1
|
Ng R, Kalinousky A, Harris J. Expanding the Neuropsychological Phenotype of KAT6B Disorders: Overlapping Features with KAT6A Syndrome. J Autism Dev Disord 2024:10.1007/s10803-024-06500-5. [PMID: 39153151 DOI: 10.1007/s10803-024-06500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
KAT6B and KAT6A belong to the MYST family of lysine acetyltransferases, and regulate gene expression via histone modification. Although both proteins share similar structure and epigenetic regulatory functions, it remains unclear if KAT6A/6B mutation disorders, both very rare conditions, yield the same neurocognitive presentation and thus benefit from similar treatment approaches. This study provides a preliminary overview of neuropsychological functioning of 13 individuals with KAT6B disorder (Mean age = 9.01 years, SD = 5.46), which was compared to that of a recently published sample of 15 individuals with KAT6A syndrome (Mean age = 10.32 years, SD = 4.12). Participants completed a neuropsychological test battery to assess non-verbal cognition, and caregivers completed a series of standardized rating inventories to assess daily behavioral functioning. Results reveal those with KAT6B disorders present with severe adaptive deficits (92.3%) and autism-related behaviors (83.3%), juxtaposed with relatively low concerns with externalizing behaviors (7.6%), a pattern shared by the KAT6A group. Those with KAT6B disorders present with high levels of autistic features, including reduced affiliative interest, whereas social motivation is less affected within the KAT6A group. Overall, the levels of impairment in nonverbal cognition and receptive language were comparable among those with KAT6B disorders, a trend also seen in the KAT6A group. In brief, KAT6B and KAT6A disorders yield analogous neuropsychological profiles. Findings implicate common molecular pathophysiological mechanisms for these epigenetic disorders, such that similar therapies may have shared effect across diseases.
Collapse
Affiliation(s)
- Rowena Ng
- Dept of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Allison Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacqueline Harris
- Dept of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
2
|
Lacombe D, Bloch-Zupan A, Bredrup C, Cooper EB, Houge SD, García-Miñaúr S, Kayserili H, Larizza L, Lopez Gonzalez V, Menke LA, Milani D, Saettini F, Stevens CA, Tooke L, Van der Zee JA, Van Genderen MM, Van-Gils J, Waite J, Adrien JL, Bartsch O, Bitoun P, Bouts AHM, Cueto-González AM, Dominguez-Garrido E, Duijkers FA, Fergelot P, Halstead E, Huisman SA, Meossi C, Mullins J, Nikkel SM, Oliver C, Prada E, Rei A, Riddle I, Rodriguez-Fonseca C, Rodríguez Pena R, Russell J, Saba A, Santos-Simarro F, Simpson BN, Smith DF, Stevens MF, Szakszon K, Taupiac E, Totaro N, Valenzuena Palafoll I, Van Der Kaay DCM, Van Wijk MP, Vyshka K, Wiley S, Hennekam RC. Diagnosis and management in Rubinstein-Taybi syndrome: first international consensus statement. J Med Genet 2024; 61:503-519. [PMID: 38471765 PMCID: PMC11137475 DOI: 10.1136/jmg-2023-109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.
Collapse
Affiliation(s)
- Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Agnès Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, and Centre de référence des maladies rares orales et dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, and Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, Illkirch, France
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Edward B Cooper
- Department of Anesthesiology, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway and Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sixto García-Miñaúr
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Hülya Kayserili
- Department of Medical Genetics, Koc University School of Medicine (KUSOM), 34010 Istanbul, Turkey
| | - Lidia Larizza
- Laboratorio di Ricerca in Citogenetica medica e Genetica Molecolare, Centro di Ricerche e Tecnologie Biomediche IRCCS-Istituto Auxologico Italiano, Milano, Italy
| | - Vanesa Lopez Gonzalez
- Department of Pediatrics, Medical Genetics Section, Virgen de la Arrixaca University Hospital, IMIB, CIBERER, Murcia, Spain
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Donatella Milani
- Fondazione IRCCS, Ca'Granda Ospedale Maggiore, 20122 Milan, Italy
| | - Francesco Saettini
- Fondazione Matilde Tettamanti Menotti De Marchi Onlus, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Monza, Italy
| | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, Tennessee, USA
| | - Lloyd Tooke
- Department of Pediatrics, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Jill A Van der Zee
- Department of Pediatric Urology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria M Van Genderen
- Bartiméus Diagnostic Center for complex visual disorders, Zeist and Department of Ophthalmology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Julien Van-Gils
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Jane Waite
- School of Psychology, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Jean-Louis Adrien
- Université de Paris, Laboratoire de Psychopathologie et Processus de Santé, Boulogne Billancourt, France
| | - Oliver Bartsch
- MVZ - Humangenetik, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Pierre Bitoun
- Département de Genetique, SIDVA 91, Juvisy-sur-Orge, France
| | - Antonia H M Bouts
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna M Cueto-González
- Department of Clinical and Molecular Genetics, University Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Floor A Duijkers
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Elizabeth Halstead
- Psychology and Human Development Department, University College London, London, UK
| | - Sylvia A Huisman
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Zodiak, Prinsenstichting, Purmerend, Netherlands
| | - Camilla Meossi
- Fondazione IRCCS, Ca'Granda Ospedale Maggiore, 20122 Milan, Italy
| | - Jo Mullins
- Rubinstein-Taybi Syndrome Support Group, Registered Charity, Rickmansworth, UK
| | - Sarah M Nikkel
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Oliver
- School of Psychology, University of Birmingham, Edgbaston, UK
| | - Elisabetta Prada
- Fondazione IRCCS, Ca'Granda Ospedale Maggiore, 20122 Milan, Italy
| | - Alessandra Rei
- Associazione Rubinstein-Taybi Syndrome-Una Vita Speciale, Organizzazione di Volontariato (ODV), Gornate Olona, Varese, Italy
| | - Ilka Riddle
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | - Janet Russell
- Associazione Rubinstein-Taybi Syndrome-Una Vita Speciale, Organizzazione di Volontariato (ODV), Gornate Olona, Varese, Italy
| | | | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - David F Smith
- Department of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, and Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Markus F Stevens
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katalin Szakszon
- Institution of Pediatrics, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Emmanuelle Taupiac
- Department of Medical Genetics, University Hospital of Bordeaux, and INSERM U1211, University of Bordeaux, 33076 Bordeaux, France
| | - Nadia Totaro
- Associazione Rubinstein-Taybi Syndrome-Una Vita Speciale, Organizzazione di Volontariato (ODV), Gornate Olona, Varese, Italy
| | - Irene Valenzuena Palafoll
- Department of Clinical and Molecular Genetics, University Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniëlle C M Van Der Kaay
- Division of Paediatric Endocrinology, Department of Paediatrics, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel P Van Wijk
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University Amsterdam, Amsterdam, Netherlands
| | - Klea Vyshka
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA), Robert Debré University Hospital, Paris, France
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Ng R, Kalinousky AJ, Harris J. Neuropsychological profile associated with KAT6A syndrome: Emergent genotype-phenotype trends. Orphanet J Rare Dis 2024; 19:196. [PMID: 38741077 DOI: 10.1186/s13023-024-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND KAT6A (Arboleda-Tham) syndrome is a Mendelian disorder of the epigenetic machinery caused by pathogenic variants in the lysine acetyltransferase 6 A (KAT6A) gene. Intellectual disability and speech/language impairment (e.g., minimally verbal) are common features of the disorder, with late-truncating variants associated with a more severe form of intellectual disability. However, much of the cognitive phenotype remains elusive given the dearth of research. PARTICIPANTS AND METHODS This study examined non-verbal and social skills of 15 individuals with molecularly-confirmed diagnoses of KAT6A syndrome (Mean age = 10.32 years, SD = 4.12). Participants completed select subtests from the DAS-II, the NEPSY-II, and the Beery Buktenica Developmental Test of Visual Motor Integration 6th Edition, and their caregivers completed an assortment of behavior rating inventories. RESULTS Findings suggest global cognitive impairment with nonverbal cognition scores similar to those for receptive language. Autism-related features, particularly restricted interests and repetitive behaviors, and broad adaptive deficits were common in our sample juxtaposed with a relatively strong social drive and low frequency of internalizing and externalizing behavioral problems. A general trend of lower performance scores on nonverbal and receptive language measures was observed among those with protein-truncating variants vs. missense variants; however, no effect was observed on caregiver rating inventories of daily behaviors. Late and early truncating variants yielded comparable neuropsychological profiles. CONCLUSIONS Overall, study results show the cognitive phenotype of KAT6A syndrome includes equally impaired nonverbal cognition and receptive language functioning, paired with relatively intact social drive and strengths in behavior regulation. Emergent genotype-phenotype correlations suggest cognition may be more affected in protein-truncating than missense mutations although similar neurobehavioral profiles were observed.
