1
|
Sell GL, Barrow SL, McAllister AK. Glutamate signaling and neuroligin/neurexin adhesion play opposing roles that are mediated by major histocompatibility complex I molecules in cortical synapse formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583626. [PMID: 38496590 PMCID: PMC10942384 DOI: 10.1101/2024.03.05.583626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation 1-4 , yet glutamate clearly regulates glutamate receptor trafficking 5,6 and induces spine formation 7-11 . Using a culture system to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing NMDAR transport and surface expression as well as co-transport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels. Thus, like acetylcholine at the NMJ, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
|
2
|
Adams VR, Collins LB, Williams TI, Holmes J, Hess P, Atkins HM, Scheidemantle G, Liu X, Lodge M, Johnson AJ, Kennedy A. Myeloid cell MHC I expression drives CD8 + T cell activation in nonalcoholic steatohepatitis. Front Immunol 2024; 14:1302006. [PMID: 38274832 PMCID: PMC10808415 DOI: 10.3389/fimmu.2023.1302006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background & aims Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.
Collapse
Affiliation(s)
- Victoria R. Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Leonard B. Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
| | - Taufika Islam Williams
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
- Department of Chemistry, NC State University, Raleigh, NC, United States
| | - Jennifer Holmes
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Paul Hess
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Hannah M. Atkins
- Center for Human Health and Environment, NC State University, Raleigh, NC, United States
- Division of Comparative Medicine, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Chen R, Coleborn E, Bhavsar C, Wang Y, Alim L, Wilkinson AN, Tran MA, Irgam G, Atluri S, Wong K, Shim JJ, Adityan S, Lee JS, Overwijk WW, Steptoe R, Yang D, Wu SY. miR-146a inhibits ovarian tumor growth in vivo via targeting immunosuppressive neutrophils and enhancing CD8 + T cell infiltration. Mol Ther Oncolytics 2023; 31:100725. [PMID: 37781339 PMCID: PMC10539880 DOI: 10.1016/j.omto.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immunotherapies have emerged as promising strategies for cancer treatment. However, existing immunotherapies have poor activity in high-grade serous ovarian cancer (HGSC) due to the immunosuppressive tumor microenvironment and the associated low tumoral CD8+ T cell (CTL) infiltration. Through multiple lines of evidence, including integrative analyses of human HGSC tumors, we have identified miR-146a as a master regulator of CTL infiltration in HGSC. Tumoral miR-146a expression is positively correlated with anti-cancer immune signatures in human HGSC tumors, and delivery of miR-146a to tumors resulted in significant reduction in tumor growth in both ID8-p53-/- and IG10 murine HGSC models. Increasing miR-146a expression in tumors improved anti-tumor immune responses by decreasing immune suppressive neutrophils and increasing CTL infiltration. Mechanistically, miR-146a targets IL-1 receptor-associated kinase 1 and tumor necrosis factor receptor-associated factor 6 adaptor molecules of the transcription factor nuclear factor κB signaling pathway in ID8-p53-/- cells and decreases production of the downstream neutrophil chemoattractant, C-X-C motif chemokine ligand 1. In addition to HGSC, tumoral miR-146a expression also correlates strongly with CTL infiltration in other cancer types including thyroid, prostate, breast, and adrenocortical cancers. Altogether, our findings highlight the ability of miR-146a to overcome immune suppression and improve CTL infiltration in tumors.
Collapse
Affiliation(s)
- Rui Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elaina Coleborn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yue Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Louisa Alim
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew N. Wilkinson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Gowri Irgam
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sharat Atluri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kiefer Wong
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jae-Jun Shim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siddharth Adityan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Willem W. Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raymond Steptoe
- Frazer Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sherry Y. Wu
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Li Q, Lin L, Shou P, Liu K, Xue Y, Hu M, Ling W, Huang Y, Du L, Zheng C, Wang X, Zheng F, Zhang T, Wang Y, Shao C, Melino G, Shi Y, Wang Y. MHC class Ib-restricted CD8 + T cells possess strong tumoricidal activities. Proc Natl Acad Sci U S A 2023; 120:e2304689120. [PMID: 37856544 PMCID: PMC10614629 DOI: 10.1073/pnas.2304689120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023] Open
Abstract
The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.
Collapse
Affiliation(s)
- Qing Li
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Liangyu Lin
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Peishun Shou
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Keli Liu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yueqing Xue
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Mingyuan Hu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weifang Ling
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yin Huang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Liming Du
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Chunxing Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xuefeng Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fanjun Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Tao Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yu Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu215123, China
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome Tor Vergata, Rome00133, Italy
| | - Yufang Shi
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu215123, China
| | - Ying Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
5
|
Kamenjarin N, Hodapp K, Melchior F, Harms G, Hartmann AK, Bartneck J, Muth S, Raker VK, Becker C, Brand A, Clausen BE, Radsak MP, Schild H, Probst HC. Cross-presenting Langerhans cells are required for the early reactivation of resident CD8 + memory T cells in the epidermis. Proc Natl Acad Sci U S A 2023; 120:e2219932120. [PMID: 37579158 PMCID: PMC10450660 DOI: 10.1073/pnas.2219932120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
Tissue-resident memory CD8+ T cells (TRM) reside at sites of previous infection, providing protection against reinfection with the same pathogen. In the skin, TRM patrol the epidermis, where keratinocytes are the entry site for many viral infections. Epidermal TRM react rapidly to cognate antigen encounter with the secretion of cytokines and differentiation into cytotoxic effector cells, constituting a first line of defense against skin reinfection. Despite the important protective role of skin TRM, it has remained unclear, whether their reactivation requires a professional antigen-presenting cell (APC). We show here, using a model system that allows antigen targeting selectively to keratinocytes in a defined area of the skin, that limited antigen expression by keratinocytes results in rapid, antigen-specific reactivation of skin TRM. Our data identify epidermal Langerhans cells that cross-present keratinocyte-derived antigens, as the professional APC indispensable for the early reactivation of TRM in the epidermal layer of the skin.
Collapse
Affiliation(s)
- Nadine Kamenjarin
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| | - Katrin Hodapp
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| | - Felix Melchior
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| | - Gregory Harms
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
- Cell Biology Unit, University Medical Center Mainz, 55131Mainz, Germany
| | - Ann-Kathrin Hartmann
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| | - Joschka Bartneck
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| | - Sabine Muth
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| | - Verena K. Raker
- Department of Dermatology, University of Münster, 48149Münster, Germany
| | - Christian Becker
- Department of Dermatology, University of Münster, 48149Münster, Germany
| | - Anna Brand
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
- Institute for Molecular Medicine, University Medical Center Mainz, 55131Mainz, Germany
| | - Björn E. Clausen
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
- Institute for Molecular Medicine, University Medical Center Mainz, 55131Mainz, Germany
| | - Markus P. Radsak
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
- Third Department of Medicine, Hematology, Oncology, University Medical Center Mainz, 55131Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| | - Hans Christian Probst
- Institute for Immunology, University Medical Center Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131Mainz, Germany
| |
Collapse
|
6
|
Won HY, Liman N, Park JY, Park JH. Cytokine receptor γc effectuates the generation of proinflammatory innate CD8 T cells by non-classical MHC-I molecules. J Autoimmun 2023; 138:103059. [PMID: 37216869 PMCID: PMC10330485 DOI: 10.1016/j.jaut.2023.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Innate CD8 T cells correspond to a population of terminally differentiated effector T cells that phenotypically appear as antigen-experienced memory cells and functionally resemble proinflammatory CD8 T cells, expressing copious amounts of IFNγ. Innate CD8 T cells, however, are distinct from conventional effector-memory CD8 T cells as they acquire functional maturity during their generation in the thymus. Understanding the molecular mechanisms that drive their thymic development and differentiation is an intensely studied subject in T cell immunity, and here we identified the cytokine receptor γc as a critical mediator of innate CD8 T cell generation that promotes their selection even in the absence of classical MHC-I molecules. Consequently, overexpression of γc resulted in a dramatic increase of innate CD8 T cells in KbDb-deficient mice. We mapped its underlying mechanism to the expansion of IL-4-producing invariant NKT cells, so that it is the increased availability of intrathymic IL-4 which augments the selection of innate CD8 T cells. Collectively, these results unravel the selection of innate CD8 T cells being mediated by non-classical MHC-I molecules and being modulated by the abundance of the γc cytokine, IL-4.
Collapse
Affiliation(s)
- Hee Yeun Won
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nurcin Liman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Joo-Young Park
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul National University Dental Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, South Korea.
