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew L. Frelinger
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Robin L. Haynes
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah C. Kinney
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
2
|
Oltman SP, Rogers EE, Baer RJ, Amsalu R, Bandoli G, Chambers CD, Cho H, Dagle JM, Karvonen KL, Kingsmore SF, McKenzie-Sampson S, Momany A, Ontiveros E, Protopsaltis LD, Rand L, Kobayashi ES, Steurer MA, Ryckman KK, Jelliffe-Pawlowski LL. Early Newborn Metabolic Patterning and Sudden Infant Death Syndrome. JAMA Pediatr 2024:2823155. [PMID: 39250160 PMCID: PMC11385317 DOI: 10.1001/jamapediatrics.2024.3033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Importance Sudden infant death syndrome (SIDS) is a major cause of infant death in the US. Previous research suggests that inborn errors of metabolism may contribute to SIDS, yet the relationship between SIDS and biomarkers of metabolism remains unclear. Objective To evaluate and model the association between routinely measured newborn metabolic markers and SIDS in combination with established risk factors for SIDS. Design, Setting, and Participants This was a case-control study nested within a retrospective cohort using data from the California Office of Statewide Health Planning and Development and the California Department of Public Health. The study population included infants born in California between 2005 and 2011 with full metabolic data collected as part of routine newborn screening (NBS). SIDS cases were matched to controls at a ratio of 1:4 by gestational age and birth weight z score. Matched data were split into training (2/3) and testing (1/3) subsets. Data were analyzed from January 2005 to December 2011. Exposures Metabolites measured by NBS and established risk factors for SIDS. Main Outcomes and Measures The primary outcome was SIDS. Logistic regression was used to evaluate the association between metabolic markers combined with known risk factors and SIDS. Results Of 2 276 578 eligible infants, 354 SIDS (0.016%) cases (mean [SD] gestational age, 38.3 [2.3] weeks; 220 male [62.1%]) and 1416 controls (mean [SD] gestational age, 38.3 [2.3] weeks; 723 male [51.1%]) were identified. In multivariable analysis, 14 NBS metabolites were significantly associated with SIDS in a univariate analysis: 17-hydroxyprogesterone, alanine, methionine, proline, tyrosine, valine, free carnitine, acetyl-L-carnitine, malonyl carnitine, glutarylcarnitine, lauroyl-L-carnitine, dodecenoylcarnitine, 3-hydroxytetradecanoylcarnitine, and linoleoylcarnitine. The area under the receiver operating characteristic curve for a 14-marker SIDS model, which included 8 metabolites, was 0.75 (95% CI, 0.72-0.79) in the training set and was 0.70 (95% CI, 0.65-0.76) in the test set. Of 32 infants in the test set with model-predicted probability greater than 0.5, a total of 20 (62.5%) had SIDS. These infants had 14.4 times the odds (95% CI, 6.0-34.5) of having SIDS compared with those with a model-predicted probability less than 0.1. Conclusions and Relevance Results from this case-control study showed an association between aberrant metabolic analytes at birth and SIDS. These findings suggest that we may be able to identify infants at increased risk for SIDS soon after birth, which could inform further mechanistic research and clinical efforts focused on monitoring and prevention.
Collapse
Affiliation(s)
- Scott P Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco
| | - Elizabeth E Rogers
- Department of Pediatrics, University of California San Francisco, San Francisco
| | - Rebecca J Baer
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Pediatrics, University of California San Diego, La Jolla
| | - Ribka Amsalu
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco
| | - Gretchen Bandoli
- Department of Pediatrics, University of California San Diego, La Jolla
| | | | - Hyunkeun Cho
- Department of Biostatistics, University of Iowa, Iowa City
| | - John M Dagle
- Department of Pediatrics, University of Iowa, Iowa City
| | - Kayla L Karvonen
- Department of Pediatrics, University of California San Francisco, San Francisco
| | | | | | - Allison Momany
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City
| | - Eric Ontiveros
- Rady Children's Institute for Genomic Medicine, San Diego, California
| | | | - Larry Rand
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco
| | | | - Martina A Steurer
- Department of Pediatrics, University of California San Francisco, San Francisco
| | - Kelli K Ryckman
- Department of Epidemiology, University of Iowa, Iowa City
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington
| | - Laura L Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco
| |
Collapse
|
3
|
Zhang S, Song G, Yang Z, Kang K, Liu X. A label-free fluorescence aptamer sensor for point-of-care serotonin detection. Talanta 2024; 277:126363. [PMID: 38850806 DOI: 10.1016/j.talanta.2024.126363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Serotonin, a pivotal neurotransmitter regulating various physiological functions, plays a crucial role in disease diagnosis, necessitating precise monitoring of its levels in biological fluids for accurate assessment. Aptamers, known for their high specificity and affinity, have emerged as innovative molecular probes for serotonin analysis. However, existing serotonin aptamer sensing platforms exhibit limitations in terms of portability and rapid detection capabilities. In this study, we introduce a novel, portable, label-free serotonin aptamer sensor utilizing a dye replacement strategy, achieving a short sample-to-result turnaround time and convenient signal readout through a smartphone. The performance of this aptamer sensor was thoroughly assessed across diverse physiological media, demonstrating robust stability in buffer, urine, and serum. Importantly, the detection limit was in the nanomolar range, emphasizing its suitability for the rapid, sensitive, and user-friendly detection of serotonin. This research pioneers an approach for the development of a point-of-care testing (POCT) system for serotonin with practical implications, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Shuyuan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Gege Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Zhan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Kai Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
4
|
Frelinger AL, Haynes RL, Goldstein RD, Berny-Lang MA, Gerrits AJ, Riehs M, Haas EA, Paunovic B, Mena OJ, Campman SC, Milne GL, Sleeper LA, Kinney HC, Michelson AD. Dysregulation of platelet serotonin, 14-3-3, and GPIX in sudden infant death syndrome. Sci Rep 2024; 14:11092. [PMID: 38750089 PMCID: PMC11096399 DOI: 10.1038/s41598-024-61949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant mortality, but the underlying cause(s) are unclear. A subset of SIDS infants has abnormalities in the neurotransmitter, serotonin (5-hydroxytryptamine [5-HT]) and the adaptor molecule, 14-3-3 pathways in regions of the brain involved in gasping, response to hypoxia, and arousal. To evaluate our hypothesis that SIDS is, at least in part, a multi-organ dysregulation of 5-HT, we examined whether blood platelets, which have 5-HT and 14-3-3 signaling pathways similar to brain neurons, are abnormal in SIDS. We also studied platelet surface glycoprotein IX (GPIX), a cell adhesion receptor which is physically linked to 14-3-3. In infants dying of SIDS compared to infants dying of known causes, we found significantly higher intra-platelet 5-HT and 14-3-3 and lower platelet surface GPIX. Serum and plasma 5-HT were also elevated in SIDS compared to controls. The presence in SIDS of both platelet and brainstem 5-HT and 14-3-3 abnormalities suggests a global dysregulation of these pathways and the potential for platelets to be used as a model system to study 5-HT and 14-3-3 interactions in SIDS. Platelet and serum biomarkers may aid in the forensic determination of SIDS and have the potential to be predictive of SIDS risk in living infants.
Collapse
Affiliation(s)
- Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Karp 08212, 300 Longwood Avenue, Boston, MA, 02115-5737, USA.