Collapse
Affiliation(s)
- Rowena Ng
- Department of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Allison J Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacqueline Harris
- Department of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave, Baltimore, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
4
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
6
|
Mascioli I, Iapadre G, Ingrosso D, Donato GD, Giannini C, Salpietro V, Chiarelli F, Farello G. Brain and eye involvement in McCune-Albright Syndrome: clinical and translational insights. Front Endocrinol (Lausanne) 2023; 14:1092252. [PMID: 37274327 PMCID: PMC10235602 DOI: 10.3389/fendo.2023.1092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
McCune-Albright Syndrome (MAS) is a rare mosaic (post-zygotic) genetic disorder presenting with a broad continuum clinical spectrum. MAS arises from somatic, activating mutations in the GNAS gene, which induces a dysregulated Gsα-protein signaling in several tissues and an increased production of intracellular cyclic adenosine monophosphate (cAMP). Overall, MAS is a rare disorder affecting less than 1/100,000 children and, for this reason, data establishing genotype-phenotype correlations remain limited. Affected individuals clinically present with a variable combination of fibrous dysplasia of bone (FD), extra-skeletal manifestations (including cafeí-au-lait spots) and precocious puberty which might also be associated to broad hyperfunctioning endocrinopathies, and also gastrointestinal and cardiological involvement. Central nervous system (CNS) and eye involvement in MAS are among the less frequently described complications and remain largely uncharacterized. These rare complications mainly include neurodevelopmental abnormalities (e.g., delayed motor development, cognitive and language impairment), CNS anomalies (e.g., Chiari malformation type I) and a wide array of ophthalmological abnormalities often associated with vision loss. The pathophysiological mechanisms underlying abnormal neurological development have not been yet fully elucidated. The proposed mechanisms include a deleterious impact of chronically dysregulated Gsα-protein signaling on neurological function, or a secondary (damaging) effect of (antenatal and/or early postnatal) hypercortisolism on early pre- and post-natal CNS development. In this Review, we summarize the main neurological and ophthalmological features eventually associated with the MAS spectrum, also providing a detailed overview of the potential pathophysiological mechanisms underlying these clinical complications.
Collapse
Affiliation(s)
- Ilaria Mascioli
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | | | - Giulio Di Donato
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Giovanni Farello
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
7
|
Shekarian M, Salehi I, Raoufi S, Asadbegi M, Kourosh-Arami M, Komaki A. Neuroprotective effects of vinpocetine, as a phosphodiesterase 1 inhibitor, on long-term potentiation in a rat model of Alzheimer's disease. BMC Neurosci 2023; 24:20. [PMID: 36927298 PMCID: PMC10018848 DOI: 10.1186/s12868-023-00790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Vinpocetine (Vin) is known as a phosphodiesterase 1 inhibitor (PDE1-I) drug with multilateral effects, including antioxidant and anti-inflammatory activity. In this research, we investigated the neuroprotective and therapeutic effects of Vin through hippocampal synaptic plasticity on a rat's model of Alzheimer's disease (AD) induced by an intracerebroventricular (ICV) injection of beta-amyloid (Aβ). METHODS Sixty adult male Wistar rats were randomly divided into six groups: 1. control, 2. sham, 3. Aβ, 4. pretreatment (Vin + Aβ): Vin (4 mg/kg, gavage) for 30 days and then, inducing an AD model by an ICV injection of Aβ(1-42), 5. treatment (Aβ + Vin): inducing an AD model and then receiving Vin for 30 days by gavage, and 7. pretreatment + treatment (Vin + Aβ + Vin): receiving Vin by gavage for 30 days before and 30 days after the induction of an AD model. After these procedures, via stereotaxic surgery, the stimulating electrodes were placed at the perforant pathway (PP) and the recording electrodes were implanted in the dentate gyrus. RESULTS Excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the Aβ group meaningfully diminished compared to the control group after the induction of long-term potentiation (LTP). CONCLUSIONS Vin could significantly prevent the Aβ effects on LTP. It can be concluded that pretreatment and treatment with Vin can be neuroprotective against harmful consequences of Aβ on hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Meysam Shekarian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Iraj Salehi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Masoumeh Asadbegi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
9
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Defective synaptic plasticity in a model of Coffin-Lowry syndrome is rescued by simultaneously targeting PKA and MAPK pathways. Learn Mem 2022; 29:435-446. [PMID: 36446603 PMCID: PMC9749851 DOI: 10.1101/lm.053625.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Empirical and computational methods were combined to examine whether individual or dual-drug treatments can restore the deficit in long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse observed in a cellular model of Coffin-Lowry syndrome (CLS). The model was produced by pharmacological inhibition of p90 ribosomal S6 kinase (RSK) activity. In this model, coapplication of an activator of the mitogen-activated protein kinase (MAPK) isoform ERK and an activator of protein kinase A (PKA) resulted in enhanced phosphorylation of RSK and enhanced LTF to a greater extent than either drug alone and also greater than their additive effects, which is termed synergism. The extent of synergism appeared to depend on another MAPK isoform, p38 MAPK. Inhibition of p38 MAPK facilitated serotonin (5-HT)-induced RSK phosphorylation, indicating that p38 MAPK inhibits activation of RSK. Inhibition of p38 MAPK combined with activation of PKA synergistically activated both ERK and RSK. Our results suggest that cellular models of disorders that affect synaptic plasticity and learning, such as CLS, may constitute a useful strategy to identify candidate drug combinations, and that combining computational models with empirical tests of model predictions can help explain synergism of drug combinations.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, Schiöth HB. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front Pharmacol 2022; 13:1057083. [PMID: 36506513 PMCID: PMC9731127 DOI: 10.3389/fphar.2022.1057083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The phosphodiesterase (PDE) enzymes, key regulator of the cyclic nucleotide signal transduction system, are long-established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a particularly high number of clinical trials involving PDE inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 87 agents with PDE-inhibiting capacity, of which 85 interact with PDE enzymes as primary target. We provide an overview of the clinical drug development with focus on the current clinical uses, novel molecules and indications, highlighting relevant clinical studies. We found that the bulk of current clinical uses for this class of therapeutic agents are chronic obstructive pulmonary disease (COPD), vascular and cardiovascular disorders and inflammatory skin conditions. In COPD, particularly, PDE inhibitors are characterised by the compliance-limiting adverse reactions. We discuss efforts directed to appropriately adjusting the dose regimens and conducting structure-activity relationship studies to determine the effect of structural features on safety profile. The ongoing development predominantly concentrates on central nervous system diseases, such as schizophrenia, Alzheimer's disease, Parkinson's disease and fragile X syndrome; notable advancements are being also made in mycobacterial infections, HIV and Duchenne muscular dystrophy. Our analysis predicts the diversification of PDE inhibitors' will continue to grow thanks to the molecules in preclinical development and the ongoing research involving drugs in clinical development.
Collapse
Affiliation(s)
- Andrey D. Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden,*Correspondence: Helgi B. Schiöth,
| |
Collapse
|
11
|
Di Fede E, Grazioli P, Lettieri A, Parodi C, Castiglioni S, Taci E, Colombo EA, Ancona S, Priori A, Gervasini C, Massa V. Epigenetic disorders: Lessons from the animals–animal models in chromatinopathies. Front Cell Dev Biol 2022; 10:979512. [PMID: 36225316 PMCID: PMC9548571 DOI: 10.3389/fcell.2022.979512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatinopathies are defined as genetic disorders caused by mutations in genes coding for protein involved in the chromatin state balance. So far 82 human conditions have been described belonging to this group of congenital disorders, sharing some molecular features and clinical signs. For almost all of these conditions, no specific treatment is available. For better understanding the molecular cascade caused by chromatin imbalance and for envisaging possible therapeutic strategies it is fundamental to combine clinical and basic research studies. To this end, animal modelling systems represent an invaluable tool to study chromatinopathies. In this review, we focused on available data in the literature of animal models mimicking the human genetic conditions. Importantly, affected organs and abnormalities are shared in the different animal models and most of these abnormalities are reported as clinical manifestation, underlying the parallelism between clinics and translational research.
