1
|
Kashio M. Thermo-TRP regulation by endogenous factors and its physiological function at core body temperature. Physiol Rep 2025; 13:e70164. [PMID: 39793986 PMCID: PMC11723785 DOI: 10.14814/phy2.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025] Open
Abstract
Transient receptor potential (TRP) channels with temperature sensitivities (thermo-TRPs) are involved in various physiological processes. Thermo-TRPs that detect temperature changes in peripheral sensory neurons possess indispensable functions in thermosensation, eliciting defensive behavior against noxious temperatures and driving autonomic/behavioral thermoregulatory responses to maintain body temperature in mammals. Moreover, most thermo-TRPs are functionally expressed in cells and tissues where the temperature is maintained at a constant core body temperature. To perform physiological functions, the activity of each thermo-TRP channel must be regulated by endogenous mechanisms at body temperature. Dysregulation of this process can lead to various diseases. This review highlights the endogenous factors regulating thermo-TRP activity and physiological functions at constant core body temperature.
Collapse
Affiliation(s)
- Makiko Kashio
- Department of Cell PhysiologyKumamoto UniversityKumamotoJapan
| |
Collapse
|
2
|
Chen J, Sun W, Zhu Y, Zhao F, Deng S, Tian M, Wang Y, Gong Y. TRPV1: The key bridge in neuroimmune interactions. JOURNAL OF INTENSIVE MEDICINE 2024; 4:442-452. [PMID: 39310069 PMCID: PMC11411435 DOI: 10.1016/j.jointm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 09/25/2024]
Abstract
The nervous and immune systems are crucial in fighting infections and inflammation and in maintaining immune homeostasis. The immune and nervous systems are independent, yet tightly integrated and coordinated organizations. Numerous molecules and receptors play key roles in enabling communication between the two systems. Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a non-selective cation channel, recently shown to be widely expressed in the neuroimmune axis and implicated in neuropathic pain, autoimmune disorders, and immune cell function. TRPV1 is a key bridge in neuroimmune interactions, allowing for smooth and convenient communication between the two systems. Here, we discuss the coordinated cross-talking between the immune and nervous systems and the functional role and the functioning manner of the TRPV1 involved. We suggest that TRPV1 provides new insights into the collaborative relationship between the nervous and immune systems, highlighting exciting opportunities for advanced therapeutic approaches to treating neurogenic inflammation and immune-mediated diseases.
Collapse
Affiliation(s)
- Jianwei Chen
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenqian Sun
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Youjia Zhu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
3
|
Gualdani R, Barbeau S, Yuan JH, Jacobs DS, Gailly P, Dib-Hajj SD, Waxman SG. TRPV1 corneal neuralgia mutation: Enhanced pH response, bradykinin sensitization, and capsaicin desensitization. Proc Natl Acad Sci U S A 2024; 121:e2406186121. [PMID: 39226353 PMCID: PMC11406256 DOI: 10.1073/pnas.2406186121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
The factors that contribute to pain after nerve injury remain incompletely understood. Laser-assisted in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK) are common surgical techniques to correct refractive errors. After LASIK or PRK, a subset of patients suffers intense and persistent pain, of unknown origin, described by patients as feeling like shards of glass in their eye. Here, we evaluated a TRPV1 variant, p.V527M, found in a 49-y-old woman who developed corneal pain after LASIK and subsequent PRK enhancement, reporting an Ocular Surface Disease Index score of 100. Using patch-clamp and Ca2+ imaging, we found that the V527M mutation enhances the response to acidic pH. Increasing proton concentration induced a stronger leftward shift in the activation curve of V527M compared to WT, resulting in channel activity of the mutant in acidic pH at more physiological membrane potentials. Finally, comparing the responses to consecutive applications of different agonists, we found in V527M channels a reduced capsaicin-induced desensitization and increased sensitization by the arachidonic acid metabolite 12-hydroxyeicosatetraenoic acid (12-HETE). We hypothesize that the increased response in V527M channels to protons and enhanced sensitization by 12-HETE, two inflammatory mediators released in the cornea after tissue damage, may contribute to the pathogenesis of corneal neuralgia after refractive surgery.
Collapse
Affiliation(s)
- Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, BrusselsB-1200, Belgium
| | - Solène Barbeau
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, BrusselsB-1200, Belgium
| | - Jun-Hui Yuan
- Department of Neurology, Yale School of Medicine, New Haven, CT06520
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, CT06520
- Neurorehabilitation Research Center, Veterans Affairs Medical Center, West Haven, CT06516
| | - Deborah S. Jacobs
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA02114
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, BrusselsB-1200, Belgium
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale School of Medicine, New Haven, CT06520
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, CT06520
- Neurorehabilitation Research Center, Veterans Affairs Medical Center, West Haven, CT06516
| | - Stephen G. Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT06520
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, CT06520
- Neurorehabilitation Research Center, Veterans Affairs Medical Center, West Haven, CT06516
| |
Collapse
|
4
|
Nobeyama Y. Rosacea in East Asian populations: Clinical manifestations and pathophysiological perspectives for accurate diagnosis. J Dermatol 2024; 51:1143-1156. [PMID: 39126257 DOI: 10.1111/1346-8138.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Rosacea is a chronic inflammatory disorder primarily affecting the facial skin, prominently involving the cheeks, nose, chin, forehead, and periorbital area. Cutaneous manifestations encompass persistent facial erythema, phymas, papules, pustules, telangiectasia, and flushing. The pathogenesis of rosacea is associated with various exacerbating or triggering factors, including microbial infestation, temperature fluctuations, sunlight exposure, physical exertion, emotional stress, consumption of hot beverages and spicy foods, and exposure to airborne pollen. These environmental factors interact with genetic predispositions in the development of rosacea. The roles of the lipophilic microbiome, ultraviolet radiation, nociceptive responses, and vascular alterations have been proposed as significant factors in the pathogenesis. These insights contribute to understanding the anatomical specificity of facial involvement and the progressive nature of rosacea. East Asian skin, predominantly classified as Fitzpatrick skin phototypes III to IV, is characterized by relatively diminished skin barrier function and increased sensitivity to irritants. Airborne pollen exposure may particularly act as a trigger in East Asian individuals, possibly mediated through toll-like receptors. The lack of specificity in objective clinical and histopathological findings leads to diagnostic challenges for individuals with colored skin, including East Asians, particularly when erythema is the sole objective manifestation. An alternative diagnostic scheme may thus be necessary. A diagnostic approach emphasizing vascular manifestations and nociceptive symptoms potentially holds promise for individuals with darker skin tones. More research focusing on potential variations in skin physiology across different racial groups is essential to establish more effective diagnostic schemes applicable to both dark and light skin colors.
Collapse
Affiliation(s)
- Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
6
|
Sharopov BR, Philyppov IB, Yeliashov SI, Sotkis GV, Danshyna AO, Falyush OA, Shuba YM. Contribution of transient receptor potential vanilloid 1 (TRPV1) channel to cholinergic contraction of rat bladder smooth muscle. J Physiol 2024; 602:3693-3713. [PMID: 38970617 DOI: 10.1113/jp285514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/13/2024] [Indexed: 07/08/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.
Collapse
Affiliation(s)
- Bizhan R Sharopov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Igor B Philyppov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Semen I Yeliashov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anastasiia O Danshyna
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana A Falyush
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
7
|
Seldeslachts A, Undheim EAB, Vriens J, Tytgat J, Peigneur S. Exploring oak processionary caterpillar induced lepidopterism (part 2): ex vivo bio-assays unmask the role of TRPV1. Cell Mol Life Sci 2024; 81:281. [PMID: 38940922 PMCID: PMC11335206 DOI: 10.1007/s00018-024-05318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.