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Single-Cell Transcriptome Analysis Reveals Different Immune Signatures in HPV- and HPV + Driven Human Head and Neck Squamous Cell Carcinoma. J Immunol Res 2022; 2022:2079389. [PMID: 36157879 PMCID: PMC9507777 DOI: 10.1155/2022/2079389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a significant health problem and related to poor long-term outcomes, indicating more research to be done to deeply understand the underlying pathways. Objective This current study aimed in the assessment of the viral- (especially human papilloma virus [HPV]) and carcinogen-driven head and neck squamous cell carcinoma (HNSCC) microenvironment based on single-cell sequencing analysis. Methods Data were downloaded from GEO database (GSE139324), including 131224 cells from 18 HP- HNSCC patients and 8 HPV+ HNSCC patients. Following data normalization, all highly variable genes in single cells were identified, and batch correction was applied. Differentially expressed genes were identified using Wilcoxon rank sum test. A gene enrichment analysis was performed in each cell cluster using KEGG analysis. Single-cell pseudotime trajectories were constructed with MONOCLE (version 2.6.4). Cell-cell interactions were analyzed with CellChat R package. Additionally, cell-cell communication patterns in key signal pathways were compared in different tissue groups. A hidden Markov model (HMM) was used to predict gene expression states (on or off) throughout pseudotime. Five-year overall survival outcomes were compared in both HPV+ and HPV- subsets. Results 20,978 high-quality individual cells passed quality control. RNA-seq data were used from 522 HNSCC primary tumor samples. 1,137 differentially expressed genes between HPV+ and HPV- HNSCC patients were investigated. 96 differentially expressed genes were associated with overall survival and highly enriched in B cell associated biological process. Cell composition differed between types of samples. MHC-I, MHC-II, and MIF signaling pathways were found to be most relevant. Within these pathways, some cells were either signal receiver or signal sender, depending on sample type, respectively. Six genes were obtained, AREG and TGFBI (upregulation), CD27, CXCR3, MS4A1, and CD19 (downregulation), whose expression and HPV types were highly associated with worse overall survival. AREG and TGFBI were pDC marker genes, CXCR3 and CD27 were significantly expressed in T cell-related cells, while MS4A1 and CD19 were mainly expressed in B naïve cells. Conclusions This study revealed dynamic changes in cell percentage and heterogeneity of cell subtypes of HNSCC. AREG, TGFBI, CD27, CXCR3, MS4A1, and CD19 were associated with worse overall survival in HPV-related HNSCC. Especially B-cell related pathways were revealed as particularly relevant in HPV-related HNSCC. These findings are a basis for the development of biomarkers and therapeutic targets in respective patients.
Collapse
|
8
|
Kamata T, Al Dujaily E, Alhamad S, So TY, Margaritaki O, Giblett S, Pringle JH, Le Quesne J, Pritchard C. Statins mediate anti- and pro-tumourigenic functions by remodelling the tumour microenvironment. Dis Model Mech 2022; 15:dmm049148. [PMID: 34779486 PMCID: PMC8749029 DOI: 10.1242/dmm.049148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Anti-cancer properties of statins are controversial and possibly context dependent. Recent pathology/epidemiology studies of human lung adenocarcinoma showed reduced pro-tumourigenic macrophages associated with a shift to lower-grade tumours amongst statin users but, paradoxically, worse survival compared with that of non-users. To investigate the mechanisms involved, we have characterised mouse lung adenoma/adenocarcinoma models treated with atorvastatin. Here, we show that atorvastatin suppresses premalignant disease by inhibiting the recruitment of pro-tumourigenic macrophages to the tumour microenvironment, manifested in part by suppression of Rac-mediated CCR1 ligand secretion. However, prolonged atorvastatin treatment leads to drug resistance and progression of lung adenomas into invasive disease. Pathological progression is not driven by acquisition of additional driver mutations or immunoediting/evasion but is associated with stromal changes including the development of desmoplastic stroma containing Gr1+ myeloid cells and tertiary lymphoid structures. These findings show that any chemopreventive functions of atorvastatin in lung adenocarcinoma are overridden by stromal remodelling in the long term, thus providing mechanistic insight into the poor survival of lung adenocarcinoma patients with statin use.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Esraa Al Dujaily
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Salwa Alhamad
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Tsz Y. So
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Olga Margaritaki
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Susan Giblett
- Department of Molecular Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - J. Howard Pringle
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - John Le Quesne
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Catrin Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| |
Collapse
|
9
|
Kamiya J, Kang W, Yoshida K, Takagi R, Kanai S, Hanai M, Nakamura A, Yamada M, Miyamoto Y, Miyado M, Kuroki Y, Hayashi Y, Umezawa A, Kawano N, Miyado K. Suppression of Non-Random Fertilization by MHC Class I Antigens. Int J Mol Sci 2020; 21:E8731. [PMID: 33227981 PMCID: PMC7699254 DOI: 10.3390/ijms21228731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Hermaphroditic invertebrates and plants have a self-recognition system on the cell surface of sperm and eggs, which prevents their self-fusion and enhances non-self-fusion, thereby contributing to genetic variation. However, the system of sperm-egg recognition in mammals is under debate. To address this issue, we explored the role of major histocompatibility complex class I (MHC class I, also known as histocompatibility 2-Kb or H2-Kb and H2-Db in mice) antigens by analyzing H2-Kb-/-H2-Db-/-β2-microglobulin (β2M)-/- triple-knockout (T-KO) male mice with full fertility. T-KO sperm exhibited an increased sperm number in the perivitelline space of wild-type (WT) eggs in vitro. Moreover, T-KO sperm showed multiple fusion with zona pellucida (ZP)-free WT eggs, implying that the ability of polyspermy block for sperm from T-KO males was weakened in WT eggs. When T-KO male mice were intercrossed with WT female mice, the percentage of females in progeny increased. We speculate that WT eggs prefer fusion with T-KO sperm, more specifically X-chromosome-bearing sperm (X sperm), suggesting the presence of preferential (non-random) fertilization in mammals, including humans.
Collapse
Affiliation(s)
- Junki Kamiya
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| | - Keiichi Yoshida
- Next-Generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka Prefectural Hospital Organization, Osaka 541-8567, Japan;
| | - Ryota Takagi
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Seiya Kanai
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Maito Hanai
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Akihiro Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.N.); (M.Y.)
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.N.); (M.Y.)
| | - Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Yoko Kuroki
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Yoshiki Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan;
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| | - Natsuko Kawano
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan; (J.K.); (R.T.); (S.K.); (M.H.)
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (W.K.); (Y.M.); (A.U.)
| |
Collapse
|
10
|
Anderson CK, Reilly EC, Lee AY, Brossay L. Qa-1-Restricted CD8 + T Cells Can Compensate for the Absence of Conventional T Cells during Viral Infection. Cell Rep 2020; 27:537-548.e5. [PMID: 30970256 PMCID: PMC6472915 DOI: 10.1016/j.celrep.2019.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
The role of non-classical T cells during viral infection remains poorly understood. Using the well-established murine model of CMV infection (MCMV) and mice deficient in MHC class Ia molecules, we found that non-classical CD8+ T cells robustly expand after MCMV challenge, become highly activated effectors, and are capable of forming durable memory. Interestingly, although these cells are restricted by MHC class Ib molecules, they respond similarly to conventional T cells. Remarkably, when acting as the sole component of the adaptive immune response, non-classical CD8+ T cells are sufficient to protect against MCMV-induced lethality. We also demonstrate that the MHC class Ib molecule Qa-1 (encoded by H2-T23) restricts a large, and critical, portion of this population. These findings reveal a potential adaptation of the host immune response to compensate for viral evasion of classical T cell immunity. Anderson et al. describe a heterogenous population of non-classical CD8+ T cells responding to MCMV. Importantly, this population can protect mice from MCMV-induced lethality in the absence of other adaptive immune cells. Among the MHC class Ib-restricted CD8+ T cells responding, Qa-1-specific cells are required for protection.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Emma C Reilly
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94702, USA
| | - Laurent Brossay
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
11
|
Collin R, Lombard-Vadnais F, Hillhouse EE, Lebel MÈ, Chabot-Roy G, Melichar HJ, Lesage S. MHC-Independent Thymic Selection of CD4 and CD8 Coreceptor Negative αβ T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:133-142. [PMID: 32434937 DOI: 10.4049/jimmunol.2000156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
It is becoming increasingly clear that unconventional T cell subsets, such as NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells, each play distinct roles in the immune response. Subsets of these cell types can lack both CD4 and CD8 coreceptor expression. Beyond these known subsets, we identify CD4-CD8-TCRαβ+, double-negative (DN) T cells, in mouse secondary lymphoid organs. DN T cells are a unique unconventional thymic-derived T cell subset. In contrast to CD5high DN thymocytes that preferentially yield TCRαβ+ CD8αα intestinal lymphocytes, we find that mature CD5low DN thymocytes are precursors to peripheral DN T cells. Using reporter mouse strains, we show that DN T cells transit through the immature CD4+CD8+ (double-positive) thymocyte stage. Moreover, we provide evidence that DN T cells can differentiate in MHC-deficient mice. Our study demonstrates that MHC-independent thymic selection can yield DN T cells that are distinct from NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells.
