1
|
Saito Y, Sugiura Y, Sakaguchi A, Sada T, Nishiyama C, Maeda R, Kaneko M, Kiyonari H, Kimura W. Redox-dependent purine degradation triggers postnatal loss of cardiac regeneration potential. Redox Biol 2025; 79:103442. [PMID: 39637598 PMCID: PMC11664147 DOI: 10.1016/j.redox.2024.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Postnatal cardiomyocyte cell cycle withdrawal is a critical step wherein the mammalian heart loses regenerative potential after birth. Here, we conducted interspecies multi-omic comparisons between the mouse heart and that of the opossum, which have different postnatal time-windows for cardiomyocyte cell cycle withdrawal. Xanthine metabolism was activated in both postnatal hearts in parallel with cardiomyocyte cell cycle arrest. The pentose phosphate pathway (PPP) which produces NADPH was found to decrease simultaneously. Postnatal myocardial tissues became oxidized accordingly, and administration of antioxidants to neonatal mice altered the PPP and suppressed the postnatal activation of cardiac xanthine metabolism. These results suggest a redox-driven postnatal switch from purine synthesis to degradation in the heart. Importantly, inhibition of xanthine metabolism in the postnatal heart extended postnatal duration of cardiomyocyte proliferation and maintained postnatal heart regeneration potential in mice. These findings highlight a novel role of xanthine metabolism as a redox-dependent metabolic regulator of cardiac regeneration potential.
Collapse
Affiliation(s)
- Yuichi Saito
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University School of Medicine, Tokyo, Japan
| | - Akane Sakaguchi
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tai Sada
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Chihiro Nishiyama
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
2
|
Duncan JD, Setati ME, Divol B. The cellular symphony of redox cofactor management by yeasts in wine fermentation. Int J Food Microbiol 2025; 427:110966. [PMID: 39536648 DOI: 10.1016/j.ijfoodmicro.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Redox metabolism is pivotal in anaerobic fermentative processes such as winemaking where it results in the production of many metabolites that contribute to the aroma and flavour of wine. Key to this system are NAD+ and NADP+, which play essential roles as cofactors in maintaining cellular redox balance and regulating metabolism during fermentation. This review comprehensively explores redox metabolism under winemaking conditions, highlighting the influence of factors such as oxygen availability and vitamins including B3 and B1. Recent findings underscore the rapid assimilation and recycling dynamics of these vitamins during fermentation, reinforcing their critical role in yeast performance. Despite extensive research, the roles of diverse yeast species and specific vitamins remain insufficiently explored. By consolidating current knowledge, this review emphasises the implications of redox dynamics for metabolite synthesis and overall wine quality. Understanding these metabolic intricacies offers options to enhance fermentation efficiency and refine aroma profiles. The review also identifies gaps in studies for intracellular vitamin metabolism and underlines the need for deeper insights into non-Saccharomyces yeast metabolism. Future research directions should focus on elucidating specific metabolic responses, exploring environmental influences, and harnessing the potential of diverse yeasts to innovate and diversify wine production strategies.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
3
|
Yan T, Xie YY, Zhou B, Kuang X, Li QZ, Zhao FQ, Li QD, He B. Rice-Fish Farming Improved Antioxidant Defences, Glucose Metabolism, and Muscle Nutrient of Carassius auratus in Sichuan Province. Metabolites 2024; 14:710. [PMID: 39728491 DOI: 10.3390/metabo14120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between Carassius auratus reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in C. auratus from rice paddies were considerably higher compared to those from ponds. Additionally, the hepatic catalase (CAT) activity in fish from paddy (2.45 ± 0.16 U/mg) exceeded that of their pond counterparts (2.27 ± 0.25 U/mg). Regarding glucose metabolism, the activities of key enzymes such as Na+/K+-ATPase (NKA) (paddy: 82.45 ± 6.11 U/g; pond: 78.53 ± 7.18 U/g), hexokinase (HK) (paddy: 9.55 ± 0.58 U/g; pond: 8.83 ± 0.72 U/g), glucokinase (GK) (paddy: 4.09 ± 0.21 IU/g; pond: 3.44 ± 0.33 IU/g), glucose-6-phosphatase (G6Pase) (paddy: 85.71 ± 4.49 IU/g; pond: 79.12 ± 9.34 IU/g), and glucose-6-phosphate dehydrogenase (G6PDH) (paddy: 47.23 ± 3.22 U/g; pond: 42.31 ± 4.93 U/g) were significantly elevated in rice paddy-cultured fish compared to those in ponds. Conversely, phosphor-pyruvate kinase (PK) (paddy: 418.15 ± 31.89 U/g; pond: 570.16 ± 56.06 U/g) activity was markedly reduced in the paddy group. Hepatic glycogen content (paddy: 15.70 ± 0.98 ng/g; pond: 14.91 ± 1.24 ng/g) was also substantially higher in fish from paddy, although no significant differences in muscle glycogen content (paddy: 7.14 ± 0.59 ng/g; pond: 6.70 ± 0.52 ng/g) were observed between the two environments. In terms of nutritional composition, fish raised in paddy exhibited higher crude protein (paddy: 18.46 ± 0.47 g/100 g muscle; pond: 15.57 ± 0.25 g/100 g muscle) and crude ash (paddy: 1.19 ± 0.02 g/100 g muscle; pond: 0.97 ± 0.02 g/100 g muscle) than those in ponds, whereas the crude fat (paddy: 0.87 ± 0.04 g/100 g muscle; pond: 1.66 ± 0.04 g/100 g muscle) was notably lower in paddy fish. Furthermore, fish from rice paddies had a greater total content of monounsaturated fatty acids (MUFA) (paddy: 4.25 ± 0.24 g/100 g muscle; pond: 6.73 ± 0.27 g/100 g muscle), non-essential amino acids (NEAA) (paddy: 9.04 ± 0.3 g/100 g muscle; pond: 7.19 ± 0.21 g/100 g muscle), and delicious amino acids (DAA) (paddy: 7.11 ± 0.2 g/100 g muscle; pond: 5.45 ± 0.19 g/100 g muscle) compared to those from pond cultures. These findings suggest that rice-fish co-culture systems can yield healthier and more environmentally sustainable aquatic products by improving feed digestion and optimizing nutrient metabolism.
Collapse
Affiliation(s)
- Tao Yan
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Yun-Yi Xie
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Bo Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611731, China
| | - Xu Kuang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Qing-Zhi Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feng-Qi Zhao
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Qian-Dong Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Bin He
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611731, China
| |
Collapse
|
4
|
Rodin MA, Kuznetsova MV, Krupnova MY, Kuritsyn AE, Nemova NN. Activities of Energy and Carbohydrate Metabolism Enzymes in Rainbow Trout Оncorhynchus mykiss Walb. upon Introduction of 24-hour Lighting in Aquaculture in Southern Russia. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 519:411-416. [PMID: 39528750 PMCID: PMC11739218 DOI: 10.1134/s0012496624600441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Activities of energy and carbohydrate metabolism enzymes (cytochrome c oxidase (COX), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PD), glycerol 1-phosphate dehydrogenase (G1PDH), lactate dehydrogenase (LDH), and aldolase) were studied in rainbow trout Oncorhynchus mykiss Walb. fish grown in aquaculture in North Ossetia-Alania after introducing a regime with 24-h lighting and night feeding. COX and PK activities in the liver of fish from the experimental group were found to be significantly higher than in control fish, indicating an increase in aerobic ATP synthesis. Aldolase activity in organs of fish grown with 24-h lighting was lower than in the control fish, indicating a decrease in carbohydrate utilization in glycolysis in muscles and a lower intensity of gluconeogenesis in the liver. The differences made it possible to assume that the introduction of 24-h lighting and night feeding changed energy and carbohydrate metabolism to facilitate biosynthetic processes and, therefore, weight gain in fish.
Collapse
Affiliation(s)
- M A Rodin
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - M V Kuznetsova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | - M Yu Krupnova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - A E Kuritsyn
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - N N Nemova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
5
|
Shulgina NS, Kuznetsova MV, Rodin MA, Krupnova MY, Efremov DA, Murzina SA, Nemova NN. Change in Activities of Enzymes of Energy and Carbohydrate Metabolism in Pink Salmon Oncorhynchus gorbuscha (Walb.) Smolts with Change in Environmental Salinity. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 519:305-308. [PMID: 39400897 DOI: 10.1134/s0012496624600337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 10/15/2024]
Abstract
Activities of key enzymes of energy and carbohydrate metabolism (cytochrome c oxidase (COX), lactate dehydrogenase (LDH), aldolase, glucose 6-phosphate dehydrogenase (G6PDH), and 1-glycerophosphate dehydrogenase (1-GPDH)) were studied in pink salmon Oncorhynchus gorbuscha (Walb.) smolts from the White Sea in a cage experiment simulating the transition from a freshwater to a marine environment. A decrease in COX, G6PDH, and 1-GPDH activities and an increase in LDH and aldolase activities were observed in juveniles with an increase in water salinity. Based on the findings, a redistribution of energy substrates between the reactions of aerobic and anaerobic metabolism towards higher anaerobic ATP synthesis was assumed for pink salmon. This may indicate that adaptive mechanisms rearrange metabolism to provide energy for osmoregulation in pink salmon juveniles when the salinity changes in their habitat.