Collapse
Affiliation(s)
- Andrea Seldeslachts
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | | | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
8
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
9
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Yu G, Liu P, Huang X, Qi M, Li X, Feng W, Shang E, Zhou Y, Wang C, Yang Y, Zhu C, Wang F, Tang Z, Duan J. 20-HETE mediated TRPV1 activation drives allokinesis via MrgprA3 + neurons in chronic dermatitis. Theranostics 2024; 14:1615-1630. [PMID: 38389848 PMCID: PMC10879873 DOI: 10.7150/thno.85214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Noxious stimuli are often perceived as itchy in patients with chronic dermatitis (CD); however, itch and pain mechanisms of CD are not known. Methods: TRPV1 involvement in CD was analyzed using a SADBE induced CD-like mouse model, and several loss- and gain-of-function mouse models. Trigeminal TRPV1 channel and MrgprA3+ neuron functions were analyzed by calcium imaging and whole-cell patch-clamp recordings. Lesional CD-like skin from mice were analyzed by unbiased metabolomic analysis. 20-HETE availability in human and mouse skin were determined by LC/MS and ELISA. And finally, HET0016, a selective 20-HETE synthase inhibitor, was used to evaluate if blocking skin TRPV1 activation alleviates CD-associated chronic itch or pain. Results: While normally a pain inducing chemical, capsaicin induced both itch and pain in mice with CD condition. DREADD silencing of MrgprA3+ primary sensory neurons in these mice selectively decreased capsaicin induced scratching, but not pain-related wiping behavior. In the mice with CD condition, MrgprA3+ neurons showed elevated ERK phosphorylation. Further experiments showed that MrgprA3+ neurons from MrgprA3;Braf mice, which have constitutively active BRAF in MrgprA3+ neurons, were significantly more excitable and responded more strongly to capsaicin. Importantly, capsaicin induced both itch and pain in MrgprA3;Braf mice in an MrgprA3+ neuron dependent manner. Finally, the arachidonic acid metabolite 20-HETE, which can activate TRPV1, was significantly elevated in the lesional skin of mice and patients with CD. Treatment with the selective 20-HETE synthase inhibitor HET0016 alleviated itch in mice with CD condition. Conclusion: Our results demonstrate that 20-HETE activates TRPV1 channels on sensitized MrgprA3+ neurons, and induces allokinesis in lesional CD skin. Blockade of 20-HETE synthesis or silencing of TRPV1-MrgprA3+ neuron signaling offers promising therapeutic strategies for alleviating CD-associated chronic itch.
Collapse
Affiliation(s)
- Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingxin Qi
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Li
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weimeng Feng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Zhou
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changming Wang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chan Zhu
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongxiang Tang
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Sprague JM, Yekkirala AS, Singh B, Tochitsky I, Stephens M, Viramontes O, Ivanis J, Biscola NP, Havton LA, Woolf CJ, Latremoliere A. Bortezomib-induced neuropathy is in part mediated by the sensitization of TRPV1 channels. Commun Biol 2023; 6:1228. [PMID: 38052846 PMCID: PMC10698173 DOI: 10.1038/s42003-023-05624-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
TRPV1 is an ion channel that transduces noxious heat and chemical stimuli and is expressed in small fiber primary sensory neurons that represent almost half of skin nerve terminals. Tissue injury and inflammation result in the sensitization of TRPV1 and sustained activation of TRPV1 can lead to cellular toxicity though calcium influx. To identify signals that trigger TRPV1 sensitization after a 24-h exposure, we developed a phenotypic assay in mouse primary sensory neurons and performed an unbiased screen with a compound library of 480 diverse bioactive compounds. Chemotherapeutic agents, calcium ion deregulators and protein synthesis inhibitors were long-acting TRPV1 sensitizers. Amongst the strongest TRPV1 sensitizers were proteasome inhibitors, a class that includes bortezomib, a chemotherapeutic agent that causes small fiber neuropathy in 30-50% of patients. Prolonged exposure of bortezomib produced a TRPV1 sensitization that lasted several days and neurite retraction in vitro and histological and behavioral changes in male mice in vivo. TRPV1 knockout mice were protected from epidermal nerve fiber loss and a loss of sensory discrimination after bortezomib treatment. We conclude that long-term TRPV1 sensitization contributes to the development of bortezomib-induced neuropathy and the consequent loss of sensation, major deficits experienced by patients under this chemotherapeutic agent.
Collapse
Affiliation(s)
- Jared M Sprague
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Ajay S Yekkirala
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Bhagat Singh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA
| | - Michael Stephens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
| | - Octavio Viramontes
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
| | - Jelena Ivanis
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA
| | - Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leif A Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, USA.
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Birkic N, Visentin D, Svedružić Ž, Reynolds CA. Binding interactions of fatty acyl lipid mediators within the vanilloid pocket of TRPV1: A molecular dynamics study. Prostaglandins Other Lipid Mediat 2023; 169:106771. [PMID: 37657597 PMCID: PMC10841302 DOI: 10.1016/j.prostaglandins.2023.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is a ligand-gated, nonselective cation channel expressed in primary sensory neurons, which has a role in nociception. The channel is activated by noxious heat, pH, capsaicin and other endogenous vanilloids, including lipid mediators (LMs) enzymatically derived from polyunsaturated fatty acids (PUFA). Although capsaicin binding to TRPV1 has been well characterized, the molecular mechanism by which endogenous LM ligands bind the channel is not well understood. In this study, we characterized the binding interactions for 13 endogenous LM ligands, within the vanilloid pocket of TRPV1 using a molecular dynamics (MD) approach. We observed that LM ligands can be grouped based on their structure and affinity for the vanilloid pocket. Furthermore, the position as well as the number of the polar groups on the LM ligand directly impact binding stability through various polar interactions with the protein. As an additional control we performed docking experiments of the PUFA precursor molecules linoleic acid and arachidonic acid which failed to form stable interactions within the vanilloid pocket. While LM ligands with similar structures displayed similar binding interactions, there were notable exceptions in the case of 20-HETE, 9-HODE, and 9,10-DiHOME. Our study offers new insights into the mechanisms involved in TRPV1 activation by endogenous LM ligands. The observed binding interactions may assist in the interpretation of in vivo and in vitro pharmacodynamics studies.
Collapse
Affiliation(s)
- Nada Birkic
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Visentin
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Željko Svedružić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Christian A Reynolds
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
13
|
Dewaker V, Sharma AR, Debnath U, Park ST, Kim HS. Insights from molecular dynamics simulations of TRPV1 channel modulators in pain. Drug Discov Today 2023; 28:103798. [PMID: 37838068 DOI: 10.1016/j.drudis.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
TRPV1 is a nonselective cation channel vital for detecting noxious stimuli (heat, acid, capsaicin). Its role in pain makes it a potential drug target for chronic pain management, migraines, and related disorders. This review updates molecular dynamics (MD) simulation studies on the TRPV1 channel, focusing on its gating mechanism, ligand-binding sites, and implications for drug design. The article also explores challenges in developing modulators, SAR optimization, and clinical trial studies. Efforts have been undertaken to concisely present MD simulation findings, with a focus on their relevance to drug discovery.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Ashish R Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Utsab Debnath
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007, India
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea.
| |
Collapse
|
14
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
15
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
16
|
Haddad M, Alsalem M, Aldossary SA, Kalbouneh H, Jaffal SM, Alshawabkeh Q, Al Hayek S, Abdelhai O, Barakat NA, El-Salem K. The role of adenosine receptor ligands on inflammatory pain: possible modulation of TRPV1 receptor function. Inflammopharmacology 2023; 31:337-347. [PMID: 36580157 DOI: 10.1007/s10787-022-01127-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Chronic pain has a debilitating consequences on health and lifestyle. The currently available analgesics are often ineffective and accompanied by undesirable adverse effects. Although adenosine receptors (AR) activation can affect nociceptive, inflammatory, and neuropathic pain states, the specific regulatory functions of its subtypes (A1, A2A, A2B and A3 ARs) are not fully understood. The aim of this study was to investigate the role of different AR ligands on inflammatory pain. The von Frey filament test was used to assess the anti-nociceptive effects of adenosine ligands on Complete Freund's Adjuvant (CFA)-induced mechanical allodynia in (180-220 g) adult male Sprague Dawley rats (expressed as paw withdrawal threshold, PWT). Neither the A2AAR selective agonist CGS 21680 hydrochloride (0.1, 0.32 and 1 mg/kg) nor the A2BAR selective agonist BAY 60-6583 (0.1, 0.32 and 1 mg/kg) produced any significant reversal of the PWT. However, the A1AR selective agonist ( ±)-5'-Chloro-5'-deoxy-ENBA, the A3AR selective agonist 2-Cl-IB-MECA, the A2AAR selective antagonist ZM 241385 and the A2BAR selective antagonist PSB 603 produced a significant reversal of the PWT at the highest dose of 1 mg/kg. Co-administration of the selective antagonists of A1AR and A3AR PSB36 (1 mg/ml) and MRS-3777 (1 mg/ml); respectively, significantly reversed the anti-nociceptive effects of their corresponding agonists. Furthermore, calcium imaging studies reveled that the effective AR ligands in the behavioral assay also significantly inhibit capsaicin-evoked calcium responses in cultured rat dorsal root ganglia (DRG) neurons. In conclusion, modulating the activity of the transient receptor potential vanilloid 1 (TRPV1) receptor by ARs ligands could explain their anti-nociceptive effects observed in vivo. Therefore, the cross talk between ARs and TRPV1 receptor may represent a promising targets for the treatment of inflammatory pain conditions.