Collapse
Affiliation(s)
- Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Valentina Massa,
| |
Collapse
|
12
|
Shrestha J, Santerre M, Allen CNS, Arjona SP, Merali C, Mukerjee R, Chitrala KN, Park J, Bagashev A, Bui V, Eugenin EA, Merali S, Kaul M, Chin J, Sawaya BE. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci 2022; 14:811481. [PMID: 35615594 PMCID: PMC9124804 DOI: 10.3389/fnagi.2022.811481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Carmen Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | | | - Jin Park
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
| | - Viet Bui
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Salim Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jeannie Chin
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
13
|
Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Ethridge LE, Outterson AH, Michalak C, Furman J, Gurney ME. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat Med 2021; 27:862-870. [PMID: 33927413 DOI: 10.1038/s41591-021-01321-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
The goal of this study was to determine whether a phosphodiesterase-4D (PDE4D) allosteric inhibitor (BPN14770) would improve cognitive function and behavioral outcomes in patients with fragile X syndrome (FXS). This phase 2 trial was a 24-week randomized, placebo-controlled, two-way crossover study in 30 adult male patients (age 18-41 years) with FXS. Participants received oral doses of BPN14770 25 mg twice daily or placebo. Primary outcomes were prespecified as safety and tolerability with secondary efficacy outcomes of cognitive performance, caregiver rating scales and physician rating scales (ClinicalTrials.gov identifier: NCT03569631 ). The study met the primary outcome measure since BPN14770 was well tolerated with no meaningful differences between the active and placebo treatment arms. The study also met key secondary efficacy measures of cognition and daily function. Cognitive benefit was demonstrated using the National Institutes of Health Toolbox Cognition Battery assessments of Oral Reading Recognition (least squares mean difference +2.81, P = 0.0157), Picture Vocabulary (+5.81, P = 0.0342) and Cognition Crystallized Composite score (+5.31, P = 0.0018). Benefit as assessed by visual analog caregiver rating scales was judged to be clinically meaningful for language (+14.04, P = 0.0051) and daily functioning (+14.53, P = 0.0017). Results from this study using direct, computer-based assessment of cognitive performance by adult males with FXS indicate significant cognitive improvement in domains related to language with corresponding improvement in caregiver scales rating language and daily functioning.
Collapse
Affiliation(s)
- Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | | | | | - Melody A Reese
- Department of Psychology, University of Oklahoma, Norman, OK, USA
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, USA.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Abigail H Outterson
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Claire Michalak
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jeremiah Furman
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
14
|
Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 26:4570-4582. [PMID: 33414502 PMCID: PMC8589663 DOI: 10.1038/s41380-020-00997-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.
Collapse
Affiliation(s)
- Sébastien Delhaye
- grid.429194.30000 0004 0638 0649Université Côte d’Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Inserm, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560, Valbonne, France.
| |
Collapse
|
15
|
An experimental medicine study of the phosphodiesterase-4 inhibitor, roflumilast, on working memory-related brain activity and episodic memory in schizophrenia patients. Psychopharmacology (Berl) 2021; 238:1279-1289. [PMID: 30536081 PMCID: PMC8062361 DOI: 10.1007/s00213-018-5134-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/22/2018] [Indexed: 11/23/2022]
Abstract
RATIONALE Schizophrenia is associated with impairments in cognitive functioning yet there are no approved drugs to treat these deficits. OBJECTIVES Based on animal models, we investigated the potential for roflumilast, a selective inhibitor of phosphodiesterase type 4 (PDE4), to improve cognition, which may act by increasing intracellular cyclic adenosine monophosphate in brain regions underlying cognitive deficits in schizophrenia. METHODS This study consisted of a randomised, double-blind, placebo-controlled, crossover design involving 15 schizophrenia patients. In 3 treatment periods, patients were given 8 days of placebo or one of the two doses of roflumilast (100 and 250 μg daily) with 14 days of washout between treatments. The primary endpoints were dorsolateral prefrontal cortex (DLPFC) activation during a visuospatial working memory task measured with fMRI on dosing day 8 and verbal memory and working memory performance change from baseline to day 8. Least square mean change scores were calculated for behavioural outcomes; fMRI data were analysed in SPM12 with bilateral DLPFC as regions of interest. RESULTS Verbal memory was significantly improved under 250 μg roflumilast (effect size (ES) = 0.77) compared to placebo. fMRI analyses revealed that increasing dose of roflumilast was associated with reduction of bilateral DLPFC activation during working memory compared to placebo, although this was not statistically significant (ES = 0.31 for the higher dose). Working memory was not improved (ES = 0.03). CONCLUSIONS Results support the mechanistic validation of potential novel strategies for improving cognitive dysfunction in schizophrenia and suggest that PDE4 inhibition may be beneficial for cognitive dysfunction in schizophrenia. TRIAL REGISTRATION NCT02079844 .
Collapse
|
16
|
Pharmacological inhibition of phosphodiesterase 7 enhances consolidation processes of spatial memory. Neurobiol Learn Mem 2020; 177:107357. [PMID: 33278592 DOI: 10.1016/j.nlm.2020.107357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Augmentation of cAMP signaling through inhibition of phosphodiesterases (PDE) is known to enhance plasticity and memory. Inhibition of PDE4 enhances consolidation into memory, but less is known about the role of other cAMP specific PDEs. Here, we tested the effects of oral treatment with a selective inhibitor of PDE7 of nanomolar potency on spatial and contextual memory. In an object location task, doses of 0.3-3 mg/kg administered 3 h after training dose-dependently attenuated time-dependent forgetting in rats. Significant enhancement of memory occurred at a dose of 3 mg/kg with corresponding brain levels consistent with PDE7 inhibition. The same dose given prior to training augmented contextual fear conditioning. In mice, daily dosing before training enhanced spatial memory in two different incremental learning paradigms in the Barnes Maze. Drug treated mice made significantly less errors locating the escape in a probe-test 24 h after the end of training, and they exhibited hippocampal-dependent spatial search strategies more frequently than controls, which tended to show serial sampling of escape locations. Acquisition and short-term memory, in contrast, were unaffected. Our data provide evidence for a role of PDE7 in the consolidation of hippocampal-dependent memory. We suggest that targeting PDE7 for memory enhancement may provide an alternative to PDE4 inhibitors, which tend to have undesirable gastrointestinal side-effects.
Collapse
|
17
|
Smolen P, Wood MA, Baxter DA, Byrne JH. Modeling suggests combined-drug treatments for disorders impairing synaptic plasticity via shared signaling pathways. J Comput Neurosci 2020; 49:37-56. [PMID: 33175283 DOI: 10.1007/s10827-020-00771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic disorders such as Rubinstein-Taybi syndrome (RTS) and Coffin-Lowry syndrome (CLS) cause lifelong cognitive disability, including deficits in learning and memory. Can pharmacological therapies be suggested that improve learning and memory in these disorders? To address this question, we simulated drug effects within a computational model describing induction of late long-term potentiation (L-LTP). Biochemical pathways impaired in these and other disorders converge on a common target, histone acetylation by acetyltransferases such as CREB binding protein (CBP), which facilitates gene induction necessary for L-LTP. We focused on four drug classes: tropomyosin receptor kinase B (TrkB) agonists, cAMP phosphodiesterase inhibitors, histone deacetylase inhibitors, and ampakines. Simulations suggested each drug type alone may rescue deficits in L-LTP. A potential disadvantage, however, was the necessity of simulating strong drug effects (high doses), which could produce adverse side effects. Thus, we investigated the effects of six drug pairs among the four classes described above. These combination treatments normalized impaired L-LTP with substantially smaller individual drug 'doses'. In addition three of these combinations, a TrkB agonist paired with an ampakine and a cAMP phosphodiesterase inhibitor paired with a TrkB agonist or an ampakine, exhibited strong synergism in L-LTP rescue. Therefore, we suggest these drug combinations are promising candidates for further empirical studies in animal models of genetic disorders that impair histone acetylation, L-LTP, and learning.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
18
|
Chatterjee S, Angelakos CC, Bahl E, Hawk JD, Gaine ME, Poplawski SG, Schneider-Anthony A, Yadav M, Porcari GS, Cassel JC, Giese KP, Michaelson JJ, Lyons LC, Boutillier AL, Abel T. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biol 2020; 18:155. [PMID: 33121486 PMCID: PMC7597000 DOI: 10.1186/s12915-020-00886-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. Results We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. Conclusions These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms. Graphical abstract ![]()
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France.,Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan Bahl
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Joshua D Hawk
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shane G Poplawski
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, USA
| | - Anne Schneider-Anthony
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France
| | - Manish Yadav
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Giulia S Porcari
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Jacob J Michaelson
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France. .,LNCA, CNRS UMR 7364, Strasbourg, France.