Collapse
Affiliation(s)
- Roxanne Collin
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0G4, Canada; and
| | - Erin E Hillhouse
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Heather J Melichar
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
12
|
Key PN, Germino J, Yang L, Piersma SJ, Tripathy SK. Chronic Ly49H Receptor Engagement in vivo Decreases NK Cell Response to Stimulation Through ITAM-Dependent and Independent Pathways Both in vitro and in vivo. Front Immunol 2019; 10:1692. [PMID: 31396217 PMCID: PMC6664057 DOI: 10.3389/fimmu.2019.01692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells play an important role in the innate immune response. The summation of activation and inhibitory signals delivered through cell surface membrane receptors determines NK cell function. However, the continuous engagement of an activating receptor on NK cells appears to render the cells hyporesponsive to stimulation through other unrelated activating receptors. The mechanism by which this takes place remains unclear. Herein we demonstrate that continuous in vivo engagement of the Ly49H receptor with its ligand, m157, results in Ly49H+ NK cells that are hyporesponsive to further stimulation by other ITAM-dependent and independent receptors, while Ly49H− NK cells remain unaffected. The hyporesponsiveness of the NK cell correlates with the degree of Ly49H receptor downmodulation on its cell surface. We observe defects in calcium flux in the hyporesponsive NK cells following stimulation through the NK1.1 receptor. In addition, we observe differences in signaling molecules that play a role in calcium flux, including spleen tyrosine kinase (Syk) at baseline and phosphorylated phospholipase C gamma 2 (p-PLCγ2) at both baseline and following stimulation through NK1.1. We also demonstrate that various ITAM associated activation receptors, including Ly49H, remain associated with their respective adaptor molecules. With regard to in vivo NK cell function, we did not find differences in the formation of metastatic lung lesions following IV injection of B16 melanoma cells. However, we did observe defects in rejection of missing-self targets in vivo. The data suggest that continuous engagement of the Ly49H activating receptor on NK cells results in hyporesponsiveness of the NK cells to all of the ITAM-dependent and independent receptors we analyzed due to altered signaling pathways downstream of the receptor and adaptor molecule.
Collapse
Affiliation(s)
- Phillip N Key
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joe Germino
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Liping Yang
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sytse J Piersma
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep K Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Sadasivam M, Noel S, Lee SA, Gong J, Allaf ME, Pierorazio P, Rabb H, Hamad ARA. Activation and Proliferation of PD-1 + Kidney Double-Negative T Cells Is Dependent on Nonclassical MHC Proteins and IL-2. J Am Soc Nephrol 2019; 30:277-292. [PMID: 30622155 DOI: 10.1681/asn.2018080815] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/29/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND CD4- CD8- double-negative (DN) αβ T cells with innate-like properties represent a significant component of T cells in human and mouse kidneys. They spontaneously proliferate in the steady state and protect against ischemic AKI. However, the mechanisms regulating DN T cell homeostasis and responses to external danger signals from "sterile" inflammation remain poorly understood. METHODS We used knockout mice, functional assays, and an established ischemic AKI model to investigate the role of various MHC class I and II molecules in regulating kidney DN T cells. We also studied human nephrectomy samples. RESULTS Deficiency of β2m-dependent MHC class I (but not MHC class II) molecules led to significant reduction in frequency or absolute numbers of kidney DN T cells due to impaired activation, proliferation, increased apoptosis, and loss of an NK1.1+ subset of DN T cells. The remaining DN T cells in β2m knockout mice mainly comprised a programmed cell death protein-1 receptor (PD-1+) subset that depends on IL-2 provided by conventional T cells for optimal homeostasis. However, this PD-1+ subset remained highly responsive to changes in milieu, demonstrated by responses to infused lymphocytes. It was also the major responder to ischemic AKI; the NK1.1+ subset and CD8+ T cells had minimal responses. We found both DN T cell subsets in normal and cancerous human kidneys, indicating possible clinical relevance. CONCLUSIONS DN T cells, a unique population of kidney T cells, depend on nonclassical β2m molecules for homeostasis and use MHC-independent mechanisms to respond to external stimuli. These results have important implications for understanding the role these cells play during AKI and other immune cell-mediated kidney diseases.
Collapse
Affiliation(s)
| | | | | | | | - Mohamad E Allaf
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | |
Collapse
|
14
|
Goodall KJ, Nguyen A, Sullivan LC, Andrews DM. The expanding role of murine class Ib MHC in the development and activation of Natural Killer cells. Mol Immunol 2018; 115:31-38. [PMID: 29789149 DOI: 10.1016/j.molimm.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Major Histocompatibility Complex-I (MHC-I) molecules can be divided into class Ia and class Ib, with three distinct class Ib families found in the mouse. These families are designated as Q, T and M and are largely unexplored in terms of their immunological function. Among the class Ib MHC, H2-T23 (Qa-1b) has been a significant target for Natural Killer (NK) cell research, owing to its homology with the human class Ib human leukocyte antigen (HLA)-E. However, recent data has indicated that members of the Q and M family of class Ib MHC also play a critical role in the development and regulation NK cells. Here we discuss the recent advances in the control of NK cells by murine class Ib MHC as a means to stimulate further exploration of these molecules.
Collapse
Affiliation(s)
- Katharine J Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
15
|
Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, Villarino AV, Sen SK, Shaik J, Smelkinson M, Tamoutounour S, Collins N, Bouladoux N, Dzutsev A, Rosshart SP, Arbuckle JH, Wang CR, Kristie TM, Rehermann B, Trinchieri G, Brenchley JM, O'Shea JJ, Belkaid Y. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell 2018; 172:784-796.e18. [PMID: 29358051 DOI: 10.1016/j.cell.2017.12.033] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 02/02/2023]
Abstract
Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.
Collapse
Affiliation(s)
- Jonathan L Linehan
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Oliver J Harrison
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Allyson L Byrd
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA; Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD 20892, USA; Department of Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Ivan Vujkovic-Cvijin
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Shurjo K Sen
- Cancer and Inflammation Program, NCI, NIH, Bethesda, MD 20892, USA
| | - Jahangheer Shaik
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Samira Tamoutounour
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA; NIAID Microbiome Program, NIH, Bethesda, MD 20892, USA
| | - Amiran Dzutsev
- Cancer and Inflammation Program, NCI, NIH, Bethesda, MD 20892, USA
| | - Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611, USA
| | | | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Fernandez-Ruiz D, Lau LS, Ghazanfari N, Jones CM, Ng WY, Davey GM, Berthold D, Holz L, Kato Y, Enders MH, Bayarsaikhan G, Hendriks SH, Lansink LIM, Engel JA, Soon MSF, James KR, Cozijnsen A, Mollard V, Uboldi AD, Tonkin CJ, de Koning-Ward TF, Gilson PR, Kaisho T, Haque A, Crabb BS, Carbone FR, McFadden GI, Heath WR. Development of a Novel CD4 + TCR Transgenic Line That Reveals a Dominant Role for CD8 + Dendritic Cells and CD40 Signaling in the Generation of Helper and CTL Responses to Blood-Stage Malaria. THE JOURNAL OF IMMUNOLOGY 2017; 199:4165-4179. [PMID: 29084838 DOI: 10.4049/jimmunol.1700186] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.
Collapse
Affiliation(s)
- Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lei Shong Lau
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Claerwen M Jones
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Wei Yi Ng
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Gayle M Davey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Dorothee Berthold
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Lauren Holz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu Kato
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Matthias H Enders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Ganchimeg Bayarsaikhan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sanne H Hendriks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Lianne I M Lansink
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Jessica A Engel
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Megan S F Soon
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Kylie R James
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vanessa Mollard
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro D Uboldi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; and
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Ashraful Haque
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Brendan S Crabb
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; and
| | - Francis R Carbone
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia; .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Denzin LK, Khan AA, Virdis F, Wilks J, Kane M, Beilinson HA, Dikiy S, Case LK, Roopenian D, Witkowski M, Chervonsky AV, Golovkina TV. Neutralizing Antibody Responses to Viral Infections Are Linked to the Non-classical MHC Class II Gene H2-Ob. Immunity 2017; 47:310-322.e7. [PMID: 28813660 PMCID: PMC5568092 DOI: 10.1016/j.immuni.2017.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/23/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.
