1
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Li Q, Wang O, Ji B, Zhao L, Zhao L. Alcohol, White Adipose Tissue, and Brown Adipose Tissue: Mechanistic Links to Lipogenesis and Lipolysis. Nutrients 2023; 15:2953. [PMID: 37447280 PMCID: PMC10346806 DOI: 10.3390/nu15132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
According to data from the World Health Organization, there were about 3 million deaths caused by alcohol consumption worldwide in 2016, of which about 50% were related to liver disease. Alcohol consumption interfering with the normal function of adipocytes has an important impact on the pathogenesis of alcoholic liver disease. There has been increasing recognition of the crucial role of adipose tissue in regulating systemic metabolism, far beyond that of an inert energy storage organ in recent years. The endocrine function of adipose tissue is widely recognized, and the significance of the proteins it produces and releases is still being investigated. Alcohol consumption may affect white adipose tissue (WAT) and brown adipose tissue (BAT), which interact with surrounding tissues such as the liver and intestines. This review briefly introduces the basic concept and classification of adipose tissue and summarizes the mechanism of alcohol affecting lipolysis and lipogenesis in WAT and BAT. The adipose tissue-liver axis is crucial in maintaining lipid homeostasis within the body. Therefore, this review also demonstrates the effects of alcohol consumption on the adipose tissue-liver axis to explore the role of alcohol consumption in the crosstalk between adipose tissue and the liver.
Collapse
Affiliation(s)
- Qing Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Lei Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Liang Y, Wang J, Li X, Wu S, Jiang C, Wang Y, Li X, Liu ZH, Mu Y. Exploring differentially expressed genes related to metabolism by RNA-Seq in porcine embryonic fibroblast after insulin treatment. J Vet Sci 2022; 23:e90. [PMID: 36448436 PMCID: PMC9715385 DOI: 10.4142/jvs.22088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin. OBJECTIVES The goal of our research was to see how insulin affected glucose and lipid metabolism in PEFs. METHODS We cultured the PEFs with the addition of insulin and sampled them at 0, 48, and 72 h for RNA-Seq analysis in triplicate for each time point. RESULTS At 48 and 72 h, 801 and 1,176 genes were differentially expressed, respectively. Of these, 272 up-regulated genes and 264 down-regulated genes were common to both time points. Gene Ontology analysis was used to annotate the functions of the differentially expressed genes (DEGs), the biological processes related to lipid metabolism and cell cycle were dominant. And the DEGs were significantly enriched in interleukin-17 signaling pathway, phosphatidylinositol-3-kinase-protein kinase B signaling pathway, pyruvate metabolism, and others pathways related to lipid metabolism by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. CONCLUSIONS These results elucidate the transcriptomic response to insulin in PEF. The genes and pathways involved in the transcriptome mechanisms provide useful information for further research into the complicated molecular processes of insulin in PEF.
Collapse
Affiliation(s)
- Yingjuan Liang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Jinpeng Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Xinyu Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Shuang Wu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Yue Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Xuechun Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150000, China
| |
Collapse
|
4
|
GSK3β Activity in Reward Circuit Functioning and Addiction. NEUROSCI 2021. [DOI: 10.3390/neurosci2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Collapse
|
5
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
6
|
Attie AD, Tang QQ, Bornfeldt KE. The insulin centennial-100 years of milestones in biochemistry. J Biol Chem 2021; 297:101278. [PMID: 34717954 PMCID: PMC8605089 DOI: 10.1016/j.jbc.2021.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
|
7
|
Attie AD, Tang QQ, Bornfeldt KE. The insulin centennial-100 years of milestones in biochemistry. J Lipid Res 2021; 62:100132. [PMID: 34717951 PMCID: PMC8721491 DOI: 10.1016/j.jlr.2021.100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/05/2022] Open
|
8
|
Abstract
The molecular mechanisms of cellular insulin action have been the focus of much investigation since the discovery of the hormone 100 years ago. Insulin action is impaired in metabolic syndrome, a condition known as insulin resistance. The actions of the hormone are initiated by binding to its receptor on the surface of target cells. The receptor is an α2β2 heterodimer that binds to insulin with high affinity, resulting in the activation of its tyrosine kinase activity. Once activated, the receptor can phosphorylate a number of intracellular substrates that initiate discrete signaling pathways. The tyrosine phosphorylation of some substrates activates phosphatidylinositol-3-kinase (PI3K), which produces polyphosphoinositides that interact with protein kinases, leading to activation of the kinase Akt. Phosphorylation of Shc leads to activation of the Ras/MAP kinase pathway. Phosphorylation of SH2B2 and of Cbl initiates activation of G proteins such as TC10. Activation of Akt and other protein kinases produces phosphorylation of a variety of substrates, including transcription factors, GTPase-activating proteins, and other kinases that control key metabolic events. Among the cellular processes controlled by insulin are vesicle trafficking, activities of metabolic enzymes, transcriptional factors, and degradation of insulin itself. Together these complex processes are coordinated to ensure glucose homeostasis.