Collapse
Affiliation(s)
- Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan.
| | - Mohammad Alsalem
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Sara A Aldossary
- Faculty of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Heba Kalbouneh
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Sahar M Jaffal
- Biological Sciences, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | | | - Sa'ed Al Hayek
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Omar Abdelhai
- Al Khalidi Hospital and Medical Center, Ibn Khaldon St.39, Amman, Jordan
| | - Noor A Barakat
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Khalid El-Salem
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
17
|
Gochman A, Tan X, Bae C, Chen H, Swartz KJ, Jara-Oseguera A. Cannabidiol sensitizes TRPV2 channels to activation by 2-APB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525817. [PMID: 36747846 PMCID: PMC9900902 DOI: 10.1101/2023.01.27.525817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cation-permeable TRPV2 channel is essential for cardiac and immune cells. Cannabidiol (CBD), a non-psychoactive cannabinoid of clinical relevance, is one of the few molecules known to activate TRPV2. Using the patch-clamp technique we discover that CBD can sensitize current responses of the rat TRPV2 channel to the synthetic agonist 2-aminoethoxydiphenyl borate (2- APB) by over two orders of magnitude, without sensitizing channels to activation by moderate (40 ⁰C) heat. Using cryo-EM we uncover a new small-molecule binding site in the pore domain of rTRPV2 that can be occupied by CBD in addition to a nearby CBD site that had already been reported. The TRPV1 and TRPV3 channels share >40% sequence identity with TRPV2 are also activated by 2-APB and CBD, but we only find a strong sensitizing effect of CBD on the response of mouse TRPV3 to 2-APB. Mutations at non-conserved positions between rTRPV2 and rTRPV1 in either the pore domain or the CBD sites failed to confer strong sensitization by CBD in mutant rTRPV1 channels. Together, our results indicate that CBD-dependent sensitization of TRPV2 channels engages multiple channel regions and possibly involves more than one CBD and 2-APB sites. The remarkably robust effect of CBD on TRPV2 and TRPV3 channels offers a promising new tool to both understand and overcome one of the major roadblocks in the study of these channels - their resilience to activation.
Collapse
Affiliation(s)
- Aaron Gochman
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA,Current affiliation: Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xiaofeng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA,Current affiliation: Janssen R&D, Biologics Discovery, Spring House, PA, USA
| | - Helen Chen
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, TX, 78712 USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Andrés Jara-Oseguera
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, TX, 78712 USA.,Corresponding author: Andrés Jara-Oseguera ()
| |
Collapse
|
18
|
Musetti B, Bahnson EM, Thomson L. Cannabinoids in inflammation and atherosclerosis. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:159-169. [DOI: 10.1016/b978-0-323-90036-2.00016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
González-Gordo S, Cañas A, Muñoz-Vargas MA, Palma JM, Corpas FJ. Lipoxygenase (LOX) in Sweet and Hot Pepper ( Capsicum annuum L.) Fruits during Ripening and under an Enriched Nitric Oxide (NO) Gas Atmosphere. Int J Mol Sci 2022; 23:ijms232315211. [PMID: 36499530 PMCID: PMC9740671 DOI: 10.3390/ijms232315211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the insertion of molecular oxygen into polyunsaturated fatty acids (PUFA) such as linoleic and linolenic acids, being the first step in the biosynthesis of a large group of biologically active fatty acid (FA)-derived metabolites collectively named oxylipins. LOXs are involved in multiple functions such as the biosynthesis of jasmonic acid (JA) and volatile molecules related to the aroma and flavor production of plant tissues, among others. Using sweet pepper (Capsicum annuum L.) plants as a model, LOX activity was assayed by non-denaturing polyacrylamide gel electrophoresis (PAGE) and specific in-gel activity staining. Thus, we identified a total of seven LOX isozymes (I to VII) distributed among the main plant organs (roots, stems, leaves, and fruits). Furthermore, we studied the FA profile and the LOX isozyme pattern in pepper fruits including a sweet variety (Melchor) and three autochthonous Spanish varieties that have different pungency levels (Piquillo, Padrón, and Alegría riojana). It was observed that the number of LOX isozymes increased as the capsaicin content increased in the fruits. On the other hand, a total of eight CaLOX genes were identified in sweet pepper fruits, and their expression was differentially regulated during ripening and by the treatment with nitric oxide (NO) gas. Finally, a deeper analysis of the LOX IV isoenzyme activity in the presence of nitrosocysteine (CysNO, a NO donor) suggests a regulatory mechanism via S-nitrosation. In summary, our data indicate that the different LOX isozymes are differentially regulated by the capsaicin content, fruit ripening, and NO.
Collapse
|
20
|
Anand U, Pacchetti B, Anand P, Sodergren MH. The Endocannabinoid Analgesic Entourage Effect: Investigations in Cultured DRG Neurons. J Pain Res 2022; 15:3493-3507. [PMID: 36394060 PMCID: PMC9642605 DOI: 10.2147/jpr.s378876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The endocannabinoid 2-Arachidonyl glycerol (2-AG) exerts dose-related anti-nociceptive effects, which are potentiated by the related but inactive 2-palmitoyl glycerol (2-PG) and 2-linoleoyl glycerol (2-LG). This potentiation of analgesia and other in vivo measures was described as the "entourage effect". We investigated this effect on TRPV1 signalling in cultured dorsal root ganglion (DRG) nociceptors. METHODS Adult rat DRG neurons were cultured in medium containing NGF and GDNF at 37°C. 48 h later cultures were loaded with 2 µM Fura2AM for calcium imaging, and treated with 2-AG, 2-PG and 2-LG, individually or combined, for 5 min, followed by 1 µMol capsaicin. The amplitude and latency of capsaicin responses were measured (N=3-7 rats, controls N=16), and analysed. RESULTS In controls, 1 µMol capsaicin elicited immediate calcium influx in a subset of neurons, with average latency of 1.27 ± 0.2 s and amplitude of 0.15 ± 0.01 Units. 2-AG (10-100 µMol) elicited calcium influx in some neurons. In the presence of 2-AG (0.001-100 µMol), capsaicin responses were markedly delayed in 64% neurons by up to 320 s (P<0.001). 2-PG increased capsaicin response latency at 0.1 nMol-100 µMol (P<0.001), in 60% neurons, as did 2-LG at 0.1-100 µMol (P<0.001), in 76% neurons. Increased capsaicin response latency due to 2-AG and 2-PG was sensitive to the CB2 but not to the CB1 receptor antagonist. Combined application of 1 µMol 2-AG, 5 µMol 2-PG and 10 µMol 2-LG, also resulted in significantly increased capsaicin response latency up to 281.5 ± 41.5 s (P<0.001), in 96% neurons, that was partially restored by the CB2, but not the CB1 antagonist. CONCLUSION 2-AG, 2-LG and 2-PG significantly delayed TRPV1 signalling in the majority of capsaicin-sensitive DRG neurons, that was markedly increased following combined application. Further studies of these endocannabinoids are required to identify the underlying mechanisms.