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard D Goldstein
- Robert's Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, USA
| | - Michelle A Berny-Lang
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anja J Gerrits
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Molly Riehs
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Othon J Mena
- County of Ventura Medical Examiner's Office, Ventura, CA, USA
| | - Steven C Campman
- County of San Diego Medical Examiner's Office, San Diego, CA, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Lynn A Sleeper
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hannah C Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Fraile-Martinez O, García-Montero C, Díez SC, Bravo C, Quintana-Coronado MDG, Lopez-Gonzalez L, Barrena-Blázquez S, García-Honduvilla N, De León-Luis JA, Rodriguez-Martín S, Saez MA, Alvarez-Mon M, Diaz-Pedrero R, Ortega MA. Sudden Infant Death Syndrome (SIDS): State of the Art and Future Directions. Int J Med Sci 2024; 21:848-861. [PMID: 38617004 PMCID: PMC11008475 DOI: 10.7150/ijms.89490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/10/2024] [Indexed: 04/16/2024] Open
Abstract
Sudden infant death syndrome (SIDS) is a type of death that occurs suddenly and without any apparent explanation, affecting infants between 28 days of life and up to a year. Recognition of this entity includes performing an autopsy to determine if there is another explanation for the event and performing both an external and internal examination of the different tissues to search for possible histopathological findings. Despite the relative success of awareness campaigns and the implementation of prevention measures, SIDS still represents one of the leading causes of death among infants worldwide. In addition, although the development of different techniques has made it possible to make significant progress in the characterization of the etiopathogenic mechanisms underlying SIDS, there are still many unknowns to be resolved in this regard and the integrative consideration of this syndrome represents an enormous challenge to face both from a point of view scientific and medical view as humanitarian. For all these reasons, this paper aims to summarize the most relevant current knowledge of SIDS, exploring from the base the characterization and recognition of this condition, its forensic findings, its risk factors, and the main prevention measures to be implemented. Likewise, an attempt will be made to analyze the causes and pathological mechanisms associated with SIDS, as well as potential approaches and future paths that must be followed to reduce the impact of this condition.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sofía Castellanos Díez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - María de Guadalupe Quintana-Coronado
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of General and Digestive Surgery, University Hospital Príncipe de Asturias, 28805 Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Sonia Rodriguez-Martín
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, University Hospital Príncipe de Asturias, 28805 Madrid, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
6
|
Terry J, Dyer RA. Aberrant colon metabolome and the sudden infant death syndrome. Pediatr Res 2024; 95:634-640. [PMID: 37833530 DOI: 10.1038/s41390-023-02847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND The Sudden Infant Death Syndrome (SIDS) has been associated with increased peripheral serotonin and an abnormal colonic microbiome, suggesting the colonic metabolome may also be abnormal. This study addresses this potential correlation by comparing colonic autopsy tissue from SIDS to age-matched non-SIDS controls. METHODS Untargeted metabolomic analysis by mass spectrometry is used to assess human colonic metabolomic differences including serotonin. Expression of genes associated with colonic serotonin synthesis and transport (TPH1, TPH2, DDC, SCL6A4) is measured by qRT-PCR. Microbiome analysis is performed to compare the SIDS and non-SIDS colonic microbiome. RESULTS Unsupervised hierarchical cluster and principal component analyses of metabolomic data shows increased variability in the SIDS cohort and separation of SIDS cases from the non-SIDS controls. There is a trend toward increased serotonin in the SIDS cohort but there is no significant difference in expression of the serotonin synthesis and transport genes between SIDS and non-SIDS control cohorts. Microbiome analysis shows no significant difference between the SIDS and non-SIDS control cohorts. CONCLUSIONS This study demonstrates increased variability in the colonic metabolome and a trend towards increased colonic serotonin in SIDS. The underlying cause of colon metabolomic variability, and its potential role in SIDS pathogenesis, warrants further investigation. IMPACT STATEMENT The key message of this article is that SIDS is associated with an aberrant colonic metabolome. This is a novel observation suggesting another component in the pathophysiology underlying SIDS. Investigation of why the colonic metabolome is aberrant may offer new insights to SIDS pathogenesis and new strategies to reduce risk.
Collapse
Affiliation(s)
- Jefferson Terry
- Department of Pathology, British Columbia Children's and Women's Hospitals, Vancouver, BC, Canada.
| | - Roger A Dyer
- Analytical Core for Metabolomics and Nutrition, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
7
|
Huang W, Zhao S, Liu H, Pan M, Dong H. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. Int J Mol Sci 2024; 25:1659. [PMID: 38338938 PMCID: PMC10855206 DOI: 10.3390/ijms25031659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
It is well known that proteins are important bio-macromolecules in human organisms, and numerous proteins are widely used in the clinical practice, whereas their application in forensic science is currently limited. This limitation is mainly attributed to the postmortem degradation of targeted proteins, which can significantly impact final conclusions. In the last decade, numerous methods have been established to detect the protein from a forensic perspective, and some of the postmortem proteins have been applied in forensic practice. To better understand the emerging issues and challenges in postmortem proteins, we have reviewed the current application of protein technologies at postmortem in forensic practice. Meanwhile, we discuss the application of proteins in identifying the cause of death, and postmortem interval (PMI). Finally, we highlight the interpretability and limitations of postmortem protein challenges. We believe that utilizing the multi-omics method can enhance the comprehensiveness of applying proteins in forensic practice.
Collapse
Affiliation(s)
- Weisheng Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Shuquan Zhao
- Faculty of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huine Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Meichen Pan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| |
Collapse
|
8
|
Iavarone S, Massoud M, Di Felice G, Pulcinelli F, Rapini N, Luciani M. Antiplatelet Effect of Melatonin through Breastfeeding: A Pediatric Case Report. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1839. [PMID: 38136041 PMCID: PMC10741506 DOI: 10.3390/children10121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
We present a pediatric case of the antiplatelet effect of melatonin taken through breast milk in an 18-month-old child. The child was referred to our hematology outpatient clinic because of bleeding episodes that she presented since birth. Blood tests excluded the presence of blood coagulation diseases. The family history was negative for bleeding disorders. The child did not consume any drugs, food supplements, herbal teas or infusions. We performed an aggregation platelet test, which showed a reduced platelet aggregation. Shortly before, the baby had been breastfed. We speculated that breast milk could interfere with the result of the test; therefore, we decided to repeat the test in a fasting state. This time the test showed a normal platelet aggregation time. We learned that the child's mother was taking a mixture of valerian and melatonin. Thus, we decided to suspend maternal intake of melatonin and perform a new platelet aggregation test after three months. The test results were negative. After the suspension of melatonin, the patient did not present further bleeding events. In this case, melatonin, through the inhibition of platelet aggregation, had an important role on the hemostatic system of the child. Melatonin is considered as a dietary supplement and is mostly available as an alternative medicine without formal prescription and dosage regulation. It is important, especially during breastfeeding, to investigate personal and medication history, including also homeopathic remedies or dietary supplements.
Collapse
Affiliation(s)
- Sonia Iavarone
- Onco-Hematology, Cell and Gene Therapy and Bone Marrow Transplant Clinic Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.I.); (M.M.)
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Michela Massoud
- Onco-Hematology, Cell and Gene Therapy and Bone Marrow Transplant Clinic Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.I.); (M.M.)
| | - Giovina Di Felice
- Clinical Laboratory Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Fabio Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Novella Rapini
- Unit of Endocrinology and Diabetes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Luciani
- Onco-Hematology, Cell and Gene Therapy and Bone Marrow Transplant Clinic Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.I.); (M.M.)
| |
Collapse
|
9
|
MacFarlane PM, Martin RJ, Di Fiore JM, Raffay TM, Tatsuoka C, Chen Z, Minich N, Quintas G, Sánchez-Illana Á, Kuligowski J, Piñeiro-Ramos JD, Vento M, Hibbs AM. Plasma serotonergic biomarkers are associated with hypoxemia events in preterm neonates. Pediatr Res 2023; 94:1436-1443. [PMID: 37188799 PMCID: PMC11414210 DOI: 10.1038/s41390-023-02620-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates. METHODS TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw. RESULTS At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks. CONCLUSIONS Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates. IMPACT Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters. This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates. Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.
Collapse
Affiliation(s)
- Peter Mathew MacFarlane
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| | - Richard John Martin
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Juliann Marie Di Fiore
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas Michael Raffay
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nori Minich
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Guillermo Quintas
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225, Terrassa, Spain
- Analytical Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Ángel Sánchez-Illana
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
- Department of Analytical Chemistry, Chemistry Faculty, Universtitat de València, Burjassot, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - José David Piñeiro-Ramos
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Anna Maria Hibbs
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Hou Y, Liang H, Fan C, Feng Y. 5-Hydroxytryptamine and postoperative nausea and vomiting after microvascular decompression surgery. J Clin Neurosci 2023; 116:27-31. [PMID: 37597331 DOI: 10.1016/j.jocn.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND The incidence of postoperative nausea and vomiting (PONV) after microvascular decompression (MVD) surgery is high; however, its underlying mechanisms remain unknown. Serum 5-hydroxytryptamine (5-HT) levels are elevated in patients with PONV. However, the relationship between 5-HT and patients experiencing PONV after MVD surgery is still unknown. Therefore, we hypothesized that 5-HT levels are associated with PONV after MVD surgery. METHODS This prospective study included 85 patients with hemifacial spasm who received MVD surgery. Blood samples were collected preoperatively, postoperatively, and on postoperative day 1, and cerebrospinal fluid samples were collected intraoperatively. 5-HT levels were detected by enzyme-linked immunosorbent assay (ELISA). The incidence and severity of PONV were evaluated at 2, 6, and 24 h after MVD surgery. RESULTS In the multivariate regression analysis, PONV within 24 h after MVD surgery was associated with elevated cerebrospinal fluid 5-HT levels [odds ratio (OR) = 1.21, 95% confidence interval (CI): 1.01-1.45, p = 0.044], and reduction of intraocular pressure [OR = 11.54, 95% CI: 1.43-92.84, p = 0.022]. Receiver operating characteristic curve analysis revealed an area under the curve of 0.873 (95% CI: 0.77-0.98, p < 0.001). CONCLUSION Our study found that the cerebrospinal fluid 5-HT levels is an independent risk factor for PONV within 24 h after MVD surgery.