Collapse
|
9
|
Fan X, Zhao Z, Wang D, Xiao J. Glycogen synthase kinase-3 as a key regulator of cognitive function. Acta Biochim Biophys Sin (Shanghai) 2020; 52:219-230. [PMID: 32147679 DOI: 10.1093/abbs/gmz156] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved and multifunctional serine/threonine protein kinase widely distributed in eukaryotic cells. GSK-3 is originally thought to be an enzyme that regulates glycogen synthesis. It was subsequently found that GSK-3 influences many critical cellular functions, such as cell structure, neural plasticity, gene expression, and neuronal survival. Recently, GSK-3 has been found to be associated with cognition, and its dysregulation leads to cognitive impairments in many diseases, including Alzheimer's disease, diabetes, depression, Parkinson's disease, and others. In this review, we summarized the current knowledge about the structure of GSK-3, the regulation of GSK-3 activity, and its role in cognitive function and cognitive-related disease.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhenyu Zhao
- Department of Anesthesiology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410000, China
| | - Deming Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
10
|
Backe MB, Jin C, Andreone L, Sankar A, Agger K, Helin K, Madsen AN, Poulsen SS, Bysani M, Bacos K, Ling C, Perone MJ, Holst B, Mandrup-Poulsen T. The Lysine Demethylase KDM5B Regulates Islet Function and Glucose Homeostasis. J Diabetes Res 2019; 2019:5451038. [PMID: 31467927 PMCID: PMC6701283 DOI: 10.1155/2019/5451038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS Posttranslational modifications of histones and transcription factors regulate gene expression and are implicated in beta-cell failure and diabetes. We have recently shown that preserving H3K27 and H3K4 methylation using the lysine demethylase inhibitor GSK-J4 reduces cytokine-induced destruction of beta-cells and improves beta-cell function. Here, we investigate the therapeutic potential of GSK-J4 to prevent diabetes development and examine the importance of H3K4 methylation for islet function. MATERIALS AND METHODS We used two mouse models of diabetes to investigate the therapeutic potential of GSK-J4. To clarify the importance of H3K4 methylation, we characterized a mouse strain with knockout (KO) of the H3K4 demethylase KDM5B. RESULTS GSK-J4 administration failed to prevent the development of experimental diabetes induced by multiple low-dose streptozotocin or adoptive transfer of splenocytes from acutely diabetic NOD to NODscid mice. KDM5B-KO mice were growth retarded with altered body composition, had low IGF-1 levels, and exhibited reduced insulin secretion. Interestingly, despite secreting less insulin, KDM5B-KO mice were able to maintain normoglycemia following oral glucose tolerance test, likely via improved insulin sensitivity, as suggested by insulin tolerance testing and phosphorylation of proteins belonging to the insulin signaling pathway. When challenged with high-fat diet, KDM5B-deficient mice displayed similar weight gain and insulin sensitivity as wild-type mice. CONCLUSION Our results show a novel role of KDM5B in metabolism, as KDM5B-KO mice display growth retardation and improved insulin sensitivity.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Chunyu Jin
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Luz Andreone
- Immuno-endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET–Universidad Austral, Argentina
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology, Denmark
| | - Andreas Nygaard Madsen
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Madhusudhan Bysani
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Karl Bacos
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Charlotte Ling
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmo, Sweden
| | - Marcelo Javier Perone
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
- Immuno-endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET–Universidad Austral, Argentina
| | - Birgitte Holst
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
11
|
Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev 2018; 19:406-420. [PMID: 29243339 DOI: 10.1111/obr.12646] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Adipose tissue plays a significant role in whole body energy homeostasis. Obesity-associated diabetes, fatty liver and metabolic syndrome are closely linked to adipose stress and dysfunction. Genetic predisposition, overeating and physical inactivity influence the expansion of adipose tissues. Under conditions of constant energy surplus, adipocytes become hypertrophic and adipose tissues undergo hyperplasia so as to increase their lipid storage capacity, thereby keeping circulating blood glucose and fatty acids below toxic levels. Nonetheless, adipocytes have a saturation point where they lose capacity to store more lipids. At this stage, when adipocytes are fully lipid-engorged, they express stress signals. Adipose depots (particularly visceral compartments) from obese individuals with a severe metabolic phenotype are characterized by the high proportion of hypertrophic adipocytes. This review focuses on the mechanisms of adipocyte enlargement in relation to adipose fatty acid and cholesterol metabolism, and considers how this may be related to adipose dysfunction.