Collapse
Affiliation(s)
- Uma Anand
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, W12 0HS, UK
| | | | - Praveen Anand
- Professor of Clinical Neurology, Department of Brain Sciences, Imperial College London, London, W12 0HS, UK
| | - Mikael Hans Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, W12 0HS, UK
- Curaleaf International Limited, London, EC2A 2EW, UK
| |
Collapse
|
21
|
Birkic N, Azar T, Maddipati KR, Minic Z, Reynolds CA. Excessive dietary linoleic acid promotes plasma accumulation of pronociceptive fatty acyl lipid mediators. Sci Rep 2022; 12:17832. [PMID: 36284115 PMCID: PMC9596689 DOI: 10.1038/s41598-022-21823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 01/20/2023] Open
Abstract
Various fatty acyl lipid mediators are derived from dietary polyunsaturated fatty acids (PUFAs) and modulate nociception. The modern diet is rich in linoleic acid, which is associated with nociceptive hypersensitivities and may present a risk factor for developing pain conditions. Although recommendations about fatty acid intake exist for some diseases (e.g. cardiovascular disease), the role of dietary fatty acids in promoting pain disorders is not completely understood. To determine how dietary linoleic acid content influences the accumulation of pro- and anti-nociceptive fatty acyl lipid mediators, we created novel rodent diets using custom triglyceride blends rich in either linoleic acid or oleic acid. We quantified the fatty acyl lipidome in plasma of male and female rats fed these custom diets from the time of weaning through nine weeks of age. Dietary fatty acid composition determined circulating plasma fatty acyl lipidome content. Exposure to a diet rich in linoleic acid was associated with accumulation of linoleic and arachidonic acid-derived pro-nociceptive lipid mediators and reduction of anti-nociceptive lipid mediators derived from the omega-3 PUFAs. Our findings provide mechanistic insights into exaggerated nociceptive hypersensitivity associated with excessive dietary linoleic acid intake and highlight potential biomarkers for pain risk stratification.
Collapse
Affiliation(s)
- Nada Birkic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Toni Azar
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zeljka Minic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christian A Reynolds
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
22
|
Asahara M, Ito N, Hoshino Y, Sasaki T, Yokomizo T, Nakamura M, Shimizu T, Yamada Y. Role of leukotriene B4 (LTB4)-LTB4 receptor 1 signaling in post-incisional nociceptive sensitization and local inflammation in mice. PLoS One 2022; 17:e0276135. [PMID: 36264904 PMCID: PMC9584502 DOI: 10.1371/journal.pone.0276135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid mediator involved in the recruitment and activation of neutrophils, which is an important feature of tissue injury and inflammation. The biological effects of LTB4 are primarily mediated through the high-affinity LTB4 receptor, BLT1. Postoperative incisional pain is characterized by persistent acute pain at the site of tissue injury and is associated with local inflammation. Here, we compared the role of LTB4-BLT1 signaling in postoperative incisional pain between BLT1-knockout (BLT1KO) and wild-type (BLT1WT) mice. A planter incision model was developed, and mechanical pain hypersensitivity was determined using the von Frey test before and after incision. Local infiltration of neutrophils and inflammatory monocytes was quantified by flow cytometry. Inflammatory cytokine levels in the incised tissue were also determined. Mechanical pain hypersensitivity was significantly reduced in BLT1KO mice compared to BLT1WT mice at 2, 3, and 4 days after incision. LTB4 levels in the tissue at the incision site peaked 3 hours after the incision. Infiltrated neutrophils peaked 1 day after the incision in both BLT1KO and BLT1WT mice. The accumulation of inflammatory monocytes increased 1-3 days after the incision and was significantly more reduced in BLT1KO mice than in BLT1WT mice. In BLT1KO mice, Interleukin-1β and Tumor Necrosis Factor-α levels 1 day after the incision were significantly lower than those of BLT1WT mice. Our data suggest that LTB4 is produced and activates its receptor BLT1 in the very early phase of tissue injury, and that LTB4-BLT1 signaling exacerbates pain responses by promoting local infiltration of inflammatory monocytes and cytokine production. Thus, LTB4-BLT1 signaling is a potential target for therapeutic intervention of acute and persistent pain induced by tissue injury.
Collapse
Affiliation(s)
- Miho Asahara
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Yoko Hoshino
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takaharu Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Motonao Nakamura
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Lipidomics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitsugu Yamada
- International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| |
Collapse
|
23
|
Transient Receptor Potential Channels: Important Players in Ocular Pain and Dry Eye Disease. Pharmaceutics 2022; 14:pharmaceutics14091859. [PMID: 36145607 PMCID: PMC9506338 DOI: 10.3390/pharmaceutics14091859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED’s main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.
Collapse
|
24
|
Ramkumar V, Sheth S, Dhukhwa A, Al Aameri R, Rybak L, Mukherjea D. Transient Receptor Potential Channels and Auditory Functions. Antioxid Redox Signal 2022; 36:1158-1170. [PMID: 34465184 PMCID: PMC9221156 DOI: 10.1089/ars.2021.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, Florida, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Raheem Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leonard Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
25
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
27
|
Zhang Y, Miao Q, Shi S, Hao H, Li X, Pu Z, Yang Y, An H, Zhang W, Kong Y, Pang X, Gu C, Gamper N, Wu Y, Zhang H, Du X. Protein disulfide isomerase modulation of TRPV1 controls heat hyperalgesia in chronic pain. Cell Rep 2022; 39:110625. [PMID: 35385753 DOI: 10.1016/j.celrep.2022.110625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase (PDI) plays a key role in maintaining cellular homeostasis by mediating protein folding via catalyzing disulfide bond formation, breakage, and rearrangement in the endoplasmic reticulum. Increasing evidence suggests that PDI can be a potential treatment target for several diseases. However, the function of PDI in the peripheral sensory nervous system is unclear. Here we report the expression and secretion of PDI from primary sensory neurons is upregulated in inflammatory and neuropathic pain models. Deletion of PDI in nociceptive DRG neurons results in a reduction in inflammatory and neuropathic heat hyperalgesia. We demonstrate that secreted PDI activates TRPV1 channels through oxidative modification of extracellular cysteines of the channel, indicating that PDI acts as an unconventional positive modulator of TRPV1. These findings suggest that PDI in primary sensory neurons plays an important role in development of heat hyperalgesia and can be a potential therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Yongxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacy, The First Hospital of Handan, Handan, Hebei, China
| | - Qi Miao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zeyao Pu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yakun Yang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, Hebei, China
| | - Wei Zhang
- Department of Spinal Surgery of the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Youzhen Kong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xu Pang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cunyang Gu
- Department of Pathology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China.
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
28
|
Wu Q, Bai P, Guo H, Guo MSS, Xia Y, Xia Y, Gao X, Wang X, Wu J, Dong TTX, Tsim KWK. Capsaicin, a Phytochemical From Chili Pepper, Alleviates the Ultraviolet Irradiation-Induced Decline of Collagen in Dermal Fibroblast via Blocking the Generation of Reactive Oxygen Species. Front Pharmacol 2022; 13:872912. [PMID: 35370728 PMCID: PMC8967157 DOI: 10.3389/fphar.2022.872912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
Capsaicin, a major ingredient in chili pepper, has broad pharmaceutical applications, including relieving pain, anti-inflammation, and treating psoriasis. In dermatological biology, capsaicin has been shown to prevent the ultraviolet (UV)-induced melanogenesis via TRPV1 receptor. To strengthen the roles of capsaicin in skin function, the damaged skin, triggered by exposure to UV, was reversed by capsaicin in both in vitro and in vivo models. In cultured dermal fibroblasts, the exposure to UV induced a decrease of collagen synthesis and increases expression of matrix metalloproteinases (MMPs), generation of reactive oxygen species (ROS), and phosphorylation of Erk and c-Jun, and these events subsequently led to skin damage. However, the UV-mediated damages could be reversed by pre-treatment with capsaicin in a dose-dependent manner. The effect of capsaicin in blocking the UV-mediated collagen synthesis was mediated by reducing generation of ROS in dermal fibroblasts, instead of the receptor for capsaicin. Hence, capsaicin has high potential value in applying as an agent for anti-skin aging in dermatology.