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
19
|
Sharma VK, Singh TG, Singh S. Cyclic Nucleotides Signaling and Phosphodiesterase Inhibition: Defying Alzheimer's Disease. Curr Drug Targets 2020; 21:1371-1384. [PMID: 32718286 DOI: 10.2174/1389450121666200727104728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Defects in brain functions associated with aging and neurodegenerative diseases benefit insignificantly from existing options, suggesting that there is a lack of understanding of pathological mechanisms. Alzheimer's disease (AD) is such a nearly untreatable, allied to age neurological deterioration for which only the symptomatic cure is available and the agents able to mould progression of the disease, is still far away. The altered expression of phosphodiesterases (PDE) and deregulated cyclic nucleotide signaling in AD has provoked a new thought of targeting cyclic nucleotide signaling in AD. Targeting cyclic nucleotides as an intracellular messenger seems to be a viable approach for certain biological processes in the brain and controlling substantial. Whereas, the synthesis, execution, and/or degradation of cyclic nucleotides has been closely linked to cognitive deficits. In relation to cognition, the cyclic nucleotides (cAMP and cGMP) have an imperative execution in different phases of memory, including gene transcription, neurogenesis, neuronal circuitry, synaptic plasticity and neuronal survival, etc. AD is witnessed by impairments of these basic processes underlying cognition, suggesting a crucial role of cAMP/cGMP signaling in AD populations. Phosphodiesterase inhibitors are the exclusive set of enzymes to facilitate hydrolysis and degradation of cAMP and cGMP thereby, maintains their optimum levels initiating it as an interesting target to explore. The present work reviews a neuroprotective and substantial influence of PDE inhibition on physiological status, pathological progression and neurobiological markers of AD in consonance with the intensities of cAMP and cGMP.
Collapse
Affiliation(s)
- Vivek K Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | - Thakur G Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
20
|
Takagi T, Higashi Y, Asai M, Ishii S. Introduction of a de novo Creb-binding protein gene mutation in sperm to produce a Rubinstein-Taybi syndrome model using inbred C57BL/6 mice. Brain Res 2020; 1749:147140. [PMID: 33022214 DOI: 10.1016/j.brainres.2020.147140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023]
Abstract
Neurodevelopmental disorders, including intellectual disability and autism spectrum disorder, are often caused by de novo autosomal dominant mutations. While mouse models are frequently used to investigate these disorders, the genetic background sometimes affects the appearance or severity of mutant phenotypes. In a previous report, we developed a system to produce de novo heterozygous mutant mice using the Cre-LoxP system without the need to maintain the heterozygous mutant line itself (Takagi et al. 2015). To further verify the applicability of the de novo mutation system in sperm, we used this system to produce a mouse model for Rubinstein-Taybi syndrome, using a Cbp heterozygous mutant, which has been reported to be difficult to maintain on a C57BL/6 background. Here, we show that de novo Cbp- loss-of-function heterozygous mutant mice with a C57BL/6 background, present with a clear craniofacial phenotype and reduced locomotor activity in the open field test, which was not observed in the loss-of-function of Cbp heterozygous mutant line mice with a mixed genetic background, but was observed in the dominant negative Cbp heterozygous mutant line with a mixed genetic background. Meanwhile, the de novo heterozygous Cbp mutant mice still showed great variability in survival rates despite their inbred background. These results further confirmed that the de novo mutation system used in germ cells is effective for stable production and analysis of an autosomal dominant disorder mouse model, which is often difficult to maintain as a mutant mouse line.
Collapse
Affiliation(s)
- Tsuyoshi Takagi
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, Aichi 480-0392, Japan.
| | - Yujiro Higashi
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, Aichi 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, Aichi 480-0392, Japan
| | - Shunsuke Ishii
- Cluster for Pioneering Research, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
21
|
Hofmann J, Fayez S, Scheiner M, Hoffmann M, Oerter S, Appelt‐Menzel A, Maher P, Maurice T, Bringmann G, Decker M. Sterubin: Enantioresolution and Configurational Stability, Enantiomeric Purity in Nature, and Neuroprotective Activity in Vitro and in Vivo. Chemistry 2020; 26:7299-7308. [PMID: 32358806 PMCID: PMC7317536 DOI: 10.1002/chem.202001264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder with still no preventive or curative treatment. Flavonoids are phytochemicals with potential therapeutic value. Previous studies described the flavanone sterubin isolated from the Californian plant Eriodictyon californicum as a potent neuroprotectant in several in vitro assays. Herein, the resolution of synthetic racemic sterubin (1) into its two enantiomers, (R)-1 and (S)-1, is described, which has been performed on a chiral chromatographic phase, and their stereochemical assignment online by HPLC-ECD coupling. (R)-1 and (S)-1 showed comparable neuroprotection in vitro with no significant differences. While the pure stereoisomers were configurationally stable in methanol, fast racemization was observed in the presence of culture medium. We also established the occurrence of extracted sterubin as its pure (S)-enantiomer. Moreover, the activity of sterubin (1) was investigated for the first time in vivo, in an AD mouse model. Sterubin (1) showed a significant positive impact on short- and long-term memory at low dosages.
Collapse
Affiliation(s)
- Julian Hofmann
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Shaimaa Fayez
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
- Department of PharmacognosyFaculty of PharmacyAin-Shams UniversityOrganization of African Unity Street 111566CairoEgypt
| | - Matthias Scheiner
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
- MMDN, University of MontpellierINSERM, EPHE, UMR-S119834095MontpellierFrance
| | - Sabrina Oerter
- Department for Tissue Engineering and Regenerative MedicineUniversity Hospital WürzburgRöntgenring 1197070WürzburgGermany
| | - Antje Appelt‐Menzel
- Department for Tissue Engineering and Regenerative MedicineUniversity Hospital WürzburgRöntgenring 1197070WürzburgGermany
- Translational Center Regenerative Therapies (TLC-RT)Fraunhofer Institute for Silicate Research ISCRöntgenring 1197070WürzburgGermany
| | - Pamela Maher
- The Salk Institute for Biological Studies10010 North Torrey Pines Rd.CA92037La JollaUSA
| | - Tangui Maurice
- MMDN, University of MontpellierINSERM, EPHE, UMR-S119834095MontpellierFrance
| | - Gerhard Bringmann
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
22
|
Koshi-Mano K, Mano T, Morishima M, Murayama S, Tamaoka A, Tsuji S, Toda T, Iwata A. Neuron-specific analysis of histone modifications with post-mortem brains. Sci Rep 2020; 10:3767. [PMID: 32111906 PMCID: PMC7048733 DOI: 10.1038/s41598-020-60775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 01/25/2023] Open
Abstract
Histone modifications govern chromatin structures and regulate gene expression to orchestrate cellular functions in the central nervous system, where neuronal cells are postmitotic and developmentally inactive, the functional and age-dependent changes also accumulate in the epigenetic states. Because the brain is composed of several types of cells, such as the neurons, glial cells, and vascular cells, the analysis of histone modifications using bulk brain tissue might obscure alterations specific to neuronal cells. Furthermore, among the various epigenetic traits, analysis of the genome-wide distribution of DNA methylation in the bulk brain is predominantly a reflection of DNA methylation of the non-neuronal cells, which may be a potential caveat of previous studies on neurodegenerative diseases using bulk brains. In this study, we established a method of neuron-specific ChIP-seq assay, which allows for the analysis of genome-wide distribution of histone modifications specifically in the neuronal cells derived from post-mortem brains. We successfully enriched neuronal information with high reproducibility and high signal-to-noise ratio. Our method will further facilitate the understanding of neurodegeneration.