Collapse
Affiliation(s)
- F Haczeyni
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Canberra, ACT, Australia
| | - K S Bell-Anderson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - G C Farrell
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Canberra, ACT, Australia
| |
Collapse
|
12
|
Niu G, Guo J, Tian Y, Zhao K, Li J, Xiao Q. α‑lipoic acid can greatly alleviate the toxic effect of AGES on SH‑SY5Y cells. Int J Mol Med 2018; 41:2855-2864. [PMID: 29436603 DOI: 10.3892/ijmm.2018.3477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/22/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the study was to explore the influence of α‑lipoic acid (α‑LA) on the cytotoxicity of advanced glycation end‑products (AGEs) against SH‑SY5Y cells. AGE‑bovine serum albumin (BSA) was incubated in vitro using SH‑SY5Y cells as a target model, and the control group was set. Cells were exposed to AGE‑BSA, and α‑LA was selectively added to the cells. Cell growth and death was determined by the MTT assay, which measures cellular metabolic rate, lactate dehydrogenase (LDH) leakage rate and cellular axonal length. Immunocytochemistry was employed to detect the expression of β‑amyloid (Aβ) protein in cells, and mRNA expression of amyloid precursor protein (APP) and the receptor for AGE (RAGE) were assayed by PT‑PCR. The metabolism of MTT was clearly increased, the rate of LDH leakage was significantly decreased, and axonal length was significantly increased in cells treated with α‑LA (0.1 g/l) as compared to untreated cells. Furthermore, the expression levels of Aβ protein were also decreased. In addition, α‑LA (0.1 g/l) markedly inhibited the expression of RAGE mRNA, and did not influence APP mRNA expression as compared the control group. α‑LA (0.1 g/l) was effective at dampening the cytotoxicity of AGE‑BSA, a preliminary observation that confirms the ability of α‑LA to significantly alleviate the cytotoxicity of AGEs against SH‑SY5Y cells.
Collapse
Affiliation(s)
- Guifen Niu
- Department of Endocrinology, Liaocheng City People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jianfei Guo
- Department of Endocrinology, Liaocheng City People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yaqiang Tian
- Department of Endocrinology, Liaocheng Brain Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Kexiang Zhao
- Department of the Elderly, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jian Li
- Department of Endocrinology, Liaocheng City People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Qian Xiao
- Department of the Elderly, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
13
|
Drosophila Models to Investigate Insulin Action and Mechanisms Underlying Human Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:235-256. [DOI: 10.1007/978-981-13-0529-0_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Chen Y, Lai B, Zhang Z, Cohen SM. The effect of metalloprotein inhibitors on cellular metal ion content and distribution. Metallomics 2017; 9:250-257. [PMID: 28168254 DOI: 10.1039/c6mt00267f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With metalloproteins garnering increased interest as therapeutic targets, designing target-specific metalloprotein inhibitors (MPi) is of substantial importance. However, in many respects, the development and evaluation of MPi lags behind that of conventional small molecule therapeutics. Core concerns around MPi, such as target selectivity and potential disruption of metal ion homeostasis linger. Herein, we used a suite of analytical methods, including energy-dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-OES), and synchrotron X-ray fluorescence microscopy (SXRF) to investigate the effect of several MPi on cellular metal ion distribution and homeostasis. The results reveal that at therapeutically relevant concentrations, the tested MPi have no significant effects on cellular metal ion content or distribution. In addition, the affinity of the metal-binding pharmacophore (MBP) utilized by the MPi does not have a substantial influence on the effect of the MPi on cellular metal distribution. These studies provide an important, original data set indicating that metal ion homeostasis is not notably perturbed by MPi, which should encourage the development of and aid in designing new MPi, guide MBP selection, and clarify the effect of MPi on the 'metallome'.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China. and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China. and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
15
|
Blesson CS, Chinnathambi V, Kumar S, Yallampalli C. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats. Endocrinology 2017; 158:756-767. [PMID: 28324067 PMCID: PMC5460798 DOI: 10.1210/en.2016-1675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/23/2017] [Indexed: 01/18/2023]
Abstract
Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P < 0.01; glycemia Δ area under the curve 342 ± 28 in LP vs 155 ± 23 in controls, mmol/L * 120 minutes) without any change in insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)-3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis.
Collapse
Affiliation(s)
| | - Vijayakumar Chinnathambi
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sathish Kumar
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
16
|
Kietzmann T, Mennerich D, Dimova EY. Hypoxia-Inducible Factors (HIFs) and Phosphorylation: Impact on Stability, Localization, and Transactivity. Front Cell Dev Biol 2016; 4:11. [PMID: 26942179 PMCID: PMC4763087 DOI: 10.3389/fcell.2016.00011] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022] Open
Abstract
The hypoxia-inducible factor α-subunits (HIFα) are key transcription factors in the mammalian response to oxygen deficiency. The HIFα regulation in response to hypoxia occurs primarily on the level of protein stability due to posttranslational hydroxylation and proteasomal degradation. However, HIF α-subunits also respond to various growth factors, hormones, or cytokines under normoxia indicating involvement of different kinase pathways in their regulation. Because these proteins participate in angiogenesis, glycolysis, programmed cell death, cancer, and ischemia, HIFα regulating kinases are attractive therapeutic targets. Although numerous kinases were reported to regulate HIFα indirectly, direct phosphorylation of HIFα affects HIFα stability, nuclear localization, and transactivity. Herein, we review the role of phosphorylation-dependent HIFα regulation with emphasis on protein stability, subcellular localization, and transactivation.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of OuluFinland
| | | | | |
Collapse
|
17
|
Abstract
A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Alan R Saltiel
- Life Sciences Institute, University of Michigan, AnnArbor, MI, USA.