Collapse
Affiliation(s)
- N S Shulgina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - M V Kuznetsova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | - M A Rodin
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - M Yu Krupnova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - D A Efremov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - S A Murzina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - N N Nemova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
6
|
Liu Z, Chen M, Du S, Wang R, Qiu Y, Li S, Xu H, Xu D. Enhancing the Production of ε-Poly-l-Lysine by Engineering the Sucrose Metabolism Pathway in Streptomyces albulus PD-1 Using Cane Molasses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26283-26293. [PMID: 39555995 DOI: 10.1021/acs.jafc.4c07204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cane molasses, a sugar-rich agro-industrial byproduct, was used to enhance the production of ε-poly-l-lysine (ε-PL) in Streptomyces albulus PD-1 as a cost-effective carbon source. The sucrose metabolism pathway was engineered by heterologously expressing sucrose-6-phosphate hydrolase from Escherichia coli W. The optimization of various promoters identified the SP44 promoter, increasing the total sugar utilization rate by 2.76-fold compared with the ermEp* promoter. Additionally, adaptive laboratory evolution improved the total sugar utilization rate. The evolved strain achieved an ε-PL titer of 2.65 ± 0.15 g/L in flask experiments, increasing the ε-PL titer by 7.16-fold compared with the unevolved strain. Comparative transcriptomic analyses revealed that the enhanced tolerance of the evolved strain to high concentrations of cane molasses was primarily due to modifications in the sucrose metabolism pathways, microbial metabolism in heavy metals and phenols, and the amino acids transport and metabolic pathways. These changes enabled more efficient ε-PL production. During fed-batch fermentation in a 5-L fermentor using a concentration of 50 g/L cane molasses, the ε-PL titer reached 36.88 ± 0.62 g/L, and dry cell weight was 41.1 ± 1.0 g/L. This study illustrates that cane molasses is an economical carbon source for producing ε-PL on an industrial scale.
Collapse
Affiliation(s)
- Zhaoqiong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Min Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Delei Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
7
|
Młodawska W, Maliński B, Godyń G, Nosal B. Lipid content and G6PDH activity in relation to ooplasm morphology and oocyte maturational competence in the domestic cat model. Reprod Biol 2024; 24:100927. [PMID: 39146721 DOI: 10.1016/j.repbio.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
The aim of the study was to investigate the relationship between ooplasm morphology, lipid content, glucose-6-phosphate dehydrogenase activity (G6PDH) and maturation potential of domestic cat oocytes. Cumulus-oocyte complexes were classified according to ooplasm morphology: evenly dark (dCOC), heterogeneous/mosaic (hCOC), or light/transparent (lCOC), however only dCOCs are thought to be the best-quality, the remaining ones are usually rejected, therefore little is known about their intracellular properties. Lipid droplets (LDs) were visualized and quantified using Oil Red O. G6PDH activity was assessed before in vitro maturation (IVM), using the brilliant cresyl blue (BCB) test. IVM-control oocytes underwent IVM without BCB staining. The dCOCs and hCOCs had different patterns of LD spatial distribution, but similar amounts of lipid, although this tended towards being lower in hCOCs. Low G6PDH activity (BCB+) was observed in 74 %, 60 % and 24 % (P < 0.01) of dCOCs, hCOCs, and lCOCs, respectively. Significantly more BCB+ /oocytes than BCB-/oocytes reached the metaphase II stage in all groups. The maturation rate of BCB+ /hCOCs was higher than that of IVM/hCOC-controls (40 % v.s. 20 %, P < 0.001), and was comparable to that of BCB+ /dCOCs (54 %; P > 0.05). lCOCs were the smallest (P < 0.01), contained fewer (P < 0.01) lipids than dCOCs or hCOCs, and displayed reduced maturational potential. Overall, LD content and distribution, as well as G6PDH activity, in cat oocytes were strongly associated with ooplasm morphology and oocyte maturational competence. Deeper understanding of the intrinsic properties of oocytes with different ooplasm morphology using the domestic cat model, may be particularly important in the context of the conservation of endangered felids.
Collapse
Affiliation(s)
- Wiesława Młodawska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | - Bartosz Maliński
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Gabriela Godyń
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Beata Nosal
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
8
|
Liu HF, Chou SC, Huang SC, Huang TY, Hsiao PY, Chou FP, Wu TK. Dehydroepiandrosterone-α-2-Deoxyglucoside Exhibits Enhanced Anticancer Effects in MCF-7 Breast Cancer Cells and Inhibits Glucose-6-Phosphate Dehydrogenase Activity. Chem Biol Drug Des 2024; 104:e14624. [PMID: 39317696 DOI: 10.1111/cbdd.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
In the pentose phosphate pathway, dehydroepiandrosterone (DHEA) uncompetitively inhibits glucose-6-phosphate dehydrogenase (G6PD), reducing NADPH production and increasing oxidative stress, which can influence the onset and/or progression of several diseases, including cancer. 2-Deoxy-D-glucose (2-DG), a glucose mimetic, competes with glucose for cellular uptake, inhibiting glycolysis and competing with glucose-6-phosphate (G-6-P) for G6PD activity. In this study, we report that DHEA-α-2-DG (5), an α-covalent conjugate of DHEA and 2-DG, exhibits better anticancer activity than DHEA, 2-DG, DHEA +2-DG, and polydatin in MCF-7 cells, and reduces NADPH/NADP+ ratio in cellular assays. In vitro enzyme kinetics and molecular docking studies showed that 5 uncompetitively inhibits human G6PD activity and binds to the structural NADP+ site but not to the catalytic NADP+ site. Further combining 5 with the FDA-approved drug tamoxifen enhanced its cytotoxicity against MCF-7 cells, suggesting that it could serve as a candidate for combination of drug strategies.
Collapse
Affiliation(s)
- Hsu-Feng Liu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Shen-Chieh Chou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Sheng-Cih Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Tzu-Yu Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Po-Yun Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Feng-Pai Chou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Tung-Kung Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
9
|
Kwolek-Mirek M, Maslanka R, Bednarska S, Przywara M, Kwolek K, Zadrag-Tecza R. Strategies to Maintain Redox Homeostasis in Yeast Cells with Impaired Fermentation-Dependent NADPH Generation. Int J Mol Sci 2024; 25:9296. [PMID: 39273244 PMCID: PMC11395483 DOI: 10.3390/ijms25179296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Redox homeostasis is the balance between oxidation and reduction reactions. Its maintenance depends on glutathione, including its reduced and oxidized form, GSH/GSSG, which is the main intracellular redox buffer, but also on the nicotinamide adenine dinucleotide phosphate, including its reduced and oxidized form, NADPH/NADP+. Under conditions that enable yeast cells to undergo fermentative metabolism, the main source of NADPH is the pentose phosphate pathway. The lack of enzymes responsible for the production of NADPH has a significant impact on yeast cells. However, cells may compensate in different ways for impairments in NADPH synthesis, and the choice of compensation strategy has several consequences for cell functioning. The present study of this issue was based on isogenic mutants: Δzwf1, Δgnd1, Δald6, and the wild strain, as well as a comprehensive panel of molecular analyses such as the level of gene expression, protein content, and enzyme activity. The obtained results indicate that yeast cells compensate for the lack of enzymes responsible for the production of cytosolic NADPH by changing the content of selected proteins and/or their enzymatic activity. In turn, the cellular strategy used to compensate for them may affect cellular efficiency, and thus, the ability to grow or sensitivity to environmental acidification.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Michał Przywara
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Kornelia Kwolek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
10
|
Thakor P, Siddiqui MQ, Patel TR. Analysis of the interlink between glucose-6-phosphate dehydrogenase (G6PD) and lung cancer through multi-omics databases. Heliyon 2024; 10:e35158. [PMID: 39165939 PMCID: PMC11334843 DOI: 10.1016/j.heliyon.2024.e35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) is a crucial enzyme that executes the pentose phosphate pathway. Due to its critical nodal position in the metabolic network, it is associated with different forms of cancer tumorigeneses and progression. Nonetheless, its functional role and molecular mechanism in lung cancer remain unknown. The present study provides intricate information associated with G6PD and Lung Cancer. Varieties of public datasets were retrieved by us, including UALCAN, TCGA, cBioPortal, and the UCSC Xena browser. The data obtained were used to assess the expression of G6PD, its clinical features, epigenetic regulation, relationship with tumour infiltration, tumour mutation burden, microsatellite instability, tumour microenvironment, immune checkpoint genes, genomic alteration, and patient's overall survival rate. The present study revealed that the G6PD expression was correlated with the clinical features of lung cancer including disease stage, race, sex, age, smoking habits, and lymph node metastasis. Moreover, the expression profile of G6PD also imparts epigenetic changes by modulating the DNA promoter methylation activity. Methylation of promoters changes the expression of various transcription factors, genes leading to an influence on the immune system. These events linked with G6PD-related mutational gene alterations (FAM3A, LAG3, p53, KRAS). The entire circumstance influences the patient's overall survival rate and poor prognosis. Functional investigation using STRING, GO, and KEGG found that G6PD primarily engages in hallmark functions (metabolism, immunological responses, proliferation, apoptosis, p53, HIF-1, FOXO, PI3K-AKT signaling). This work provides a wide knowledge of G6PD's function in lung cancer, as well as a theoretical foundation for possible prognostic therapeutic markers.