Collapse
Affiliation(s)
- Kagari Koshi-Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Maho Morishima
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo, 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo, 173-0015, Japan
| | - Akira Tamaoka
- Department of Neurology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
23
|
Shekarian M, Komaki A, Shahidi S, Sarihi A, Salehi I, Raoufi S. The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behav Brain Res 2020; 383:112512. [PMID: 31991177 DOI: 10.1016/j.bbr.2020.112512] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease leading to cognitive and memory impairment. This study aimed at investigating the therapeutic and preserving effects of vinpocetine on amyloid beta (Aβ)-induced rat model of AD. Sixty male adult Wistar rats were randomly divided into 6 groups (n = 10 per group) as follows: 1; control, 2; sham, 3; Aβ, 4; pre-treatment (vinpocetine + Aβ): oral gavage administration of vinpocetine at 4 mg/kg for 30 days followed by intracerebroventricular (ICV) injection of Aβ, 5; treatment (Aβ + vinpocetine): Aβ ICV injection followed by vinpocetine administration for 30 days, 6; pre-treatment + treatment (vinpocetine + Aβ + vinpocetine): vinpocetine administration for 30 days before and 30 days after AD induction. Following treatments, the animals' learning and memory were investigated using passive avoidance learning (PAL) task, Morris water maze (MWM), and novel object recognition (NOR) tests. The results demonstrated that Aβ significantly enhanced escape latency and the distance traveled in the MWM, decreased step-through latency, and increased time spent in the dark compartment in PAL. Vinpocetine ameliorated the Aβ-infused memory deficits in both MWM and PAL tests. Administration of vinpocetine in the Aβ rats increased the discrimination index of the NOR test. It also significantly diminished the nitric oxide and malondialdehyde levels and restored the reduced glutathione (GSH) levels. Vinpocetine can improve memory and learning impairment following Aβ infusion due to its different properties, including antioxidant effects, which indicates that vinpocetine administration can lead to the amelioration of cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Meysam Shekarian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
25
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Pang L, Liu J, Li W, Xia Y, Xing J. Serum ubiquitin C-terminal hydrolase L1 predicts cognitive impairment in patients with acute organophosphorus pesticide poisoning. J Clin Lab Anal 2019; 33:e22947. [PMID: 31199012 PMCID: PMC6757117 DOI: 10.1002/jcla.22947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/18/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND To assess the usefulness of serum C-terminal hydrolase L1 (UCH-L1) level as a biomarker for predicting cognitive impairment in patients with acute organophosphorus pesticide poisoning (AOPP). METHODS Two hundred and seven adult patients with AOPP were included in this study. Serum UCH-L1 levels were assessed on admission (Day 1 postpoisoning) and on Days 3 and 7 postpoisoning. The associations between serum UCH-L1 levels, other clinical predictors, and cognitive function evaluated on Day 30 postpoisoning were investigated. RESULTS On multivariate analysis, serum UCH-L1 levels on admission (odds ratio [OR] 1.889, 95% confidence interval [CI] 1.609-3.082, P = 0.002) and 24-hour APACHE II score (OR 1.736, 95% CI 1.264-3.272, P = 0.012) were independent predictors of cognitive impairment on Day 30 postpoisoning. Based on the receiver operating characteristic curve, serum UCH-L1 levels >5.9 ng/mL on admission predicted cognitive impairment on Day 30 postpoisoning with 86.1% sensitivity and 72.5% specificity (area under the curve, 0.869; 95% CI 0.815-0.923). On admission [8.51 (6.53-10.22) ng/mL vs 4.25 (2.57-6.31) ng/mL, P < 0.001] and Day 3 [9.31 (7.92-10.98) ng/mL vs 3.32 (2.25-5.13) ng/mL, P < 0.001] and Day 7 [4.96 (3.28-7.26) ng/mL vs 2.27 (1.55-3.24) ng/mL, P < 0.001] postpoisoning, serum UCH-L1 concentration was significantly higher in patients that developed cognitive impairment compared to those that did not. CONCLUSION This study demonstrates that serum UCH-L1 level has potential as a novel biomarker for predicting cognitive impairment 30 days after AOPP.
Collapse
Affiliation(s)
- Li Pang
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Junlan Liu
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Yan Xia
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Homiack D, O'Cinneide E, Hajmurad S, Dohanich GP, Schrader LA. Effect of acute alarm odor exposure and biological sex on generalized avoidance and glutamatergic signaling in the hippocampus of Wistar rats. Stress 2018; 21:292-303. [PMID: 29916754 DOI: 10.1080/10253890.2018.1484099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by the development of paradoxical memory disturbances including intrusive memories and amnesia for specific details of the traumatic experience. Despite evidence that women are at higher risk to develop PTSD, most animal research has focused on the processes by which male rodents develop adaptive fear memory. As such, the mechanisms contributing to sex differences in the development of PTSD-like memory disturbances are poorly understood. In this investigation, we exposed adult male and female Wistar rats to the synthetic alarm odor 2,4,5-trimethylthiazole (TMT) to assess development of generalized fear behavior and rapid modulation of glutamate uptake and signaling cascades associated with hippocampus-dependent long-term memory. We report that female Wistar rats exposed to alarm odor exhibit context discrimination impairments relative to TMT-exposed male rats, suggesting the intriguing possibility that females are at greater risk in developing generalized fear memories. Mechanistically, alarm odor exposure rapidly modulated signaling cascades consistent with activation of the CREB shut-off cascade in the male, but not the female hippocampus. Moreover, TMT exposure dampened glutamate uptake and affected expression of the glutamate transporter, GLT-1 in the hippocampus. Taken together, these results provide evidence for rapid sex-dependent modulation of CREB signaling in the hippocampus by alarm odor exposure which may contribute to the development of generalized fear.
Collapse
Affiliation(s)
- Damek Homiack
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
| | - Emma O'Cinneide
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
| | - Sema Hajmurad
- b Department of Cell and Molecular Biology , Tulane University , New Orleans , LA , USA
| | - Gary P Dohanich
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
- c Department of Psychology , Tulane University , New Orleans , LA , USA
| | - Laura A Schrader
- a Neuroscience Program, Brain Institute , Tulane University , New Orleans , LA , USA
- b Department of Cell and Molecular Biology , Tulane University , New Orleans , LA , USA
| |
Collapse
|
29
|
Wu Y, Li Z, Huang YY, Wu D, Luo HB. Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer's Disease. J Med Chem 2018; 61:5467-5483. [PMID: 29363967 DOI: 10.1021/acs.jmedchem.7b01370] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is one of the greatest public health challenges. Phosphodiesterases (PDEs) are a superenzyme family responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Since several PDE subfamilies are highly expressed in the human brain, the inhibition of PDEs is involved in neurodegenerative processes by regulating the concentration of cAMP and/or cGMP. Currently, PDEs are considered as promising targets for the treatment of AD since many PDE inhibitors have exhibited remarkable cognitive improvement effects in preclinical studies and over 15 of them have been subjected to clinical trials. The aim of this review is to summarize the outstanding progress that has been made by PDE inhibitors as anti-AD agents with encouraging results in preclinical studies and clinical trials. The binding affinity, pharmacokinetics, underlying mechanisms, and limitations of these PDE inhibitors in the treatment of AD are also reviewed and discussed.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Yi-You Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| |
Collapse
|
30
|
Hu Y, Pan S, Zhang HT. Interaction of Cdk5 and cAMP/PKA Signaling in the Mediation of Neuropsychiatric and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 17:45-61. [PMID: 28956329 DOI: 10.1007/978-3-319-58811-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Both cyclin-dependent kinase 5 (Cdk5) and cyclic AMP (cAMP)/protein kinase A (PKA) regulate fundamental central nervous system (CNS) functions including neuronal survival, neurite and axonal outgrowth, neuron development and cognition. Cdk5, a serine/threonine kinase, is activated by p35 or p39 and phosphorylates multiple signaling components of various pathways, including cAMP/PKA signaling. Here, we review the recent literature on the interaction between Cdk5 and cAMP/PKA signaling and their role in the mediation of CNS functions and neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China
| |
Collapse
|
31
|
Kaplan AP, Keenan T, Scott R, Zhou X, Bourchouladze R, McRiner AJ, Wilson ME, Romashko D, Miller R, Bletsch M, Anderson G, Stanley J, Zhang A, Lee D, Nikpur J. Identification of 5-(1-Methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl)thiophene-2-Carboxamides as Novel and Selective Monoamine Oxidase B Inhibitors Used to Improve Memory and Cognition. ACS Chem Neurosci 2017; 8:2746-2758. [PMID: 28857544 DOI: 10.1021/acschemneuro.7b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Initial work in Drosophila and mice demonstrated that the transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) is a master control gene for memory formation. The relationship between CREB and memory has also been found to be true in other species, including aplysia and rats. It is thus well-established that CREB activation plays a central role in memory enhancement and that CREB is activated during memory formation. On the basis of these findings, a phenotypic high-throughput screening campaign utilizing a CRE-luciferase (CRE-Luci) SK-N-MC cell line was performed to identify compounds that enhance transcriptional activation of the CRE promoter with a suboptimal dose of forskolin. A number of small-molecule hits of unknown mechanisms of action were identified in the screening campaign, including HT-0411. Follow-up studies suggested that the CREB activation by HT-0411 is attributed to its specific and selective inhibition of monoamine oxidase B (MAO-B). Further, HT-0411 was shown to improve 24 h memory in rodents in a contextual fear conditioning model. This report describes the lead optimization of a series of 5-(1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl) thiophene-2-carboxamides that were identified as novel, potent, and selective inhibitors of MAO-B. Extensive SAR studies and in vivo behavioral evaluations of this and other related analogue series identified a number of potential clinical development candidates; ultimately, compound 8f was identified as a candidate molecule with high selectivity toward MAO-B (29-56 nM) over MAO-A (19% inhibition at a screening concentration of 50 μM), an excellent profile against a panel of other enzymes and receptors, good pharmacokinetic properties in rodents and dogs, and efficacy in multiple rodent memory models.