Collapse
Affiliation(s)
- Yuantao Hou
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Hansheng Liang
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Cungang Fan
- Department of Neurosurgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| |
Collapse
|
11
|
Song Y, Fothergill LJ, Lee KS, Liu BY, Koo A, Perelis M, Diwakarla S, Callaghan B, Huang J, Wykosky J, Furness JB, Yeo GW. Stratification of enterochromaffin cells by single-cell expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554649. [PMID: 37662229 PMCID: PMC10473706 DOI: 10.1101/2023.08.24.554649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine (5-HT) to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify fourteen EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.
Collapse
Affiliation(s)
- Yan Song
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Linda J. Fothergill
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Kari S. Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Brandon Y. Liu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Ada Koo
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Perelis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Shanti Diwakarla
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brid Callaghan
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jie Huang
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - Jill Wykosky
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - John B. Furness
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
12
|
Afolabi JM, Michael OS, Falayi OO, Kanthakumar P, Mankuzhy PD, Soni H, Adebiyi A. Activation of renal vascular smooth muscle TRPV4 channels by 5-hydroxytryptamine impairs kidney function in neonatal pigs. Microvasc Res 2023; 148:104516. [PMID: 36889668 PMCID: PMC10258165 DOI: 10.1016/j.mvr.2023.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Control of microvascular reactivity by 5-hydroxytryptamine (5-HT; serotonin) is complex and may depend on vascular bed type and 5-HT receptors. 5-HT receptors consist of seven families (5-HT1-5-HT7), with 5-HT2 predominantly mediating renal vasoconstriction. Cyclooxygenase (COX) and smooth muscle intracellular Ca2+ levels ([Ca2+]i) have been implicated in 5-HT-induced vascular reactivity. Although 5-HT receptor expression and circulating 5-HT levels are known to be dependent on postnatal age, control of neonatal renal microvascular function by 5-HT is unclear. In the present study, we demonstrate that 5-HT stimulated human TRPV4 transiently expressed in Chinese hamster ovary cells. 5-HT2A is the predominant 5-HT2 receptor subtype in freshly isolated neonatal pig renal microvascular smooth muscle cells (SMCs). HC-067047 (HC), a selective TRPV4 blocker, attenuated cation currents induced by 5-HT in the SMCs. HC also inhibited the 5-HT-induced increase in renal microvascular [Ca2+]i and constriction. Intrarenal artery infusion of 5-HT had minimal effects on systemic hemodynamics but reduced renal blood flow (RBF) and increased renal vascular resistance (RVR) in the pigs. Transdermal measurement of glomerular filtration rate (GFR) indicated that kidney infusion of 5-HT reduced GFR. HC and 5-HT2 receptor antagonist ritanserin attenuated 5-HT effects on RBF, RVR, and GFR. Moreover, the serum and urinary COX-1 and COX-2 levels in 5-HT-treated piglets were unchanged compared with the control. These data suggest that activation of renal microvascular SMC TRPV4 channels by 5-HT impairs kidney function in neonatal pigs independently of COX production.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olugbenga S Michael
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olufunke O Falayi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pratheesh D Mankuzhy
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Xu F, Zhao L, Zhuang J, Gao X. Peripheral Neuroplasticity of Respiratory Chemoreflexes, Induced by Prenatal Nicotinic Exposure: Implication for SIDS. Respir Physiol Neurobiol 2023; 313:104053. [PMID: 37019251 DOI: 10.1016/j.resp.2023.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Sudden Infant Death Syndrome (SIDS) occurs during sleep in seemingly healthy infants. Maternal cigarette smoking and hypoxemia during sleep are assumed to be the major causal factors. Depressed hypoxic ventilatory response (dHVR) is observed in infants with high risk of SIDS, and apneas (lethal ventilatory arrest) appear during the fatal episode of SIDS. Disturbance of the respiratory center has been proposed to be involved, but the pathogenesis of SIDS is still not fully understood. Peripherally, the carotid body is critical to generate HVR, and bronchopulmonary and superior laryngeal C-fibers (PCFs and SLCFs) are important for triggering central apneas; however, their roles in the pathogenesis of SIDS have not been explored until recently. There are three lines of recently accumulated evidence to show the disorders of peripheral sensory afferent-mediated respiratory chemoreflexes in rat pups with prenatal nicotinic exposure (a SIDS model) in which acute severe hypoxia leads to dHVR followed by lethal apneas. (1) The carotid body-mediated HVR is suppressed with a reduction of the number and sensitivity of glomus cells. (2) PCF-mediated apneic response is largely prolonged via increased PCF density, pulmonary IL-1β and serotonin (5-hydroxytryptamine, 5-HT) release, along with the enhanced expression of TRPV1, NK1R, IL1RI and 5-HT3R in pulmonary C-neurons to strengthen these neural responses to capsaicin, a selective stimulant to C-fibers. (3) SLCF-mediated apnea and capsaicin-induced currents in superior laryngeal C-neurons are augmented by upregulation of TRPV1 expression in these neurons. These results, along with hypoxic sensitization/stimulation of PCFs, gain insight into the mechanisms of prenatal nicotinic exposure-induced peripheral neuroplasticity responsible for dHVR and long-lasting apnea during hypoxia in rat pups. Therefore, in addition to the disturbance in the respiratory center, the disorders of peripheral sensory afferent-mediated chemoreflexes may also be involved in respiratory failure and death denoted in SIDS victims.
Collapse
|
14
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
15
|
Moon RY, Carlin RF, Hand I. Evidence Base for 2022 Updated Recommendations for a Safe Infant Sleeping Environment to Reduce the Risk of Sleep-Related Infant Deaths. Pediatrics 2022; 150:188305. [PMID: 35921639 DOI: 10.1542/peds.2022-057991] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Every year in the United States, approximately 3500 infants die of sleep-related infant deaths, including sudden infant death syndrome (SIDS) (International Statistical Classification of Diseases and Related Health Problems 10th Revision [ICD-10] R95), ill-defined deaths (ICD-10 R99), and accidental suffocation and strangulation in bed (ICD-10 W75). After a substantial decline in sleep-related deaths in the 1990s, the overall death rate attributable to sleep-related infant deaths have remained stagnant since 2000, and disparities persist. The triple risk model proposes that SIDS occurs when an infant with intrinsic vulnerability (often manifested by impaired arousal, cardiorespiratory, and/or autonomic responses) undergoes an exogenous trigger event (eg, exposure to an unsafe sleeping environment) during a critical developmental period. The American Academy of Pediatrics recommends a safe sleep environment to reduce the risk of all sleep-related deaths. This includes supine positioning; use of a firm, noninclined sleep surface; room sharing without bed sharing; and avoidance of soft bedding and overheating. Additional recommendations for SIDS risk reduction include human milk feeding; avoidance of exposure to nicotine, alcohol, marijuana, opioids, and illicit drugs; routine immunization; and use of a pacifier. New recommendations are presented regarding noninclined sleep surfaces, short-term emergency sleep locations, use of cardboard boxes as a sleep location, bed sharing, substance use, home cardiorespiratory monitors, and tummy time. In addition, additional information to assist parents, physicians, and nonphysician clinicians in assessing the risk of specific bed-sharing situations is included. The recommendations and strength of evidence for each recommendation are published in the accompanying policy statement, which is included in this issue.
Collapse
Affiliation(s)
- Rachel Y Moon
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rebecca F Carlin
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York City, New York
| | - Ivan Hand
- Department of Pediatrics, SUNY-Downstate College of Medicine, NYC Health + Hospitals, Kings County, Brooklyn, New York
| | | |
Collapse
|
16
|
Bishop-Freeman SC, Young KA, Labay LM, Beuhler MC, Hudson JS. Melatonin Supplementation in Undetermined Pediatric Deaths. J Anal Toxicol 2022; 46:808-816. [PMID: 35639879 DOI: 10.1093/jat/bkac033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2015, the North Carolina Office of the Chief Medical Examiner has investigated seven deaths of infants and toddlers, ages 2 months to 3 years, with exogenous melatonin detected upon toxicological analysis. Melatonin concentrations ranged from 3-1400 ng/mL in postmortem whole blood. While the cause and the manner of all seven deaths were classified as undetermined, the analytical findings are noteworthy. Melatonin is generally considered a safe, natural product appearing in many over-the-counter supplements geared towards young children to facilitate calmness and improve sleep. Melatonin is a neurohormone, which regulates not only circadian rhythms and natural sleep, but other physiological functions. Endogenous melatonin production, derived from essential amino acid metabolism, does not begin until pineal gland maturation at around three months of age with concentrations in plasma peaking during periods of darkness at approximately 0.2 ng/mL. Administering commercially available melatonin supplements to infants results in levels orders of magnitude greater than endogenous sources which should not be assumed to be safe just because of its endogenous nature. The finding of exogenous concentrations in some postmortem pediatric cases warrants attention. Several topics of interest surrounding these postmortem melatonin findings will be considered, such as minimal regulatory control over commercial products as well as the potential impact on hazardous sleeping conditions. This manuscript will outline the physiological effects of melatonin and detail the case studies from the NC medical examiner system. Forensic toxicology laboratories should consider including melatonin at exogenous concentrations in their testing schemes for appropriate postmortem infant and toddler cases.