Collapse
Affiliation(s)
- Qiyun Wu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Panzhu Bai
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Hongsheng Guo
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Maggie S S Guo
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Yingjie Xia
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Yiteng Xia
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Xiong Gao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Xiaoyang Wang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Jiahui Wu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Tina T X Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
29
|
Serra MP, Boi M, Carta A, Murru E, Carta G, Banni S, Quartu M. Anti-Inflammatory Effect of Beta-Caryophyllene Mediated by the Involvement of TRPV1, BDNF and trkB in the Rat Cerebral Cortex after Hypoperfusion/Reperfusion. Int J Mol Sci 2022; 23:3633. [PMID: 35408995 PMCID: PMC8998979 DOI: 10.3390/ijms23073633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R) is a model to study early hypoperfusion/reperfusion-induced changes in biomarkers of the tissue physiological response to oxidative stress and inflammation. Thus in this study, we investigate with immunochemical assays if a single dose of beta-caryophyllene (BCP), administered before the BCCAO/R, can modulate the TRPV1, BDNF, and trkB receptor in the brain cortex; the glial markers GFAP and Iba1 were also examined. Frontal and temporal-occipital cortical regions were analyzed in two groups of male rats, sham-operated and submitted to BCCAO/R. Six hours before surgery, one group was gavage fed a dose of BCP (40 mg/per rat in 300 μL of sunflower oil), the other was pre-treated with the vehicle alone. Western blot analysis showed that, in the frontal cortex of vehicle-treated rats, the BCCAO/R caused a TRPV1 decrease, an increment of trkB and GFAP, no change in BDNF and Iba1. The BCP treatment caused a decrease of BDNF and an increase of trkB levels in both sham and BCCAO/R conditions while inducing opposite changes in the case of TRPV1, whose levels became higher in BCCAO/R and lower in sham conditions. Present results highlight the role of BCP in modulating early events of the cerebral inflammation triggered by the BCCAO/R through the regulation of TRPV1 and the BDNF-trkB system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (M.P.S.); (M.B.); (A.C.); (E.M.); (G.C.); (S.B.)
| |
Collapse
|
30
|
Minic Z, O’Leary DS, Reynolds CA. Spinal Reflex Control of Arterial Blood Pressure: The Role of TRP Channels and Their Endogenous Eicosanoid Modulators. Front Physiol 2022; 13:838175. [PMID: 35283783 PMCID: PMC8904930 DOI: 10.3389/fphys.2022.838175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
The spinal cord is an important integrative center for blood pressure control. Spinal sensory fibers send projections to sympathetic preganglionic neurons of the thoracic spinal cord and drive sympathetically-mediated increases in blood pressure. While these reflexes responses occur in able-bodied individuals, they are exaggerated following interruption of descending control - such as occurs following spinal cord injury. Similar reflex control of blood pressure may exist in disease states, other than spinal cord injury, where there is altered input to sympathetic preganglionic neurons. This review primarily focuses on mechanisms wherein visceral afferent information traveling via spinal nerves influences sympathetic nerve activity and blood pressure. There is an abundance of evidence for the widespread presence of this spinal reflex arch originating from virtually every visceral organ and thus having a substantial role in blood pressure control. Additionally, this review highlights specific endogenous eicosanoid species, which modulate the activity of afferent fibers involved in this reflex, through their interactions with transient receptor potential (TRP) cation channels.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian A. Reynolds
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
31
|
Kim BE, Hui-Beckman J, Lyubchenko T, Hall CF, Fallahi S, Brull A, Goleva E, Leung DY. Transient Receptor Potential Vanilloid 1 Plays a Major Role in Low Temperature-Mediated Skin Barrier Dysfunction. J Allergy Clin Immunol 2022; 150:362-372.e7. [PMID: 35189126 DOI: 10.1016/j.jaci.2022.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Children born in the fall and winter are at increased risk for developing atopic dermatitis (AD) and food allergy (FA). Since these seasons are associated with low temperature, we hypothesized that low temperature exposure may compromise keratinocyte differentiation and contribute to skin barrier dysfunction. OBJECTIVE To examine whether low temperature causes skin barrier dysfunction. METHODS Primary human epidermal keratinocytes (HEKs) were differentiated in 1.3mM CaCl2 media and cultured at different temperatures. The cells were transfected with transient receptor potential cation channel subfamily V member 1 (TRPV1) or signal transducer and activator of transcription (STAT) 3 small-interfering RNA (siRNA) to examine the effects of these gene targets in HEKs exposed to low temperature. Gene expression of TRPV1, epidermal barrier proteins, and keratinocyte-derived cytokines were evaluated. Organotypic skin equivalents were generated using HEKs transfected with control or TRPV1 siRNA and grown at 25oC or 37oC. Transepidermal water loss (TEWL) and levels of epidermal barrier proteins were evaluated. RESULTS Filaggrin (FLG) and loricrin (LOR) expression, but not keratin (KRT)-1 and KRT-10 expression, was downregulated in HEKs incubated at 25oC while TRPV1 silencing increased intracellular Ca2+ influx (keratinocyte differentiation signal) and enhanced the expression of epidermal differentiation proteins. Interleukin (IL)-1β and thymic stromal lymphopoietin (TSLP) induced by low temperature inhibited FLG expression in keratinocytes through the TRPV1/STAT3 pathway. Moreover, low temperature-mediated inhibition of FLG and LOR was recovered, and TEWL was decreased in organotypic skin transfected with TRPV1 siRNA. CONCLUSION TRPV1 is critical in low temperature-mediated skin barrier dysfunction. Low temperature exposure induced TSLP, an alarmin implicated in epicutaneous allergen sensitization. CLINICAL IMPLICATIONS Low temperature causes skin barrier dysfunction through TRPV1 and TSLP, which may explain the pathways involved in promoting allergic sensitization through the skin.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206
| | | | - Taras Lyubchenko
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206; Department of Biological Science, University of Denver, Denver, CO, 80208
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206
| | - Sahand Fallahi
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206; Department of Biological Science, University of Denver, Denver, CO, 80208
| | - Amelia Brull
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206
| | - Donald Ym Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206
| |
Collapse
|
32
|
Reyes-García J, Carbajal-García A, Montaño LM. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur J Pharmacol 2022; 915:174692. [PMID: 34890545 DOI: 10.1016/j.ejphar.2021.174692] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) ion channels play critical roles in physiological and pathological conditions. Increasing evidence has unveiled the contribution of TRP vanilloid (TRPV) family in the development of asthma. The TRPV family is a group (TRPV1-TRPV6) of polymodal channels capable of sensing thermal, acidic, mechanical stress, and osmotic stimuli. TRPVs can be activated by endogenous ligands including, arachidonic acid derivatives or endocannabinoids. While TRPV1-TRPV4 are non-selective cation channels showing a predominance for Ca2+ over Na + influx, TRPV5 and TRPV6 are only Ca2+ permeable selective channels. Asthma is a chronic inflammatory bronchopulmonary disorder involving airway hyperresponsiveness (AHR) and airway remodeling. Patients suffering from allergic asthma display an inflammatory pattern driven by cytokines produced in type-2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). Ion channels are essential regulators in airway smooth muscle (ASM) and immune cells physiology. In this review, we summarize the contribution of TRPV1, TRPV2, and TRPV4 to the pathogenesis of asthma. TRPV1 is associated with hypersensitivity to environmental pollutants and chronic cough, inflammation, AHR, and remodeling. TRPV2 is increased in peripheral lymphocytes of asthmatic patients. TRPV4 contributes to ASM cells proliferation, and its blockade leads to a reduced eosinophilia, neutrophilia, as well as an abolished AHR. In conclusion, TRPV2 may represent a novel biomarker for asthma in children; meanwhile, TRPV1 and TRPV4 seem to be essential contributors to the development and exacerbations of asthma. Moreover, these channels may serve as novel therapeutic targets for this ailment.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| |
Collapse
|
33
|
Mota FVB, Coutinho FN, de Carvalho VMF, de Assis Correia JC, Bastos IVGA, Neto PPM, Ximenes RM, Brondani DJ, de Faria AR, Marchand P, da Silva TG. Antinociceptive Effects of Aza-Bicyclic Isoxazoline-Acylhydrazone Derivatives in Different Models of Nociception in Mice. Curr Top Med Chem 2022; 22:247-258. [PMID: 34986770 DOI: 10.2174/1568026622666220105102508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In a study recently published by our research group, the compounds isoxazoline-acylhydrazone derivatives R-99 and R-123 presented promising antinociceptive activity. However, the mechanism of action of this compound is still unknown. OBJECTIVE This study aimed to assess the mechanisms involved in the antinociceptive activity of these compounds in chemical models of pain. METHODS Animals were orally pretreated and evaluated in the acetic acid-, formalin-, capsaicin-, carrageenan- and Complete Freund's Adjuvant (CFA)-induced pain models in mice. The effects of the compounds after pretreatment with naloxone, prazosin, yohimbine, atropine, L-arginine, or glibenclamide were studied, using the acetic acid-induced writhing test to verify the possible involvement of opioid, α1-adrenergic, α2-adrenergic or cholinergic receptors, and nitric oxide or potassium channels pathways, respectively. RESULTS R-99 and R-123 compounds showed significant antinociceptive activity on pain models induced by acetic acid, formalin, and capsaicin. Both compounds decreased the mechanical hyperalgesia induced by carrageenan or CFA in mice. The antinociceptive effects of R-99 and R-123 on the acetic acid-induced writhing test were significantly attenuated by pretreatment with naloxone, yohimbine or atropine. R-99 also showed an attenuated response after pretreatment with atropine and glibenclamide. However, on the pretreatment with prazosin, there was no change in the animals' response to both compounds. CONCLUSION R-99 and R-123 showed antinociceptive effects related to mechanisms that involve, at least in part, interaction with the opioid and adrenergic systems and TRPV1 pathways. The compound R-99 also interacts with the cholinergic pathways and potassium channels.