Collapse
Affiliation(s)
- Alan P. Kaplan
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Terence Keenan
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Roderick Scott
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Xianbo Zhou
- SJN Biomed LTD, 398 West
Second Ring Road, Kunming 650118, China
| | - Rusiko Bourchouladze
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Andrew J. McRiner
- X-Chem Pharmaceuticals, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02453, United States
| | - Mark E. Wilson
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Darlene Romashko
- Aset Therapeutics, 25 Health
Sciences Drive, Stony Brook, New York 11790, United States
| | - Regina Miller
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matthew Bletsch
- The Hain Celestial Group, 1111
Marcus Avenue, New Hyde Park, New York 11042, United States
| | - Gary Anderson
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Jennifer Stanley
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Adia Zhang
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Dong Lee
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - John Nikpur
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| |
Collapse
|
32
|
Gurney ME, Cogram P, Deacon RM, Rex C, Tranfaglia M. Multiple Behavior Phenotypes of the Fragile-X Syndrome Mouse Model Respond to Chronic Inhibition of Phosphodiesterase-4D (PDE4D). Sci Rep 2017; 7:14653. [PMID: 29116166 PMCID: PMC5677090 DOI: 10.1038/s41598-017-15028-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 01/14/2023] Open
Abstract
Fragile-X syndrome (FXS) patients display intellectual disability and autism spectrum disorder due to silencing of the X-linked, fragile-X mental retardation-1 (FMR1) gene. Dysregulation of cAMP metabolism is a consistent finding in patients and in the mouse and fly FXS models. We therefore explored if BPN14770, a prototypic phosphodiesterase-4D negative allosteric modulator (PDE4D-NAM) in early human clinical trials, might provide therapeutic benefit in the mouse FXS model. Daily treatment of adult male fmr1 C57Bl6 knock-out mice with BPN14770 for 14 days reduced hyperarousal, improved social interaction, and improved natural behaviors such as nesting and marble burying as well as dendritic spine morphology. There was no decrement in behavioral scores in control C57Bl6 treated with BPN14770. The behavioral benefit of BPN14770 persisted two weeks after washout of the drug. Thus, BPN14770 may be useful for the treatment of fragile-X syndrome and other disorders with decreased cAMP signaling.
Collapse
Affiliation(s)
- Mark E Gurney
- Tetra Discovery Partners, Inc, Grand Rapids, MI, USA.
| | - Patricia Cogram
- FRAXA-DVI, FRAXA, Santiago, Chile.,Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council, Buenos Aires, Argentina.,IEB, Faculty of Science, University of Chile, Santiago, Chile
| | - Robert M Deacon
- FRAXA-DVI, FRAXA, Santiago, Chile.,Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council, Buenos Aires, Argentina.,IEB, Faculty of Science, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
33
|
Chen J, Tabatabaei A, Zook D, Wang Y, Danks A, Stauber K. A surrogate analyte-based liquid chromatography-tandem mass spectrometry method for the determination of endogenous cyclic nucleotides in rat brain. J Pharm Biomed Anal 2017; 146:361-368. [PMID: 28918326 DOI: 10.1016/j.jpba.2017.08.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
Abstract
A robust high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and qualified for the measurement of cyclic nucleotides (cNTs) in rat brain tissue. Stable isotopically labeled 3',5'-cyclic adenosine-13C5 monophosphate (13C5-cAMP) and 3',5'-cyclic guanosine-13C,15N2 monophosphate (13C15N2-cGMP) were used as surrogate analytes to measure endogenous 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Pre-weighed frozen rat brain samples were rapidly homogenized in 0.4M perchloric acid at a ratio of 1:4 (w/v). Following internal standard addition and dilution, the resulting extracts were analyzed using negative ion mode electrospray ionization LC-MS/MS. The calibration curves for both analytes ranged from 5 to 2000ng/g and showed excellent linearity (r2>0.996). Relative surrogate analyte-to-analyte LC-MS/MS responses were determined to correct concentrations derived from the surrogate curves. The intra-run precision (CV%) for 13C5-cAMP and 13C15N2-cGMP was below 6.6% and 7.4%, respectively, while the inter-run precision (CV%) was 8.5% and 5.8%, respectively. The intra-run accuracy (Dev%) for 13C5-cAMP and 13C15N2-cGMP was <11.9% and 10.3%, respectively, and the inter-run Dev% was <6.8% and 5.5%, respectively. Qualification experiments demonstrated high analyte recoveries, minimal matrix effects and low autosampler carryover. Acceptable frozen storage, freeze/thaw, benchtop, processed sample and autosampler stability were shown in brain sample homogenates as well as post-processed samples. The method was found to be suitable for the analysis of rat brain tissue cAMP and cGMP levels in preclinical biomarker development studies.
Collapse
Affiliation(s)
- Jie Chen
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Ali Tabatabaei
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Doug Zook
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Yan Wang
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Anne Danks
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Kathe Stauber
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| |
Collapse
|
34
|
Nonaka M, Fitzpatrick R, Lapira J, Wheeler D, Spooner PA, Corcoles-Parada M, Muñoz-López M, Tully T, Peters M, Morris RGM. Everyday memory: towards a translationally effective method of modelling the encoding, forgetting and enhancement of memory. Eur J Neurosci 2017; 46:1937-1953. [PMID: 28677201 DOI: 10.1111/ejn.13637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
The testing of cognitive enhancers could benefit from the development of novel behavioural tasks that display better translational relevance for daily memory and permit the examination of potential targets in a within-subjects manner with less variability. We here outline an optimized spatial 'everyday memory' task. We calibrate it systematically by interrogating certain well-established determinants of memory and consider its potential for revealing novel features of encoding-related gene activation. Rats were trained in an event arena in which food was hidden in sandwells in a different location everyday. They found the food during an initial memory-encoding trial and were then required to remember the location in six alternative choice or probe trials at various time-points later. Training continued daily over a period of 4 months, realizing a stable high level of performance and characterized by delay-dependent forgetting over 24 h. Spaced but not massed access to multiple rewards enhanced the persistence of memory, as did post-encoding administration of the PDE4 inhibitor Rolipram. Quantitative PCR and then genome-wide analysis of gene expression led to a new observation - stronger gene-activation in hippocampus and retrosplenial cortex following spaced than massed training. In a subsidiary study, a separate group of animals replicated aspects of this training profile, going on to show enhanced memory when training was subject to post-encoding environmental novelty. Distinctive features of this protocol include its potential validity as a model of memory encoding used routinely by human subjects everyday, and the possibility of multiple within-subject comparisons to speed up assays of novel compounds.