Collapse
Affiliation(s)
- Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - M. Quadir Siddiqui
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - Trushar R. Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
11
|
Maslanka R, Bednarska S, Zadrag-Tecza R. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Arch Biochem Biophys 2024; 756:110021. [PMID: 38697344 DOI: 10.1016/j.abb.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
12
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
13
|
Cui X, Cai X, Zhang F, Zhang W, Liu H, Mu S, Guo S, Wan H, Zhang H, Zhang Z, Kang X. Comparative Proteomics Elucidates the Potential Mechanism of Sperm Capacitation of Chinese Mitten Crabs ( Eriocheir sinensis). J Proteome Res 2024; 23:1603-1614. [PMID: 38557073 DOI: 10.1021/acs.jproteome.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.
Collapse
Affiliation(s)
- Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Xueqian Cai
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Fenghao Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huan Liu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding First Central Hospital, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
14
|
Li R, Li Y, Tang M, Qu Z, Shao C, Zheng P, Hou W. Transcriptomic and Metabolomic Research on the Germination Process of Panax ginseng Overwintering Buds. PLANTS (BASEL, SWITZERLAND) 2024; 13:1041. [PMID: 38611569 PMCID: PMC11013764 DOI: 10.3390/plants13071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Ginseng (Panax ginseng C. A. Meyer) is a perennial plant with a long dormancy period. While some researchers employ gibberellin and other substances to stimulate premature germination, this method is limited to laboratory settings and cannot be applied to the field cultivation of ginseng. The mechanism underlying the germination of ginseng overwintering buds remains largely unexplored. Understanding the internal changes during the dormancy release process in the overwintering buds would facilitate the discovery of potential genes, metabolites, or regulatory pathways associated with it. In this study, we approximately determined the onset of dormancy release through morphological observations and investigated the process of dormancy release in ginseng overwintering buds using transcriptomic and metabolomic approaches. Our analyses revealed that the germination process of ginseng overwintering buds is regulated by multiple plant hormones, each acting at different times. Among these, abscisic acid (ABA) and gibberellic acid (GA) serve as classical signaling molecules regulating the dormancy process, while other hormones may promote the subsequent growth of overwintering buds. Additionally, metabolic pathways associated with arginine may be involved in the dormancy release process. Polyamines synthesized downstream may promote the growth of overwintering buds after dormancy release and participate in subsequent reproductive growth. This study provides insights into the germination process of ginseng overwintering buds at the molecular level and serves as a reference for further exploration of the detailed mechanism underlying ginseng overwintering germination in the future.
Collapse
Affiliation(s)
- Ranqi Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (R.L.); (Y.L.); (M.T.); (Z.Q.); (C.S.)
| | - Yashu Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (R.L.); (Y.L.); (M.T.); (Z.Q.); (C.S.)
| | - Miaomiao Tang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (R.L.); (Y.L.); (M.T.); (Z.Q.); (C.S.)
| | - Zhengyi Qu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (R.L.); (Y.L.); (M.T.); (Z.Q.); (C.S.)
| | - Cai Shao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (R.L.); (Y.L.); (M.T.); (Z.Q.); (C.S.)
| | - Peihe Zheng
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132109, China
- Jilin Key Laboratory of Technological Innovation in the Production and Utilization of Dao-di Herbs, Jilin 132109, China
| | - Wei Hou
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (R.L.); (Y.L.); (M.T.); (Z.Q.); (C.S.)
| |
Collapse
|
15
|
Ohashi T, Terazawa K, Shibata H, Inoue N, Ogawa T. Metabolic profiling analysis of head and neck squamous cell carcinoma. Oral Dis 2024; 30:342-352. [PMID: 36349421 DOI: 10.1111/odi.14432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/02/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Tumor cells can acquire a large amount of energy and structural components by reprogramming energy metabolism; moreover, metabolic profiles slightly differ according to cancer type. This study compared and assessed the metabolic profile of head and neck squamous cell carcinoma (HNSCC) and normal tissues, which were collected from patients without cancer. SUBJECTS AND METHODS Overall, 23 patients with HNSCC and 6 patients without cancer were included in the analysis. Metabolomic profiles were analyzed using capillary electrophoresis-mass spectrometry. Gene expression was evaluated using real-time reverse transcription-polymerase chain reaction. RESULTS Glycolysis, the pentose phosphate pathway, tricarboxylic acid cycle, and glutamine metabolism were upregulated in HNSCC tissues based on gene expression analysis. HNSCC could then have enhanced energy production and structural component. The levels of lactate, succinate, glutathione, 2-hydroxyglutarate, and S-adenosylmethionine, considered as oncometabolites, increased and these had accumulated in HNSCC tissues. CONCLUSIONS The level of metabolites and the expression of enzymes differ between HNSCC and normal tissues. Reprogramming metabolism in HNSCC provides an energy source as well as structural components, creating a system that offers rapid proliferation, progression, and is less likely to be eliminated.
Collapse
Affiliation(s)
- Toshimitsu Ohashi
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Terazawa
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Takenori Ogawa
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
16
|
Karunakaran U, Elumalai S, Chung SM, Maedler K, Won KC, Moon JS. Mitochondrial aldehyde dehydrogenase-2 coordinates the hydrogen sulfide - AMPK axis to attenuate high glucose-induced pancreatic β-cell dysfunction by glutathione antioxidant system. Redox Biol 2024; 69:102994. [PMID: 38128451 PMCID: PMC10776427 DOI: 10.1016/j.redox.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Progression of β-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in β-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in β-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves β-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves β-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved β-cell function and survival under high-glucose conditions via the glutathione redox balance.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea.
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Seung Min Chung
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kyu Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| | - Jun Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Bassett S, Ding Y, Roy MK, Reisz JA, D'Alessandro A, Nagpal P, Chatterjee A. Light-Driven Metabolic Pathways in Non-Photosynthetic Biohybrid Bacteria. Chembiochem 2024; 25:e202300572. [PMID: 37861981 DOI: 10.1002/cbic.202300572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Biomanufacturing via microorganisms relies on carbon substrates for molecular feedstocks and a source of energy to carry out enzymatic reactions. This creates metabolic bottlenecks and lowers the efficiency for substrate conversion. Nanoparticle biohybridization with proteins and whole cell surfaces can bypass the need for redox cofactor regeneration for improved secondary metabolite production in a non-specific manner. Here we propose using nanobiohybrid organisms (Nanorgs), intracellular protein-nanoparticle hybrids formed through the spontaneous coupling of core-shell quantum dots (QDs) with histidine-tagged enzymes in non-photosynthetic bacteria, for light-mediated control of bacterial metabolism. This proved to eliminate metabolic constrictions and replace glucose with light as the source of energy in Escherichia coli, with an increase in growth by 1.7-fold in 75 % reduced nutrient media. Metabolomic tracking through carbon isotope labeling confirmed flux shunting through targeted pathways, with accumulation of metabolites downstream of respective targets. Finally, application of Nanorgs with the Ehrlich pathway improved isobutanol titers/yield by 3.9-fold in 75 % less sugar from E. coli strains with no genetic alterations. These results demonstrate the promise of Nanorgs for metabolic engineering and low-cost biomanufacturing.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Yuchen Ding
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Micaela K Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Prashant Nagpal
- ARC Labs, Louisville, CO 80027, USA
- Sachi Bio, Inc., Louisville, CO 80027, USA
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- ARC Labs, Louisville, CO 80027, USA
- Sachi Bio, Inc., Louisville, CO 80027, USA
| |
Collapse
|
18
|
Kuznetsova MV, Rodin MA, Shulgina NS, Krupnova MY, Kuritsin AE, Murzina SA, Nemova NN. Activities of Energy Metabolism Enzymes in Atlantic Salmon Salmo salar L. Smolts and Parr Grown under Different Light Regimens. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 513:S22-S27. [PMID: 38190038 DOI: 10.1134/s0012496623700850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Activities of enzymes of energy and carbohydrate metabolism in muscles and the liver were studied in Atlantic salmon Salmo salar L. smolts and parr grown under continuous or natural lighting and different feeding regimens in autumn followed by a short photoperiod in winter. Enzyme activities were found to differ between test and control salmon groups and between parr and smolts sampled at the end of the winter period. Smolts grown under continuous lighting and round-the-clock feeding differed from other groups by having higher cytochrome c oxidase (COX) activity and lower aldolase activity in muscles. Differences in aerobic metabolism in muscles between parr and smolts were found to be the same in all experimental groups, COX and aldolase activities being relatively higher in smolts. The pattern of changes in enzyme activities in the liver from parr to smolts differed between different experimental groups. Based on the results, the photoperiod was assumed to affect the activities of energy metabolism enzymes in salmon juveniles and may eventually affect the completion of smoltification.
