1
|
Moiseenko A, Zhang Y, Vorovitch MF, Ivanova AL, Liu Z, Osolodkin DI, Egorov AM, Ishmukhametov AA, Sokolova OS. Structural diversity of tick-borne encephalitis virus particles in the inactivated vaccine based on strain Sofjin. Emerg Microbes Infect 2024; 13:2290833. [PMID: 38073510 DOI: 10.1080/22221751.2023.2290833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 03/12/2024]
Abstract
The main approach to preventing tick-borne encephalitis (TBE) is vaccination. Formaldehyde-inactivated TBE vaccines have a proven record of safety and efficiency but have never been characterized structurally with atomic resolution. We report a cryoelectron microscopy (cryo-EM) structure of the formaldehyde-inactivated TBE virus (TBEV) of Sofjin-Chumakov strain representing the Far-Eastern subtype. A 3.8 Å resolution reconstruction reveals the structural integrity of the envelope E proteins, specifically the E protein ectodomains. The comparative study shows a high structural similarity to the previously published structures of the TBEV European subtype strains Hypr and Kuutsalo-14. A fraction of inactivated virions exhibits asymmetric features including the deformations of the membrane profile. We propose that the heterogeneity is caused by inactivation and perform a local variability analysis on the small parts of the envelope protein shell to reveal membrane curvature features possibly induced by the inactivation. The results of this study will have implications for the design of novel vaccines against diseases caused by flaviviruses.
Collapse
Affiliation(s)
- Andrey Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yichen Zhang
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, People's Republic of China
| | - Mikhail F Vorovitch
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alla L Ivanova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexey M Egorov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga S Sokolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Anastasina M, Füzik T, Domanska A, Pulkkinen LIA, Šmerdová L, Formanová PP, Straková P, Nováček J, Růžek D, Plevka P, Butcher SJ. The structure of immature tick-borne encephalitis virus supports the collapse model of flavivirus maturation. SCIENCE ADVANCES 2024; 10:eadl1888. [PMID: 38959313 PMCID: PMC11221509 DOI: 10.1126/sciadv.adl1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
We present structures of three immature tick-borne encephalitis virus (TBEV) isolates. Our atomic models of the major viral components, the E and prM proteins, indicate that the pr domains of prM have a critical role in holding the heterohexameric prM3E3 spikes in a metastable conformation. Destabilization of the prM furin-sensitive loop at acidic pH facilitates its processing. The prM topology and domain assignment in TBEV is similar to the mosquito-borne Binjari virus, but is in contrast to other immature flavivirus models. These results support that prM cleavage, the collapse of E protein ectodomains onto the virion surface, the large movement of the membrane domains of both E and M, and the release of the pr fragment from the particle render the virus mature and infectious. Our work favors the collapse model of flavivirus maturation warranting further studies of immature flaviviruses to determine the sequence of events and mechanistic details driving flavivirus maturation.
Collapse
Affiliation(s)
- Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Aušra Domanska
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petra Pokorná Formanová
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
| | - Petra Straková
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Chmielewski D, Su GC, Kaelber JT, Pintilie GD, Chen M, Jin J, Auguste AJ, Chiu W. Cryogenic electron microscopy and tomography reveal imperfect icosahedral symmetry in alphaviruses. PNAS NEXUS 2024; 3:pgae102. [PMID: 38525304 PMCID: PMC10959069 DOI: 10.1093/pnasnexus/pgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Alphaviruses are spherical, enveloped RNA viruses with two-layered icosahedral architecture. The structures of many alphaviruses have been studied using cryogenic electron microscopy (cryo-EM) reconstructions, which impose icosahedral symmetry on the viral particles. Using cryogenic electron tomography (cryo-ET), we revealed a polarized symmetry defect in the icosahedral lattice of Chikungunya virus (CHIKV) in situ, similar to the late budding particles, suggesting the inherent imperfect symmetry originates from the final pinch-off of assembled virions. We further demonstrated this imperfect symmetry is also present in in vitro purified CHIKV and Mayaro virus, another arthritogenic alphavirus. We employed a subparticle-based single-particle analysis protocol to circumvent the icosahedral imperfection and boosted the resolution of the structure of the CHIKV to ∼3 Å resolution, which revealed detailed molecular interactions between glycoprotein E1-E2 heterodimers in the transmembrane region and multiple lipid-like pocket factors located in a highly conserved hydrophobic pocket. This complementary use of in situ cryo-ET and single-particle cryo-EM approaches provides a more precise structural description of near-icosahedral viruses and valuable insights to guide the development of structure-based antiviral therapies against alphaviruses.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Guan-Chin Su
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Grigore D Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Jing Jin
- Vitalant Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
4
|