Collapse
Affiliation(s)
- Sandra C Bishop-Freeman
- North Carolina Office of Chief Medical Examiner, 4312 District Dr. Raleigh, NC 27607, USA.,University of North Carolina, Department of Pathology and Laboratory Medicine, Chapel Hill, NC 27514, USA
| | - Kerry A Young
- North Carolina Office of Chief Medical Examiner, 4312 District Dr. Raleigh, NC 27607, USA
| | | | - Michael C Beuhler
- Carolinas Poisons Control, 5000 Airport Center Pkwy Suite B Charlotte, NC 28208, USA
| | - Jason S Hudson
- North Carolina Office of Chief Medical Examiner, 4312 District Dr. Raleigh, NC 27607, USA.,University of North Carolina, Department of Pathology and Laboratory Medicine, Chapel Hill, NC 27514, USA
| |
Collapse
|
17
|
Domingues RR, Wiltbank MC, Hernandez LL. Pregnancy Complications and Neonatal Mortality in a Serotonin Transporter Null Mouse Model: Insight Into the Use of Selective Serotonin Reuptake Inhibitor During Pregnancy. Front Med (Lausanne) 2022; 9:848581. [PMID: 35360732 PMCID: PMC8960382 DOI: 10.3389/fmed.2022.848581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are widely prescribed to pregnant woman. Although some SSRI compounds are known to cause pregnancy loss and fetal malformations, other SSRI continue to be used by pregnant women. However, several studies have associated the use of SSRI with adverse pregnancy outcomes: intrauterine growth restriction, preterm birth, and neonatal morbidity. Nonetheless, interpretation of studies in humans are typically complicated by the adverse pregnancy outcomes caused by depression itself. Therefore, we used a mutant mouse model with genetic ablation of the serotonin transporter, the target site for SSRI, to unravel the role of the serotonin transporter on pregnancy outcomes. The serotonin transporter null mice had increased pregnancy loss (17.5 vs. 0%), decreased number of pups born (6.6 ± 0.2 vs. 7.5 ± 0.2), and increased neonatal mortality (2.3-fold). Furthermore, preterm birth, dystocia, and fetal malformations were only observed in serotonin transporter null mice. This genetically ablated serotonin transporter mouse recapitulates several adverse pregnancy outcomes similar to those in women undergoing SSRI treatment during gestation. Additionally, neonatal loss in the present study reproduced a sudden infant death phenotype as in humans and mice with altered serotonergic signaling. In conclusion, findings from this study demonstrate a role for serotonin transporter in pregnancy maintenance and neonatal health. Additionally, it suggests that the adverse pregnancy outcomes in women taking SSRI during gestation might be due to altered serotonin transporter function caused by SSRI independent of underlying depression. This is a critical finding, given the number of women prescribed SSRI during pregnancy, and provides the framework for critical research in this area.
Collapse
Affiliation(s)
- Rafael R. Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Milo C. Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Laura L. Hernandez,
| |
Collapse
|
18
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Plancoulaine S, Guyon A, Inocente CO, Germe P, Zhang M, Robert P, Lin JS, Franco P. Cerebrospinal Fluid Histamine Levels in Healthy Children and Potential Implication for SIDS: Observational Study in a French Tertiary Care Hospital. Front Pediatr 2022; 10:819496. [PMID: 35450108 PMCID: PMC9016218 DOI: 10.3389/fped.2022.819496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE A defect of the waking systems could constitute a factor of vulnerability for sudden infant death syndrome (SIDS). A decrease in orexin levels, which promotes wakefulness and activates histaminergic neurons (another hypothalamic wake-promoting system) has already been demonstrated between 2 and 6 months. This work aims to study the levels of histamine (HA), tele-methylhistamine (t-MeHA), its direct metabolite, and t-MeHA/HA ratio in the cerebrospinal fluid (CSF) of healthy children, to evaluate the maturation of the histaminergic system and its possible involvement in SIDS. METHODS Seventy Eight French children between 0 and 20 years (48.7% boys) were included, all of whom had a clinical indication for lumbar puncture, but subsequently found to be normal. Measurements of HA and t-MeHA in CSF were performed by reverse phase liquid chromatography coupled to mass spectrometry detection. Statistical analyses were performed using Spearman correlations and Non-parametric pairwise ranking tests. RESULTS A negative correlation was found between age and CSF HA (r = -0.44, p < 10-4) and t-MeHA (r = -0.70, p < 10-4) levels. In pairwise comparisons, no difference in CSF HA and t-MeHA levels was observed between youngest age groups (i.e., 0-2 mo vs. 3-6 mo), but CSF HA and t-MeHA levels were significantly lower in older children (i.e., >6 mo vs. 0-6 mo). The CSF HA decrease with age was only observed in boys, who also presented global lower CSF HA levels than girls. CONCLUSION CSF HA and t-MeHA levels decrease with age in boys, and global levels are lower in boys than in girls. These results reveal changes in histaminergic transmission and metabolism during maturation. Whether lower CSF histamine values in boys compared to girls could contribute to their higher risk of SIDS warrants further research.
Collapse
Affiliation(s)
| | - Aurore Guyon
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France.,Bioprojet Biotech, Saint-Grégoire, France
| | - Clara-Odilia Inocente
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Philippine Germe
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Min Zhang
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | | | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Patricia Franco
- Integrative Physiology of the Brain Arousal System, CRNL, INSERM-U1028, CNRS UMR5292, University Lyon 1, Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon 1, Lyon, France
| |
Collapse
|
20
|
Goldwater PN. The Science (or Nonscience) of Research Into Sudden Infant Death Syndrome (SIDS). Front Pediatr 2022; 10:865051. [PMID: 35498810 PMCID: PMC9051368 DOI: 10.3389/fped.2022.865051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED This Viewpoint paper presents a timely and constructive critique of mainstream SIDS research. It is concerning that twenty-first century medical science has not provided an answer to the tragic enigma of SIDS. The paper helps explain why this is so and illustrates possible shortcomings in the investigation of Sudden Infant Death Syndrome/Sudden Unexplained Infant Death (SIDS/SUID) by mainstream researchers. Mainstream findings are often based on questionable and dogmatic assumptions that return to founding notions such as the Triple Risk Hypothesis and the contention that the mechanisms underlying SIDS/SUID are heterogeneous in nature. The paper illustrates how the pathological findings in SIDS have been under-investigated (or ignored) and that key epidemiological risk factors have slipped from memory. This apparent amnesia has resulted in failure to use these established SIDS facts to substantiate the significance of various neuropathological, neurochemical, or other research findings. These unsupported findings and their derivative hypotheses are therefore ill-founded and lack scientific rigor. CONCLUSION The deficits of SIDS "science" revealed in this paper explain why the SIDS enigma has not yet been solved. To make progress in understanding SIDS, it is important that researchers, as scientists, uphold standards of research. Encouragement for new directions of research is offered.
Collapse
Affiliation(s)
- Paul Nathan Goldwater
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Goldwater PN, Oberg EO. Infection, Celestial Influences, and Sudden Infant Death Syndrome: A New Paradigm. Cureus 2021; 13:e17449. [PMID: 34589355 PMCID: PMC8463918 DOI: 10.7759/cureus.17449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/16/2023] Open
Abstract
The etiology of sudden infant death syndrome (SIDS) still remains unclear. This situation would seem unprecedented for 21st-century medical science. This article explores scientific fields that have not been largely considered in investigating the etiology of SIDS so far. In this study, we examined previously ignored studies on heliobiology, celestial influences, and SIDS in the non-medical literature in an attempt to answer the following questions: is there a relationship between sunspot/solar activity and the occurrence of SIDS? Could there be alternative reasons for the decline in SIDS incidences in the 1990s that were originally attributed to the “Back-to-Sleep” campaign? We note that the decline coincided with the ~11-year cyclical diminution in sunspot numbers (SSNs). The SSN/SIDS relationship does not necessarily imply causality; however, it supports published data regarding sunspots, Schumann resonance, and geomagnetic effects. How solar energy could adversely influence a baby’s existence remains conjectural. Observations in this respect suggest pathways involving melatonin and/or infection/inflammation.