Collapse
Affiliation(s)
- M V Kuznetsova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | - M A Rodin
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - N S Shulgina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - M Yu Krupnova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - A E Kuritsin
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - S A Murzina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - N N Nemova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
19
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
20
|
John S, Calmettes G, Xu S, Ribalet B. Real-time resolution studies of the regulation of pyruvate-dependent lactate metabolism by hexokinases in single cells. PLoS One 2023; 18:e0286660. [PMID: 37917627 PMCID: PMC10621844 DOI: 10.1371/journal.pone.0286660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/21/2023] [Indexed: 11/04/2023] Open
Abstract
Lactate is a mitochondrial substrate for many tissues including neuron, muscle, skeletal and cardiac, as well as many cancer cells, however little is known about the processes that regulate its utilization in mitochondria. Based on the close association of Hexokinases (HK) with mitochondria, and the known cardio-protective role of HK in cardiac muscle, we have investigated the regulation of lactate and pyruvate metabolism by hexokinases (HKs), utilizing wild-type HEK293 cells and HEK293 cells in which the endogenous HKI and/or HKII have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. This decrease was rapidly reversed upon inhibition of the malate aspartate shuttle by aminooxyacetate, or inhibition of mitochondrial oxidative respiration by NaCN. These results suggest that in the absence of HKs, pyruvate-dependent activation of the TCA cycle together with the malate aspartate shuttle facilitates lactate transformation into pyruvate and its utilization by mitochondria. With replacement by overexpression of HKI or HKII the cellular response to pyruvate and NaCN was modified. With either hexokinase present, both the decrease in lactate due to the addition of pyruvate and the increase following addition of NaCN were either transient or suppressed altogether. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN), abolished the effects of HK replacement. These results suggest that blocking of the malate aspartate shuttle by HK may involve activation of the pentose phosphate pathway and increased NADPH production.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Guillaume Calmettes
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Shili Xu
- California NanoSystems Institute (CNSI) 2151, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
21
|
Zhang J, Keibler MA, Dong W, Ghelfi J, Cordes T, Kanashova T, Pailot A, Linster CL, Dittmar G, Metallo CM, Lautenschlaeger T, Hiller K, Stephanopoulos G. Stable Isotope-Assisted Untargeted Metabolomics Identifies ALDH1A1-Driven Erythronate Accumulation in Lung Cancer Cells. Biomedicines 2023; 11:2842. [PMID: 37893215 PMCID: PMC10604529 DOI: 10.3390/biomedicines11102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Using an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Biomia Aps, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Mark A. Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Alnylam Pharmaceuticals, Cambridge, MA 02139, USA
| | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Department of Chemical Engineering, Department of Genetics, Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Thekla Cordes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Arnaud Pailot
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Christian M. Metallo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim Lautenschlaeger
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43221, USA
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
| |
Collapse
|
22
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
23
|
Janeczko A, Przywara M, Maslanka R, Raś B, Ziaja K, Kwolek-Mirek M, Zadrag-Tecza R, Bednarska S. Redox perturbations in yeast cells lacking glutathione reductase. Fungal Genet Biol 2023; 167:103810. [PMID: 37172803 DOI: 10.1016/j.fgb.2023.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cellular redox homeostasis has a major effect on cell functions and its maintenance is supported by glutathione and protein thiols which serve as redox buffers in cells. The regulation of the glutathione biosynthetic pathway is a focus of a lot of scientific research. However, still little is known about how complex cellular networks influence glutathione homeostasis. In this work was used an experimental system based on an S. cerevisiae yeast mutant with a lack of the glutathione reductase enzyme and allyl alcohol as a precursor of acrolein inside the cell to determine the cellular processes influencing glutathione homeostasis. The absence of Glr1p slows down the growth rate of the cell population, especially in the presence of allyl alcohol, but does not lead to complete inhibition of the cell's reproductive capacity. It also amends the GSH/GSSG ratio and the share of NADPH and NADP+ in the total NADP(H) pool. The obtained results show that potential pathways involved in the maintenance of redox homeostasis are based from one side on de novo synthesis of GSH as indicated by increased activity of γ-GCS and increased expression of GSH1 gene in the Δglr1 mutant, from the other hand, on increased the level of NADPH. This is because the lower ratio of GSH/GSSG can be counterbalanced with the NADPH/NADP+ alternative system. The higher level of NADPH can be used by the thioredoxin system and other enzymes requiring NADPH to reduce cytosolic GSSG and maintain glutathione redox potential.
Collapse
Affiliation(s)
- Agnieszka Janeczko
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Michał Przywara
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Roman Maslanka
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Barbara Raś
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Klaudia Ziaja
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
24
|
Cheong HC, Sulaiman S, Looi CY, Chang LY, Wong WF. Chlamydia Infection Remodels Host Cell Mitochondria to Alter Energy Metabolism and Subvert Apoptosis. Microorganisms 2023; 11:1382. [PMID: 37374883 DOI: 10.3390/microorganisms11061382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chlamydia infection represents an important cause for concern for public health worldwide. Chlamydial infection of the genital tract in females is mostly asymptomatic at the early stage, often manifesting as mucopurulent cervicitis, urethritis, and salpingitis at the later stage; it has been associated with female infertility, spontaneous abortion, ectopic pregnancy, and cervical cancer. As an obligate intracellular bacterium, Chlamydia depends heavily on host cells for nutrient acquisition, energy production, and cell propagation. The current review discusses various strategies utilized by Chlamydia in manipulating the cell metabolism to benefit bacterial propagation and survival through close interaction with the host cell mitochondrial and apoptotic pathway molecules.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
25
|
Yang Y, Li Y, Du X, Liu Z, Zhu C, Mao W, Liu G, Jiang Q. Anti-Aging Effects of Quercetin in Cladocera Simocephalus vetulus Using Proteomics. ACS OMEGA 2023; 8:17609-17619. [PMID: 37251128 PMCID: PMC10210174 DOI: 10.1021/acsomega.2c08242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
Quercetin is a flavonoid widely found in food and traditional herbs. In this study, we evaluated the anti-aging effects of quercetin on Simocephalus vetulus (S. vetulus) by assessing lifespan and growth parameters and analyzed the differentially expressed proteins and crucial pathways associated with quercetin activity using proteomics. The results demonstrated that, at a concentration of 1 mg/L, quercetin significantly prolonged the average and maximal lifespans of S. vetulus and increased the net reproduction rate slightly. The proteomics-based analysis revealed 156 differently expressed proteins, with 84 being significantly upregulated and 72 significantly downregulated. The protein functions were identified as being associated with glycometabolism, energy metabolism, and sphingolipid metabolism pathways, and the key enzyme activity and related gene expression, such that of AMPK, supported the importance of these pathways in the anti-aging activity of quercetin. In addition, quercetin was found to regulate the anti-aging-related proteins Lamin A and Klotho directly. Our results increased the understanding of quercetin's anti-aging effects.
Collapse
Affiliation(s)
- Ying Yang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiming Li
- Fishery
Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinglin Du
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiquan Liu
- School of
Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, Zhejiang, China
- School
of Engineering, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China
| | - Chenxi Zhu
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Weiping Mao
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Guoxing Liu
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- The
Low Temperature Germplasm Bank of Important Economic Fish of Jiangsu
Provincial Science and Technology Resources (Agricultural Germplasm
Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qichen Jiang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| |
Collapse
|
26
|
Kwolek-Mirek M, Bednarska S, Dubicka-Lisowska A, Maslanka R, Zadrag-Tecza R, Kaszycki P. Unbalance between Pyridine Nucleotide Cofactors in The SOD1 Deficient Yeast Saccharomyces cerevisiae Causes Hypersensitivity to Alcohols and Aldehydes. Int J Mol Sci 2022; 24:ijms24010659. [PMID: 36614102 PMCID: PMC9820918 DOI: 10.3390/ijms24010659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Alcohol and aldehyde dehydrogenases are especially relevant enzymes involved in metabolic and detoxification reactions that occur in living cells. The comparison between the gene expression, protein content, and enzymatic activities of cytosolic alcohol and aldehyde dehydrogenases of the wild-type strain and the Δsod1 mutant lacking superoxide dismutase 1, which is hypersensitive to alcohols and aldehydes, shows that the activity of these enzymes is significantly higher in the Δsod1 mutant, but this is not a mere consequence of differences in the enzymatic protein content nor in the expression levels of genes. The analysis of the NAD(H) and NADP(H) content showed that the higher activity of alcohol and aldehyde dehydrogenases in the Δsod1 mutant could be a result of the increased availability of pyridine nucleotide cofactors. The higher level of NAD+ in the Δsod1 mutant is not related to the higher level of tryptophan; in turn, a higher generation of NADPH is associated with the upregulation of the pentose phosphate pathway. It is concluded that the increased sensitivity of the Δsod1 mutant to alcohols and aldehydes is not only a result of the disorder of redox homeostasis caused by the induction of oxidative stress but also a consequence of the unbalance between pyridine nucleotide cofactors.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.K.-M.); (R.Z.-T.); Tel.: +48-17-785-5412 (M.K.-M.); +48-17-785-5413 (R.Z.-T.)