Jablunovsky A, Jose J. The Dynamic Landscape of Capsid Proteins and Viral RNA Interactions in Flavivirus Genome Packaging and Virus Assembly. Pathogens 2024; 13:120. [PMID: 38392858 PMCID: PMC10893219 DOI: 10.3390/pathogens13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The Flavivirus genus of the Flaviviridae family of enveloped single-stranded RNA viruses encompasses more than 70 members, many of which cause significant disease in humans and livestock. Packaging and assembly of the flavivirus RNA genome is essential for the formation of virions, which requires intricate coordination of genomic RNA, viral structural, and nonstructural proteins in association with virus-induced, modified endoplasmic reticulum (ER) membrane structures. The capsid (C) protein, a small but versatile RNA-binding protein, and the positive single-stranded RNA genome are at the heart of the elusive flavivirus assembly process. The nucleocapsid core, consisting of the genomic RNA encapsidated by C proteins, buds through the ER membrane, which contains viral glycoproteins prM and E organized as trimeric spikes into the lumen, forming an immature virus. During the maturation process, which involves the low pH-mediated structural rearrangement of prM and E and furin cleavage of prM in the secretory pathway, the spiky immature virus with a partially ordered nucleocapsid core becomes a smooth, mature virus with no discernible nucleocapsid. This review focuses on the mechanisms of genome packaging and assembly by examining the structural and functional aspects of C protein and viral RNA. We review the current lexicon of critical C protein features and evaluate interactions between C and genomic RNA in the context of assembly and throughout the life cycle.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Jablunovsky A, Narayanan A, Jose J. Identification of a critical role for ZIKV capsid α3 in virus assembly and its genetic interaction with M protein. PLoS Negl Trop Dis 2024; 18:e0011873. [PMID: 38166143 PMCID: PMC10786401 DOI: 10.1371/journal.pntd.0011873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
Flaviviruses such as Zika and dengue viruses are persistent health concerns in endemic regions worldwide. Efforts to combat the spread of flaviviruses have been challenging, as no antivirals or optimal vaccines are available. Prevention and treatment of flavivirus-induced diseases require a comprehensive understanding of their life cycle. However, several aspects of flavivirus biogenesis, including genome packaging and virion assembly, are not well characterized. In this study, we focused on flavivirus capsid protein (C) using Zika virus (ZIKV) as a model to investigate the role of the externally oriented α3 helix (C α3) without a known or predicted function. Alanine scanning mutagenesis of surface-exposed amino acids on C α3 revealed a critical CN67 residue essential for ZIKV virion production. The CN67A mutation did not affect dimerization or RNA binding of purified C protein in vitro. The virus assembly is severely affected in cells transfected with an infectious cDNA clone of ZIKV with CN67A mutation, resulting in a highly attenuated phenotype. We isolated a revertant virus with a partially restored phenotype by continuous passage of the CN67A mutant virus in Vero E6 cells. Sequence analysis of the revertant revealed a second site mutation in the viral membrane (M) protein MF37L, indicating a genetic interaction between the C and M proteins of ZIKV. Introducing the MF37L mutation on the mutant ZIKV CN67A generated a double-mutant virus phenotypically consistent with the isolated genetic revertant. Similar results were obtained with analogous mutations on C and M proteins of dengue virus, suggesting the critical nature of C α3 and possible C and M residues contributing to virus assembly in other Aedes-transmitted flaviviruses. This study provides the first experimental evidence of a genetic interaction between the C protein and the viral envelope protein M, providing a mechanistic understanding of the molecular interactions involved in the assembly and budding of Aedes-transmitted flaviviruses.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Valdes I, Gil L, Lazo L, Cobas K, Romero Y, Bruno A, Suzarte E, Pérez Y, Cabrales A, Ramos Y, Hermida L, Guillén G. Recombinant protein based on domain III and capsid regions of zika virus induces humoral and cellular immune response in immunocompetent BALB/c mice. Vaccine 2023; 41:5892-5900. [PMID: 37599141 DOI: 10.1016/j.vaccine.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Zika virus infection continues to be a global concern for human health due to the high-risk association of the disease with neurological disorders and microcephaly in newborn. Nowadays, no vaccine or specific antiviral treatment is available, and the development of safe and effective vaccines is yet a challenge. In this study, we obtained a novel subunit vaccine that combines two regions of zika genome, domain III of the envelope and the capsid, in a chimeric protein in E. coli bacteria. The recombinant protein was characterized with polyclonal anti-ZIKV and anti-DENV antibodies that corroborate the specificity of the molecule. In addition, the PBMC from zika-immune donors stimulated with the ZEC recombinant antigen showed the capacity to recall the memory T cell response previously generated by the natural infection. The chimeric protein ZEC was able to self-assemble after combination with an immunomodulatory specific oligonucleotide to form aggregates. The inoculation of BALB/c mice with ZEC aggregated and not aggregated form of the protein showed a similar humoral immune response, although the aggregated variant induced more cell-mediated immunity evaluated by in vitro IFNγ secretion. In this study, we propose a novel vaccine candidate against the zika disease based on a recombinant protein that can stimulate both arms of the immune system.