Collapse
Affiliation(s)
| | - Felipe Neves Coutinho
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | | | | | | | | | - Rafael Matos Ximenes
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Dalci José Brondani
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Antônio Rodolfo de Faria
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Pascal Marchand
- Département de Chimie Thérapeutique, University of Nantes, 22 Boulevard Bénoni Goullin, France
| | | |
Collapse
|
34
|
ALIXANDRE TAMNATAF, SOUSA RENATOP, GOMES BRUNOS, SILVA ARÊTHAH, SOUSA NETO BENEDITOP, SOUSA ELCILENEA, LIMA MARLUCEP, LOPES EVERTONM, PIAUILINO CELYANEA, NASCIMENTO REJANET, REIS FILHO ANTÔNIOC, ALMEIDA FERNANDAR, OLIVEIRA FRANCISCOA, CHAVES MARIANAH, COSTA LUCIANAM, ALVES MICHELMMORAES, COSTA AMILTONP. Samanea tubulosa Benth. (Fabaceae): Antinociceptive effect on acute pain in mice: K+ATP channel and opioid activity. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Jorge CO, Melo-Aquino BD, Santos DFDSD, Oliveira MCGD. Muscle pain induced by static contraction is modulated by transient receptor potential vanilloid 1 and ankyrin 1 receptors. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
36
|
Long W, Johnson J, Kalyaanamoorthy S, Light P. TRPV1 channels as a newly identified target for vitamin D. Channels (Austin) 2021; 15:360-374. [PMID: 33825665 PMCID: PMC8032246 DOI: 10.1080/19336950.2021.1905248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional changes and the subsequent cellular response. However, not all the observed effects of vitamin D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important vitamin exerts its biological effects either independently or in addition to the nuclear vitamin D receptor. In this review, we discuss the literature surrounding this apparent discrepancy in vitamin D signaling and compare vitamin D with known TRPV1 ligands with respect to their binding to TRPV1. Furthermore, we provide evidence supporting the notion that this novel vitamin D/TRPV1 axis may explain some of the beneficial actions of this vitamin in disease states where TRPV1 expression and vitamin D deficiency are known to overlap. Finally, we discuss whether vitamin D may also act on other members of the TRP family of ion channels.
Collapse
Affiliation(s)
- Wentong Long
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Janyne Johnson
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | | | - Peter Light
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
37
|
Hamers A, Primus CP, Whitear C, Kumar NA, Masucci M, Montalvo Moreira SA, Rathod K, Chen J, Bubb K, Colas R, Khambata RS, Dalli J, Ahluwalia A. 20-HETE is a pivotal endogenous ligand for TRPV1-mediated neurogenic inflammation in the skin. Br J Pharmacol 2021; 179:1450-1469. [PMID: 34755897 DOI: 10.1111/bph.15726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential cation channel subfamily V member 1 (TRPV1) is localised to sensory C-fibres and its opening leads to membrane depolarization, resulting in neuropeptide release and neurogenic inflammation. However, the identity of the endogenous activator of TRPV1 in this setting is unknown. The arachidonic acid (AA) metabolites 12-hydroperoxyeicosatetraenoyl acid (12-HpETE) and 20-hydroxyeicosatetraenoic acid (20-HETE) have emerged as potential endogenous activators of TRPV1 however, whether these lipids underlie TRPV1-mediated neurogenic inflammation remains unknown. EXPERIMENTAL APPROACH we analysed human cantharidin-induced blister samples and inflammatory responses in TRPV1 transgenic mice. KEY RESULTS In a human cantharidin-blister model the potent TRPV1 activators 20-HETE but not 12-HETE (stable metabolite of 12-HpETE) correlated with AA levels. Similarly, in mice levels of 20-HETE (but not 12-HETE) and AA were strongly positively correlated within the inflammatory milieu. Furthermore, LPS-induced oedema formation and neutrophil recruitment were substantially and significantly attenuated by pharmacological block or genetic deletion of TRPV1 channels, inhibition of 20-HETE formation or SP receptor neurokinin 1 (NK1 ) blockade. LPS treatment also increased cytochrome-P450 ώ-hydroxylase gene expression, the enzyme responsible for 20-HETE production. CONCLUSIONS AND IMPLICATIONS Taken together, our findings suggest that endogenously generated 20-HETE activates TRPV1 causing C-fibre activation and consequent oedema formation. These findings identify a novel pathway that may be useful in the therapeutics of diseases/conditions characterized by a prominent neurogenic inflammation, as in several skin diseases.
Collapse
Affiliation(s)
- Alexander Hamers
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Christopher P Primus
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Charlotte Whitear
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Nitin Ajit Kumar
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Michael Masucci
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Shanik A Montalvo Moreira
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Krishnaraj Rathod
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Jianmin Chen
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Kristen Bubb
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Romain Colas
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Jesmond Dalli
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| |
Collapse
|
38
|
Otto M, Brabenec L, Müller M, Kintrup S, Hellenthal KEM, Holtmeier R, Steinbuch SC, Karsten OS, Pryvalov H, Rossaint J, Gross ER, Wagner NM. Development of heart failure with preserved ejection fraction in type 2 diabetic mice is ameliorated by preserving vascular function. Life Sci 2021; 284:119925. [PMID: 34480933 PMCID: PMC8484044 DOI: 10.1016/j.lfs.2021.119925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction and is frequent in people with type 2 diabetes mellitus. In diabetic patients, increased levels of the eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE) are linked to vascular dysfunction. Here, we aimed to identify the importance of 12-HETE in type 2 diabetic patients exhibiting diastolic dysfunction, and mice exhibiting HFpEF and whether targeting 12-HETE is a means to ameliorate HFpEF progression by improving vascular function in diabetes. MATERIAL AND METHODS Subjects with diagnosed type 2 diabetes mellitus and reported diastolic dysfunction or healthy controls were recruited and 12(S)-HETE levels determined by ELISA. 12(S)-HETE levels were determined in type 2 diabetic, leptin receptor deficient mice (LepRdb/db) and HFpEF verified by echocardiography. Mitochondrial function, endothelial function and capillary density were assessed using Seahorse technique, pressure myography and immunohistochemistry in LepRdb/db or non-diabetic littermate controls. 12/15Lo generation was inhibited using ML351 and 12(S)-HETE action by using the V1-cal peptide. KEY FINDINGS Endothelium-dependent vasodilation and mitochondrial functional capacity both improved in response to either application of ML351 or the V1-cal peptide. Correlating to improved vascular function, mice treated with either pharmacological agent exhibited improved diastolic filling and left ventricular relaxation that correlated with increased myocardial capillary density. SIGNIFICANCE Our results suggest that 12-HETE may serve as a biomarker indicating endothelial dysfunction and the resulting cardiovascular consequences such as HFpEF in type 2 diabetic patients. Antagonizing 12-HETE is a potent means to causally control HFpEF development and progression in type 2 diabetes by preserving vascular function.