| |
Collapse
|
18
|
Rahman MA, Hong JS, Huh SO. Antiproliferative properties ofSaussurea lappaClarke root extract in SH-SY5Y neuroblastoma cells via intrinsic apoptotic pathway. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1008041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
19
|
McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 2015; 5:2881-911. [PMID: 24931005 PMCID: PMC4102778 DOI: 10.18632/oncotarget.2037] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology,Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mennerich D, Dimova EY, Kietzmann T. Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β. HYPOXIA 2014; 2:35-45. [PMID: 27774465 PMCID: PMC5045055 DOI: 10.2147/hp.s60703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factors (HIFs), consisting of α- and β-subunits, are critical regulators of the transcriptional response to hypoxia under both physiological and pathological conditions. To a large extent, the protein stability and the recruitment of coactivators to the C-terminal transactivation domain of the HIF α-subunits determine overall HIF activity. The regulation of HIF α-subunit protein stability and coactivator recruitment is mainly achieved by oxygen-dependent posttranslational hydroxylation of conserved proline and asparagine residues, respectively. Under hypoxia, the hydroxylation events are inhibited and HIF α-subunits stabilize, translocate to the nucleus, dimerize with the β-subunits, and trigger a transcriptional response. However, under normal oxygen conditions, HIF α-subunits can be activated by various growth and coagulation factors, hormones, cytokines, or stress factors implicating the involvement of different kinase pathways in their regulation, thereby making HIF-α-regulating kinases attractive therapeutic targets. From the kinases known to regulate HIF α-subunits, only a few phosphorylate HIF-α directly. Here, we review the direct phosphorylation of HIF-α with an emphasis on the role of glycogen synthase kinase-3β and the consequences for HIF-1α function.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Rahman MA, Yang H, Kim NH, Huh SO. Induction of apoptosis byDioscorea nipponicaMakino extracts in human SH-SY5Y neuroblastoma cells via mitochondria-mediated pathway. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.880372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
The role of glycogen synthase kinase 3-β in immunity and cell cycle: implications in esophageal cancer. Arch Immunol Ther Exp (Warsz) 2013; 62:131-44. [PMID: 24276788 DOI: 10.1007/s00005-013-0263-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 11/06/2013] [Indexed: 01/01/2023]
Abstract
Esophageal cancer (EC) is one of the most aggressive gastrointestinal malignancies, possessing an insidious onset and a poor prognosis. Numerous transcription factors and inflammatory mediators have been reported to play a pivotal role in the initiation and progression of this cancer. However, the specifics of the signaling network responsible for said factors, especially which elements are the critical regulators, are still being elucidated. Glycogen synthesis kinases 3 (GSK3)β was originally regarded as a kinase regulating glucose metabolism. Accumulating evidence demonstrated that it also played an essential role in a variety of cellular processes including proliferation, differentiation, inflammation, motility, and survival by regulating various transcription factors such as c-Jun, AP-1, β-catenin, CREB, and NF-κB. Aberrant regulation of GSK3β has been shown to promote cell growth in some cancers, while suppressing it in others, and thus may play an important role in the development of EC. This review will discuss our current understanding of GSK3β signaling, and its control of the expression and activation of various transcription factors that mediate the inflammatory response. We will also explore some of the known mediators of EC progression, and based on current literature, elucidate the potential roles and implications of GSK3 in this disease.
Collapse
|
23
|
Expression and regulation of glycogen synthase kinase 3 in human neutrophils. Int J Biochem Cell Biol 2013; 45:2660-5. [PMID: 24035907 DOI: 10.1016/j.biocel.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase involved in the regulation of cellular processes ranging from glycogen metabolism to cell cycle regulation. Its two known isoforms, α and β, are differentially expressed in tissues throughout the body and exert distinct but often overlapping functions. GSK-3 is typically active in resting cells, inhibition by phosphorylation of Ser21 (GSK-3α) or Ser9 (GSK-3β) being the most common regulatory mechanism. GSK-3 activity has been linked recently with immune system function, yet little is known about the role of this enzyme in neutrophils, the most abundant leukocyte type. In the present study, we examined GSK-3 expression and regulation in human neutrophils. GSK-3α was found to be the predominant isoform, it was constitutively expressed and cell stimulation with different agonists did not alter its expression. Stimulation by fMLP, LPS, GM-CSF, Fcγ receptor engagement, or adenosine A2A receptor engagement all resulted in phosphorylation of Ser21. The use of metabolic inhibitors revealed that combinations of Src kinase, PKC, PI3K/AKT, ERK/RSK and PKA signaling pathways could mediate phosphorylation, depending on the agonist. Neither PLC nor p38 were involved. We conclude that GSK-3α is the main isoform expressed in neutrophils and that many different pathways can converge to inhibit GSK-3α activity via Ser21-phosphorylation. GSK-3α thus might be a hub of cellular regulation.