Collapse
Affiliation(s)
- Iris Valdes
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba.
| | - Lázaro Gil
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yaremis Romero
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Andy Bruno
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yassel Ramos
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Lisset Hermida
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| |
Collapse
|
7
|
Cherkashchenko L, Gros N, Trausch A, Neyret A, Hénaut M, Dubois G, Villeneuve M, Chable-Bessia C, Lyonnais S, Merits A, Muriaux D. Validation of flavivirus infectious clones carrying fluorescent markers for antiviral drug screening and replication studies. Front Microbiol 2023; 14:1201640. [PMID: 37779700 PMCID: PMC10541152 DOI: 10.3389/fmicb.2023.1201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Flaviviruses have emerged as major arthropod-transmitted pathogens and represent an increasing public health problem worldwide. High-throughput screening can be facilitated using viruses that easily express detectable marker proteins. Therefore, developing molecular tools, such as reporter-carrying versions of flaviviruses, for studying viral replication and screening antiviral compounds represents a top priority. However, the engineering of flaviviruses carrying either fluorescent or luminescent reporters remains challenging due to the genetic instability caused by marker insertion; therefore, new approaches to overcome these limitations are needed. Here, we describe reverse genetic methods that include the design and validation of infectious clones of Zika, Kunjin, and Dengue viruses harboring different reporter genes for infection, rescue, imaging, and morphology using super-resolution microscopy. It was observed that different flavivirus constructs with identical designs displayed strikingly different genetic stabilities, and corresponding virions resembled wild-type virus particles in shape and size. A successful strategy was assessed to increase the stability of rescued reporter virus and permit antiviral drug screening based on quantitative automated fluorescence microscopy and replication studies.
Collapse
Affiliation(s)
- Liubov Cherkashchenko
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nathalie Gros
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Alice Trausch
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Aymeric Neyret
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Mathilde Hénaut
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Gregor Dubois
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | | | | | | | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Delphine Muriaux
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
- IRIM UMR9004 CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
8
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
9
|
Williamson LE, Bandyopadhyay A, Bailey K, Sirohi D, Klose T, Julander JG, Kuhn RJ, Crowe JE. Structural constraints link differences in neutralization potency of human anti-Eastern equine encephalitis virus monoclonal antibodies. Proc Natl Acad Sci U S A 2023; 120:e2213690120. [PMID: 36961925 PMCID: PMC10068833 DOI: 10.1073/pnas.2213690120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/26/2023] Open
Abstract
Selection and development of monoclonal antibody (mAb) therapeutics against pathogenic viruses depends on certain functional characteristics. Neutralization potency, or the half-maximal inhibitory concentration (IC50) values, is an important characteristic of candidate therapeutic antibodies. Structural insights into the bases of neutralization potency differences between antiviral neutralizing mAbs are lacking. In this report, we present cryo-electron microscopy (EM) reconstructions of three anti-Eastern equine encephalitis virus (EEEV) neutralizing human mAbs targeting overlapping epitopes on the E2 protein, with greater than 20-fold differences in their respective IC50 values. From our structural and biophysical analyses, we identify several constraints that contribute to the observed differences in the neutralization potencies. Cryo-EM reconstructions of EEEV in complex with these Fab fragments reveal structural constraints that dictate intravirion or intervirion cross-linking of glycoprotein spikes by their IgG counterparts as a mechanism of neutralization. Additionally, we describe critical features for the recognition of EEEV by these mAbs including the epitope-paratope interaction surface, occupancy, and kinetic differences in on-rate for binding to the E2 protein. Each constraint contributes to the extent of EEEV inhibition for blockade of virus entry, fusion, and/or egress. These findings provide structural and biophysical insights into the differences in mechanism and neutralization potencies of these antibodies, which help inform rational design principles for candidate vaccines and therapeutic antibodies for all icosahedral viruses.
Collapse
Affiliation(s)
- Lauren E. Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
| | - Abhishek Bandyopadhyay
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT84335
| | - Devika Sirohi
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Thomas Klose
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | | | - Richard J. Kuhn
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
10
|
Cheong HC, Cheok YY, Chan YT, Sulaiman S, Looi CY, Alshanon AF, Hassan J, Abubakar S, Wong WF. Zika Virus Vaccine: The Current State of Affairs and Challenges Posed by Antibody-Dependent Enhancement Reaction. Viral Immunol 2022; 35:586-596. [PMID: 36301533 DOI: 10.1089/vim.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly Abubakar
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Tropical Infectious Diseases Research and Educational Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
13
|
Chikungunya virus assembly and budding visualized in situ using cryogenic electron tomography. Nat Microbiol 2022; 7:1270-1279. [PMID: 35773421 PMCID: PMC9930444 DOI: 10.1038/s41564-022-01164-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/26/2022] [Indexed: 01/30/2023]
Abstract
Chikungunya virus (CHIKV) is a representative alphavirus causing debilitating arthritogenic disease in humans. Alphavirus particles assemble into two icosahedral layers: the glycoprotein spike shell embedded in a lipid envelope and the inner nucleocapsid (NC) core. In contrast to matrix-driven assembly of some enveloped viruses, the assembly/budding process of two-layered icosahedral particles remains poorly understood. Here we used cryogenic electron tomography (cryo-ET) to capture snapshots of the CHIKV assembly in infected human cells. Subvolume classification of the snapshots revealed 12 intermediates representing different stages of assembly at the plasma membrane. Further subtomogram average structures ranging from subnanometre to nanometre resolutions show that immature non-icosahedral NCs function as rough scaffolds to trigger icosahedral assembly of the spike lattice, which in turn progressively transforms the underlying NCs into icosahedral cores during budding. Further, analysis of CHIKV-infected cells treated with budding-inhibiting antibodies revealed wider spaces between spikes than in icosahedral spike lattice, suggesting that spacing spikes apart to prevent their lateral interactions prevents the plasma membrane from bending around the NC, thus blocking virus budding. These findings provide the molecular mechanisms for alphavirus assembly and antibody-mediated budding inhibition that provide valuable insights for the development of broad therapeutics targeting the assembly of icosahedral enveloped viruses.