Collapse
Affiliation(s)
- Mandy Otto
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Melanie Müller
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sebastian Kintrup
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Katharina E M Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Richard Holtmeier
- Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Sophie Charlotte Steinbuch
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Ole Sönken Karsten
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Heorhii Pryvalov
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
39
|
Shichiri M, Ishida N, Aoki Y, Koike T, Hagihara Y. Stress-activated leukocyte 12/15-lipoxygenase metabolite enhances struggle behaviour and tocotrienols relieve stress-induced behaviour alteration. Free Radic Biol Med 2021; 175:171-183. [PMID: 34474105 DOI: 10.1016/j.freeradbiomed.2021.08.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Stress induces emotional arousal causing anxiety, irritability, exaggerated startle behaviour, and hypervigilance observed in patients with trauma and stress-related mental disorders, including acute stress disorder and post-traumatic stress disorder. Central norepinephrine release promotes stress-induced emotional arousal. However, the regulator of emotional arousal remains unknown. Here, we show that the arachidonate-derived metabolite produced by stress-activated leukocyte 12/15-lipoxygenase is remarkably elevated in the plasma and upregulates the central norepinephrine release, resulting in the enhancement of the struggle behaviour (= escape behaviour) in the tail suspension test. Struggle behaviour is mimicking a symptom of emotional arousal. This stress-induced struggle behaviour was absent in 12/15-lipoxygenase deficient mice; however, intravenous administration of a 12/15-lipoxygenase metabolite to these mice after stress exposure rekindled the struggle behaviour. Furthermore, tocotrienols and geranylgeraniol reduced stress-induced 12/15-lipoxygenase metabolite production and suppressed the struggle behaviour. Our findings indicate that arachidonate-derived 12/15-lipoxygenase metabolite is involved in the regulation of stress-enhanced central norepinephrine release and struggle behaviour. In addition, we propose 12/15-lipoxygenase as a potential therapeutic target for the treatment of emotional arousal observed in stress-related mental disorders.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8562, Japan.
| | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Yoshinori Aoki
- Healthcare Solutions Unit, Life Solutions Sector, Amenity Life Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Taisuke Koike
- Strategy Department, Advanced Solutions Planning Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
40
|
Knock-In Mice Expressing a 15-Lipoxygenating Alox5 Mutant Respond Differently to Experimental Inflammation Than Reported Alox5-/- Mice. Metabolites 2021; 11:metabo11100698. [PMID: 34677413 PMCID: PMC8538363 DOI: 10.3390/metabo11100698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5−/− mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5−/− animals tested previously in similar experimental setups.
Collapse
|
41
|
Zheng H, Lim JY, Kim Y, Jung ST, Hwang SW. The role of oxytocin, vasopressin, and their receptors at nociceptors in peripheral pain modulation. Front Neuroendocrinol 2021; 63:100942. [PMID: 34437871 DOI: 10.1016/j.yfrne.2021.100942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Oxytocin and vasopressin are neurohypophyseal hormones with sequence similarity and play a central role in bodily homeostatic regulation. Pain is currently understood to be an important phenotype that those two neurohormones strongly downregulate. Nociceptors, the first component of the ascending neural circuit for pain signals, have constantly been shown to be modulated by those peptides. The nociceptor modulation appears to be critical in pain attenuation, which has led to a gradual increase in scientific interest about their physiological processes and also drawn attention to their translational potentials. This review focused on what are recently understood and stay under investigation in the functional modulation of nociceptors by oxytocin and vasopressin. Effort to produce a nociceptor-specific view could help to construct a more systematic picture of the peripheral pain modulation by oxytocin and vasopressin.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Yerin Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea.
| |
Collapse
|
42
|
Hellenthal KEM, Brabenec L, Gross ER, Wagner NM. TRP Channels as Sensors of Aldehyde and Oxidative Stress. Biomolecules 2021; 11:biom11101401. [PMID: 34680034 PMCID: PMC8533644 DOI: 10.3390/biom11101401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.
Collapse
Affiliation(s)
- Katharina E. M. Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
- Correspondence: ; Tel.: +49-251-83-46837
| |
Collapse
|
43
|
Wilzopolski J, Kietzmann M, Mishra SK, Stark H, Bäumer W, Rossbach K. TRPV1 and TRPA1 Channels Are Both Involved Downstream of Histamine-Induced Itch. Biomolecules 2021; 11:1166. [PMID: 34439832 PMCID: PMC8391774 DOI: 10.3390/biom11081166] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 01/17/2023] Open
Abstract
Two histamine receptor subtypes (HR), namely H1R and H4R, are involved in the transmission of histamine-induced itch as key components. Although exact downstream signaling mechanisms are still elusive, transient receptor potential (TRP) ion channels play important roles in the sensation of histaminergic and non-histaminergic itch. The aim of this study was to investigate the involvement of TRPV1 and TRPA1 channels in the transmission of histaminergic itch. The potential of TRPV1 and TRPA1 inhibitors to modulate H1R- and H4R-induced signal transmission was tested in a scratching assay in mice in vivo as well as via Ca2+ imaging of murine sensory dorsal root ganglia (DRG) neurons in vitro. TRPV1 inhibition led to a reduction of H1R- and H4R- induced itch, whereas TRPA1 inhibition reduced H4R- but not H1R-induced itch. TRPV1 and TRPA1 inhibition resulted in a reduced Ca2+ influx into sensory neurons in vitro. In conclusion, these results indicate that both channels, TRPV1 and TRPA1, are involved in the transmission of histamine-induced pruritus.
Collapse
Affiliation(s)
- Jenny Wilzopolski
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| | - Santosh K. Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
| | - Holger Stark
- Institute of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany;
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (S.K.M.); (W.B.)
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.K.); (K.R.)
| |
Collapse
|
44
|
Ramsden CE, Zamora D, Faurot KR, MacIntosh B, Horowitz M, Keyes GS, Yuan ZX, Miller V, Lynch C, Honvoh G, Park J, Levy R, Domenichiello AF, Johnston A, Majchrzak-Hong S, Hibbeln JR, Barrow DA, Loewke J, Davis JM, Mannes A, Palsson OS, Suchindran CM, Gaylord SA, Mann JD. Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: randomized controlled trial. BMJ 2021; 374:n1448. [PMID: 34526307 PMCID: PMC8244542 DOI: 10.1136/bmj.n1448] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine whether dietary interventions that increase n-3 fatty acids with and without reduction in n-6 linoleic acid can alter circulating lipid mediators implicated in headache pathogenesis, and decrease headache in adults with migraine. DESIGN Three arm, parallel group, randomized, modified double blind, controlled trial. SETTING Ambulatory, academic medical center in the United States over 16 weeks. PARTICIPANTS 182 participants (88% women, mean age 38 years) with migraines on 5-20 days per month (67% met criteria for chronic migraine). INTERVENTIONS Three diets designed with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid altered as controlled variables: H3 diet (n=61)-increase EPA+DHA to 1.5 g/day and maintain linoleic acid at around 7% of energy; H3-L6 diet (n=61)-increase n-3 EPA+DHA to 1.5 g/day and decrease linoleic acid to ≤1.8% of energy; control diet (n=60)-maintain EPA+DHA at <150 mg/day and linoleic acid at around 7% of energy. All participants received foods accounting for two thirds of daily food energy and continued usual care. MAIN OUTCOME MEASURES The primary endpoints (week 16) were the antinociceptive mediator 17-hydroxydocosahexaenoic acid (17-HDHA) in blood and the headache impact test (HIT-6), a six item questionnaire assessing headache impact on quality of life. Headache frequency was assessed daily with an electronic diary. RESULTS In intention-to-treat analyses (n=182), the H3-L6 and H3 diets increased circulating 17-HDHA (log ng/mL) compared with the control diet (baseline-adjusted mean difference 0.6, 95% confidence interval 0.2 to 0.9; 0.7, 0.4 to 1.1, respectively). The observed improvement in HIT-6 scores in the H3-L6 and H3 groups was not statistically significant (-1.6, -4.2 to 1.0, and -1.5, -4.2 to 1.2, respectively). Compared with the control diet, the H3-L6 and H3 diets decreased total headache hours per day (-1.7, -2.5 to -0.9, and -1.3, -2.1 to -0.5, respectively), moderate to severe headache hours per day (-0.8, -1.2 to -0.4, and -0.7, -1.1 to -0.3, respectively), and headache days per month (-4.0, -5.2 to -2.7, and -2.0, -3.3 to -0.7, respectively). The H3-L6 diet decreased headache days per month more than the H3 diet (-2.0, -3.2 to -0.8), suggesting additional benefit from lowering dietary linoleic acid. The H3-L6 and H3 diets altered n-3 and n-6 fatty acids and several of their nociceptive oxylipin derivatives in plasma, serum, erythrocytes or immune cells, but did not alter classic headache mediators calcitonin gene related peptide and prostaglandin E2. CONCLUSIONS The H3-L6 and H3 interventions altered bioactive mediators implicated in headache pathogenesis and decreased frequency and severity of headaches, but did not significantly improve quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT02012790.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beth MacIntosh
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Metabolic and Nutrition Research Core, UNC Medical Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Zhi-Xin Yuan
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Vanessa Miller
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chanee Lynch
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gilson Honvoh
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinyoung Park
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Russell Levy
- Cytokine Analysis Core, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony F Domenichiello
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Angela Johnston
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon Majchrzak-Hong
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Joseph R Hibbeln
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - David A Barrow
- Cytokine Analysis Core, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James Loewke
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - John M Davis
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Mannes
- Department of Perioperative Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Olafur S Palsson
- Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chirayath M Suchindran
- Department of Biostatistics, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Susan A Gaylord
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Douglas Mann
- Department of Neurology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
46
|
TRPV1 Hyperfunction Contributes to Renal Inflammation in Oxalate Nephropathy. Int J Mol Sci 2021; 22:ijms22126204. [PMID: 34201387 PMCID: PMC8228656 DOI: 10.3390/ijms22126204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation worsens oxalate nephropathy by exacerbating tubular damage. The transient receptor potential vanilloid 1 (TRPV1) channel is present in kidney and has a polymodal sensing ability. Here, we tested whether TRPV1 plays a role in hyperoxaluria-induced renal inflammation. In TRPV1-expressed proximal tubular cells LLC-PK1, oxalate could induce cell damage in a time- and dose-dependent manner; this was associated with increased arachidonate 12-lipoxygenase (ALOX12) expression and synthesis of endovanilloid 12(S)-hydroxyeicosatetraenoic acid for TRPV1 activation. Inhibition of ALOX12 or TRPV1 attenuated oxalate-mediated cell damage. We further showed that increases in intracellular Ca2+ and protein kinase C α activation are downstream of TRPV1 for NADPH oxidase 4 upregulation and reactive oxygen species formation. These trigger tubular cell inflammation via increased NLR family pyrin domain-containing 3 expression, caspase-1 activation, and interleukin (IL)-1β release, and were alleviated by TRPV1 inhibition. Male hyperoxaluric rats demonstrated urinary supersaturation, tubular damage, and oxidative stress in a time-dependent manner. Chronic TRPV1 inhibition did not affect hyperoxaluria and urinary supersaturation, but markedly reduced tubular damage and calcium oxalate crystal deposition by lowering oxidative stress and inflammatory signaling. Taking all these results together, we conclude that TRPV1 hyperfunction contributes to oxalate-induced renal inflammation. Blunting TRPV1 function attenuates hyperoxaluric nephropathy.