Collapse
Affiliation(s)
- Paul N Goldwater
- Pathology-Infectious Diseases and Clinical Microbiology, Adelaide Medical School, University of Adelaide, Adelaide, AUS
| | - Edward O Oberg
- Mechanical Engineering, University of Minnesota, Minnesota, USA
| |
Collapse
|
22
|
Sarrouilhe D, Defamie N, Mesnil M. Is the Exposome Involved in Brain Disorders through the Serotoninergic System? Biomedicines 2021; 9:1351. [PMID: 34680468 PMCID: PMC8533279 DOI: 10.3390/biomedicines9101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmitter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood. It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric disorders. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving the serotoninergic system. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn is particularly susceptible to the deleterious effects of neurotoxic substances in our environment, and perinatal exposure could result in the later development of diseases, a hypothesis known as the developmental origin of health and disease. Some of these substances affect the serotoninergic system and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review presents the available data that are contributing to the appreciation of the effects of the exposome on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental, neurodegenerative, neurobehavioral disorders, and glioblastoma).
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 Rue de la Milétrie, Bât D1, TSA 51115, CEDEX 09, 86073 Poitiers, France
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| | - Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| |
Collapse
|
23
|
Tanaka T, Mori M, Sekino M, Higashijima U, Takaki M, Yamashita Y, Kakiuchi S, Tashiro M, Morimoto K, Tasaki O, Izumikawa K. Impact of plasma 5-hydroxyindoleacetic acid, a serotonin metabolite, on clinical outcome in septic shock, and its effect on vascular permeability. Sci Rep 2021; 11:14146. [PMID: 34238999 PMCID: PMC8266895 DOI: 10.1038/s41598-021-93649-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Septic shock is characterized by dysregulated vascular permeability. We hypothesized that the vascular permeability of endothelial cells (ECs) would be regulated by serotonin via serotonin-Rho-associated kinase (ROCK) signaling. We aimed to determine the impact of 5-hydroxyindoleacetic acid (5-HIAA) on septic shock as a novel biomarker. Plasma 5-HIAA levels and disease severity indices were obtained from 47 patients with sepsis. The association between 5-HIAA levels and severity indices was analyzed. Permeability upon serotonin stimulation was determined using human pulmonary microvascular ECs. 5-HIAA were significantly higher in septic shock patients than in patients without shock or healthy controls (p = 0.004). These elevated levels were correlated with severity indexes (SOFA score [p < 0.001], APACHE II [p < 0.001], and PaO2:FiO2 [p = 0.02]), and longitudinally associated with worse clinical outcomes (mechanical ventilation duration [p = 0.009] and ICU duration [p = 0.01]). In the experiment, serotonin increased the permeability of ECs, which was inhibited by the ROCK inhibitor (p < 0.001). Serotonin increases vascular permeability of ECs via ROCK signaling. This suggests a novel mechanism by which serotonin disrupts endothelial barriers via ROCK signaling and causes the pathogenesis of septic shock with a vascular leak. Serotonin serves as a novel biomarker of vascular permeability.
Collapse
Affiliation(s)
- Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan. .,Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Masahiko Mori
- Department of Paediatrics, University of Oxford, Oxford, OX1 3SY, UK
| | - Motohiro Sekino
- Division of Intensive Care, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ushio Higashijima
- Division of Intensive Care, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masahiro Takaki
- Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yoshiro Yamashita
- Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Satoshi Kakiuchi
- Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masato Tashiro
- Infection Control and Education Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Konosuke Morimoto
- Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Osamu Tasaki
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Koichi Izumikawa
- Infection Control and Education Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
24
|
Beloborodova NV, Chernevskaya EA, Getsina ML. Indolic Structure Metabolites as Potential Biomarkers of Non-infectious Diseases. Curr Pharm Des 2021; 27:238-249. [PMID: 33092503 DOI: 10.2174/1381612826666201022121653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Interest in indolic structure metabolites, including a number of products of microbial biotransformation of the aromatic amino acid tryptophan, is increasingly growing. The review prepared by a team of authors is based on in-depthscrutiny of data available in PubMed, Scopus, Cyberleninka, Clinical Trials, and Cochrane Library, eventually narrowing the search to a set of keywords such as tryptophan metabolites; plasma metabolomics profiling; metabolomics fingerprinting; gas-, liquid chromatography mass spectrometry; serotonin; melatonin; tryptamine; indoxyl sulfate; indole-3-acetic acid; indole-3-propionic acid; 5-hydroxyindole-3-acetic acid; gut microbiota and microbial metabolites. It provides a summary that outlines the pattern of changes in the level of indolic structure metabolites in a number of diseases and deals with the data from the field of human microbiota metabolites. In modern experimental studies, including the use of gnotobiological (germ-free) animals, it has been convincingly proved that the formation of tryptophan metabolites such as indole-3-acetic acid, indole-3-propionic acid, tryptamine, and indoxyl sulfate is associated with gut bacteria. Attention to some concentration changes of indolic compounds is due to the fact that pronounced deviations and a significant decrease of these metabolites in the blood were found in a number of serious cardiovascular, brain or gastrointestinal diseases. The literature-based analysis allowed the authors to conclude that a constant (normal) level of the main metabolites of the indolic structure in the human body is maintained by a few strict anaerobic bacteria from the gut of a healthy body belonging to the species of Clostridium, Bacteroides, Peptostreptococcus, Eubacteria, etc. The authors focus on several metabolites of the indolic structure that can be called clinically significant in certain diseases, such as schizophrenia, depression, atherosclerosis, colorectal cancer, etc. Determining the level of indole metabolites in the blood can be used to diagnose and monitor the effectiveness of a comprehensive treatment approach.
Collapse
Affiliation(s)
- Natalia V Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka 25, bild 2, Moscow, 107031, Russian Federation
| | - Ekaterina A Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka 25, bild 2, Moscow, 107031, Russian Federation
| | - Maria L Getsina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka 25, bild 2, Moscow, 107031, Russian Federation
| |
Collapse
|
25
|
Mou H, Yang Y, Riehs MA, Barrios J, Shivaraju M, Haber AL, Montoro DT, Gilmore K, Haas EA, Paunovic B, Rajagopal J, Vargas SO, Haynes RL, Fine A, Cardoso WV, Ai X. Airway basal stem cells generate distinct subpopulations of PNECs. Cell Rep 2021; 35:109011. [PMID: 33882306 PMCID: PMC8140387 DOI: 10.1016/j.celrep.2021.109011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/04/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Pulmonary neuroendocrine cells (PNECs) have crucial roles in airway physiology and immunity by producing bioactive amines and neuropeptides (NPs). A variety of human diseases exhibit PNEC hyperplasia. Given accumulated evidence that PNECs represent a heterogenous population of cells, we investigate how PNECs differ, whether the heterogeneity is similarly present in mouse and human cells, and whether specific disease involves discrete PNECs. Herein, we identify three distinct types of PNECs in human and mouse airways based on single and double positivity for TUBB3 and the established NP markers. We show that the three PNEC types exhibit significant differences in NP expression, homeostatic turnover, and response to injury and disease. We provide evidence that these differences parallel their distinct cell of origin from basal stem cells (BSCs) or other airway epithelial progenitors.
Collapse
Affiliation(s)
- Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| | - Ying Yang
- Columbia Center for Human Development and Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Molly A Riehs
- Department of Pathology, Boston Children's Hospital, MA 02115, USA
| | - Juliana Barrios
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Manjunatha Shivaraju
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adam L Haber
- Computational Biology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel T Montoro
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly Gilmore
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Brankica Paunovic
- San Diego County Office of the Medical Examiner, San Diego, CA 92123, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, MA 02115, USA
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital, MA 02115, USA
| | - Alan Fine
- Pulmonary Division, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development and Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Sudden Infant Death Syndrome: Beyond Risk Factors. Life (Basel) 2021; 11:life11030184. [PMID: 33652660 PMCID: PMC7996806 DOI: 10.3390/life11030184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is defined as "the sudden death of an infant under 1 year of age which remains unexplained after thorough investigation including a complete autopsy, death scene investigation, and detailed clinical and pathological review". A significant decrease of SIDS deaths occurred in the last decades in most countries after the beginning of national campaigns, mainly as a consequence of the implementation of risk reduction action mostly concentrating on the improvement of sleep conditions. Nevertheless, infant mortality from SIDS still remains unacceptably high. There is an urgent need to get insight into previously unexplored aspects of the brain system with a special focus on high-risk groups. SIDS pathogenesis is associated with a multifactorial condition that comprehends genetic, environmental and sociocultural factors. Effective prevention of SIDS requires multiple interventions from different fields. Developing brain susceptibility, intrinsic vulnerability and early identification of infants with high risk of SIDS represents a challenge. Progress in SIDS research appears to be fundamental to the ultimate aim of eradicating SIDS deaths. A complex model that combines different risk factor data from biomarkers and omic analysis may represent a tool to identify a SIDS risk profile in newborn settings. If high risk is detected, the infant may be referred for further investigations and follow ups. This review aims to illustrate the most recent discoveries from different fields, analyzing the neuroanatomical, genetic, metabolic, proteomic, environmental and sociocultural aspects related to SIDS.