Collapse
Affiliation(s)
- Lisa K Denzin
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Aly A Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Francesca Virdis
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Jessica Wilks
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Melissa Kane
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Helen A Beilinson
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Stanislav Dikiy
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Laure K Case
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Michele Witkowski
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | | - Tatyana V Golovkina
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Deficiency of the NOD-Like Receptor NLRC5 Results in Decreased CD8 + T Cell Function and Impaired Viral Clearance. J Virol 2017; 91:JVI.00377-17. [PMID: 28615208 DOI: 10.1128/jvi.00377-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Pathogen recognition receptors are vital components of the immune system. Engagement of these receptors is important not only for instigation of innate immune responses to invading pathogens but also for initiating the adaptive immune response. Members of the NOD-like receptor (NLR) family of pathogen recognition receptors have important roles in orchestrating this response. The NLR family member NLRC5 regulates major histocompatibility complex class I (MHC-I) expression during various types of infections, but its role in immunity to influenza A virus (IAV) is not well studied. Here we show that Nlrc5-/- mice exhibit an altered CD8+ T cell response during IAV infection compared to that of wild-type (WT) mice. Nlrc5-/- mice have decreased MHC-I expression on hematopoietic cells and fewer CD8+ T cells prior to infection. NLRC5 deficiency does not affect the generation of antigen-specific CD8+ T cells following IAV infection; however, a change in epitope dominance is observed in Nlrc5-/- mice. Moreover, IAV-specific CD8+ T cells from Nlrc5-/- mice have impaired effector functions. This change in the adaptive immune response is associated with impaired viral clearance in Nlrc5-/- mice. Collectively, our results demonstrate an important role for NLRC5 in regulation of antiviral immune responses and viral clearance during IAV infection.IMPORTANCE The NOD-like receptor family member NLRC5 is known to regulate expression of MHC-I as well as other genes required for antigen processing. In addition, NLRC5 also regulates various immune signaling pathways. In this study, we investigated the role of NLRC5 during influenza virus infection and found a major role for NLRC5 in restricting virus replication and promoting viral clearance. The observed increases in viral titers in NLRC5-deficient mice correlated with impaired effector CD8+ T cell responses. Although NLRC5-deficient mice were defective at clearing the virus, they did not show an increase in morbidity or mortality following influenza virus infection because of other compensatory immune mechanisms. Therefore, our study highlights how NLRC5 regulates multiple immune effector mechanisms to promote the host defense during influenza virus infection.
Collapse
|
19
|
Facial Nerve Recovery in KbDb and C1q Knockout Mice: A Role for Histocompatibility Complex 1. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 4:e1186. [PMID: 28293529 PMCID: PMC5222674 DOI: 10.1097/gox.0000000000001186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the mechanisms in nerve damage can lead to better outcomes for neuronal rehabilitation. The purpose of our study was to assess the effect of major histocompatibility complex I deficiency and inhibition of the classical complement pathway (C1q) on functional recovery and cell survival in the facial motor nucleus (FMN) after crush injury in adult and juvenile mice. METHODS A prospective blinded analysis of functional recovery and cell survival in the FMN after a unilateral facial nerve crush injury in juvenile and adult mice was undertaken between wild-type, C1q knockout (C1q-/-), and KbDb knockout (KbDb-/-) groups. Whisker function was quantified to assess functional recovery. Neuron counts were performed to determine neuron survival in the FMN after recovery. RESULTS After facial nerve injury, all adult wild-type mice fully recovered. Juvenile mice recovered incompletely corresponding to a greater neuron loss in the FMN of juveniles compared with adults. The C1q-/- juvenile and adult groups did not differ from wild type. The KbDb-/- adults demonstrated 50% recovery of whisker movement and decreased cell survival in FMN. The KbDb-/- juvenile group did not demonstrate any difference from control group. CONCLUSION Histocompatibility complex I plays a role for neuroprotection and enhanced facial nerve recovery in adult mice. Inhibition of the classical complement pathway alone does not affect functional recovery or neuronal survival. The alternative and mannose binding pathways pose alternative means for activating the final components of the pathway that may lead to acute nerve damage.
Collapse
|
20
|
Nguyen-Vu TB, Zhao GQ, Lahiri S, Kimpo RR, Lee H, Ganguli S, Shatz CJ, Raymond JL. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. eLife 2017; 6. [PMID: 28234229 PMCID: PMC5386593 DOI: 10.7554/elife.20147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/02/2017] [Indexed: 11/19/2022] Open
Abstract
Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI:http://dx.doi.org/10.7554/eLife.20147.001 All animals can learn from their experiences. One of the main ideas for how learning occurs is that it involves changes in the strength of the connections between neurons, known as synapses. The ability of synapses to become stronger or weaker is referred to as synaptic plasticity. High levels of synaptic plasticity are generally thought to be good for learning, while low levels of synaptic plasticity make learning more difficult. Nevertheless, studies have also reported that high levels of synaptic plasticity can sometimes impair learning. To explain these mixed results, Nguyen-Vu, Zhao, Lahiri et al. studied mice that had been genetically modified to show greater synaptic plasticity than normal mice. The same individual mutant animals were sometimes less able to learn an eye-movement task than unmodified mice, and at other times better able to learn exactly the same task. The main factor that determined how well the mice could learn was what the mice had experienced shortly before they began the training. Nguyen-Vu et al. propose that some experiences change the strength of synapses so much that they temporarily prevent those synapses from undergoing any further changes. Animals with these “saturated” synapses will struggle to learn a new task, even if their brains are normally capable of high levels of synaptic plasticity. Notably, even normal activity appears to be able to put the synapses of the mutant mice into a saturated state, whereas this saturation would only occur in normal mice under a restricted set of circumstances. Consistent with this idea, Nguyen-Vu et al. showed that a specific type of pre-training that desaturates synapses improved the ability of the modified mice to learn the eye-movement task. Conversely, a different procedure that is known to saturate synapses impaired the learning ability of the unmodified mice. A future challenge is to test these predictions experimentally by measuring changes in synaptic plasticity directly, both in brain slices and in living animals. The results could ultimately help to develop treatments that improve the ability to learn and so could provide benefits to a wide range of individuals, including people who have suffered a brain injury or stroke. DOI:http://dx.doi.org/10.7554/eLife.20147.002
Collapse
Affiliation(s)
- Td Barbara Nguyen-Vu
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford School of Medicine, Stanford, United States
| | - Grace Q Zhao
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Subhaneil Lahiri
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Rhea R Kimpo
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Hanmi Lee
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Surya Ganguli
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Applied Physics, Stanford University, Stanford, United States
| | - Carla J Shatz
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
21
|
Lapenna A, Omar I, Berger M. A novel spontaneous mutation in the TAP2 gene unravels its role in macrophage survival. Immunology 2016; 150:432-443. [PMID: 27861817 DOI: 10.1111/imm.12694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
We report a new mouse strain with a single point mutation in the type 2 transporter associated with antigen processing (TAP2). This strain randomly arose in one of our C57BL/6J mouse colonies and was initially discovered because of the lack of CD8+ T cells in the periphery. Following our observation, we subsequently revealed a lack of cell surface MHC-I expression, derived from TAP2 protein deficiency. Our strain, named eightless, has a C to T substitution in exon 5 resulting in a glutamine to stop codon substitution at position 285 in the TAP2 protein. Interestingly, in addition to the expected lack of CD8+ T cell phenotype, eightless mice have a diminished number of macrophages in their peritoneum. Moreover, following peritoneal inflammation, elicited eightless macrophages showed impaired survival both in vivo and ex vivo. Our study describes the first ever TAP2 complete knockout mouse strain and provides a possible explanation for why patients with TAP2 deficiency syndrome present clinical manifestations that would suggest a phagocyte defect rather than a lack of CD8+ T cells.
Collapse
Affiliation(s)
- Antonio Lapenna
- The Lautenberg Centre for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ibrahim Omar
- The Lautenberg Centre for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Michael Berger
- The Lautenberg Centre for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
22
|
Tetruashvily MM, McDonald MA, Boulanger LM, Boulanger LM. MHCI promotes developmental synapse elimination and aging-related synapse loss at the vertebrate neuromuscular junction. Brain Behav Immun 2016; 56:197-208. [PMID: 26802986 PMCID: PMC5813483 DOI: 10.1016/j.bbi.2016.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/23/2022] Open
Abstract
Synapse elimination at the developing neuromuscular junction (NMJ) sculpts motor circuits, and synapse loss at the aging NMJ drives motor impairments that are a major cause of loss of independence in the elderly. Here we provide evidence that at the NMJ, both developmental synapse elimination and aging-related synapse loss are promoted by specific immune proteins, members of the major histocompatibility complex class I (MHCI). MHCI is expressed at the developing NMJ, and three different methods of reducing MHCI function all disrupt synapse elimination during the second postnatal week, leaving some muscle fibers multiply-innervated, despite otherwise outwardly normal synapse formation and maturation. Conversely, overexpressing MHCI modestly accelerates developmental synapse elimination. MHCI levels at the NMJ rise with aging, and reducing MHCI levels ameliorates muscle denervation in aged mice. These findings identify an unexpected role for MHCI in the elimination of neuromuscular synapses during development, and indicate that reducing MHCI levels can preserve youthful innervation of aging muscle.