Collapse
|
24
|
Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol Cell Biochem 2013; 377:187-96. [PMID: 23404459 DOI: 10.1007/s11010-013-1584-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023]
Abstract
Gambogic acid (GA) is the dry resin of Garcinia hanburyi (Guttiferae) with potent anti-tumor activity, various bioactivities, including detoxification, homeostasis, anti-inflammatory, and parasiticide, whereas the effect of this natural compound on cancer cells has not been clearly clarified. Here, we examined cellular cytotoxicity by cell viability assay and DNA fragmentation by DNA-ladder assay. Activation of different protein expressions were detected by western blot analyses. We first demonstrated that GA reduces the human SH-SY5Y neuroblastoma cell viability with IC50 of 1.28 μM at 6 h which has less toxicity in fibroblast cells. However, lower concentration GA significantly downregulated the expression of anti-apoptotic protein including Bcl-2, Bcl-xL, and Mcl-1, which also dramatically activated cleaved caspase-9 and -3 in a dose- and time-dependent manner. Consequently, GA-induced cytotoxicity was not mediated by the Fas/FasL and PI3 K/AKT/GSK-3β signaling pathway. In addition, GA-induced cells showed damage morphology which had become cell rounding, neurite retraction, membrane blebbing and shrunken in a dose- and time-dependent manner that clearly indicates this morphological change might be due to the process of apoptosis which shows fragmented DNA. Therefore, the findings presented in this study demonstrate that apoptotic effects of GA on SH-SY5Y cells are mediated by intrinsic mitochondrion-dependent caspase pathway which suggests this natural compound might be effective as an anti-cancer agent for neuroblastoma malignancies.
Collapse
|
25
|
Abstract
GSK-3 is a multifunctional kinase that is located in the cytosol, nucleus, and mitochondria of all cell types, and it is involved in the pathogenesis of a variety of diseases. In cancer, GSK-3 modulates the response of the cell death machinery to stress stimuli, including chemotherapeutics. Mitochondria are at the heart of the integration between survival and noxious signals; therefore, modulation of the mitochondrial functions carried out by GSK-3 is profoundly involved in the apoptosis escape capabilities that hallmark neoplasms. This review briefly covers the mechanistic interactions among oncogenic kinase pathways, GSK-3 activity and subsequent modulation of mitochondrial functions that shape the pro-survival phenotype of cancer cells, such as control of redox homeostasis and inhibition of the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Federica Chiara
- Department of Molecular Medicine, University of Padova Padova, Italy
| | | |
Collapse
|
26
|
Ataur Rahman M, Kim NH, Yang H, Huh SO. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol Cell Biochem 2012; 369:95-104. [DOI: 10.1007/s11010-012-1372-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
|
27
|
Lima CR, Vasconcelos CFB, Costa-Silva JH, Maranhão CA, Costa J, Batista TM, Carneiro EM, Soares LAL, Ferreira F, Wanderley AG. Anti-diabetic activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:517-525. [PMID: 22472105 DOI: 10.1016/j.jep.2012.03.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/08/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Persea americana Mill. (Lauraceae) have been popularly used in the treatment of diabetes in countries in Latin America and Africa. AIM OF THE STUDY To investigate the hypoglycaemic properties and to determine the molecular mechanism by which the hydroalcoholic extract of the leaves of Persea americana reduce blood glucose levels in streptozotocin (STZ)-induced diabetes in rats via the enzymatic pathway of protein kinase B (PKB/Akt). METHODS The hydroalcoholic extract of the leaves of Persea americana (0.15 and 0.3g/kg/day), vehicle and metformin (0.5g/kg/day) were administered orally to STZ-diabetic rats (n=7/group) for 4 weeks. Changes in body weight, food and water intake, fasting glucose levels and oral glucose tolerance were evaluated. Phosphorylation and the expression of PKB in the liver and soleus muscle were determined by Western blot. RESULTS The hydroalcoholic extract of the leaves of Persea americana reduced blood glucose levels and improved the metabolic state of the animals. Additionally, PKB activation was observed in the liver and skeletal muscle of treated rats when compared with untreated rats. CONCLUSION The results indicate that the hydroalcoholic extract of the leaves of Persea americana has anti-diabetic properties and possibly acts to regulate glucose uptake in liver and muscles by way of PKB/Akt activation, restoring the intracellular energy balance.
Collapse
Affiliation(s)
- C R Lima
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50740-521, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Insulin acts throughout the body to reduce circulating energy and to increase energy storage. Within the brain, insulin produces a net catabolic effect by reducing food intake and increasing energy expenditure; this is evidenced by the hypophagia and increased brown adipose tissue sympathetic nerve activity induced by central insulin infusion. Reducing the activity of the brain insulin system via administration of insulin antibodies, receptor antisense treatment, or receptor knockdown results in hyperphagia and increased adiposity. However, despite decades of research into the role of central insulin in food intake, many questions remain to be answered, including the underlying mechanism of action.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, OH 45237, USA
| | | |
Collapse
|
29
|
Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci 2011; 4:40. [PMID: 22110425 PMCID: PMC3217193 DOI: 10.3389/fnmol.2011.00040] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/23/2011] [Indexed: 12/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.