Collapse
|
27
|
Keywan C, Poduri AH, Goldstein RD, Holm IA. Genetic Factors Underlying Sudden Infant Death Syndrome. APPLICATION OF CLINICAL GENETICS 2021; 14:61-76. [PMID: 33623412 PMCID: PMC7894824 DOI: 10.2147/tacg.s239478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/24/2021] [Indexed: 12/28/2022]
Abstract
Sudden Infant Death syndrome (SIDS) is a diagnosis of exclusion. Decades of research have made steady gains in understanding plausible mechanisms of terminal events. Current evidence suggests SIDS includes heterogeneous biological conditions, such as metabolic, cardiac, neurologic, respiratory, and infectious conditions. Here we review genetic studies that address each of these areas in SIDS cases and cohorts, providing a broad view of the genetic underpinnings of this devastating phenomenon. The current literature has established a role for monogenic genetic causes of SIDS mortality in a subset of cases. To expand upon our current knowledge of disease-causing genetic variants in SIDS cohorts and their mechanisms, future genetic studies may employ functional assessments of implicated variants, broader genetic tests, and the inclusion of parental genetic data and family history information.
Collapse
Affiliation(s)
- Christine Keywan
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna H Poduri
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Richard D Goldstein
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of General Pediatrics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ingrid A Holm
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Genetics and Genomics, Department of Pediatrics, and Manton Center for Orphan Diseases Research, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Johannsen EB, Baughn LB, Sharma N, Zjacic N, Pirooznia M, Elhaik E. The Genetics of Sudden Infant Death Syndrome-Towards a Gene Reference Resource. Genes (Basel) 2021; 12:216. [PMID: 33540853 PMCID: PMC7913088 DOI: 10.3390/genes12020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is the unexpected death of an infant under one year of age that remains unexplained after a thorough investigation. Despite SIDS remaining a diagnosis of exclusion with an unexplained etiology, it is widely accepted that SIDS can be caused by environmental and/or biological factors, with multiple underlying candidate genes. However, the lack of biomarkers raises questions as to why genetic studies on SIDS to date are unable to provide a clearer understanding of the disease etiology. We sought to improve the identification of SIDS-associated genes by reviewing the SIDS genetic literature and objectively categorizing and scoring the reported genes based on the strength of evidence (from C1 (high) to C5 (low)). This was followed by analyses of function, associations between genes, the enrichment of gene ontology (GO) terms, and pathways and gender difference in tissue gene expression. We constructed a curated database for SIDS gene candidates consisting of 109 genes, 14 of which received a category 4 (C4) and 95 genes received the lowest category of C5. That none of the genes was classified into the higher categories indicates the low level of supporting evidence. We found that genes of both scoring categories show distinct networks and are highly diverse in function and involved in many GO terms and pathways, in agreement with the perception of SIDS as a heterogeneous syndrome. Genes of both scoring categories are part of the cardiac system, muscle, and ion channels, whereas immune-related functions showed enrichment for C4 genes. A limited association was found with neural development. Overall, inconsistent reports and missing metadata contribute to the ambiguity of genetic studies. Considering those parameters could help improve the identification of at-risk SIDS genes. However, the field is still far from offering a full-pledged genetic test to identify at-risk infants and is still hampered with methodological challenges and misunderstandings of the vulnerabilities of vital biological mechanisms.
Collapse
Affiliation(s)
| | - Linda B. Baughn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.B.B.); (N.S.)
| | - Neeraj Sharma
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.B.B.); (N.S.)
| | - Nicolina Zjacic
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK;
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Eran Elhaik
- Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
29
|
Association between monoamine oxidase A promoter polymorphism and the risk of sudden infant death syndrome: a meta-analysis. Int J Legal Med 2021; 135:1179-1190. [PMID: 33523250 PMCID: PMC8205865 DOI: 10.1007/s00414-020-02496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
Introduction The etiology of sudden infant death syndrome (SIDS) remains an unsolved problem. The aim of this meta-analysis is to investigate the potential association between monoamine oxidase A (MAOA) promoter variable number tandem repeat (VNTR) polymorphism and SIDS risk. Methods A systematic review and meta-analysis were conducted on studies from accessible electronic databases. Each VNTR variant was examined in each gender independently by comparing with the pooled results of other alleles. Results A total of six independent case–control studies including 1022 SIDS cases and 1839 controls were enrolled in this meta-analysis. In both of the whole populations and Caucasian populations, male infants with the low-MAOA-expression alleles (2R+3R) were found to exhibit a statistically significant increased risk of SIDS, whereas those with a 4R allele exhibited a reduced risk of SIDS. Besides, an increased risk of SIDS was detected in male Caucasian infants with 2R or 3R alleles. However, none of the allele or genotype variants was associated with SIDS in female victims. Conclusion In male Caucasian infants, the low expression of MAOA promoter VNTR alleles (2R and 3R) is associated with an increased risk of SIDS, and the existence of the 4R allele could be regarded as a protective factor.
Collapse
|
30
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired cardiorespiratory responses to hypercapnia in neonatal mice lacking PAC1 but not VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2021; 320:R116-R128. [PMID: 33146556 DOI: 10.1152/ajpregu.00161.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evidence is mounting for a role for abnormal signaling of the stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its canonical receptor PAC1 in the pathogenesis of sudden infant death syndrome. In this study, we investigated whether the PACAP receptors PAC1 or VPAC2 are involved in the neonatal cardiorespiratory response to hypercapnic stress. We used head-out plethysmography and surface ECG electrodes to assess cardiorespiratory responses to an 8% hypercapnic challenge in unanesthetized and spontaneously breathing 4-day-old PAC1 or VPAC2 knockout (KO) and wild-type mouse pups. We demonstrate that compared with WTs, breathing frequency (RR) and minute ventilation ([Formula: see text]) in PAC1 KO pups were significantly blunted in response to hypercapnia. Although heart rate was unaltered in PAC1 KO pups during hypercapnia, heart rate recovery posthypercapnia was impaired. In contrast, cardiorespiratory impairments in VPAC2 KO pups were limited to only an overall higher tidal volume (VT), independent of treatment. These findings suggest that PACAP signaling through the PAC1 receptor plays a more important role than signaling through the VPAC2 receptor in neonatal respiratory responses to hypercapnia. Thus deficits in PACAP signaling primarily via PAC1 may contribute to the inability of infants to mount an appropriate protective response to homeostatic stressors in childhood disorders such as SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| |
Collapse
|
31
|
Piumelli R, Nassi N, Buccoliero A, Occhini R, Nardini V, Toti P, Salvatori C, Peruzzi M, Arzilli C. The multiagency approach to Sudden Unexpected Infant Deaths (SUID): eleven years' experience in the Tuscany Region. Ital J Pediatr 2020; 46:99. [PMID: 32690066 PMCID: PMC7372863 DOI: 10.1186/s13052-020-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Background The Sudden Unexpected Infant Death Syndrome (SUID) is one of the leading causes of mortality in the first year of life. The aim of this work was the retrospective evaluation of the incidence of SUID and the effectiveness of the multiagency approach to this phenomenon in the Tuscany Region. Methods Data were obtained from the regional registry of SUID cases in the period 2009–2019. The registry contains both sudden unexpected deaths in the first week of life (Sudden Unexpected Early Neonatal Deaths - SUEND), and those occurring after the first week up to 1 year of age (SUID). Results In this timeframe a total of 73 sudden unexpected deaths occurred in our region; 32 were Unexplained (i.e. Sudden Infant Death Syndrome - SIDS), 24 Explained, 10 Undetermined, and 7 SUEND. Autopsies were performed in 91% of cases, and in 95% of these by three groups of selected pathologists according to our protocol. We found a low incidence of SUID (0.21 ‰), and SIDS deaths accounted for 0.1‰ of live births (48% of cases) with a high prevalence of infants of non-Italian ethnicity (38% of cases). Bereaved families were able to receive psychological support from mental health professionals and have contact with the family association, Seeds for SIDS. Audits were organized when post-mortem examinations were not carried out or carried out incorrectly in procedural terms, and when the diagnosis was particularly uncertain. Conclusions This paper first provides data on SUID mortality based on complete post-mortems in an Italian region. According to these findings we can state that our approach is effective both in terms of correctly performed autopsies and support for bereaved families. Future efforts are necessary to further reduce the incidence of SUID especially among non- Italian infants. An improvement action is also recommended for ensuring a more accurate and consistent picture of the circumstances of death. The final approval of the National Protocol for the management of SUID cases is therefore strongly advocated in order to improve surveillance in this specific field and abolish disparities among the Italian regions.