Collapse
Affiliation(s)
- Mazell M. Tetruashvily
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544,Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Marin A. McDonald
- Department of Neurosciences, University of California, San Diego 92093,Medical Scientist Training Program, University of California, San Diego 92093
| | - Lisa M. Boulanger
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544,Department of Neurosciences, University of California, San Diego 92093,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544,Correspondence to:
| | - Lisa M Boulanger
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States; Department of Neurosciences, University of California, San Diego 92093, United States; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
23
|
Adelson JD, Sapp RW, Brott BK, Lee H, Miyamichi K, Luo L, Cheng S, Djurisic M, Shatz CJ. Developmental Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. Cereb Cortex 2016; 26:1453-1463. [PMID: 25316337 PMCID: PMC4785944 DOI: 10.1093/cercor/bhu243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synapse pruning is an activity-regulated process needed for proper circuit sculpting in the developing brain. Major histocompatibility class I (MHCI) molecules are regulated by activity, but little is known about their role in the development of connectivity in cortex. Here we show that protein for 2 MHCI molecules H2-Kb and H2-Db is associated with synapses in the visual cortex. Pyramidal neurons in mice lacking H2-Kb and H2-Db (KbDb KO) have more extensive cortical connectivity than normal. Modified rabies virus tracing was used to monitor the extent of pyramidal cell connectivity: Horizontal connectivity is greater in the visual cortex of KbDb KO mice. Basal dendrites of L2/3 pyramids, where many horizontal connections terminate, are more highly branched and have elevated spine density in the KO. Furthermore, the density of axonal boutons is elevated within L2/3 of mutant mice. These increases are accompanied by elevated miniature excitatory postsynaptic current frequency, consistent with an increase in functional synapses. This functional and anatomical increase in intracortical connectivity is also associated with enhanced ocular dominance plasticity that persists into adulthood. Thus, these MHCI proteins regulate sculpting of local cortical circuits and in their absence, the excess connectivity can function as a substrate for cortical plasticity throughout life.
Collapse
Affiliation(s)
| | | | | | - Hanmi Lee
- Departments of Biology and Neurobiology and Bio-X
| | | | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | - Sarah Cheng
- Departments of Biology and Neurobiology and Bio-X
| | | | | |
Collapse
|
24
|
Lin A, Guo X, Inman RD, Sivak JM. Ocular inflammation in HLA-B27 transgenic mice reveals a potential role for MHC class I in corneal immune privilege. Mol Vis 2015; 21:131-7. [PMID: 25684978 PMCID: PMC4323692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/04/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE HLA-B27 is a major histocompatibility complex class I (MHCI) allele that has been closely associated with the development of ankylosing spondylitis and acute anterior uveitis (AAU), the most common form of uveitis worldwide. We have been characterizing the phenotypes of transgenic mice carrying a human HLA-B27 allele, but that are deficient in endogenous mouse MHCI genes (H-2K(-/-) and H-2D(-/-) double knockout, or DKO) to create the HLA-B27/DKO line. In maintaining and expanding this colony, we observed a rare sporadic severe central keratitis that developed in transgenic animals, but that was not present in wild-type (WT) animals. METHODS The corneas of affected HLA-B27/DKO and DKO mice were compared to their WT counterparts by staining with standard histological methods for markers of inflammation and neovascularization. A model of experimental corneal inflammation was subsequently used to test the responses of each genotype to insult. RESULTS We identified a previously unreported corneal pathology in naïve HLA-B27/DKO mice, and we describe significantly prolonged CD4(+)- and CD8(+)-associated inflammation in these animals following an experimentally induced corneal injury. CONCLUSIONS These results demonstrate an increased T-cell response in B27/DKO corneas due to the expression of the HLA-B27 allele, suggesting that low MHCI expression in WT corneas is an important contributor to immune privilege.
Collapse
Affiliation(s)
- Aifeng Lin
- Division of Genes and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Division of Vision Sciences, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D. Inman
- Division of Genes and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jeremy M. Sivak
- Division of Vision Sciences, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC, Tector M, Tector AJ. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5751-7. [PMID: 25339675 PMCID: PMC5922270 DOI: 10.4049/jimmunol.1402059] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pigs are emerging as important large animal models for biomedical research, and they may represent a source of organs for xenotransplantation. The MHC is pivotal to the function of the immune system in health and disease, and it is particularly important in infection and transplant rejection. Pigs deficient in class I MHC could serve as important reagents to study viral immunity as well as allograft and xenograft rejection. In this study, we report the creation and characterization of class I MHC knockout pigs using the Cas9 nuclease and guide RNAs. Pig fetal fibroblasts were genetically engineered using Cas9 and guide RNAs, and class I MHC(-) cells were then used as nuclear donors for somatic cell nuclear transfer. We produced three piglets devoid of all cell surface class I proteins. Although these animals have reduced levels of CD4(-)CD8(+) T cells in peripheral blood, the pigs appear healthy and are developing normally. These pigs are a promising reagent for immunological research.
Collapse
Affiliation(s)
- Luz M Reyes
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jose L Estrada
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Zheng Yu Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rachel J Blosser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rashod F Smith
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Richard A Sidner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Leela L Paris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ross L Blankenship
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Caitlin N Ray
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Aaron C Miner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - A Joseph Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202; Indiana University Health Transplant Institute, Indianapolis, IN 46202
| |
Collapse
|
26
|
MHC class I limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling. J Neurosci 2014; 34:11844-56. [PMID: 25164678 DOI: 10.1523/jneurosci.4642-12.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteins of the major histocompatibility complex class I (MHCI) negatively regulate synapse density in the developing vertebrate brain (Glynn et al., 2011; Elmer et al., 2013; Lee et al., 2014), but the underlying mechanisms remain largely unknown. Here we identify a novel MHCI signaling pathway that involves the inhibition of a known synapse-promoting factor, the insulin receptor. Dominant-negative insulin receptor constructs decrease synapse density in the developing Xenopus visual system (Chiu et al., 2008), and insulin receptor activation increases dendritic spine density in mouse hippocampal neurons in vitro (Lee et al., 2011). We find that genetically reducing cell surface MHCI levels increases synapse density selectively in regions of the hippocampus where insulin receptors are expressed, and occludes the neuronal insulin response by de-repressing insulin receptor signaling. Pharmacologically inhibiting insulin receptor signaling in MHCI-deficient animals rescues synapse density, identifying insulin receptor signaling as a critical mediator of the tonic inhibitory effects of endogenous MHCI on synapse number. Insulin receptors co-immunoprecipitate MHCI from hippocampal lysates, and MHCI unmasks a cytoplasmic epitope of the insulin receptor that mediates downstream signaling. These results identify an important role for an MHCI-insulin receptor signaling pathway in circuit patterning in the developing brain, and suggest that changes in MHCI expression could unexpectedly regulate neuronal insulin sensitivity in the aging and diseased brain.
Collapse
|
27
|
Calton MA, Lee D, Sundaresan S, Mendus D, Leu R, Wangsawihardja F, Johnson KR, Mustapha M. A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice. PLoS One 2014; 9:e94549. [PMID: 24804771 PMCID: PMC4012943 DOI: 10.1371/journal.pone.0094549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/18/2014] [Indexed: 12/12/2022] Open
Abstract
Early cochlear development is marked by an exuberant outgrowth of neurites that innervate multiple targets. The establishment of mature cochlear neural circuits is, however, dependent on the pruning of inappropriate axons and synaptic connections. Such refinement also occurs in the central nervous system (CNS), and recently, genes ordinarily associated with immune and inflammatory processes have been shown to play roles in synaptic pruning in the brain. These molecules include the major histocompatibility complex class I (MHCI) genes, H2-Kb and H2-Db, and the complement cascade gene, C1qa. Since the mechanisms involved in synaptic refinement in the cochlea are not well understood, we investigated whether these immune system genes may be involved in this process and whether they are required for normal hearing function. Here we report that these genes are not necessary for normal synapse formation and refinement in the mouse cochlea. We further demonstrate that C1qa expression is not necessary for normal hearing in mice but the lack of expression of H2-Kb and H2-Db causes hearing impairment. These data underscore the importance of the highly polymorphic family of MHCI genes in hearing in mice and also suggest that factors and mechanisms regulating synaptic refinement in the cochlea may be distinct from those in the CNS.
Collapse
Affiliation(s)
- Melissa A. Calton
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Dasom Lee
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Srividya Sundaresan
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Diana Mendus
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Rose Leu
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Felix Wangsawihardja
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
| | | | - Mirna Mustapha
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 2014; 509:195-200. [PMID: 24695230 PMCID: PMC4016165 DOI: 10.1038/nature13154] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
The formation of precise connections between retina and LGN involves the activity-dependent elimination of some synapses, with strengthening and retention of others. Here we show that the MHC Class I (MHCI) molecule H2-Db is necessary and sufficient for synapse elimination in the retinogeniculate system. In mice lacking both H2-Kb and H2-Db (KbDb−/−) despite intact retinal activity and basal synaptic transmission, the developmentally-regulated decrease in functional convergence of retinal ganglion cell synaptic inputs to LGN neurons fails and eye-specific layers do not form. Neuronal expression of just H2-Db in KbDb−/− mice rescues both synapse elimination and eye specific segregation despite a compromised immune system. When patterns of stimulation mimicking endogenous retinal waves are used to probe synaptic learning rules at retinogeniculate synapses, LTP is intact but LTD is impaired in KbDb−/− mice. This change is due to an increase in Ca2+ permeable AMPA receptors. Restoring H2-Db to KbDb−/− neurons renders AMPA receptors Ca2+ impermeable and rescues LTD. These observations reveal an MHCI mediated link between developmental synapse pruning and balanced synaptic learning rules enabling both LTD and LTP, and demonstrate a direct requirement for H2-Db in functional and structural synapse pruning in CNS neurons.