Collapse
|
30
|
Wang H, Brown J, Martin M. Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 2010; 53:130-40. [PMID: 21095632 DOI: 10.1016/j.cyto.2010.10.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/29/2010] [Accepted: 10/26/2010] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway has been shown to play a central role in regulating the host inflammatory response. Recent studies characterizing the downstream effector molecules within the PI3K pathway have identified that the serine/threonine kinase, glycogen synthase kinase 3 (GSK3), plays a pivotal role in regulating the production of pro- and anti-inflammatory cytokines. In innate immune cells, GSK3 inactivation augments anti-inflammatory cytokine production while concurrently suppressing the production of pro-inflammatory cytokines. The role of GSK3 in T cell biology has also been studied in detail and is involved in regulating multiple downstream signaling processes mediated by the T cell receptor (TCR), the co-stimulatory molecule CD28, and the IL-17 receptor. In vivo studies assessing the therapeutic properties of GSK3 inhibitors have shown that the inactivation of GSK3 can protect the host from immune-mediated pathology and death. This review will highlight the immunological importance GSK3 plays within different signal transduction pathways of the immune system, the cellular mechanisms regulating the activity of GSK3, the role of GSK3 in innate and adaptive immune responses, and the in vivo use of GSK3 inhibitors to treat inflammatory mediated diseases in animals.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | | | | |
Collapse
|
31
|
Arellano-Plancarte A, Hernandez-Aranda J, Catt KJ, Olivares-Reyes JA. Angiotensin-induced EGF receptor transactivation inhibits insulin signaling in C9 hepatic cells. Biochem Pharmacol 2009; 79:733-45. [PMID: 19879250 DOI: 10.1016/j.bcp.2009.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/17/2009] [Accepted: 10/19/2009] [Indexed: 01/28/2023]
Abstract
To investigate the potential interactions between the angiotensin II (Ang II) and insulin signaling systems, regulation of IRS-1 phosphorylation and insulin-induced Akt activation by Ang II were examined in clone 9 (C9) hepatocytes. In these cells, Ang II specifically inhibited activation of insulin-induced Akt Thr(308) and its immediate downstream substrate GSK-3alpha/beta in a time-dependent fashion, with approximately 70% reduction at 15 min. These inhibitory actions were associated with increased IRS-1 phosphorylation of Ser(636)/Ser(639) that was prevented by selective blockade of EGFR tyrosine kinase activity with AG1478. Previous studies have shown that insulin-induced phosphorylation of IRS-1 on Ser(636)/Ser(639) is mediated mainly by the PI3K/mTOR/S6K-1 sequence. Studies with specific inhibitors of PI3K (wortmannin) and mTOR (rapamycin) revealed that Ang II stimulates IRS-1 phosphorylation of Ser(636)/Ser(639) via the PI3K/mTOR/S6K-1 pathway. Both inhibitors blocked the effect of Ang II on insulin-induced activation of Akt. Studies using the specific MEK inhibitor, PD98059, revealed that ERK1/2 activation also mediates Ang II-induced S6K-1 and IRS-1 phosphorylation, and the impairment of Akt Thr(308) and GSK-3alpha/beta phosphorylation. Further studies with selective inhibitors showed that PI3K activation was upstream of ERK, suggesting a new mechanism for Ang II-induced impairment of insulin signaling. These findings indicate that Ang II has a significant role in the development of insulin resistance by a mechanism that involves EGFR transactivation and the PI3K/ERK1/2/mTOR-S6K-1 pathway.
Collapse
Affiliation(s)
- Araceli Arellano-Plancarte
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, A.P. 14-740, Mexico, 07360 D.F., Mexico
| | | | | | | |
Collapse
|
32
|
Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 2009; 156:885-98. [PMID: 19366350 DOI: 10.1111/j.1476-5381.2008.00085.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.
Collapse
Affiliation(s)
- Geetha Vani Rayasam
- Department of Pharmacology, Research & Development (R&D III), Ranbaxy Research Labs, Gurgaon, Haryana, India.
| | | | | | | | | |
Collapse
|
33
|
Crews L, Patrick C, Achim CL, Everall IP, Masliah E. Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci 2009; 10:1045-1063. [PMID: 19399237 PMCID: PMC2672018 DOI: 10.3390/ijms10031045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/17/2022] Open
Abstract
The cognitive deficits in patients with HIV profoundly affect the quality of life of people living with this disease and have often been linked to the neuro-inflammatory condition known as HIV encephalitis (HIVE). With the advent of more effective anti-retroviral therapies, HIVE has shifted from a sub-acute to a chronic condition. The neurodegenerative process in patients with HIVE is characterized by synaptic and dendritic damage to pyramidal neurons, loss of calbindin-immunoreactive interneurons and myelin loss. The mechanisms leading to neurodegeneration in HIVE might involve a variety of pathways, and several lines of investigation have found that interference with signaling factors mediating neuroprotection might play an important role. These signaling pathways include, among others, the GSK3beta, CDK5, ERK, Pyk2, p38 and JNK cascades. Of these, GSK3beta has been a primary focus of many previous studies showing that in infected patients, HIV proteins and neurotoxins secreted by immune-activated cells in the brain abnormally activate this pathway, which is otherwise regulated by growth factors such as FGF. Interestingly, modulation of the GSK3beta signaling pathway by FGF1 or GSK3beta inhibitors (lithium, valproic acid) is protective against HIV neurotoxicity, and several pilot clinical trials have demonstrated cognitive improvements in HIV patients treated with GSK3beta inhibitors. In addition to the GSK3beta pathway, the CDK5 pathway has recently been implicated as a mediator of neurotoxicity in HIV, and HIV proteins might activate this pathway and subsequently disrupt the diverse processes that CDK5 regulates, including synapse formation and plasticity and neurogenesis. Taken together, the GSK3beta and CDK5 signaling pathways are important regulators of neurotoxicity in HIV, and modulation of these factors might have therapeutic potential in the treatment of patients suffering from HIVE. In this context, the subsequent sections will focus on reviewing the involvement of the GSK3beta and CDK5 pathways in neurodegeneration in HIV.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1 (858) 534-8992; Fax: +1 (858) 534-6232