Collapse
|
14
|
Castro-Jiménez TK, Gómez-Legorreta LC, López-Campa LA, Martínez-Torres V, Alvarado-Silva M, Posadas-Mondragón A, Díaz-Lima N, Angulo-Mendez HA, Mejía-Domínguez NR, Vaca-Paniagua F, Ávila-Moreno F, García-Cordero J, Cedillo-Barrón L, Aguilar-Ruíz SR, Bustos-Arriaga J. Variability in Susceptibility to Type I Interferon Response and Subgenomic RNA Accumulation Between Clinical Isolates of Dengue and Zika Virus From Oaxaca Mexico Correlate With Replication Efficiency in Human Cells and Disease Severity. Front Cell Infect Microbiol 2022; 12:890750. [PMID: 35800385 PMCID: PMC9254156 DOI: 10.3389/fcimb.2022.890750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue and Zika viruses cocirculate annually in endemic areas of Mexico, causing outbreaks of different magnitude and severity every year, suggesting a continuous selection of Flavivirus variants with variable phenotypes of transmissibility and virulence. To evaluate if Flavivirus variants with different phenotypes cocirculate during outbreaks, we isolated dengue and Zika viruses from blood samples of febrile patients from Oaxaca City during the 2016 and 2019 epidemic years. We compared their replication kinetics in human cells, susceptibility to type I interferon antiviral response, and the accumulation of subgenomic RNA on infected cells. We observed correlations between type I interferon susceptibility and subgenomic RNA accumulation, with high hematocrit percentage and thrombocytopenia. Our results suggest that Flaviviruses that cocirculate in Oaxaca, Mexico, have variable sensitivity to the antiviral activity of type I interferons, and this phenotypic trait correlates with the severity of the disease.
Collapse
Affiliation(s)
- Tannya Karen Castro-Jiménez
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Laura Cristina Gómez-Legorreta
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Laura Alejandra López-Campa
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Valeria Martínez-Torres
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Marcos Alvarado-Silva
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Araceli Posadas-Mondragón
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | | | - Nancy R. Mejía-Domínguez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Federico Ávila-Moreno
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Sergio Roberto Aguilar-Ruíz
- Departamento de Biomedicina Experimental, Facultad de Medicina y Cirugía de la Universidad Autónoma ‘Benito Juárez’ de Oaxaca, Oaxaca, Mexico
| | - José Bustos-Arriaga
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- *Correspondence: José Bustos-Arriaga,
| |
Collapse
|
15
|
Jose J, Hafenstein SL. Asymmetry in icosahedral viruses. Curr Opin Virol 2022; 54:101230. [DOI: 10.1016/j.coviro.2022.101230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
16
|
Caldwell HS, Pata JD, Ciota AT. The Role of the Flavivirus Replicase in Viral Diversity and Adaptation. Viruses 2022; 14:1076. [PMID: 35632818 PMCID: PMC9143365 DOI: 10.3390/v14051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses include several emerging and re-emerging arboviruses which cause millions of infections each year. Although relatively well-studied, much remains unknown regarding the mechanisms and means by which these viruses readily alternate and adapt to different hosts and environments. Here, we review a subset of the different aspects of flaviviral biology which impact host switching and viral fitness. These include the mechanism of replication and structural biology of the NS3 and NS5 proteins, which reproduce the viral genome; rates of mutation resulting from this replication and the role of mutational frequency in viral fitness; and the theory of quasispecies evolution and how it contributes to our understanding of genetic and phenotypic plasticity.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| |
Collapse
|
17
|
Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses. Proc Natl Acad Sci U S A 2022; 119:e2110491119. [PMID: 35294288 PMCID: PMC8944775 DOI: 10.1073/pnas.2110491119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most viruses have a relatively narrow host range. In contrast, vector-borne flaviviruses, such as dengue virus and Zika virus, maintain their transmission cycle between arthropods and vertebrates, belonging to different phyla. How do these viruses adapt to the distinct cellular environments of two phyla? By comparing the single-host insect--specific flavivirus and dual-host Zika virus, we identified three key molecular factors that determine MBF host tropism. This study will greatly increase the understanding of entry, replication, and cross-species evolution of mosquito-borne flaviviruses. Mosquito-borne flaviviruses (MBFs) adapt to a dual-host transmission circle between mosquitoes and vertebrates. Dual-host affiliated insect-specific flaviviruses (dISFs), discovered from mosquitoes, are phylogenetically similar to MBFs but do not infect vertebrates. Thus, dISF–MBF chimeras could be an ideal model to study the dual-host adaptation of MBFs. Using the pseudoinfectious reporter virus particle and reverse genetics systems, we found dISFs entered vertebrate cells as efficiently as the MBFs but failed to initiate replication. Exchange of the untranslational regions (UTRs) of Donggang virus (DONV), a dISF, with those from Zika virus (ZIKV) rescued DONV replication in vertebrate cells, and critical secondary RNA structures were further mapped. Essential UTR-binding host factors were screened for ZIKV replication in vertebrate cells, displaying different binding patterns. Therefore, our data demonstrate a post-entry cross-species transmission mechanism of MBFs, while UTR-host interaction is critical for dual-host adaptation.