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Aleksandra Dubicka-Lisowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Roman Maslanka
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.K.-M.); (R.Z.-T.); Tel.: +48-17-785-5412 (M.K.-M.); +48-17-785-5413 (R.Z.-T.)
| | - Pawel Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| |
Collapse
|
27
|
Feng Y, Zhu Y, Bao Z, Wang B, Liu T, Wang H, Yu T, Yang Y, Yu L. Construction of Glucose-6-Phosphate Dehydrogenase Overexpression Strain of Schizochytrium sp. H016 to Improve Docosahexaenoic Acid Production. Mar Drugs 2022; 21:md21010017. [PMID: 36662190 PMCID: PMC9866257 DOI: 10.3390/md21010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an important omega-3 polyunsaturated fatty acid (PUFA) that plays a critical physiological role in human health. Schizochytrium sp. is considered an excellent strain for DHA production, but the synthesis of DHA is limited by the availability of nicotinamide adenine dinucleotide phosphate (NADPH). In this study, the endogenous glucose-6-phosphate dehydrogenase (G6PD) gene was overexpressed in Schizochytrium sp. H016. Results demonstrated that G6PD overexpression increased the availability of NADPH, which ultimately altered the fatty acid profile, resulting in a 1.91-fold increase in DHA yield (8.81 g/L) and increased carbon flux by shifting it from carbohydrate and protein synthesis to lipid production. Thus, G6PD played a vital role in primary metabolism. In addition, G6PD significantly increased DHA content and lipid accumulation by 31.47% and 40.29%, respectively. The fed-batch fermentation experiment results showed that DHA production reached 17.01 g/L in the overexpressing G6PD strain. These results elucidated the beneficial effects of NADPH on the synthesis of PUFA in Schizochytrium sp. H016, which may be a potential target for metabolic engineering. Furthermore, this study provides a promising regulatory strategy for the large-scale production of DHA in Schizochytrium sp.
Collapse
Affiliation(s)
- Yumei Feng
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhendong Bao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Bohan Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tingting Liu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Huihui Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tianyi Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Ying Yang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
- Correspondence: ; Tel.: +86-2-787-792-264
| |
Collapse
|
28
|
Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. Cells 2022; 11:cells11193041. [PMID: 36231003 PMCID: PMC9563910 DOI: 10.3390/cells11193041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypomorphic Glucose 6-P dehydrogenase (G6PD) alleles, which cause G6PD deficiency, affect around one in twenty people worldwide. The high incidence of G6PD deficiency may reflect an evolutionary adaptation to the widespread prevalence of malaria, as G6PD-deficient red blood cells (RBCs) are hostile to the malaria parasites that infect humans. Although medical interest in this enzyme deficiency has been mainly focused on RBCs, more recent evidence suggests that there are broader implications for G6PD deficiency in health, including in skeletal muscle diseases. G6PD catalyzes the rate-limiting step in the pentose phosphate pathway (PPP), which provides the precursors of nucleotide synthesis for DNA replication as well as reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is involved in the detoxification of cellular reactive oxygen species (ROS) and de novo lipid synthesis. An association between increased PPP activity and the stimulation of cell growth has been reported in different tissues including the skeletal muscle, liver, and kidney. PPP activity is increased in skeletal muscle during embryogenesis, denervation, ischemia, mechanical overload, the injection of myonecrotic agents, and physical exercise. In fact, the highest relative increase in the activity of skeletal muscle enzymes after one bout of exhaustive exercise is that of G6PD, suggesting that the activation of the PPP occurs in skeletal muscle to provide substrates for muscle repair. The age-associated loss in muscle mass and strength leads to a decrease in G6PD activity and protein content in skeletal muscle. G6PD overexpression in Drosophila Melanogaster and mice protects against metabolic stress, oxidative damage, and age-associated functional decline, and results in an extended median lifespan. This review discusses whether the well-known positive effects of exercise training in skeletal muscle are mediated through an increase in G6PD.
Collapse
|
29
|
Hou E, Yan J, Zhu X, Qiao J. High-salt diet contributes to excess oxidative stress and abnormal metabolism in mouse ovaries. Biomed Chromatogr 2022; 36:e5500. [PMID: 36068010 DOI: 10.1002/bmc.5500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
Abstract
High-salt diets (HSDs) are associated with elevated levels of reactive oxygen species (ROS), which play a key role in ovarian disorders. However, it is not yet clear whether HSDs impact ovarian redox balance and metabolism. Accordingly, in this study, we analyzed the effect of HSDs on ovarian redox balance by biochemical analysis and further dissected its possible mechanism by metabolic analysis combined with correlation network method. We found that ROS and H2 O2 levels were significantly increased in the ovarian tissue of mice receiving an HSD for 4 weeks. The enhanced activity of NADPH oxidase may contribute to an increase in ROS in ovarian tissue after excessive salt consumption. Meanwhile, the activities of key antioxidant enzymes, including superoxide dismutase 2, glutathione peroxidase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase increased significantly. The apparent activation of antioxidant defense appeared insufficient as the glutathione, GSH/GSSG ratio, and NADPH/NADP+ ratio decreased significantly. In addition, HSDs significantly altered the metabolic patterns of ovarian tissue in mice, and pathways were mainly enriched in fatty acid metabolism. Arachidonic acid was an altered hub metabolite according to Pearson correlation network analysis. Mechanistically, an HSD increased the concentration of arachidonic acid in ovarian tissue, inducing high NADPH oxidase activity, which increased the levels of ROS and H2 O2 . Our results indicate that HSDs can lead to increased oxidative stress and dramatically alter the metabolic patterns in mouse ovarian tissues.
Collapse
Affiliation(s)
- Entai Hou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| |
Collapse
|
30
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Zheng-hong Qin
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
31
|
Mondal A, Mukherjee S, Dar W, Upadhyay P, Ranganathan A, Pati S, Singh S. G6PD deficiency: imbalance of functional dichotomy contributing to the severity of COVID-19. Future Microbiol 2022; 17:1161-1170. [PMID: 35880537 PMCID: PMC9332910 DOI: 10.2217/fmb-2021-0299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human COVID-19 has affected more than 491 million people worldwide. It has caused over 6.1 million deaths and has especially perpetrated a high number of casualties among the elderly and those with comorbid illnesses. COVID-19 triggers a pro-oxidant response, leading to the production of reactive oxygen species (ROS) as a common innate defense mechanism. However, ROS are regulated by a key enzyme called G6PD via the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which controls the generation and removal of ROS in a tissue-specific manner. Therefore, a deficiency of G6PD can lead to the dysregulation of ROS, which causes a severe inflammatory response in COVID-19 patients. This report highlights the G6PD dichotomy in the regulation of ROS and inflammatory responses, as well as its deficiency in severity among COVID-19 patients.
Collapse
Affiliation(s)
- Abir Mondal
- Department of Life Sciences, Neurobiology & Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modelling Group, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, Neurobiology & Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modelling Group, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Waseem Dar
- Department of Life Sciences, Neurobiology & Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modelling Group, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Prince Upadhyay
- Department of Life Sciences, Neurobiology & Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modelling Group, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, Neurobiology & Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modelling Group, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Zhang Y, Xu Y, Lu W, Li J, Yu S, Brown EJ, Stanger BZ, Rabinowitz JD, Yang X. G6PD-mediated increase in de novo NADP + biosynthesis promotes antioxidant defense and tumor metastasis. SCIENCE ADVANCES 2022; 8:eabo0404. [PMID: 35857842 PMCID: PMC9299539 DOI: 10.1126/sciadv.abo0404] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/03/2022] [Indexed: 05/11/2023]
Abstract
Metastasizing cancer cells are able to withstand high levels of oxidative stress through mechanisms that are poorly understood. Here, we show that under various oxidative stress conditions, pancreatic cancer cells markedly expand NADPH and NADP+ pools. This expansion is due to up-regulation of glucose-6-phosphate dehydrogenase (G6PD), which stimulates the cytoplasmic nicotinamide adenine dinucleotide kinase (NADK1) to produce NADP+ while converting NADP+ to NADPH. G6PD is activated by the transcription factor TAp73, which is, in turn, regulated by two pathways. Nuclear factor-erythroid 2 p45-related factor-2 suppresses expression of the ubiquitin ligase PIRH2, stabilizing the TAp73 protein. Checkpoint kinases 1/2 and E2F1 induce expression of the TAp73 gene. Levels of G6PD and its upstream activators are elevated in metastatic pancreatic cancer. Knocking down G6PD impedes pancreatic cancer metastasis, whereas forced G6PD expression promotes it. These findings reveal an intracellular network that maintains redox homeostasis through G6PD-mediated increase in de novo NADP+ biosynthesis, which may be co-opted by tumor cells to enable metastasis.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Jinyang Li
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sixiang Yu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric J. Brown
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben Z. Stanger
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Xiaolu Yang
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022; 10:886393. [PMID: 35865630 PMCID: PMC9294643 DOI: 10.3389/fcell.2022.886393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in energy metabolism play a major role in the lineage of cardiomyocytes, such as the dramatic changes that occur in the transition from neonate to newborn. As cardiomyocytes mature, they shift from a primarily glycolytic state to a mitochondrial oxidative metabolic state. Metabolic intermediates and metabolites may have epigenetic and transcriptional roles in controlling cell fate by increasing mitochondrial biogenesis. In the maturing cardiomyocyte, such as in the postnatal heart, fatty acid oxidation increases in conjunction with increased mitochondrial biogenesis driven by the transcriptional coregulator PGC1-α. PGC1-α is necessary for mitochondrial biogenesis in the heart at birth, with deficiencies leading to postnatal cardiomyopathy. While stem cell therapy as a treatment for heart failure requires further investigation, studies suggest that adult stem cells may secrete cardioprotective factors which may regulate cardiomyocyte differentiation and survival. This review will discuss how metabolism influences mitochondrial biogenesis and how mitochondrial biogenesis influences cell fate, particularly in the context of the developing cardiomyocyte. The implications of energy metabolism on stem cell differentiation into cardiomyocytes and how this may be utilized as a therapy against heart failure and cardiovascular disease will also be discussed.