Collapse
Affiliation(s)
- Raffaele Piumelli
- Sleep Breathing Disorders and SIDS Centre, Meyer Children's Hospital, Florence, Italy.
| | - Niccolò Nassi
- Sleep Breathing Disorders and SIDS Centre, Meyer Children's Hospital, Florence, Italy
| | | | | | | | - Paolo Toti
- Pathology Unit, University of Siena, Siena, Italy
| | - Cristina Salvatori
- Sleep Breathing Disorders and SIDS Centre, Meyer Children's Hospital, Florence, Italy
| | - Marta Peruzzi
- Sleep Breathing Disorders and SIDS Centre, Meyer Children's Hospital, Florence, Italy
| | - Cinzia Arzilli
- Sleep Breathing Disorders and SIDS Centre, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
32
|
Kinney HC, Haynes RL. The Serotonin Brainstem Hypothesis for the Sudden Infant Death Syndrome. J Neuropathol Exp Neurol 2020; 78:765-779. [PMID: 31397480 DOI: 10.1093/jnen/nlz062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023] Open
Abstract
The sudden infant death syndrome (SIDS) is the leading cause of postneonatal infant mortality in the United States today, with an overall rate of 0.39/1000 live births. It is defined as the sudden and unexpected death of an infant <12 months of age that remains unexplained after a complete autopsy, death scene investigation, and review of the clinical history. The serotonin brainstem hypothesis has been a leading hypothesis for SIDS over the last 2 decades. Our laboratory has studied this hypothesis over time with a variety of tissue techniques, including tissue receptor autoradiography, high performance liquid chromatography, Western blot analysis, immunocytochemistry, and proteomics. The purpose of this article is to review the progress in our laboratory toward supporting this hypothesis. We conclude that an important subset of SIDS infants has serotonergic abnormalities resulting from a "core lesion" in the medullary reticular formation comprised of nuclei that contain serotonin neurons. This lesion could lead to a failure of protective brainstem responses to homeostatic challenges during sleep in a critical developmental period which cause sleep-related sudden death.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Blood and urine biomarkers associated with long-term respiratory dysfunction following neonatal hyperoxia exposure: Implications for prematurity and risk of SIDS. Respir Physiol Neurobiol 2020; 279:103465. [PMID: 32450147 DOI: 10.1016/j.resp.2020.103465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Former preterm infants, many of whom required supplemental O2 support, exhibit sleep disordered breathing and attenuated ventilatory responses to acute hypoxia (HVR) beyond their NICU stay. There is an increasing awareness that early detection of biomarkers in biological fluids may be useful predictors/identifiers of short- and long-term morbidities. In the present study, we identified serotonin (5-HT), dopamine (DA) and hyaluronan (HA) as three potential biomarkers that may be increased by neonatal hyperoxia and tested whether they would be associated with an impaired HVR in a rat model of supplemental O2 exposure. Neonatal rats (postnatal age (P) 6 days, P6) exposed to hyperoxia (40% FIO2, 24 h/day between P1-P5 days of age) exhibited an attenuated early (1 min), but not the late (4-5 min) phase of the HVR compared to normoxia control rats; the attenuated early phase HVR was associated with increased levels of DA (urine and serum), 5-HT (platelet poor plasma only, PPP), and HA (serum only). At P21, both the early and late phases of the HVR were attenuated, but serum and urine levels of all 3 biomarkers were similar to age-matched control rats. These data indicate that changes in several serum and/or urine biomarkers (5-HT, DA, and HA) following short-term (days) neonatal hyperoxia can signify long-term (weeks) respiratory control dysfunction. Further studies are needed to determine whether early detection of similar biomarkers could be convenient predictors of increased risk of abnormalities in respiratory control including sleep disordered breathing in former preterm infants who had received prior supplemental O2 and who might also be at increased risk of SIDS.
Collapse
|
34
|
Saganuwan SA. Chemistry and Effects of Brainstem Acting Drugs. Cent Nerv Syst Agents Med Chem 2020; 19:180-186. [PMID: 31223094 DOI: 10.2174/1871524919666190620164355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Brain is the most sensitive organ, whereas brainstem is the most important part of Central Nervous System (CNS). It connects the brain and the spinal cord. However, a myriad of drugs and chemicals affects CNS with severe resultant effects on the brainstem. METHODS In view of this, a number of literature were assessed for information on the most sensitive part of brain, drugs and chemicals that act on the brainstem and clinical benefit and risk assessment of such drugs and chemicals. RESULTS Findings have shown that brainstem regulates heartbeat, respiration and because it connects the brain and spinal cord, all the drugs that act on the spinal cord may overall affect the systems controlled by the spinal cord and brain. The message is sent and received by temporal lobe, occipital lobe, frontal lobe, parietal lobe and cerebellum. CONCLUSION Hence, the chemical functional groups of the brainstem and drugs acting on brainstem are complementary, and may produce either stimulation or depression of CNS.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, P.M.B. 2373, Makurdi, Benue State, Nigeria
| |
Collapse
|
35
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
36
|
Nasirova N, Quina LA, Agosto-Marlin IM, Ramirez JM, Lambe EK, Turner EE. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J Comp Neurol 2020; 528:283-307. [PMID: 31396962 PMCID: PMC6889053 DOI: 10.1002/cne.24753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023]
Abstract
Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre-recombinase-mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.
Collapse
Affiliation(s)
- Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Lely A. Quina
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | | | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Evelyn K. Lambe
- Departments of Physiology, Obstetrics and Gynecology, and Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle WA, 98101
| |
Collapse
|
37
|
van der Heijden ME, Zoghbi HY. Development of the brainstem respiratory circuit. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e366. [PMID: 31816185 DOI: 10.1002/wdev.366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/01/2023]
Abstract
The respiratory circuit is comprised of over a dozen functionally and anatomically segregated brainstem nuclei that work together to control respiratory rhythms. These respiratory rhythms emerge prenatally but only acquire vital importance at birth, which is the first time the respiratory circuit faces the sole responsibility for O2 /CO2 homeostasis. Hence, the respiratory circuit has little room for trial-and-error-dependent fine tuning and relies on a detailed genetic blueprint for development. This blueprint is provided by transcription factors that have specific spatiotemporal expression patterns along the rostral-caudal or dorsal-ventral axis of the developing brainstem, in proliferating precursor cells and postmitotic neurons. Studying these transcription factors in mice has provided key insights into the functional segregation of respiratory control and the vital importance of specific respiratory nuclei. Many studies converge on just two respiratory nuclei that each have rhythmogenic properties during the prenatal period: the preBötzinger complex (preBötC) and retrotrapezoid nucleus/parafacial nucleus (RTN/pF). Here, we discuss the transcriptional regulation that guides the development of these nuclei. We also summarize evidence showing that normal preBötC development is necessary for neonatal survival, and that neither the preBötC nor the RTN/pF alone is sufficient to sustain normal postnatal respiratory rhythms. Last, we highlight several studies that use intersectional genetics to assess the necessity of transcription factors only in subregions of their expression domain. These studies independently demonstrate that lack of RTN/pF neurons weakens the respiratory circuit, yet these neurons are not necessary for neonatal survival because developmentally related populations can compensate for abnormal RTN/pF function at birth. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
38
|
Zhao L, Gao X, Zhuang J, Wallen M, Leng S, Xu F. Prolongation of bronchopulmonary C-fiber-mediated apnea by prenatal nicotinic exposure in rat pups: role of 5-HT 3 receptors. FASEB J 2019; 33:10731-10741. [PMID: 31251077 PMCID: PMC6766661 DOI: 10.1096/fj.201900279rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/04/2019] [Indexed: 01/30/2023]
Abstract
Prenatal nicotinic exposure (PNE) reportedly sensitizes bronchopulmonary C-fibers (PCFs) and prolongs PCF-mediated apnea in rat pups, contributing to the pathogenesis of sudden infant death syndrome. Serotonin, or 5-hydroxytryptamine (5-HT), induces apnea via acting on 5-HT receptor 3 (5-HT3R) in PCFs, and among the 5-HT3R subunits, 5-HT3B is responsible for shortening the decay time of 5-HT3R-mediated currents. We examined whether PNE would promote pulmonary 5-HT secretion and prolong the apnea mediated by 5-HT3Rs in PCFs via affecting the 5-HT3B subunit. To this end, the following variables were compared between the control and PNE rat pups: 1) the 5-HT content in bronchoalveolar lavage fluid, 2) the apneic response to the right atrial bolus injection of phenylbiguanide (a 5-HT3R agonist) before and after PCF inactivation, 3) 5-HT3R currents and the stimulus threshold of the action currents of vagal pulmonary C-neurons, and 4) the immunoreactivity (IR) and mRNA expression of 5-HT3A and 5-HT3B in these neurons. Our results showed that PNE up-regulated the pulmonary 5-HT concentration and strengthened the PCF 5-HT3R-mediated apnea. PNE significantly facilitated neural excitability by shortening the decay time of 5-HT3R currents, lowering the stimulus threshold, and increasing 5-HT3B IR. In summary, PNE prolongs the apnea mediated by 5-HT3Rs in PCFs, likely by increasing 5-HT3B subunits to enhance the excitability of 5-HT3 channels.-Zhao, L., Gao, X., Zhuang, J., Wallen, M., Leng, S., Xu, F. Prolongation of bronchopulmonary C-fiber-mediated apnea by prenatal nicotinic exposure in rat pups: role of 5-HT3 receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apnea/etiology