Collapse
|
29
|
Covassin L, Jangalwe S, Jouvet N, Laning J, Burzenski L, Shultz LD, Brehm MA. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rγ(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol 2014; 174:372-88. [PMID: 23869841 DOI: 10.1111/cei.12180] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 01/01/2023] Open
Abstract
Immunodeficient mice bearing targeted mutations in the IL2rg gene and engrafted with human immune systems are effective tools for the study of human haematopoiesis, immunity, infectious disease and transplantation biology. The most robust human immune model is generated by implantation of human fetal thymic and liver tissues in irradiated recipients followed by intravenous injection of autologous fetal liver haematopoietic stem cells [often referred to as the BLT (bone marrow, liver, thymus) model]. To evaluate the non-obese diabetic (NOD)-scid IL2rγ(null) (NSG)-BLT model, we have assessed various engraftment parameters and how these parameters influence the longevity of NSG-BLT mice. We observed that irradiation and subrenal capsule implantation of thymus/liver fragments was optimal for generating human immune systems. However, after 4 months, a high number of NSG-BLT mice develop a fatal graft-versus-host disease (GVHD)-like syndrome, which correlates with the activation of human T cells and increased levels of human immunoglobulin (Ig). Onset of GVHD was not delayed in NSG mice lacking murine major histocompatibility complex (MHC) classes I or II and was not associated with a loss of human regulatory T cells or absence of intrathymic cells of mouse origin (mouse CD45(+) ). Our findings demonstrate that NSG-BLT mice develop robust human immune systems, but that the experimental window for these mice may be limited by the development of GVHD-like pathological changes.
Collapse
Affiliation(s)
- L Covassin
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Nelson PA, Sage JR, Wood SC, Davenport CM, Anagnostaras SG, Boulanger LM. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn Mem 2013; 20:505-17. [PMID: 23959708 PMCID: PMC3744042 DOI: 10.1101/lm.031351.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain.
Collapse
Affiliation(s)
- P Austin Nelson
- Department of Neuroscience, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dervovic DD, Liang HCY, Cannons JL, Elford AR, Mohtashami M, Ohashi PS, Schwartzberg PL, Zúñiga-Pflücker JC. Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1704-15. [PMID: 23851691 PMCID: PMC3801448 DOI: 10.4049/jimmunol.1300417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of CD8 single-positive (SP) T cells is predicated by the ability of lymphocyte progenitors to integrate multiple signaling cues provided by the thymic microenvironment. In the thymus and the OP9-DL1 system for T cell development, Notch signals are required for progenitors to commit to the T cell lineage and necessary for their progression to the CD4(+)CD8(+) double-positive (DP) stage of T cell development. However, it remains unclear whether Notch is a prerequisite for the differentiation of DP cells to the CD8 SP stage of development. In this study, we demonstrate that Notch receptor-ligand interactions allow for efficient differentiation and selection of conventional CD8 T cells from bone marrow-derived hematopoietic stem cells. However, bone marrow-derived hematopoietic stem cells isolated from Itk(-/-)Rlk(-/-) mice gave rise to T cells with decreased IFN-γ production, but gained the ability to produce IL-17. We further reveal that positive and negative selection in vitro are constrained by peptide-MHC class I expressed on OP9 cells. Finally, using an MHC class I-restricted TCR-transgenic model, we show that the commitment of DP precursors to the CD8 T cell lineage is dependent on Notch signaling. Our findings further establish the requirement for Notch receptor-ligand interactions throughout T cell differentiation, including the final step of CD8 SP selection.
Collapse
MESH Headings
- Actins/immunology
- Animals
- Antigens, Viral/immunology
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- CD8-Positive T-Lymphocytes/immunology
- Calcium-Binding Proteins
- Cell Lineage
- Cells, Cultured
- Cellular Microenvironment
- Clonal Selection, Antigen-Mediated
- Coculture Techniques
- Crosses, Genetic
- H-2 Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Histocompatibility Antigen H-2D/immunology
- Intercellular Signaling Peptides and Proteins/immunology
- Lymphopoiesis/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
- Stromal Cells/cytology
- Stromal Cells/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Dzana D. Dervovic
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Haydn C-Y. Liang
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
32
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
33
|
IL-15 in tumor microenvironment causes rejection of large established tumors by T cells in a noncognate T cell receptor-dependent manner. Proc Natl Acad Sci U S A 2013; 110:8158-63. [PMID: 23637340 DOI: 10.1073/pnas.1301022110] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A major challenge of cancer immunotherapy is the persistence and outgrowth of subpopulations that lose expression of the target antigen. IL-15 is a potent cytokine that can promote organ-specific autoimmunity when up-regulated on tissue cells. Here we report that T cells eradicated 2-wk-old solid tumors that expressed IL-15, eliminating antigen-negative cells. In contrast, control tumors that lacked IL-15 expression consistently relapsed. Interestingly, even tumors lacking expression of cognate antigen were rejected when expressing IL-15, indicating that rejection after adoptive T-cell transfer was independent of cognate antigen expression. Nevertheless, the T-cell receptor of the transferred T cells influenced the outcome, consistent with the notion that T-cell receptor activation and effector status determine whether IL-15 can confer lymphokine killer activity-like properties to T cells. The effect was limited to the microenvironment of tumors expressing IL-15; there were no noticeable effects on contralateral tumors lacking IL-15. Taken together, these results indicate that expression of IL-15 in the tumor microenvironment may prevent the escape of antigen loss variants and subsequent tumor recurrence by enabling T cells to eliminate cancer cells lacking cognate antigen expression in a locally restricted manner.
Collapse
|
34
|
Berg A, Zelano J, Thams S, Cullheim S. The extent of synaptic stripping of motoneurons after axotomy is not correlated to activation of surrounding glia or downregulation of postsynaptic adhesion molecules. PLoS One 2013; 8:e59647. [PMID: 23527240 PMCID: PMC3602371 DOI: 10.1371/journal.pone.0059647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/16/2013] [Indexed: 01/31/2023] Open
Abstract
Synapse elimination in the adult central nervous system can be modelled by axotomy of spinal motoneurons which triggers removal of synapses from the cell surface of lesioned motoneurons by processes that remain elusive. Proposed candidate mechanisms are removal of synapses by reactive microglia and astrocytes, based on the remarkable activation of these cell types in the vicinity of motoneurons following axon lesion, and/or decreased expression of synaptic adhesion molecules in lesioned motoneurons. In the present study, we investigated glia activation and adhesion molecule expression in motoneurons in two mouse strains with deviant patterns of synapse elimination following axotomy. Mice deficient in complement protein C3 display a markedly reduced loss of synapses from axotomized motoneurons, whereas mice with impaired function of major histocompatibility complex (MHC) class Ia display an augmented degree of stripping after axotomy. Activation of microglia and astrocytes was assessed by semiquantative immunohistochemistry for Iba 1 (microglia) and GFAP (astrocytes), while expression of synaptic adhesion molecules was determined by in situ hybridization. In spite of the fact that the two mouse strains display very different degrees of synapse elimination, no differences in terms of glial activation or in the downregulation of the studied adhesion molecules (SynCAM1, neuroligin-2,-3 and netrin G-2 ligand) could be detected. We conclude that neither glia activation nor downregulation of synaptic adhesion molecules are correlated to the different extent of the synaptic stripping in the two studied strains. Instead the magnitude of the stripping event is most likely a consequence of a precise molecular signaling, which at least in part is mediated by immune molecules.
Collapse
Affiliation(s)
- Alexander Berg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
35
|
Nedelkovska H, Edholm ES, Haynes N, Robert J. Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis. Biol Open 2013; 2:335-42. [PMID: 23519478 PMCID: PMC3603415 DOI: 10.1242/bio.20133483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/12/2012] [Indexed: 01/28/2023] Open
Abstract
To impair MHC class I (class I) function in vivo in the amphibian Xenopus, we developed an effective reverse genetic loss of function approach by combining I-SceI meganuclease-mediated transgenesis with RNAi technology. We generated transgenic outbred X. laevis and isogenetic laevis/gilli cloned lines with stably silenced expression of β2-microglobulin (b2m) critical for class I function. Transgenic F1 frogs exhibited decreased surface class I expression on erythrocytes and lymphocytes, decreased frequency of peripheral CD8 T cells and impaired CD8 T cell-mediated skin allograft rejection. Additionally, b2m knockdown increased susceptibility to viral infection of F0 transgenic larvae. This loss of function strategy offers new avenues for studying ontogeny of immunity and other developmental processes in Xenopus.