Collapse
|
34
|
Bose S, Huang Q, Ma Y, Wang L, Rivera GO, Ouyang Y, Whitaker R, Gibson RA, Kontos CD, Berchuck A, Previs RA, Shen X. G6PD inhibition sensitizes ovarian cancer cells to oxidative stress in the metastatic omental microenvironment. Cell Rep 2022; 39:111012. [PMID: 35767962 PMCID: PMC9534522 DOI: 10.1016/j.celrep.2022.111012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of OC-related deaths. In particular, OC tumors preferentially metastasize to and proliferate rapidly in the omentum. Here, we show that metastatic OC cells experience increased oxidative stress in the omental microenvironment. Metabolic reprogramming, including upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, allows OC cells to compensate for this challenge. Inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting that this adaptive metabolic dependency is important for OC omental metastasis. Bose et al. characterize the importance of G6PD, the rate-limiting enzyme of the oxidative pentose phosphate pathway, in mitigating oxidative stress experienced by ovarian cancer cells metastasizing to the omentum.
Collapse
Affiliation(s)
- Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710006, China
| | - Yunhan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Grecia O Rivera
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yunxin Ouyang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Regina Whitaker
- Division of Gynecological Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27708, USA
| | - Rebecca A Gibson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Christopher D Kontos
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA; Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27708, USA
| | - Andrew Berchuck
- Division of Gynecological Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27708, USA
| | - Rebecca A Previs
- Division of Gynecological Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
35
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Song J, Wang J, Wang X, Zhao H, Hu T, Feng Z, Lei Z, Li W, Zheng Y, Wang M. Improving the Acetic Acid Fermentation of Acetobacter pasteurianus by Enhancing the Energy Metabolism. Front Bioeng Biotechnol 2022; 10:815614. [PMID: 35350179 PMCID: PMC8957916 DOI: 10.3389/fbioe.2022.815614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Energy metabolism is important for cell growth and tolerance against environment stress. In acetic acid fermentation by Acetobacter pasteurianus, the correlation coefficients of acid production rate with energy charge and ATP content were 0.9981 and 0.9826, respectively. The main energy metabolism pathway, including glycolysis pathway, TCA cycle, ethanol oxidation, pentose phosphate pathway, and ATP production, was constructed by transcriptome analysis. The effects of fermentation conditions, including dissolved oxygen, initial acetic acid concentration, and total concentration, on acetic acid fermentation and energy metabolism of A. pasteurianus were analyzed by using the RT-PCR method. The results showed the high energy charge inhibited glucose catabolism, and associated with the high ethanol oxidation rate. Consequently, a virtuous circle of increased ethanol oxidation, increased energy generation, and acetic acid tolerance was important for improving acetic acid fermentation.
Collapse
Affiliation(s)
- Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tao Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiwei Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhi Lei
- Tian Di No. 1 Beverage Inc., Jiangmen, China
| | - Weizhao Li
- Tian Di No. 1 Beverage Inc., Jiangmen, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Yu Zheng, ; Min Wang,
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Yu Zheng, ; Min Wang,
| |
Collapse
|
37
|
Dawood HM, Shawky E, Hammoda HM, Metwally AM, Ibrahim RS. Development of a validated HPTLC-bioautographic method for evaluation of aromatase inhibitory activity of plant extracts and their constituents. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:115-126. [PMID: 34171936 DOI: 10.1002/pca.3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/08/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Aromatase is a CYP450 enzyme that catalyses the conversion of androgens into oestrogens, where the decrease in the production of oestrogens aided by aromatase inhibitors is considered a target in post-menopausal breast cancer therapy. TLC-bioautography is a technique employed for combining chromatographic separations on TLC plates with bioassays. This is the first report to evaluate aromatase inhibitory activity using this technique. OBJECTIVES The aim of this study is to develop and validate a new TLC-bioautographic method for determination of aromatase inhibitory activity in 14 plant extracts. Two quantitation methods, the peak area method and reciprocal iso-inhibition volume (RIV) method, were compared and investigated to attain reliable results. Factors affecting the enzymatic reaction (temperature, pH, enzyme and substrate concentrations … etc.) were also investigated to attain the optimum parameters. METHODOLOGY TLC assisted by digital image processing was implemented for quantitative estimation of the aromatase inhibition of 14 plant extracts using chrysin as positive control. The fluorometric substrate dibenzyl fluorescein (DBF) was utilised for the assay, where inhibitory compounds were visualised as dark spots against a blue fluorescent background. Two software programs, Sorbfil® videodensitometer (in the peak area method) and ImageJ® (in the RIV method), were thoroughly validated using the International Council on Harmonisation (ICH) guideline and used for quantitation. RESULTS The RIV method showed superiority over the peak area method in the quantitation results of the tracks with non-homogenous background with %RSD values of 0.98 and 1.49 compared with 2.86 and 3.58, respectively. Further, the methods allow the comparison of the activity of different unknown inhibitory compounds without the need for a reference or a positive control. CONCLUSION Using the TLC-bioautographic method by image processing combined with the RIV quantitation method, simultaneous separation and quantitation of aromatase inhibitory components could be applied to estimate the relative activity of various plant extracts.
Collapse
Affiliation(s)
- Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Aly M Metwally
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
38
|
Huang H, Liu Z, Qi X, Gao N, Chang J, Yang M, Na S, Liu Y, Song R, Li L, Chen G, Zhou H. Rhubarb granule promotes diethylnitrosamine-induced liver tumorigenesis by activating the oxidative branch of pentose phosphate pathway via G6PD in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114479. [PMID: 34343647 DOI: 10.1016/j.jep.2021.114479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a natural herbal medicine widely used clinically with numerous pharmacological activities including anti-cancer. Specifically, several studies reported that free anthraquinones from Rhubarb suppressed the proliferation of hepatoma cells. Nonetheless, recent studies revealed that Rhubarb caused hepatotoxicity in vivo, confirming its "two-way" effect on the liver. Therefore, the efficacy and safety of Rhubarb in the in vivo treatment of liver cancer should be further elucidated. AIM OF THE STUDY This study investigated the presence of hepatoprotection or hepatotoxicity of Rhubarb in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. MATERIAL AND METHODS A total of 112 male Sprague-Dawley rats weighing 190-250 g were enrolled. The rats were induced hepatocarcinogenesis using diethylnitrosamine (0.002 g/rat) until 17 weeks. Starting at week 11, Rhubarb granules (4 g/kg and 8 g/kg) were intragastrically administered daily for 7 weeks. All rats were euthanized at week 20 and the livers were analyzed via non-targeted metabolomics analysis. We established hepatic glucose 6 phosphate (6PG) levels and glucose 6 phosphate dehydrogenase (G6PD) activities to assess the pentose phosphate pathway (PPP). And the liver injuries of rats were analyzed via histological changes, hepatic function, as well as hepatic protein levels of alpha-fetoprotein (AFP), pyruvate kinase isozyme type M2 (PKM2), and proliferating cell nuclear antigen (PCNA). Furthermore, polydatin (0.1 g/kg/d) as a specific inhibitor of G6PD was used to treat rats. Notably, their histological changes, hepatic function, hepatic 6PG levels, hepatic G6PD activities, PCNA levels, and PKM2 levels were recorded. RESULTS Non-targeted metabolomics revealed that Rhubarb regulated the PPP in the liver of Rhubarb-DEN-treated rats. Besides, Rhubarb activated the oxidative branch of the PPP by activating G6PD (a rate-limiting enzyme in the oxidative PPP) in the liver of Rhubarb-DEN-treated rats. Meanwhile, Rhubarb promoted DEN-induced hepatocarcinogenesis. Moreover, polydatin attenuated the promoting effect of Rhubarb on DEN-induced hepatocarcinogenesis. CONCLUSIONS Rhubarb promoted DEN-induced hepatocarcinogenesis by activating the PPP, indicating that the efficacy and safety of Rhubarb in the treatment of liver cancer deserve to be deliberated.
Collapse
Affiliation(s)
- Hongwu Huang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Xiaoru Qi
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Nailong Gao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Jianguo Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Miaomiao Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province, PR China; Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Rui Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Guangliang Chen
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China.
| |
Collapse
|
39
|
Valentino T, Figueiredo VC, Mobley CB, McCarthy JJ, Vechetti IJ. Evidence of myomiR regulation of the pentose phosphate pathway during mechanical load-induced hypertrophy. Physiol Rep 2021; 9:e15137. [PMID: 34889054 PMCID: PMC8661100 DOI: 10.14814/phy2.15137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Many of the molecular and cellular mechanisms discovered to regulate skeletal muscle hypertrophy were first identified using the rodent synergist ablation model. This model reveals the intrinsic capability and necessary pathways of skeletal muscle growth in response to mechanical overload (MOV). Reminiscent of the rapid cellular growth observed with cancer, we hypothesized that in response to MOV, skeletal muscle would undergo metabolic programming to sustain increased demands to support hypertrophy. To test this hypothesis, we analyzed the gene expression of specific metabolic pathways taken from transcriptomic microarray data of a MOV time course. We found an upregulation of genes involved in the oxidative branch of the pentose phosphate pathways (PPP) and mitochondrial branch of the folate cycle suggesting an increase in the production of NADPH. In addition, we sought to determine the potential role of skeletal muscle-enriched microRNA (myomiRs) and satellite cells in the regulation of the metabolic pathways that changed during MOV. We observed an inverse pattern in gene expression between muscle-enriched myomiR-1 and its known target gene glucose-6-phosphate dehydrogenase, G6pdx, suggesting myomiR regulation of PPP activation in response to MOV. Satellite cell fusion had a significant but modest impact on PPP gene expression. These transcriptomic findings suggest the robust muscle hypertrophy induced by MOV requires enhanced redox metabolism via PPP production of NADPH which is potentially regulated by a myomiR network.