- Apnea/genetics
- Apnea/physiopathology
- Biguanides/administration & dosage
- Bronchoalveolar Lavage Fluid/chemistry
- Disease Models, Animal
- Female
- Humans
- Infant, Newborn
- Lung/drug effects
- Lung/innervation
- Lung/physiopathology
- Male
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Nicotine/administration & dosage
- Nicotine/toxicity
- Pregnancy
- Prenatal Exposure Delayed Effects/etiology
- Prenatal Exposure Delayed Effects/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/physiology
- Serotonin/metabolism
- Serotonin 5-HT3 Receptor Agonists/administration & dosage
- Sudden Infant Death/etiology
Collapse
Affiliation(s)
- Lei Zhao
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Xiuping Gao
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jianguo Zhuang
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Morgan Wallen
- Department of Arts and Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Shuguang Leng
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Fadi Xu
- Pathophysiological Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
39
|
Buchanan GF. Impaired CO 2-Induced Arousal in SIDS and SUDEP. Trends Neurosci 2019; 42:242-250. [PMID: 30905388 DOI: 10.1016/j.tins.2019.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Premature, sudden death is devastating. Certain patient populations are at greater risk to succumb to sudden death. For instance, infants under 1year of age are at risk for sudden infant death syndrome (SIDS), and patients with epilepsy are at risk for sudden unexpected death in epilepsy (SUDEP). Deaths are attributed to these syndromic entities in these select populations when other diagnoses have been excluded. There are a number of similarities between these syndromes, and the commonalities suggest that the two syndromes may share certain etiological features. One such feature may be deficiency of arousal to CO2. Under normal conditions, CO2 is a potent arousal stimulus. Circumstances surrounding SIDS and SUDEP deaths often facilitate CO2 elevation, and faulty CO2 arousal mechanisms could, at least in part, contribute to death.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology and Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
40
|
Tang Y, Williams N, Sampson BA. Genetic testing in sudden unexpected natural death in the young: New York City Office of Chief Medical Examiner's experience and perspective. Forensic Sci Med Pathol 2018; 15:481-484. [PMID: 30535908 DOI: 10.1007/s12024-018-0068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/23/2022]
Abstract
Postmortem genetic testing is a diagnostic tool that is becoming increasingly utilized. The benefits and limitations of genetic testing in cases of sudden, unexpected death in the young (≤ 40 years old) are reviewed from the perspective of the Office of Chief Medical Examiner of the City of New York, whose Molecular Genetics Laboratory, accredited by College of American Pathologists, has had 15 years of postmortem testing experience. Challenges to the interpretation and communication of testing results are highlighted, and opportunities for improving testing yield are discussed for age groups across the lifespan, from infancy to adulthood.
Collapse
Affiliation(s)
- Yingying Tang
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, 421 East 26th Street, New York, NY, 10016, USA.
| | - Nori Williams
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, 421 East 26th Street, New York, NY, 10016, USA
| | - Barbara A Sampson
- Forensic Pathology Department, Office of Chief Medical Examiner, New York, NY, USA
| |
Collapse
|
41
|
Abstract
A wide variety of neuropathological abnormalities have been investigated in infants who have died of sudden infant death syndrome (SIDS). Issues which detracted from early studies included failure to use uniform definitions of SIDS and lack of appropriately matched control populations. Development of the triple risk model focused attention on the concept of an inherent susceptibility to unexpected death in certain infants, with research demonstrating a role for the neurotransmitter serotonin within the brainstem. However, it now appears that neuropathological abnormalities in SIDS infants are more complex than a simple serotonergic deficiency in certain medullary nuclei but instead could involve failure of an integrated network of neurochemical transmitters in a variety of subcortical locations. The following overview examines recent research developments looking particularly at the potential role of the peptide neurotransmitter substance P and its neurokinin-1 receptor in multiple nuclei within the brainstem, asymmetry and microdysgenesis of the hippocampus, and decreased orexin levels within dorsomedial, perifornical, and lateral levels in the hypothalamus. Whether such research will lead to identifiable biomarker for infants at risk of SIDS is yet to be established. Use of standardized and consistent methods of classifying and categorizing infant deaths will be pivotal in generating reproducible research results.
Collapse
Affiliation(s)
- Fiona M Bright
- 1 School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- 2 Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Roger W Byard
- 1 School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
43
|
Porzionato A, Macchi V, De Caro R. Central and peripheral chemoreceptors in sudden infant death syndrome. J Physiol 2018; 596:3007-3019. [PMID: 29645275 PMCID: PMC6068209 DOI: 10.1113/jp274355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of sudden infant death syndrome (SIDS) has been ascribed to an underlying biological vulnerability to stressors during a critical period of development. This paper reviews the main data in the literature supporting the role of central (e.g. retrotrapezoid nucleus, serotoninergic raphe nuclei, locus coeruleus, orexinergic neurons, ventral medullary surface, solitary tract nucleus) and peripheral (e.g. carotid body) chemoreceptors in the pathogenesis of SIDS. Clinical and experimental studies indicate that central and peripheral chemoreceptors undergo critical development during the initial postnatal period, consistent with the age range of SIDS (<1 year). Most of the risk factors for SIDS (gender, genetic factors, prematurity, hypoxic/hyperoxic stimuli, inflammation, perinatal exposure to cigarette smoke and/or substance abuse) may structurally and functionally affect the developmental plasticity of central and peripheral chemoreceptors, strongly suggesting the involvement of these structures in the pathogenesis of SIDS. Morphometric and neurochemical changes have been found in the carotid body and brainstem respiratory chemoreceptors of SIDS victims, together with functional signs of chemoreception impairment in some clinical studies. However, the methodological problems of SIDS research will have to be addressed in the future, requiring large and highly standardized case series. Up-to-date autopsy protocols should be produced, involving substantial, and exhaustive sampling of all potentially involved structures (including peripheral arterial chemoreceptors). Morphometric approaches should include unbiased stereological methods with three-dimensional probes. Prospective clinical studies addressing functional tests and risk factors (including genetic traits) would probably be the gold standard, allowing markers of intrinsic or acquired vulnerability to be properly identified.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| | - Veronica Macchi
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| | - Raffaele De Caro
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| |
Collapse
|
44
|
Cardiovascular autonomic dysfunction in sudden infant death syndrome. Clin Auton Res 2018; 28:535-543. [PMID: 29299712 DOI: 10.1007/s10286-017-0490-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
A failure of cardiorespiratory control mechanisms, together with an impaired arousal response from sleep, are believed to play an important role in the final event of sudden infant death syndrome (SIDS). The 'triple risk model' describes SIDS as an event that results from the intersection of three overlapping factors: (1) a vulnerable infant, (2) a critical developmental period in homeostatic control and (3) an exogenous stressor. In an attempt to understand how the triple risk hypothesis is related to infant cardiorespiratory physiology, many researchers have examined how the known risk and protective factors for SIDS alter infant cardiovascular control during sleep. This review discusses the association between the three components of the triple risk hypothesis and major risk factors for SIDS, such as prone sleeping, maternal smoking, together with three "protective" factors, and cardiovascular control during sleep in infants, and discusses their potential involvement in SIDS.
Collapse
|
45
|
Noteworthy Professional News. Adv Neonatal Care 2017. [DOI: 10.1097/anc.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|