Collapse
|
18
|
Mebus-Antunes NC, Ferreira WS, Barbosa GM, Neves-Martins TC, Weissmuller G, Almeida FCL, Da Poian AT. The interaction of dengue virus capsid protein with negatively charged interfaces drives the in vitro assembly of nucleocapsid-like particles. PLoS One 2022; 17:e0264643. [PMID: 35231063 PMCID: PMC8887749 DOI: 10.1371/journal.pone.0264643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/15/2022] [Indexed: 01/06/2023] Open
Abstract
Dengue virus (DENV) causes a major arthropod-borne viral disease, with 2.5 billion people living in risk areas. DENV consists in a 50 nm-diameter enveloped particle in which the surface proteins are arranged with icosahedral symmetry, while information about nucleocapsid (NC) structural organization is lacking. DENV NC is composed of the viral genome, a positive-sense single-stranded RNA, packaged by the capsid (C) protein. Here, we established the conditions for a reproducible in vitro assembly of DENV nucleocapsid-like particles (NCLPs) using recombinant DENVC. We analyzed NCLP formation in the absence or presence of oligonucleotides in solution using small angle X-ray scattering, Rayleigh light scattering as well as fluorescence anisotropy, and characterized particle structural properties using atomic force and transmission electron microscopy imaging. The experiments in solution comparing 2-, 5- and 25-mer oligonucleotides established that 2-mer is too small and 5-mer is sufficient for the formation of NCLPs. The assembly process was concentration-dependent and showed a saturation profile, with a stoichiometry of 1:1 (DENVC:oligonucleotide) molar ratio, suggesting an equilibrium involving DENVC dimer and an organized structure compatible with NCLPs. Imaging methods proved that the decrease in concentration to sub-nanomolar concentrations of DENVC allows the formation of regular spherical NCLPs after protein deposition on mica or carbon surfaces, in the presence as well as in the absence of oligonucleotides, in this latter case being surface driven. Altogether, the results suggest that in vitro assembly of DENV NCLPs depends on DENVC charge neutralization, which must be a very coordinated process to avoid unspecific aggregation. Our hypothesis is that a specific highly positive spot in DENVC α4-α4' is the main DENVC-RNA binding site, which is required to be firstly neutralized to allow NC formation.
Collapse
Affiliation(s)
- Nathane C. Mebus-Antunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wellington S. Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauce M. Barbosa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais C. Neves-Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weissmuller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C. L. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
20
|
Hardy JM, Newton ND, Modhiran N, Scott CAP, Venugopal H, Vet LJ, Young PR, Hall RA, Hobson-Peters J, Coulibaly F, Watterson D. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat Commun 2021; 12:3266. [PMID: 34075032 PMCID: PMC8169900 DOI: 10.1038/s41467-021-22773-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology. Understanding virus assembly could identify potential drug targets. Here the authors use a safe and efficient method to solve pathogenic flavivirus structures, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein that are important for virus maturation.
Collapse
Affiliation(s)
- Joshua M Hardy
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fasséli Coulibaly
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021; 296:198343. [PMID: 33607183 DOI: 10.1016/j.virusres.2021.198343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Flaviviruses are the fastest spreading arthropod-borne viruses that cause severe symptoms such as hepatitis, hemorrhagic fever, encephalitis, and congenital deformities. Nearly 40 % of the entire human population is at risk of flavivirus epidemics. Yet, effective vaccination is restricted only to a few flaviviruses such as yellow fever and Japanese encephalitis viruses, and most recently for select cases of dengue virus infections. Despite the global spread of dengue virus, and emergence of new threats such as Zika virus and a new genotype of Japanese encephalitis virus, insights into flavivirus targets for potentially broad-spectrum vaccination are limited. In this review article, we highlight biochemical and structural differences in flavivirus proteins critical for virus assembly and host interactions. A comparative sequence analysis of pH-responsive properties of viral structural proteins identifies trends in conservation of complementary acidic-basic character between interacting viral structural proteins. This is highly relevant to the understanding of pH-sensitive differences in virus assembly in organelles such as neutral ER and acidic Golgi. Surface residues in viral interfaces identified by structural approaches are shown to demonstrate partial conservation, further reinforcing virus-specificity in assembly and interactions with host proteins. A comparative analysis of epitope conservation in emerging flaviviruses identifies therapeutic antibody candidates that have potential as broad spectrum anti-virals, thus providing a path towards development of vaccines.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette IN 47907, USA
| | - Asma Rehman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St. Baltimore MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville MD 20850, USA.