Collapse
Affiliation(s)
- Taylor Valentino
- Department of PhysiologyCollege of MedicineLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Vandre C. Figueiredo
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | | | - John J. McCarthy
- Department of PhysiologyCollege of MedicineLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Ivan J. Vechetti
- Department of Nutrition and Health SciencesCollege of Education and Human SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
40
|
P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int J Mol Sci 2021; 22:ijms222111763. [PMID: 34769188 PMCID: PMC8584052 DOI: 10.3390/ijms222111763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)—the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.
Collapse
|
41
|
Churova MV, Shulgina NS, Krupnova MY, Efremov DA, Nemova NN. Activity of Energy and Carbohydrate Metabolism Enzymes in the Juvenile Pink Salmon Oncorhynchus gorbuscha (Walb.) during the Transition from Freshwater to a Marine Environment. BIOL BULL+ 2021. [DOI: 10.1134/s106235902104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Biochemical adaptations of energy metabolism and some pathways of glucose oxidation during a change in salinity of the environment in larvae and smolts of the pink salmon Oncorhynchus gorbuscha (Walb.) inhabiting the White Sea were studied. We assayed the activity of energy and carbohydrate metabolism enzymes (cytochrome c oxidase (COХ), lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G6PDH), 1-glycerophosphate dehydrogenase (1-GPDH), and aldolase) in pink salmon larvae in a short-term aquarium experiment and in pink salmon smolts in a long-term cage experiment simulating the transition of juveniles from freshwater to a marine environment. A decrease in the activity of COX, LDH, 1‑GPDH, and aldolase already in the first hour after the transfer of larvae to seawater was shown. Smolts kept in the estuary and in the sea had low levels of activity of 1-GPDH and aldolase in comparison with individuals from the river. Most likely, in the salmon juveniles studied, there was a redistribution of carbohydrates between the reactions of aerobic and anaerobic metabolism in favor of anaerobic ATP synthesis. No changes in the enzyme activity of the pentose phosphate pathway, G-6-PDH, were found in either larvae or smolts compared with the individuals kept in freshwater. Maintenance of the required levels of anaerobic metabolism and of the pentose phosphate pathway is probably one of the mechanisms of biochemical adaptation of pink salmon to changes in salinity.
Collapse
|
42
|
Liu Z, Chen Y, Wang L, Ji S. ALKBH5 Promotes the Proliferation of Glioma Cells via Enhancing the mRNA Stability of G6PD. Neurochem Res 2021; 46:3003-3011. [PMID: 34297301 DOI: 10.1007/s11064-021-03408-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
This study aims to investigate the biological role of 6-methyladenine (m6A) methylation in inducing the carcinogenesis of glioma and its proliferation. Relative levels of ALKBH5 and glucose-6-phosphate dehydrogenase (G6PD) in glioma tissues and cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Gain-of-function and loss-of-function approaches were used to investigate the role of ALKBH5 in mediating proliferation and energy metabolism of glioma cells. The regulatory effect of ALKBH5 on G6PD was analyzed using m6A-qRT-PCR. Our results showed that ALKBH5 was upregulated in glioma, which stimulated glioma cells to proliferate. Serving as a m6A eraser, ALKBH5 demethylated the target transcript G6PD and enhanced its mRNA stability, thereby promoting G6PD translation and activating the pentose phosphate pathway (PPP). Collectively, ALKBH5 stimulates glioma cells to proliferate through erasing the m6A methylation of G6PD, which can be utilized as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Zhifeng Liu
- Department of Neurosurgery, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061001, Hebei, China.
| | - Yonghan Chen
- Department of Neurosurgery, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Leilei Wang
- Department of Neurosurgery, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Suzhen Ji
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
43
|
Wu M, Zhang C, Xie M, Zhen Y, Lai B, Liu J, Qiao L, Liu S, Shi D. Compartmentally scavenging hepatic oxidants through AMPK/SIRT3-PGC1α axis improves mitochondrial biogenesis and glucose catabolism. Free Radic Biol Med 2021; 168:117-128. [PMID: 33794310 DOI: 10.1016/j.freeradbiomed.2021.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 01/27/2023]
Abstract
Early treatment can prevent the occurrence of diabetes; however, there are few pharmacological treatment strategies to date. The liver is a major metabolic organ, and hepatic glucose homeostasis is dysregulated in type 1 and type 2 diabetes mellitus. However, the potential of specifically targeting the liver to prevent diabetes has not been fully exploited. In this study, we found that compartmentally inhibiting hepatic oxidants by nano-MitoPBN, a liver mitochondrial-targeting ROS scavenger, could effectively prevent diabetes. Our results demonstrated that nano-MitoPBN reversed the downregulation of PGC-1α and the enhanced gluconeogenesis in the livers of diabetic mice. PGC-1α, through an AMPK- and SIRT3-mediated mechanism, promoted mitochondrial biogenesis, increased the number of mitochondria, and enhanced the rate of aerobic oxidation, leading to decreased glucose levels in the blood by increasing glucose uptake and catabolism in the liver. Moreover, the increase in PGC-1α activity did not promote the activation of gluconeogenesis. Our study demonstrated that by regulating the redox balance of liver mitochondria in the early stage of diabetes, PGC-1α could selectively inhibit gluconeogenesis in the liver and promote hepatic mitochondrial function, which accelerated the catabolism of hepatic glucose and reduced blood glucose. Thus, glucose tolerance can be normalized through only three weeks of intervention. Our results showed that nano-MitoPBN could effectively prevent diabetes in a short period of time, highlighting the effectiveness and importance of early intervention for diabetes and suggesting the potential advantages of hepatic mitochondrial targeting oxidants nano-inhibitors in the prevention and early treatment of diabetes.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chunwang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mengdan Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuansheng Zhen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ben Lai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shanlin Liu
- Free Radical Regulation and Application Research Center of Fudan University, Shanghai, 200032, People's Republic of China.
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
44
|
Bertoldo MJ, Listijono DR, Ho WHJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, Loh WGN, Youngson NA, Maniam J, Wong ASA, Selesniemi K, Bustamante S, Li C, Zhao Y, Marinova MB, Kim LJ, Lau L, Wu RM, Mikolaizak AS, Araki T, Le Couteur DG, Turner N, Morris MJ, Walters KA, Goldys E, O'Neill C, Gilchrist RB, Sinclair DA, Homer HA, Wu LE. NAD + Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep 2021; 30:1670-1681.e7. [PMID: 32049001 PMCID: PMC7063679 DOI: 10.1016/j.celrep.2020.01.058] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD+). Treatment with the NAD+ metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD+-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality. These benefits of NMN extend to the developing embryo, where supplementation reverses the adverse effect of maternal age on developmental milestones. These findings suggest that late-life restoration of NAD+ levels represents an opportunity to rescue female reproductive function in mammals. Declining oocyte quality is considered an irreversible feature of aging and is rate limiting for human fertility. Bertoldo et al. show that reversing an age-dependent decline in NAD(P)H restores oocyte quality, embryo development, and functional fertility in aged mice. These findings may be relevant to reproductive medicine.
Collapse
Affiliation(s)
- Michael J Bertoldo
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Dave R Listijono
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wing-Hong Jonathan Ho
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Dale M Goss
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Dulama Richani
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Xing L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Saabah Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Jared M Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | | | - Neil A Youngson
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jayanthi Maniam
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ashley S A Wong
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kaisa Selesniemi
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA; Jumpstart Fertility Pty Ltd., Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Catherine Li
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Yiqing Zhao
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Maria B Marinova
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lynn-Jee Kim
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Laurin Lau
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Rachael M Wu
- Graduate Entry Medical School, University of Limerick, Limerick, Republic of Ireland
| | | | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - David G Le Couteur
- ANZAC Medical Research Institute, University of Sydney, Concord, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Kirsty A Walters
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ewa Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Christopher O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - David A Sinclair
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA.
| | - Hayden A Homer
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia; Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, Australia.
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Imanaka S, Shigetomi H, Kobayashi H. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reprod Sci 2021; 29:653-667. [PMID: 33675030 DOI: 10.1007/s43032-021-00505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The aim of this review is to summarize our current understanding of the molecular mechanism for the glucose metabolism, especially pyruvate dehydrogenase (PDH), during oocyte maturation, as well as future perspectives of therapeutic strategies for aging focusing on metabolic regulation between aerobic glycolysis and the tricarboxylic acid (TCA) cycle/oxidative phosphorylation (OXPHOS). Each keyword alone or in combination was used to search from PubMed. Glucose metabolism is a dynamic process involving "On" and "Off" switches by the pyruvate dehydrogenase kinase (PDK)-PDH axis, which is crucial for energy metabolism and mitochondrial efficiency in cumulus cell differentiation and oocyte maturation. Activation of PDK suppresses the conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA) through the inactivation of PDH, which allows the cumulus cells to supply sufficient amounts of pyruvate, lactate, and nicotinamide adenine dinucleotide phosphate (NADPH) to the oocytes. On the other hand, inactivation of PDK in oocytes can produce adenosine triphosphate (ATP) through a metabolic shift from aerobic glycolysis to the TCA cycle/OXPHOS. The metabolic balance between aerobic glycolysis and TCA cycle/OXPHOS presents us with a number of enzymes, ligands, receptors, and antioxidants that are potential therapeutic targets, some of which have already been successfully pursued to improve fertility outcomes. However, there are also many reports that question their efficacy. In conclusion, understanding the molecular mechanisms involved in the PDK-PDH axis is a crucial step to advance in novel therapeutic strategies to improve oocyte quality.