Collapse
|
47
|
Rodríguez Mesa XM, Moreno Vergara AF, Contreras Bolaños LA, Guevara Moriones N, Mejía Piñeros AL, Santander González SP. Therapeutic Prospects of Cannabinoids in the Immunomodulation of Prevalent Autoimmune Diseases. Cannabis Cannabinoid Res 2021; 6:196-210. [PMID: 34030476 PMCID: PMC8266560 DOI: 10.1089/can.2020.0183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Cannabinoids such as ▵-9-THC and CBD can downregulate the immune response by modulating the endocannabinoid system. This modulation is relevant for the treatment of prevalent autoimmune diseases (ADs), such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), diabetes mellitus type 1 (DMT1), and rheumatoid arthritis (RA). These conditions require new therapeutic options with fewer side effects for the control of the autoimmune response. Objective: to conduct a literature review of preclinical scientific evidence that supports further clinical investigations for the use of cannabinoids (natural or synthetic) as potential immunomodulators of the immune response in ADs. Methodology: A systematic search was carried out in different databases using different MeSH terms, such as Cannabis sativa L., cannabinoids, immunomodulation, and ADs. Initially, 677 journal articles were found. After filtering by publication date (from 2000 to 2020 for SLE, DMT1, and RA; and 2010 to 2020 for MS) and removing the duplicate items, 200 articles were selected and analyzed by title and summary associated with the use of cannabinoids as immunomodulatory treatment for those diseases. Results: Evidence of the immunomodulatory effect of cannabinoids in the diseases previously mentioned, but SLE that did not meet the search criteria, was summarized from 24 journal articles. CBD was found to be one of the main modulators of the immune response. This molecule decreased the number of Th1 and Th17 proinflammatory cells and the production of the proinflammatory cytokines, interleukin (IL)-1, IL-12, IL-17, interferon (IFN)-γ, and tumor necrosis factor alpha, in mouse models of MS and DMT1. Additionally, new synthetic cannabinoid-like molecules, with agonist or antagonist activity on CB1, CB2, TRPV1, PPAR-α, and PPAR-γ receptors, have shown anti-inflammatory properties in MS, DMT1, and RA. Conclusion: Data from experimental animal models of AD showed that natural and synthetic cannabinoids downregulate inflammatory responses mediated by immune cells responsible for AD chronicity and progression. Although synthetic cannabinoid-like molecules were evaluated in just two clinical trials, they corroborated the potential use of cannabinoids to treat some ADs. Notwithstanding, new cannabinoid-based approaches are required to provide alternative treatments to patients affected by the large group of ADs.
Collapse
Affiliation(s)
- Xandy Melissa Rodríguez Mesa
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Andrés Felipe Moreno Vergara
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Faculty of Medicine, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Leonardo Andrés Contreras Bolaños
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Natalia Guevara Moriones
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Faculty of Medicine, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Antonio Luis Mejía Piñeros
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Sandra Paola Santander González
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| |
Collapse
|
48
|
Gladkikh IN, Sintsova OV, Leychenko EV, Kozlov SA. TRPV1 Ion Channel: Structural Features, Activity Modulators, and Therapeutic Potential. BIOCHEMISTRY (MOSCOW) 2021; 86:S50-S70. [PMID: 33827400 DOI: 10.1134/s0006297921140054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although TRPV1 ion channel has been attracting researchers' attention for many years, its functions in animal organisms, the principles of regulation, and the involvement in pathological processes have not yet been fully clarified. Mutagenesis experiments and structural studies have identified the structural features of the channel and binding sites for its numerous ligands; however, these studies are far from conclusion. This review summarizes recent achievements in the TRPV1 research with special focus on structural and functional studies of the channel and on its ligands, which are extremely diverse in their nature and interaction specificity to TRPV1. Particular attention was given to the effects of numerous endogenous agonists and antagonists that can fine-tune the channel sensitivity to its usual activators, such as capsaicin, heat, acids, or their combination. In addition to the pain sensing not covered in this review, the TRPV1 channel was found to be involved in the regulation of many important physiological and pathological processes and, therefore, can be considered as a promising therapeutic target in the treatment of various diseases, such as pneumonia, ischemia, diabetes, epilepsy, schizophrenia, psoriasis, etc.
Collapse
Affiliation(s)
- Irina N Gladkikh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Oksana V Sintsova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena V Leychenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Sergey A Kozlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
49
|
Turolo S, Edefonti A, Mazzocchi A, Syren ML, Morello W, Agostoni C, Montini G. Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome. Int J Mol Sci 2021; 22:5452. [PMID: 34064238 PMCID: PMC8196840 DOI: 10.3390/ijms22115452] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Studies concerning the role of arachidonic acid (AA) and its metabolites in kidney disease are scarce, and this applies in particular to idiopathic nephrotic syndrome (INS). INS is one of the most frequent glomerular diseases in childhood; it is characterized by T-lymphocyte dysfunction, alterations of pro- and anti-coagulant factor levels, and increased platelet count and aggregation, leading to thrombophilia. AA and its metabolites are involved in several biological processes. Herein, we describe the main fields where they may play a significant role, particularly as it pertains to their effects on the kidney and the mechanisms underlying INS. AA and its metabolites influence cell membrane fluidity and permeability, modulate platelet activity and coagulation, regulate lymphocyte activity and inflammation, preserve the permeability of the glomerular barrier, influence podocyte physiology, and play a role in renal fibrosis. We also provide suggestions regarding dietary measures that are able to prevent an imbalance between arachidonic acid and its parental compound linoleic acid, in order to counteract the inflammatory state which characterizes numerous kidney diseases. On this basis, studies of AA in kidney disease appear as an important field to explore, with possible relevant results at the biological, dietary, and pharmacological level, in the final perspective for AA to modulate INS clinical manifestations.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
| | - Alberto Edefonti
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
| | - Marie Louise Syren
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
| | - William Morello
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Intermediate Care Unit, 20122 Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; (A.E.); (W.M.); (G.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (A.M.); (M.L.S.); (C.A.)
| |
Collapse
|
50
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|