Collapse
Affiliation(s)
- Mio Nonaka
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Richard Fitzpatrick
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | | - Patrick A Spooner
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Marta Corcoles-Parada
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Mónica Muñoz-López
- Human Anatomy Laboratory, Faculty of Medicine and Regional Centre for Biomedical Research, University of Castilla-La-Mancha, Albacete, Spain
| | - Tim Tully
- Dart NeuroScience LLC, San Diego, CA, USA
| | | | - Richard G M Morris
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.,Institute for Neuroscience, CSIC-ULM, Alicante, Spain
| |
Collapse
|
35
|
The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 2017; 18:347-361. [PMID: 28515491 DOI: 10.1038/nrn.2017.46] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms - including DNA methylation, histone post-translational modifications and changes in nucleosome positioning - regulate gene expression, cellular differentiation and development in almost all tissues, including the brain. In adulthood, changes in the epigenome are crucial for higher cognitive functions such as learning and memory. Striking new evidence implicates the dysregulation of epigenetic mechanisms in neurodegenerative disorders and diseases. Although these disorders differ in their underlying causes and pathophysiologies, many involve the dysregulation of restrictive element 1-silencing transcription factor (REST), which acts via epigenetic mechanisms to regulate gene expression. Although not somatically heritable, epigenetic modifications in neurons are dynamic and reversible, which makes them good targets for therapeutic intervention.
Collapse
|
36
|
Liu RY, Neveu C, Smolen P, Cleary LJ, Byrne JH. Superior long-term synaptic memory induced by combining dual pharmacological activation of PKA and ERK with an enhanced training protocol. Learn Mem 2017; 24:289-297. [PMID: 28620076 PMCID: PMC5473109 DOI: 10.1101/lm.044834.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/13/2017] [Indexed: 02/06/2023]
Abstract
Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM). Previously, a computational model was developed which correctly predicted a novel enhanced training protocol that augmented LTF by searching for the protocol with maximal overlap of PKA and ERK activation. The present study focused on pharmacological approaches to enhance LTF. Combining an ERK activator, NSC, and a PKA activator, rolipram, enhanced LTF to a greater extent than did either drug alone. An even greater increase in LTF occurred when rolipram and NSC were combined with the Enhanced protocol. These results indicate superior memory can be achieved by enhanced protocols that take advantage of the structure and dynamics of the biochemical cascades underlying memory formation, used in conjunction with combinatorial pharmacology.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Curtis Neveu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Mitchnick KA, Creighton SD, Cloke JM, Wolter M, Zaika O, Christen B, Van Tiggelen M, Kalisch BE, Winters BD. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory. GENES BRAIN AND BEHAVIOR 2017; 15:542-57. [PMID: 27251651 DOI: 10.1111/gbb.12303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short-interference RNAs to evaluate the roles of CREB-binding protein (CBP), E1A-binding protein (p300) and p300/CBP-associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)-mediated object memory. Rats were tested for short- (STM) and long-term memory (LTM) in the object-in-place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small-interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long-term but not short-term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh-mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe.
Collapse
Affiliation(s)
- K A Mitchnick
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - S D Creighton
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - J M Cloke
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - M Wolter
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - O Zaika
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B Christen
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - M Van Tiggelen
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B E Kalisch
- Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.,Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B D Winters
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Kumar A, Singh N. Inhibitor of Phosphodiestearse-4 improves memory deficits, oxidative stress, neuroinflammation and neuropathological alterations in mouse models of dementia of Alzheimer’s Type. Biomed Pharmacother 2017; 88:698-707. [DOI: 10.1016/j.biopha.2017.01.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 01/10/2017] [Indexed: 01/12/2023] Open
|
39
|
Sethna F, Feng W, Ding Q, Robison AJ, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun 2017; 8:14359. [PMID: 28218269 PMCID: PMC5321753 DOI: 10.1038/ncomms14359] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
Fragile X syndrome (FXS), caused by the loss of functional FMRP, is a leading cause of autism. Neurons lacking FMRP show aberrant mRNA translation and intracellular signalling. Here, we identify that, in Fmr1 knockout neurons, type 1 adenylyl cyclase (Adcy1) mRNA translation is enhanced, leading to excessive production of ADCY1 protein and insensitivity to neuronal stimulation. Genetic reduction of Adcy1 normalizes the aberrant ERK1/2- and PI3K-mediated signalling, attenuates excessive protein synthesis and corrects dendritic spine abnormality in Fmr1 knockout mice. Genetic reduction of Adcy1 also ameliorates autism-related symptoms including repetitive behaviour, defective social interaction and audiogenic seizures. Moreover, peripheral administration of NB001, an experimental compound that preferentially suppresses ADCY1 activity over other ADCY subtypes, attenuates the behavioural abnormalities in Fmr1 knockout mice. These results demonstrate a connection between the elevated Adcy1 translation and abnormal ERK1/2 signalling and behavioural symptoms in FXS. Fragile X syndrome (FXS) is a leading cause of autism and neurons lacking FMRP show aberrant mRNA translation and intracellular signalling. Here, the authors show that neurons from Fmr1 knockout mice have increased levels of ADCY1 protein, producing abnormal ERK1/2 signalling, dysregulated protein synthesis and behavioural symptoms associated with FXS.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Wei Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Qi Ding
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
40
|
Parra-Damas A, Chen M, Enriquez-Barreto L, Ortega L, Acosta S, Perna JC, Fullana MN, Aguilera J, Rodríguez-Alvarez J, Saura CA. CRTC1 Function During Memory Encoding Is Disrupted in Neurodegeneration. Biol Psychiatry 2017; 81:111-123. [PMID: 27587263 DOI: 10.1016/j.biopsych.2016.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Associative memory impairment is an early clinical feature of dementia patients, but the molecular and cellular mechanisms underlying these deficits are largely unknown. In this study, we investigated the functional regulation of the cyclic adenosine monophosphate response element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) by associative learning in physiological and neurodegenerative conditions. METHODS We evaluated the activation of CRTC1 in the hippocampus of control mice and mice lacking the Alzheimer's disease-linked presenilin genes (presenilin conditional double knockout [PS cDKO]) after one-trial contextual fear conditioning by using biochemical, immunohistochemical, and gene expression analyses. PS cDKO mice display classical features of neurodegeneration occurring in Alzheimer's disease including age-dependent cortical atrophy, neuron loss, dendritic degeneration, and memory deficits. RESULTS Context-associative learning, but not single context or unconditioned stimuli, induces rapid dephosphorylation (Ser151) and translocation of CRTC1 from the cytosol/dendrites to the nucleus of hippocampal neurons in the mouse brain. Accordingly, context-associative learning induces differential CRTC1-dependent transcription of c-fos and the nuclear receptor subfamily 4 (Nr4a) genes Nr4a1-3 in the hippocampus through a mechanism that involves CRTC1 recruitment to CRE promoters. Deregulation of CRTC1 dephosphorylation, nuclear translocation, and transcriptional function are associated with long-term contextual memory deficits in PS cDKO mice. Importantly, CRTC1 gene therapy in the hippocampus ameliorates context memory and transcriptional deficits and dendritic degeneration despite ongoing cortical degeneration in this neurodegeneration mouse model. CONCLUSIONS These findings reveal a critical role of CRTC1 in the hippocampus during associative memory, and provide evidence that CRTC1 deregulation underlies memory deficits during neurodegeneration.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meng Chen
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lilian Enriquez-Barreto
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ortega
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - Sara Acosta
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - Judith Camats Perna
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - M Neus Fullana
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - José Aguilera
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Rodríguez-Alvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
41
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
42
|
Abstract
Phosphodiesterases (PDE) are exciting new targets in medical sciences. These enzymes are some of the key mediators of cellular functions in the body and hence are attractive sites for drug-induced modulations. With the finding that Tofisopam, a new anxiolytic, inhibits PDEs, the authors were inspired to look into the role of PDE and drugs acting on them in psychiatry. Hence, the review was undertaken. We found several research materials available highlighting the role of PDE in cellular functions and the possible newer etiological mechanisms of neuropsychiatric illnesses such as schizophrenia, depression/anxiety disorders, and cognitive dysfunction involving PDEs. We also found that there are many molecules acting on PDEs, which have the potential to alter the way we treat mental illnesses today. This article is intended to provide an in-depth look at these enzymes so that more cost-effective therapeutic molecules may be synthesized and marketed in India for managing mental illnesses.