Collapse
Affiliation(s)
- Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Aska Ladies Clinic, Nara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan. .,Ms.Clinic MayOne, Kashihara, Japan.
| |
Collapse
|
46
|
Fibach E. The Redox Balance and Membrane Shedding in RBC Production, Maturation, and Senescence. Front Physiol 2021; 12:604738. [PMID: 33664673 PMCID: PMC7920951 DOI: 10.3389/fphys.2021.604738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Membrane shedding in the form of extracellular vesicles plays a key role in normal physiology and pathology. Partial disturbance of the membrane-cytoskeleton linkage and increased in the intracellular Ca content are considered to be mechanisms underlying the process, but it is questionable whether they constitute the primary initiating steps. Homeostasis of the redox system, which depends on the equilibrium between oxidants and antioxidants, is crucial for many cellular processes. Excess oxidative power results in oxidative stress, which affects many cellular components, including the membrane. Accumulating evidence suggests that oxidative stress indirectly affects membrane shedding most probably by affecting the membrane-cytoskeleton and the Ca content. In red blood cells (RBCs), changes in both the redox system and membrane shedding occur throughout their life-from birth-their production in the bone marrow, to death-aging in the peripheral blood and removal by macrophages in sites of the reticuloendothelial system. Both oxidative stress and membrane shedding are disturbed in diseases affecting the RBC, such as the hereditary and acquired hemolytic anemias (i.e., thalassemia, sickle cell anemia, and autoimmune hemolytic anemia). Herein, I review some data-based and hypothetical possibilities that await experimental confirmation regarding some aspects of the interaction between the redox system and membrane shedding and its role in the normal physiology and pathology of RBCs.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
47
|
Pötzsch A, Zocher S, Bernas SN, Leiter O, Rünker AE, Kempermann G. L-lactate exerts a pro-proliferative effect on adult hippocampal precursor cells in vitro. iScience 2021; 24:102126. [PMID: 33659884 PMCID: PMC7895751 DOI: 10.1016/j.isci.2021.102126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/05/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
L-lactate has energetic and signaling properties, and its availability is modulated by activity-dependent stimuli, which also regulate adult hippocampal neurogenesis. Studying the effects of L-lactate on neural precursor cells (NPCs) in vitro, we found that L-lactate is pro-proliferative and that this effect is dependent on the active lactate transport by monocarboxylate transporters. Increased proliferation was not linked to amplified mitochondrial respiration. Instead, L-lactate deviated glucose metabolism to the pentose phosphate pathway, indicated by increased glucose-6-phosphate dehydrogenase activity while glycolysis decreased. Knockout of Hcar1 revealed that the pro-proliferative effect of L-lactate was not dependent on receptor activity although phosphorylation of ERK1/2 and Akt was increased following L-lactate treatment. Together, we show that availability of L-lactate is linked to the proliferative potential of NPCs and add evidence to the hypothesis that lactate influences cellular homeostatic processes in the adult brain, specifically in the context of adult hippocampal neurogenesis. L-lactate increases NPC proliferation in an MCT-dependent manner The pro-proliferative effect of L-lactate is independent of HCAR1 signaling L-lactate decreases glycolysis in favor of pentose phosphate pathway activity L-lactate treatment leads to a transient increase in Akt and ERK1/2 phosphorylation
Collapse
Affiliation(s)
- Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Stefanie N Bernas
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Odette Leiter
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Annette E Rünker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
48
|
Jiang L, Luo C, Zhang D, Song M, Mei W, Sun Y, Zhang G. Shifts in a Phenanthrene-Degrading Microbial Community are Driven by Carbohydrate Metabolism Selection in a Ryegrass Rhizosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:962-973. [PMID: 33371686 DOI: 10.1021/acs.est.0c04951] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants usually promote pollutant bioremediation by several mechanisms including modifying the diversity of functional microbial species. However, conflicting results are reported that root exudates have no effects or negative effects on organic pollutant degradation. In this study, we investigated the roles of ryegrass in phenanthrene degradation in soils using DNA stable isotope probing (SIP) and metagenomics to reveal a potential explanation for conflicting results among phytoremediation studies. Phenanthrene biodegradation efficiency was improved by 8% after 14 days of cultivation. Twelve and ten operational taxonomic units (OTUs) were identified as active phenanthrene degraders in non-rhizosphere and rhizosphere soils, respectively. The active phenanthrene degraders exhibited higher average phylogenetic distances in rhizosphere soils (0.33) than non-rhizosphere soils (0.26). The Ka/Ks values (the ratio of nonsynonymous to synonymous substitutions) were about 10.37% higher in the rhizosphere treatment among >90% of all key carbohydrate metabolism-related genes, implying that ryegrass may be an important driver of microbial community variation in the rhizosphere by relieving the carbohydrate metabolism pressure and improving the survival ability of r-strategy microbes. Most Ka/Ks values of root-exudate-related metabolism genes exhibited little change, except for fumarate hydratase that increased 13-fold in the rhizosphere compared to that in the non-rhizosphere treatment. The Ka/Ks values of less than 50% phenanthrene-degradation-related genes were affected, 30% of which increased and 70% behaved oppositely. Genes with altered Ka/Ks values had a low percentage and followed an inconsistent changing tendency, indicating that phenanthrene and its metabolites are not major factors influencing the active degraders. These results suggested the importance of carbohydrate metabolism, especially fumaric acid, in rhizosphere community shift, and hinted at a new hypothesis that the rhizosphere effect on phenanthrene degradation efficiency depends on the existence of active degraders that have competitive advantages in carbohydrate and fumaric acid metabolism.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weiping Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
49
|
Zheng X, Zhao X, Jin Y, Zhou L, Yang P, Ahmad H, Tian Z. High salt diet contributes to hypertension by weakening the medullary tricarboxylic acid cycle and antioxidant system in Dahl salt-sensitive rats. Biochimie 2020; 181:154-161. [PMID: 33347925 DOI: 10.1016/j.biochi.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023]
Abstract
High salt diet (HSD, 8% NaCl) contributes to salt-sensitive hypertension, this study aimed to determine the effect of HSD on salt-sensitive hypertension by combining proteomic with metabolomics methods. Salt-sensitive rats were fed on HSD and normal salt diet (NSD, 0.4% NaCl) for two weeks before further analysis. Proteomic analysis showed the differential expression proteins (DEPs) were primarily mapped in the tricarboxylic acid (TCA)-cycle, glycolysis/gluconeogenesis, and other pathways associated with multiple amino acids. HSD decreased the medullary activities and protein expression level of two key enzymes of TCA-cycle, MDH and NADP+-IDH. Metabolomics showed three serous TCA-cycle-associated compounds, including decreased malic acid, decreased citric acid, and increased fumaric acid were differentially detected, which resulted in a decrease in NO content and an increase in H2O2 content in serum. The content of GSH, GSH/GSSG ratio, and synthesis substrates of GSH-cysteine and glycine, were significantly decreased by HSD, thus attenuated the antioxidant system in the renal medulla. HSD enhanced the medullary pentose phosphate pathway, which finally increased the concentration of NADPH and NADP+, NADPH/NADP+, and the activity of NADPH oxidase in the renal medulla. Additionally, HSD enhanced the glycolysis pathway in the renal medulla. In summary, HSD significantly weakened the TCA cycle, and attenuated the antioxidant system in the renal medulla, which finally contributed to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinrui Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuexin Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Luxin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pengfei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hussain Ahmad
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
50
|
The Role of Urine F2-ISOPROSTANE CONcentration in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Haemorrhage-A Poor Prognostic Factor. Diagnostics (Basel) 2020; 11:diagnostics11010005. [PMID: 33375060 PMCID: PMC7822020 DOI: 10.3390/diagnostics11010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: The pathophysiology of delayed cerebral ischemia (DCI) remains unclear. One of the hypotheses suggests that reactive oxygen species play a role in its onset. Thus, we studied F2-isoprostanes (F2-IsoPs)—oxidative stress biomarkers. Our goal was to improve the early diagnosis of DCI in a non-invasive way. Methods: We conducted a prospective single center analysis of 38 aneurysmal subarachnoid hemorrhage patients. We assessed urine F2-IsoP concentration using immunoenzymatic arrays between the first and fifth day after bleeding. A correlation between urine F2-IsoP concentration and DCI occurrence was examined regarding clinical conditions and outcomes. Results: The urine F2-IsoP concentrations were greater than those in the control groups (p < 0.001). The 3rd day urine F2-IsoPs concentrations were correlated with DCI occurrence (p < 0.001) and long term outcomes after 12 months (p < 0.001). Conclusions: High levels of urine F2-IsoPs on day 3 can herald DCI.
Collapse
|