Collapse
Affiliation(s)
- Hristina Nedelkovska
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY 14642 , USA
| | | | | | | |
Collapse
|
36
|
Lee SJ, Dunmire S, McSorley SJ. MHC class-I-restricted CD8 T cells play a protective role during primary Salmonella infection. Immunol Lett 2012; 148:138-43. [PMID: 23089550 DOI: 10.1016/j.imlet.2012.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/25/2012] [Accepted: 10/10/2012] [Indexed: 11/25/2022]
Abstract
Protective immunity against Salmonella infection is known to require CD4 Th1 cells and B cells, but the role of MHC class-I-restricted CD8 T cells is less clear. Previous studies have suggested that CD8 T cells participate in secondary, but not primary, bacterial clearance. However, these studies have used experimental models that are difficult to interpret and do not clearly isolate the role of MHC class-I-restricted CD8 T cells from other cell populations. Here, we examined the role of class-I-restricted T cells in protection against Salmonella infection using mice lacking all classical MHC class-Ia molecules, perforin, or granzyme B. Immunized K(b)D(b)-, perforin-, granzyme B-, or perforin/granzyme B-deficient mice were able to resolve secondary infection with virulent Salmonella, demonstrating that class-I-restricted CTLs are not required for acquired immunity. However, during primary infection with attenuated bacteria, bacterial clearance was delayed in each of these mouse strains when compared to wild-type mice. Taken together, these data demonstrate that CD8 T cells are not required for acquired immunity to Salmonella, but can play a protective role in resolving primary infection with attenuated bacteria.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
37
|
Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat Immunol 2012; 13:579-86. [PMID: 22522492 PMCID: PMC3362685 DOI: 10.1038/ni.2282] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/01/2012] [Indexed: 12/12/2022]
Abstract
The ER aminopeptidase associated with antigen processing, ERAAP, is essential for trimming peptides presented by MHC I molecules. ERAAP inhibition by cytomegalovirus causes immune evasion, and ERAAP polymorphisms are associated with autoimmune disorders. How normal ERAAP function is monitored is unknown. We found that ERAAP inhibition rapidly induced presentation of the FL9 peptide by the Qa-1b MHC Ib molecule. Antigen-experienced T cells specific for the Qa-1b-FL9 complex were frequent in naïve mice. Wild-type mice immunized with ERAAP-deficient cells mounted a potent CD8+ T cell response specific for the Qa-1b-FL9- complex. MHC Ib-restricted cytolytic effectors specifically eliminated ERAAP-deficient cells in vitro and in vivo. Thus, non-classical peptide-Qa-1b complexes direct cytotoxic T cells to targets with defective antigen processing in the ER.
Collapse
|
38
|
Major histocompatibility complex class I molecules modulate embryonic neuritogenesis and neuronal polarization. J Neuroimmunol 2012; 247:1-8. [PMID: 22503373 DOI: 10.1016/j.jneuroim.2012.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
Abstract
We studied cultured hippocampal neurons from embryonic wildtype, major histocompatibility complex class I (MHCI) heavy chain-deficient (K(b)D(b)-/-) and NSE-D(b) (which have elevated neuronal MHCI expression) C57BL/6 mice. K(b)D(b)-/- neurons displayed slower neuritogenesis and establishment of polarity, while NSE-D(b) neurons had faster neurite outgrowth, more primary neurites, and tended to have accelerated polarization. Additional studies with ß2M-/- neurons, exogenous ß2M, and a self-MHCI monomer suggest that free heavy chain cis interactions with other surface molecules can promote neuritogenesis while tripartite MHCI interactions with classical MHCI receptors can inhibit axon outgrowth. Together with the results of others, MHCI appears to differentially modulate neuritogenesis and synaptogenesis.
Collapse
|
39
|
Adelson JD, Barreto GE, Xu L, Kim T, Brott BK, Ouyang YB, Naserke T, Djurisic M, Xiong X, Shatz CJ, Giffard RG. Neuroprotection from stroke in the absence of MHCI or PirB. Neuron 2012; 73:1100-7. [PMID: 22445338 DOI: 10.1016/j.neuron.2012.01.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2012] [Indexed: 10/28/2022]
Abstract
Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain. Stroke elevates neuronal expression not only of H2-Kb and H2-Db, but also of PirB and downstream signaling. KbDb knockout (KO) or PirB KO mice have smaller infarcts and enhanced motor recovery. KO hippocampal organotypic slices, which lack an intact peripheral immune response, have less cell death after in vitro ischemia. In PirB KO mice, corticospinal projections from the motor cortex are enhanced, and the reactive astrocytic response is dampened after MCAO. Thus, molecules that function in the immune system act not only to limit synaptic plasticity in healthy neurons, but also to exacerbate brain injury after ischemia. These results suggest therapies for stroke by targeting MHCI and PirB.
Collapse
Affiliation(s)
- Jaimie D Adelson
- Department of Biology and Neurobiology, Stanford University, Stanford, CA 94305-5437, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Müller JR, Waldmann TA, Dubois S. Selective dependence of H2-M3-restricted CD8 responses on IL-15. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2575-82. [PMID: 22312130 PMCID: PMC3294130 DOI: 10.4049/jimmunol.1102393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We studied whether CD8 T cell responses that are mediated by unconventional MHC class Ib molecules are IL-15 dependent in mice. CD8(+) T cell responses to Listeria monocytogenes infection that are restricted by the MHC class Ib molecule H2-M3 decreased in the absence of IL-15, whereas other primary MHC class Ib- and MHC class Ia-restricted responses were IL-15 independent. This result was confirmed in MHC class Ia-deficient mice in which IL-15 deficiency also reduced H2-M3-restricted but not all CD8 T cell responses to L. monocytogenes. IL-15 deficiency did not affect proliferation or survival of responding H2-M3-restricted CD8(+) T cells, but IL-15 was necessary to detect H2-M3-restricted CD8(+) T cells in naive mice. This finding suggests that these CD8(+) T cells require IL-15 during development, but become IL-15 independent after activation. IL-15 was necessary for the survival of most class Ib-restricted CD8(+) T cells, starting at the mature thymocyte stage in naive mice, but does not affect a distinct CD44(low)/CD122(low) subpopulation. These data suggest that the nature of the selecting MHC class Ib molecule determines whether CD8(+) T cells acquire IL-15 dependence during thymic development.
Collapse
Affiliation(s)
- Jürgen R. Müller
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Sigrid Dubois
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
41
|
Liu RB, Engels B, Arina A, Schreiber K, Hyjek E, Schietinger A, Binder DC, Butz E, Krausz T, Rowley DA, Jabri B, Schreiber H. Densely granulated murine NK cells eradicate large solid tumors. Cancer Res 2012; 72:1964-74. [PMID: 22374983 DOI: 10.1158/0008-5472.can-11-3208] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells inhibit early stages of tumor formation, recurrence, and metastasis. Here, we show that NK cells can also eradicate large solid tumors. Eradication depended on the massive infiltration of proliferating NK cells due to interleukin 15 (IL-15) released and presented by the cancer cells in the tumor microenvironment. Infiltrating NK cells had the striking morphologic feature of being densely loaded with periodic acid-Schiff-positive, diastase-resistant granules, resembling uterine NK cells. Perforin-mediated killing by these densely granulated NK cells was essential for tumor eradication. Expression of the IL-15 receptor α on cancer cells was needed to efficiently induce granulated NK cells, and expression on host stromal cells was essential to prevent tumor relapse after near complete destruction. These results indicate that IL-15 released at the cancer site induces highly activated NK cells that lead to eradication of large solid tumors.
Collapse
Affiliation(s)
- Rebecca B Liu
- Committee on Immunology, Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
McPhee CG, Sproule TJ, Shin DM, Bubier JA, Schott WH, Steinbuck MP, Avenesyan L, Morse HC, Roopenian DC. MHC class I family proteins retard systemic lupus erythematosus autoimmunity and B cell lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4695-704. [PMID: 21964024 DOI: 10.4049/jimmunol.1101776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dysregulation of the T cell-dependent Ab response can lead to numerous immunological disorders, ranging from systemic lupus erythematosus to B cell lymphomas. Cellular processes governed by MHC class II proteins play a major role in this response and its dysregulation. The extent to which processes controlled by the diverse family of MHC class I proteins impact such autoimmune and neoplastic disorders, however, is less clear. In this study, we genetically dissect the contributions of individual MHC class I family members and the pathological processes under their control in the systemic lupus erythematosus-like disease of BXSB.Yaa mice and B cell lymphomagenesis of SJL mice. This study reveals a powerful repressive regulatory axis comprised of MHC class I-dependent CD8(+) T cells and NK cells. These results indicate that the predominant role of the MHC class I protein family in such immunological disorders is to protect from more aggressive diseases.
Collapse
|
43
|
Choi T, Ferris ST, Matsumoto N, Poursine-Laurent J, Yokoyama WM. Ly49-dependent NK cell licensing and effector inhibition involve the same interaction site on MHC ligands. THE JOURNAL OF IMMUNOLOGY 2011; 186:3911-7. [PMID: 21335486 DOI: 10.4049/jimmunol.1004168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells become functionally competent to be triggered by their activation receptors through the interaction of NK cell inhibitory receptors with their cognate self-MHC ligands, an MHC-dependent educational process termed "licensing." For example, Ly49A(+) NK cells become licensed by the interaction of the Ly49A inhibitory receptor with its MHC class I ligand, H2D(d), whereas Ly49C(+) NK cells are licensed by H2K(b). Structural studies indicate that the Ly49A inhibitory receptor may interact with two sites, termed site 1 and site 2, on its H2D(d) ligand. Site 2 encompasses the α1/α2/α3 domains of the H2D(d) H chain and β(2)-microglobulin (β2m) and is the functional binding site for Ly49A in effector inhibition. Ly49C functionally interacts with a similar site in H2K(b). However, it is currently unknown whether this same site is involved in Ly49A- or Ly49C-dependent licensing. In this study, we produced transgenic C57BL/6 mice expressing wild-type or site 2 mutant H2D(d) molecules and studied whether Ly49A(+) NK cells are licensed. We also investigated Ly49A- and Ly49C-dependent NK licensing in murine β2m-deficient mice that are transgenic for human β2m, which has species-specific amino acid substitutions in β2m. Our data from these transgenic mice indicate that site 2 on self-MHC is critical for Ly49A- and Ly49C-dependent NK cell licensing. Thus, NK cell licensing through Ly49 involves specific interactions with its MHC ligand that are similar to those involved in effector inhibition.