| |
Collapse
|
22
|
Soñora M, Martínez L, Pantano S, Machado MR. Wrapping Up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus. J Chem Inf Model 2021; 61:408-422. [PMID: 33415985 DOI: 10.1021/acs.jcim.0c01205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Simulating huge biomolecular complexes of million atoms at relevant biological time scales is becoming accessible to the broad scientific community. That proves to be crucial for urgent responses against emergent diseases in real time. Yet, there are still issues to sort regarding the system setup so that molecular dynamics (MD) simulations can be run in a simple and standard way. Here, we introduce an optimized pipeline for building and simulating enveloped virus-like particles (VLP). First, the membrane packing problem is tackled with new features and optimized options in PACKMOL. This allows preparing accurate membrane models of thousands of lipids in the context of a VLP within a few hours using a single CPU. Then, the assembly of the VLP system is done within the multiscale framework of the coarse-grained SIRAH force field. Finally, the equilibration protocol provides a system ready for production MD simulations within a few days on broadly accessible GPU resources. The pipeline is applied to study the Zika virus as a test case for large biomolecular systems. The VLP stabilizes at approximately 0.5 μs of MD simulation, reproducing correlations greater than 0.90 against experimental density maps from cryo-electron microscopy. Detailed structural analysis of the protein envelope also shows very good agreement in root-mean-square deviations and B-factors with the experimental data. The level of details attained shows for the first time a possible role for anionic phospholipids in stabilizing the envelope. Combining an efficient and reliable setup procedure with an accurate coarse-grained force field provides a valuable pipeline for simulating arbitrary viral systems or subcellular compartments, paving the way toward whole-cell simulations.
Collapse
Affiliation(s)
- Martín Soñora
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Leandro Martínez
- Institute of Chemistry and Center for Computational Engineering & Science, University of Campinas, Rua Josué de Castro s/n, Cidade Universitária "Zeferino Vaz", Barão Geraldo, 13083-861 Campinas, SP, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| |
Collapse
|
23
|
|
24
|
Manna S, Dey S, Biswas S, Nandy A, Basak SC. Current Perspective of Zika Virus and Vaccine Development. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-9. [DOI: 10.14218/erhm.2020.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Identification of a pocket factor that is critical to Zika virus assembly. Nat Commun 2020; 11:4953. [PMID: 33009400 PMCID: PMC7532219 DOI: 10.1038/s41467-020-18747-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito borne flavivirus and a major public health concern causing severe disease. Due to the presence of a lipid membrane and structural heterogeneity, attaining an atomic resolution structure is challenging, but important to understand virus assembly and life cycle mechanisms that offer distinct targets for therapeutic intervention. We here use subvolume refinement to achieve a 3.4 Å resolution structure and identify two distinct lipid moieties. The first arises from the inner leaflet and is coordinated by hydrophobic residues of the M and E transmembrane helices that form a binding pocket not previously characterized. The second lipid arises from the outer leaflet coordinate between two E protein helices. Structure-based mutagenesis identifies critical hydrophobic interactions and their effect on the virus life cycle. Results show that lipids play an essential role in the ZIKV assembly pathway revealing a potential target of lipid based antiviral drug development. Here, the authors provide a 3.4 Å resolution structure of mature Zika virus (ZIKV) and identify two lipid moieties, coordinated by hydrophobic residues of the M and E transmembrane helices and between two helices of E protein, that play an essential role in the ZIKV assembly pathway.
Collapse
|
26
|
Abstract
The flavivirus genus encompasses more than 75 unique viruses, including dengue virus which accounts for almost 390 million global infections annually. Flavivirus infection can result in a myriad of symptoms ranging from mild rash and flu-like symptoms, to severe encephalitis and even hemorrhagic fever. Efforts to combat the impact of these viruses have been hindered due to limited antiviral drug and vaccine development. However, the advancement of knowledge in the structural biology of flaviviruses over the last 25 years has produced unique perspectives for the identification of potential therapeutic targets. With particular emphasis on the assembly and maturation stages of the flavivirus life cycle, it is the goal of this review to comparatively analyze the structural similarities between flaviviruses to provide avenues for new research and innovation.
Collapse
Affiliation(s)
- Conrrad M R Nicholls
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
27
|
He Y, Wang M, Chen S, Cheng A. The role of capsid in the flaviviral life cycle and perspectives for vaccine development. Vaccine 2020; 38:6872-6881. [PMID: 32950301 PMCID: PMC7495249 DOI: 10.1016/j.vaccine.2020.08.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/09/2023]
Abstract
The structure and function of flaviviral capsid are very flexible. The capsid gene contains conserved RNA secondary structures. Both steps of assembly and dissociation of nucleocapsid complexes are obscure. Capsid mutant viruses are highly attenuated and immunogenic. ΔC-replicon and single-round infectious particles are promising vaccine approaches.
The arthropod-borne flaviviruses cause a series of diseases in humans and pose a significant threat to global public health. In this review, we aimed to summarize the structure of the capsid protein (CP), its relevant multiple functions in the viral life cycle and innovative vaccines targeting CP. The flaviviral CP is the smallest structural protein and forms a homodimer by antiparallel α-helixes. Its primary function is to package the genomic RNA; however, both steps of assembly and dissociation of nucleocapsid complexes (NCs) have been obscure until now; in fact, flaviviral budding is NC-free, demonstrated by the subviral particles that generally exist in flavivirus infection. In infected cells, CPs associate with lipid droplets, which possibly store CPs prior to packaging. However, the function of nuclear localization of CPs remains unknown. Moreover, introducing deletions into CPs can be used to rationally design safe and effective live-attenuated vaccines or noninfectious replicon vaccines and single-round infectious particles, the latter two representing promising approaches for innovative flaviviral vaccine development.