| |
Collapse
|
34
|
Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim Biophys Acta Mol Basis Dis 2009; 1792:83-92. [DOI: 10.1016/j.bbadis.2008.10.019] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 01/03/2023]
|
35
|
Floyd ZE, Wang ZQ, Kilroy G, Cefalu WT. Modulation of peroxisome proliferator-activated receptor gamma stability and transcriptional activity in adipocytes by resveratrol. Metabolism 2008; 57:S32-8. [PMID: 18555852 PMCID: PMC2585986 DOI: 10.1016/j.metabol.2008.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR) gamma is essential for the formation and function of adipocytes. It is also involved in regulating insulin sensitivity and is the functional target of the thiazolidinedione class of insulin-sensitizing drugs. Whereas thiazolidinediones activate PPARgamma and decrease PPARgamma protein levels, genetic models indicate that decreased expression of PPARgamma is also associated with increased insulin sensitivity. In this study, we show that resveratrol modulates PPARgamma protein levels in 3T3-L1 adipocytes via inhibition of PPARgamma gene expression coupled with increased ubiquitin-proteasome-dependent degradation of PPARgamma proteins. Resveratrol-mediated decreases in PPARgamma expression are associated with repression of PPARgamma transcriptional activity when assayed using a panel of PPARgamma target genes in adipocytes. Finally, we demonstrate that resveratrol inhibits insulin-dependent changes in glucose uptake and glycogen levels and decreases insulin receptor substrate 1 and glucose transporter 4 protein levels, indicating that resveratrol represses insulin sensitivity in adipocytes. These results indicate that the resveratrol-mediated effects in adipocytes involve regulation of PPARgamma expression and transcriptional activity along with decreased responsiveness to insulin.
Collapse
Affiliation(s)
- Z Elizabeth Floyd
- Ubiquitin Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | |
Collapse
|
36
|
Wang J, Lazar MA. Bifunctional role of Rev-erbalpha in adipocyte differentiation. Mol Cell Biol 2008; 28:2213-20. [PMID: 18227153 PMCID: PMC2268425 DOI: 10.1128/mcb.01608-07] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/09/2007] [Accepted: 01/20/2008] [Indexed: 12/22/2022] Open
Abstract
The nuclear receptor Rev-erbalpha is a potent transcriptional repressor that regulates circadian rhythm and metabolism. Here we demonstrate a dissociation between Rev-erbalpha mRNA and protein levels that profoundly influences adipocyte differentiation. During adipogenesis, Rev-erbalpha gene expression initially declines and subsequently increases. Remarkably, Rev-erbalpha protein levels are nearly the opposite, increasing early in adipogenesis and then markedly decreasing in adipocytes. The Rev-erbalpha protein is necessary for the early mitotic events that are required for adipogenesis. The subsequent reduction in Rev-erbalpha protein, due to increased degradation via the 26S proteasome, is also required for adipocyte differentiation because Rev-erbalpha represses the expression of PPARgamma2, the master transcriptional regulator of adipogenesis. Thus, opposite to what might be predicted from Rev-erbalpha gene expression, Rev-erbalpha protein levels must rise and then fall for adipocyte differentiation to occur.
Collapse
Affiliation(s)
- Jing Wang
- University of Pennsylvania School of Medicine, 700 CRB, 415 Curie Blvd., Philadelphia, PA 19104-6149, USA
| | | |
Collapse
|
37
|
Kim SD, Yang SI, Kim HC, Shin CY, Ko KH. Inhibition of GSK-3beta mediates expression of MMP-9 through ERK1/2 activation and translocation of NF-kappaB in rat primary astrocyte. Brain Res 2007; 1186:12-20. [PMID: 17996850 DOI: 10.1016/j.brainres.2007.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 09/30/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
Glycogen synthase kinase (GSK)-3beta and extracellular signal-regulated kinase (ERK) regulate several cellular signaling pathways in common, including embryonic development, cell differentiation and apoptosis. In this study, we investigated whether GSK-3beta inhibition is involved in ERK activation, which affects the activation of NF-kappaB and induction of MMP-9 in cultured rat primary astrocytes. Here, we found that GSK-3beta inhibition using GSK-3beta inhibitor TDZD-8 increased the phosphorylation of GSK-3beta at Ser9 site as well as the phosphorylation of ERK1/2 and Akt at Ser473 site. In this condition, GSK-3beta inhibition increased MMP-9 but not MMP-2 activity in a concentration-dependent manner. In RT-PCR analysis, MMP-9 mRNA level was increased by GSK-3beta inhibition in a concentration-dependent manner. MMP-9 promoter reporter activity was similarly increased by GSK-3beta inhibition. Pretreatment of U-0126 (MEK1/2 inhibitor) completely abolished the GSK-3beta inhibition-induced phosphorylation of ERK1/2. U-0126 prevented GSK-3beta inhibition-mediated induction of MMP-9 reporter activity as well as the MMP-9 gene expression. The transcriptional activity of NF-kappaB was significantly increased by GSK-3beta inhibition, which was determined by nuclear translocation of NF-kappaB. Inhibition of ERK1/2 activity by U-0126 also completely blocked the nuclear translocation of NF-kappaB. Transfection of dominant negative plasmid (S9A) of GSK-3beta significantly decreased phosphorylation of ERK, MMP-9 expression and nuclear translocation of NF-kappaB by GSK-3beta inhibition as compared to wild type GSK-3beta. These data suggest that GSK-3beta inhibition mediates ERK1/2 activation followed by NF-kappaB activation, which directly regulates the induction of MMP-9 in rat primary astrocytes.