Collapse
Affiliation(s)
- Taewoong Choi
- Rheumatology Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Cationic lipid/DNA complex-adjuvanted influenza A virus vaccination induces robust cross-protective immunity. J Virol 2010; 84:12691-702. [PMID: 20943978 DOI: 10.1128/jvi.00769-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza A virus is a negative-strand segmented RNA virus in which antigenically distinct viral subtypes are defined by the hemagglutinin (HA) and neuraminidase (NA) major viral surface proteins. An ideal inactivated vaccine for influenza A virus would induce not only highly robust strain-specific humoral and T-cell immune responses but also cross-protective immunity in which an immune response to antigens from a particular viral subtype (e.g., H3N2) would protect against other viral subtypes (e.g., H1N1). Cross-protective immunity would help limit outbreaks from newly emerging antigenically novel strains. Here, we show in mice that the addition of cationic lipid/noncoding DNA complexes (CLDC) as adjuvant to whole inactivated influenza A virus vaccine induces significantly more robust adaptive immune responses both in quantity and quality than aluminum hydroxide (alum), which is currently the most widely used adjuvant in clinical human vaccination. CLDC-adjuvanted vaccine induced higher total influenza virus-specific IgG, particularly for the IgG2a/c subclass. Higher levels of multicytokine-producing influenza virus-specific CD4 and CD8 T cells were induced by CLDC-adjuvanted vaccine than with alum-adjuvanted vaccine. Importantly, CLDC-adjuvanted vaccine provided significant cross-protection from either a sublethal or lethal influenza A viral challenge with a different subtype than that used for vaccination. This superior cross-protection afforded by the CLDC adjuvant required CD8 T-cell recognition of viral peptides presented by classical major histocompatibility complex class I proteins. Together, these results suggest that CLDC has particular promise for vaccine strategies in which T cells play an important role and may offer new opportunities for more effective control of human influenza epidemics and pandemics by inactivated influenza virus vaccine.
Collapse
|
45
|
Brodin P, Lakshmikanth T, Mehr R, Johansson MH, Duru AD, Achour A, Salmon-Divon M, Kärre K, Höglund P, Johansson S. Natural killer cell tolerance persists despite significant reduction of self MHC class I on normal target cells in mice. PLoS One 2010; 5. [PMID: 20957233 PMCID: PMC2949391 DOI: 10.1371/journal.pone.0013174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A major group of murine inhibitory receptors on Natural Killer (NK) cells belong to the Ly49 receptor family and recognize MHC class I molecules. Infected or transformed target cells frequently downmodulate MHC class I molecules and can thus avoid CD8(+) T cell attack, but may at the same time develop NK cell sensitivity, due to failure to express inhibitory ligands for Ly49 receptors. The extent of MHC class I downregulation needed on normal cells to trigger NK cell effector functions is not known. METHODOLOGY/PRINCIPAL FINDINGS In this study, we show that cells expressing MHC class I to levels well below half of the host level are tolerated in an in vivo assay in mice. Hemizygous expression (expression from only one allele) of MHC class I was sufficient to induce Ly49 receptor downmodulation on NK cells to a similar degree as homozygous expression, despite a strongly reduced cell surface level of MHC class I. Co-expression of weaker MHC class I ligands in the host did not have any further effect on the degree of Ly49 downmodulation. Furthermore, a single MHC class I allele could downmodulate up to three Ly49 receptors on individual NK cells. Only when NK cells simultaneously expressed several Ly49 receptors and hemizygous MHC class I levels, a putative threshold for Ly49 downmodulation was reached. CONCLUSION Collectively, our findings suggest that in interactions between NK cells and normal untransformed cells, MHC class I molecules are in most cases expressed in excess compared to what is functionally needed to ensure self tolerance and to induce maximal Ly49 downmodulation. We speculate that the reason for this is to maintain a safety margin for otherwise normal, autologous cells over a range of MHC class I expression levels, in order to ensure robustness in NK cell tolerance.
Collapse
Affiliation(s)
- Petter Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria H. Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Adil Doganay Duru
- Department of Medicine, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Sweden
| | - Adnane Achour
- Department of Medicine, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Sweden
| | - Mali Salmon-Divon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- European Molecular Biology Laboratory (EMBL) European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Johansson
- Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
46
|
Yewdall AW, Drutman SB, Jinwala F, Bahjat KS, Bhardwaj N. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS One 2010; 5:e11144. [PMID: 20585396 PMCID: PMC2886840 DOI: 10.1371/journal.pone.0011144] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/25/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs) that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression. METHODOLOGY/PRINCIPAL FINDINGS We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells. CONCLUSIONS/SIGNIFICANCE This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.
Collapse
Affiliation(s)
- Alice W. Yewdall
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Scott B. Drutman
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Felecia Jinwala
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Keith S. Bahjat
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Engel I, Hammond K, Sullivan BA, He X, Taniuchi I, Kappes D, Kronenberg M. Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. ACTA ACUST UNITED AC 2010; 207:1015-29. [PMID: 20404101 PMCID: PMC2867285 DOI: 10.1084/jem.20090557] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mouse natural killer T (NKT) cells with an invariant Vα14-Jα18 rearrangement (Vα14 invariant [Vα14i] NKT cells) are either CD4+CD8− or CD4−CD8−. Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor α rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8+ Vα14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and Krüppel family (Th-POK) is expressed by Vα14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of Vα14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of Vα14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing Vα14i NKT cells.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mollov JL, Lucas CL, Haspot F, Gaspar JKC, Guzman A, Sykes M. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8+ T-cell tolerance. Am J Transplant 2010; 10:518-526. [PMID: 20121730 PMCID: PMC4215806 DOI: 10.1111/j.1600-6143.2009.02967.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance.
Collapse
Affiliation(s)
- J. L. Mollov
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - C. L. Lucas
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | | | - J. Kurtz, C. Gaspar
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Guzman
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - M. Sykes
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Oliveira CC, van Veelen PA, Querido B, de Ru A, Sluijter M, Laban S, Drijfhout JW, van der Burg SH, Offringa R, van Hall T. The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. ACTA ACUST UNITED AC 2009; 207:207-21. [PMID: 20038604 PMCID: PMC2812552 DOI: 10.1084/jem.20091429] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nonclassical major histocompatibility complex (MHC) Qa-1b accommodates monomorphic leader peptides and functions as a ligand for germ line receptors CD94/NKG2, which are expressed by natural killer cells and CD8+ T cells. We here describe that the conserved peptides are replaced by a novel peptide repertoire of surprising diversity as a result of impairments in the antigen-processing pathway. This novel peptide repertoire represents immunogenic neoantigens for CD8+ T cells, as we found that these Qa-1b–restricted T cells dominantly participated in the response to tumors with processing deficiencies. A surprisingly wide spectrum of target cells, irrespective of transformation status, MHC background, or type of processing deficiency, was recognized by this T cell subset, complying with the conserved nature of Qa-1b. Target cell recognition depended on T cell receptor and Qa-1b interaction, and immunization with identified peptide epitopes demonstrated in vivo priming of CD8+ T cells. Our data reveal that Qa-1b, and most likely its human homologue human leukocyte antigen-E, is important for the defense against processing-deficient cells by displacing the monomorphic leader peptides, which relieves the inhibition through CD94/NKG2A on lymphocytes, and by presenting a novel repertoire of immunogenic peptides, which recruits a subset of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Cláudia C Oliveira
- Department of Clinical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 2009; 9:823-32. [PMID: 19935802 DOI: 10.1038/nri2657] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The peripheral naive T cell pool is fairly stable in number, diversity and functional competence in the absence of vigorous immune responses. However, this apparent tranquility is not an intrinsic property of T cells but involves continuous tuning of the T cell pool composition by homeostatic signals. In the past decade, studies have revealed that naive T cells rely on combinatorial signals from self-peptide-MHC complexes and interleukin-7 for their physical and functional maintenance. Competition for these factors dictates T cell 'space'. In addition, recent studies show that these and other homeostatic factors are offered to T cells on stromal cell networks, which also serve to guide T cell trafficking in secondary lymphoid organs. Such findings suggest the importance of 'place' in the perception and integration of homeostatic cues for the maintenance and functional tuning of the naive T cell pool.
Collapse
|