Collapse
Affiliation(s)
- Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
28
|
Button JM, Qazi SA, Wang JCY, Mukhopadhyay S. Revisiting an old friend: new findings in alphavirus structure and assembly. Curr Opin Virol 2020; 45:25-33. [PMID: 32683295 DOI: 10.1016/j.coviro.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/17/2023]
Abstract
Alphaviruses are transmitted by an arthropod vector to a vertebrate host. The disease pathologies, cellular environments, immune responses, and host factors are very different in these organisms. Yet, the virus is able to infect, replicate, and assemble into new particles in these two animals using one set of genetic instructions. The balance between conserved mechanisms and unique strategies during virus assembly is critical for fitness of the virus. In this review, we discuss new findings in receptor binding, polyprotein topology, nucleocapsid core formation, and particle budding that have emerged in the last five years and share opinions on how these new findings might answer some questions regarding alphavirus structure and assembly.
Collapse
Affiliation(s)
- Julie M Button
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States
| | - Shefah A Qazi
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, 700 HMC Crescent Road, Hershey, PA 17033, United States
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States.
| |
Collapse
|
29
|
Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature 2020; 585:414-419. [PMID: 32641828 PMCID: PMC7501154 DOI: 10.1038/s41586-020-2457-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) belongs to the Flaviviridae family and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurologic disorders and replicates efficiently in reproductive tissues1–3,. Here, we show that ZIKV envelope (E) protein is K63-linked polyubiquitinated by the E3-ubiquitin ligase TRIM7. Accordingly, ZIKV replicates less efficiently in brain and reproductive tissues of Trim7−/− mice. Ubiquitinated E is present on infectious Zika virions when released from specific cell types and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the Tim-1 (HAVCR1) receptor, enhancing virus replication in cells and in vivo in brain tissue. Recombinant ZIKV mutants lacking ubiquitination are attenuated in human cells and in a mouse model, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viremia in mice. Collectively, the results demonstrate that ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.
Collapse
|
30
|
Abstract
Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor.IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.
Collapse
|
31
|
Tenth Scientific Biennial Meeting of the Australasian Virology Society-AVS10 2019. Viruses 2020; 12:v12060621. [PMID: 32517260 PMCID: PMC7354434 DOI: 10.3390/v12060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2–5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on “Successfully transitioning from post-doc to lab head”, winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.
Collapse
|
32
|
Abstract
Viruses manipulate cellular lipids and membranes at each stage of their life cycle. This includes lipid-receptor interactions, the fusion of viral envelopes with cellular membranes during endocytosis, the reorganization of cellular membranes to form replication compartments, and the envelopment and egress of virions. In addition to the physical interactions with cellular membranes, viruses have evolved to manipulate lipid signaling and metabolism to benefit their replication. This review summarizes the strategies that viruses use to manipulate lipids and membranes at each stage in the viral life cycle.
Collapse
Affiliation(s)
- Ellen Ketter
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
33
|
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Citation(s) in RCA: 527] [Impact Index Per Article: 131.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
Collapse
Affiliation(s)
- Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Ramanathan HN, Zhang S, Douam F, Mar KB, Chang J, Yang PL, Schoggins JW, Ploss A, Lindenbach BD. A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating. mBio 2020; 11:e00467-20. [PMID: 32291299 PMCID: PMC7157815 DOI: 10.1128/mbio.00467-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023] Open
Abstract
While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVΔSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVΔSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97.
Collapse
Affiliation(s)
- Harish N Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Florian Douam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jinhong Chang
- Department of Experimental Therapeutics, The Baruch S. Blumberg Institute, Doylestown, Pennsylvania, USA
| | - Priscilla L Yang
- Department of Microbiology and the Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
35
|
Tan TY, Fibriansah G, Kostyuchenko VA, Ng TS, Lim XX, Zhang S, Lim XN, Wang J, Shi J, Morais MC, Corti D, Lok SM. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat Commun 2020; 11:895. [PMID: 32060358 PMCID: PMC7021721 DOI: 10.1038/s41467-020-14647-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/18/2020] [Indexed: 01/22/2023] Open
Abstract
Structures of flavivirus (dengue virus and Zika virus) particles are known to near-atomic resolution and show detailed structure and arrangement of their surface proteins (E and prM in immature virus or M in mature virus). By contrast, the arrangement of the capsid proteins:RNA complex, which forms the core of the particle, is poorly understood, likely due to inherent dynamics. Here, we stabilize immature Zika virus via an antibody that binds across the E and prM proteins, resulting in a subnanometer resolution structure of capsid proteins within the virus particle. Fitting of the capsid protein into densities shows the presence of a helix previously thought to be removed via proteolysis. This structure illuminates capsid protein quaternary organization, including its orientation relative to the lipid membrane and the genomic RNA, and its interactions with the transmembrane regions of the surface proteins. Results show the capsid protein plays a central role in the flavivirus assembly process.
Collapse
Affiliation(s)
- Ter Yong Tan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Victor A Kostyuchenko
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Thiam-Seng Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Xin-Xiang Lim
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Shuijun Zhang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Xin-Ni Lim
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Jiaqi Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Jian Shi
- CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Inc., CH-6500, Bellinzona, Switzerland
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore.