Collapse
Affiliation(s)
- Vasantmeghna S Murthy
- Department of Psychiatry, Krishna Institute of Medical Sciences Deemed University, Karad, Satara, Maharashtra, India
| | - Ajish G Mangot
- Department of Psychiatry, Krishna Institute of Medical Sciences Deemed University, Karad, Satara, Maharashtra, India
| |
Collapse
|
43
|
New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) structural development and promising activities to restore memory impairment. Eur J Med Chem 2016; 124:82-102. [PMID: 27560284 DOI: 10.1016/j.ejmech.2016.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development.
Collapse
|
44
|
Luczak V, Blackwell KT, Abel T, Girault JA, Gervasi N. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation. Neurobiol Learn Mem 2016; 138:10-20. [PMID: 27523748 DOI: 10.1016/j.nlm.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
In the hippocampus, cyclic-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) form a critical signaling cascade required for long-lasting synaptic plasticity, learning and memory. Plasticity and memory are known to occur following pathway-specific changes in synaptic strength that are thought to result from spatially and temporally coordinated intracellular signaling events. To better understand how cAMP and PKA dynamically operate within the structural complexity of hippocampal neurons, we used live two-photon imaging and genetically-encoded fluorescent biosensors to monitor cAMP levels or PKA activity in CA1 neurons of acute hippocampal slices. Stimulation of β-adrenergic receptors (isoproterenol) or combined activation of adenylyl cyclase (forskolin) and inhibition of phosphodiesterase (IBMX) produced cAMP transients with greater amplitude and rapid on-rates in intermediate and distal dendrites compared to somata and proximal dendrites. In contrast, isoproterenol produced greater PKA activity in somata and proximal dendrites compared to intermediate and distal dendrites, and the on-rate of PKA activity did not differ between compartments. Computational models show that our observed compartmental difference in cAMP can be reproduced by a uniform distribution of PDE4 and a variable density of adenylyl cyclase that scales with compartment size to compensate for changes in surface to volume ratios. However, reproducing our observed compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient. Together, our imaging and computational results show that compartment diameter interacts with rate-limiting components like adenylyl cyclase, phosphodiesterase and protein phosphatase to shape the spatial and temporal components of cAMP and PKA signaling in CA1 neurons and suggests that small neuronal compartments are most sensitive to cAMP signals whereas large neuronal compartments accommodate a greater dynamic range in PKA activity.
Collapse
Affiliation(s)
- Vincent Luczak
- University of Pennsylvania, Department of Biology, 10-133 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Kim T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Rockfish Creek Lane, Fairfax, VA 22030, USA
| | - Ted Abel
- University of Pennsylvania, Department of Biology, 10-133 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA.
| | - Jean-Antoine Girault
- INSERM, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités, 75005 Paris, France; Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France
| | - Nicolas Gervasi
- INSERM, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités, 75005 Paris, France; Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
45
|
Zheng F, Kasper LH, Bedford DC, Lerach S, Teubner BJW, Brindle PK. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice. PLoS One 2016; 11:e0146366. [PMID: 26730956 PMCID: PMC4701386 DOI: 10.1371/journal.pone.0146366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Biochemistry, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
- * E-mail: (FZ); (PB)
| | - Lawryn H. Kasper
- Department of Biochemistry, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - David C. Bedford
- Department of Biochemistry, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Stephanie Lerach
- Department of Biochemistry, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Brett J. W. Teubner
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Paul K. Brindle
- Department of Biochemistry, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
- * E-mail: (FZ); (PB)
| |
Collapse
|
46
|
Keil MF, Briassoulis G, Stratakis CA. The Role of Protein Kinase A in Anxiety Behaviors. Neuroendocrinology 2016; 103:625-39. [PMID: 26939049 DOI: 10.1159/000444880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
Abstract
This review focuses on the genetic and other evidence supporting the notion that the cyclic AMP (cAMP) signaling pathway and its mediator, the protein kinase A (PKA) enzyme, which respond to environmental stressors and regulate stress responses, are central to the pathogenesis of disorders related to anxiety. We describe the PKA pathway and review in vitro animal studies (mouse) and other evidence that support the importance of PKA in regulating behaviors that lead to anxiety. Since cAMP signaling and PKA have been pharmacologically exploited since the 1940s (even before the identification of cAMP as a second messenger with PKA as its mediator) for a number of disorders from asthma to cardiovascular diseases, there is ample opportunity to develop therapies using this new knowledge about cAMP, PKA, and anxiety disorders.
Collapse
Affiliation(s)
- Margaret F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
47
|
Irving JAE. Towards an understanding of the biology and targeted treatment of paediatric relapsed acute lymphoblastic leukaemia. Br J Haematol 2015; 172:655-66. [PMID: 26568036 DOI: 10.1111/bjh.13852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acute lymphoblastic leukaemia is the most common childhood cancer and for those children who relapse, prognosis is poor and new therapeutic strategies are needed. Recurrent pathways implicated in relapse include RAS, JAK STAT, cell cycle, epigenetic regulation, B cell development, glucocorticoid response, nucleotide metabolism and DNA repair. Targeting these pathways is a rational therapeutic strategy and may deliver novel, targeted therapies into the clinic. Relapse often stems from a minor clone present at diagnosis and thus analysis of persisting leukaemia during upfront therapy may allow targeted drug intervention to prevent relapse.
Collapse
Affiliation(s)
- Julie A E Irving
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
48
|
Gadalla KKE, Ross PD, Hector RD, Bahey NG, Bailey MES, Cobb SR. Gene therapy for Rett syndrome: prospects and challenges. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rett syndrome (RTT) is a neurological disorder that affects females and is caused by loss-of-function mutations in the X-linked gene MECP2. Deletion of Mecp2 in mice results in a constellation of neurological features that resemble those seen in RTT patients. Experiments in mice have demonstrated that restoration of MeCP2, even at adult stages, reverses several aspects of the RTT-like pathology suggesting that the disorder may be inherently treatable. This has provided an impetus to explore several therapeutic approaches targeting RTT at the level of the gene, including gene therapy, activation of MECP2 on the inactive X chromosome and read-through and repair of RTT-causing mutations. Here, we review these different strategies and the challenges of gene-based approaches in RTT.
Collapse
Affiliation(s)
- Kamal KE Gadalla
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Egypt
| | - Paul D Ross
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Ralph D Hector
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Noha G Bahey
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Histology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mark ES Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart R Cobb
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| |
Collapse
|
49
|
Lopez-Atalaya JP, Valor LM, Barco A. Epigenetic factors in intellectual disability: the Rubinstein-Taybi syndrome as a paradigm of neurodevelopmental disorder with epigenetic origin. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 128:139-76. [PMID: 25410544 DOI: 10.1016/b978-0-12-800977-2.00006-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The number of genetic syndromes associated with intellectual disability that are caused by mutations in genes encoding chromatin-modifying enzymes has sharply risen in the last decade. We discuss here a neurodevelopmental disorder, the Rubinstein-Taybi syndrome (RSTS), originated by mutations in the genes encoding the lysine acetyltransferases CBP and p300. We first describe clinical and genetic aspects of the syndrome to later focus on the insight provided by the research in animal models of this disease. These studies have not only clarified the molecular etiology of RSTS and helped to dissect the developmental and adult components of the syndrome but also contributed to outline some important connections between epigenetics and cognition. We finally discuss how this body of research has opened new venues for the therapeutic intervention of this currently untreatable disease and present some of the outstanding questions in the field. We believe that the progress in the understanding of this rare disorder also has important implications for other intellectual disability disorders that share an epigenetic origin.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Luis M Valor
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| |
Collapse
|
50
|
Lee D. Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol 2015; 6:161. [PMID: 26300775 PMCID: PMC4523784 DOI: 10.3389/fphar.2015.00161] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc) essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC) gene rutabaga and phosphodiesterase (PDE) gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local) regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.
Collapse
Affiliation(s)
- Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University , Athens, OH, USA
| |
Collapse
|