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.
| |
Collapse
|
36
|
Goetschius DJ, Lee H, Hafenstein S. CryoEM reconstruction approaches to resolve asymmetric features. Adv Virus Res 2019; 105:73-91. [PMID: 31522709 DOI: 10.1016/bs.aivir.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although icosahedral viruses have highly symmetrical capsid features, asymmetric structural elements are also present since the genome and minor structural proteins are usually incorporated without adhering to icosahedral symmetry. Besides this inherent asymmetry, interactions with the host during the virus life cycle are also asymmetric. However, until recently it was impossible to resolve high resolution asymmetric features during single-particle cryoEM image processing. This review summarizes the current approaches that can be used to visualize asymmetric structural features. We have included examples of advanced structural strategies developed to reveal unique features and asymmetry in icosahedral viruses.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Susan Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
37
|
Structural Dynamics of Nonenveloped Virus Disassembly Intermediates. J Virol 2019; 93:JVI.01115-19. [PMID: 31484752 DOI: 10.1128/jvi.01115-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
The stability of icosahedral viruses is crucial for protecting the viral genome during transit; however, successful infection requires eventual disassembly of the capsid. A comprehensive understanding of how stable, uniform icosahedrons disassemble remains elusive, mainly due to the complexities involved in isolating transient intermediates. We utilized incremental heating to systematically characterize the disassembly pathway of a model nonenveloped virus and identified an intriguing link between virus maturation and disassembly. Further, we isolated and characterized two intermediates by cryo-electron microscopy and three-dimensional reconstruction, without imposing icosahedral symmetry. The first intermediate displayed a series of major, asymmetric alterations, whereas the second showed that the act of genome release, through the 2-fold axis, is actually confined to a small section on the capsid. Our study thus presents a comprehensive structural analysis of nonenveloped virus disassembly and emphasizes the asymmetric nature of programmed conformational changes.IMPORTANCE Disassembly or uncoating of an icosahedral capsid is a crucial step during infection by nonenveloped viruses. However, the dynamic and transient nature of the disassembly process makes it challenging to isolate intermediates in a temporal, stepwise manner for structural characterization. Using controlled, incremental heating, we isolated two disassembly intermediates: "eluted particles" and "puffed particles" of an insect nodavirus, Flock House virus (FHV). Cryo-electron microscopy and three-dimensional reconstruction of the FHV disassembly intermediates indicated that disassembly-related conformational alterations are minimally global and largely local, leading to asymmetry in the particle and eventual genome release without complete disintegration of the icosahedron.
Collapse
|
38
|
Abstract
Cryo-electron microscopy and single-particle image analysis are frequently used methods for macromolecular structure determination. Conventional single-particle analysis, however, usually takes advantage of inherent sample symmetries which assist in the calculation of the structure of interest (such as viruses). Many viruses assemble an icosahedral capsid and often icosahedral symmetry is applied during structure determination. Symmetry imposition, however, results in the loss of asymmetric features of the virus. Here, we provide a brief overview of the methods used to investigate non-symmetric capsid features. These include the recently developed focussed classification as well as more conventional methods which simply do not impose any symmetry. Asymmetric single-particle image analysis can reveal novel aspects of virus structure. For example, the VP4 capsid spike of rotavirus is only present at partial occupancy, the bacteriophage MS2 capsid contains a single copy of a maturation protein and some viruses also encode portals or portal-like assemblies for the packaging and/or release of their genome upon infection. Advances in single-particle image reconstruction methods now permit novel discoveries from previous single-particle data sets which are expanding our understanding of fundamental aspects of virus biology such as viral entry and egress.
Collapse
|
39
|
Johnson JE. Michael G. Rossmann (1930–2019): Leadership in structural biology for 60 years. Protein Sci 2019. [DOI: 10.1002/pro.3671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John E. Johnson
- Department of Integrative Structural and Computational BiologyThe Scripps Research Institute La Jolla California 92037
| |
Collapse
|
40
|
Dunbar CA, Rayaprolu V, Wang JCY, Brown CJ, Leishman E, Jones-Burrage S, Trinidad JC, Bradshaw HB, Clemmer DE, Mukhopadhyay S, Jarrold MF. Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infect Dis 2019; 5:892-902. [PMID: 30986033 DOI: 10.1021/acsinfecdis.8b00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sindbis virus (SINV) is an enveloped, single-stranded RNA virus, which is transmitted via mosquitos to a wide range of vertebrate hosts. SINV produced by vertebrate, baby hamster kidney (BHK) cells is more than an order of magnitude less infectious than SINV produced from mosquito (C6/36) cells. The cause of this difference is poorly understood. In this study, charge detection mass spectrometry was used to determine the masses of intact SINV particles isolated from BHK and C6/36 cells. The measured masses are substantially different: 52.88 MDa for BHK derived SINV and 50.69 MDa for C6/36 derived. Further analysis using several mass spectrometry-based methods and biophysical approaches indicates that BHK derived SINV has a substantially higher mass than C6/36 derived because in the lipid bilayer, there is a higher portion of lipids containing long chain fatty acids. The difference in lipid composition could influence the organization of the lipid bilayer. As a result, multiple stages of the viral lifecycle may be affected including assembly and budding, particle stability during transmission, and fusion events, all of which could contribute to the differences in infectivity.
Collapse
Affiliation(s)
- Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Vamseedhar Rayaprolu
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Joseph C.-Y. Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Christopher J. Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - Sara Jones-Burrage
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|