Collapse
Affiliation(s)
- Sun Don Kim
- Laboratory of Pharmacology, College of Pharmacy, Seoul National University, Seoul [151-742], Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Wang HM, Mehta S, Bansode R, Huang W, Mehta KD. AICAR positively regulate glycogen synthase activity and LDL receptor expression through Raf-1/MEK/p42/44MAPK/p90RSK/GSK-3 signaling cascade. Biochem Pharmacol 2007; 75:457-67. [PMID: 17945190 DOI: 10.1016/j.bcp.2007.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 10/25/2022]
Abstract
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) is a commonly used pharmacological agent to study physiological effects which are similar to those of exercise. However, signal transduction pathways by which AICAR elicits downstream effects in liver are poorly understood. We report here that AICAR not only activated AMPK but also phosphorylated/deactivated glycogen synthase kinase-3 alpha/beta (GSK-3alpha/beta) and dephophorylated/activated glycogen synthase (GS) in a time-dependent manner in human hepatoma HepG2 cells. The signal connection between AICAR and GSK-3 is indirect and involves activation of Raf-1/MEK/p42/44(MAPK)/p90(RSK) signaling cascade as pharmacologic inhibition of MEK significantly reduced phosphorylation/deactivation of GSK-3 and consequent dephosphorylation/activation of GS. Moreover, silencing the expression of p90(RSK), a substrate of p42/44(MAPK), attenuated AICAR-dependent GSK-3 phosphorylation, implicating this kinase as a key mediator of AICAR signaling to GSK-3. Furthermore, consistent with the involvement of Raf-1 kinase cascade, AICAR-induced low-density lipoprotein (LDL) receptor expression in a p42/44(MAPK)-dependent manner. Finally, AICAR requires AMPK-alpha2-dependent and -independent pathways to activate Raf-1 kinase cascade as suppression of AMPKalpha2 activity, and not of AMPKalpha1, partially blocked AICAR-dependent p42/44(MAPK) activation and GSK-3 phosphorylation/deactivation. Collectively, these results highlight Raf-1 signaling cascade as the critical mediator of AICAR action on glucose and lipid metabolism in HepG2 cells.
Collapse
Affiliation(s)
- Hsiang-Ming Wang
- Department of Molecular and Cellular Biochemistry, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, 464 Hamilton Hall, Columbus, OH 43210, United States
| | | | | | | | | |
Collapse
|
39
|
Guo W, Jiang H, Gray V, Dedhar S, Rao Y. Role of the integrin-linked kinase (ILK) in determining neuronal polarity. Dev Biol 2007; 306:457-68. [PMID: 17490631 DOI: 10.1016/j.ydbio.2007.03.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 12/24/2022]
Abstract
The establishment of axon-dendrite polarity in mammalian neurons has recently been shown to involve the kinases Akt and GSK-3beta. Here we report the function of the integrin-linked kinase (ILK) in neuronal polarization. ILK distribution is differential: with more of it present in the axonal tips than that in the dendritic tips of a polarized neuron. Inactivation of ILK by chemical inhibitors, a kinase-inactive mutant or siRNAs inhibited axon formation, whereas a kinase hyperactive ILK mutant induced the formation of multiple axons. Biochemical studies indicate that ILK is upstream of Akt and GSK-3beta. Manipulations of multiple intracellular components indicate that ILK is functionally upstream of Akt and GSK-3beta but downstream of PI3K in neuronal polarity. These results reveal a key role of ILK in the formation of neuronal polarity and suggest a signaling pathway important for neuronal polarity.
Collapse
Affiliation(s)
- Wei Guo
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
40
|
Toole BJ, Cohen PTW. The skeletal muscle-specific glycogen-targeted protein phosphatase 1 plays a major role in the regulation of glycogen metabolism by adrenaline in vivo. Cell Signal 2007; 19:1044-55. [PMID: 17257813 DOI: 10.1016/j.cellsig.2006.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/29/2006] [Indexed: 11/30/2022]
Abstract
Adrenaline and insulin are the major hormones regulating glycogen metabolism in skeletal muscle. We have investigated the effects of these hormones on the rate-limiting enzymes of glycogen degradation and synthesis (phosphorylase and glycogen synthase respectively) in GM-/- mice homozygous for a null allele of the major skeletal muscle glycogen targeting subunit (GM) of protein phosphatase 1 (PP1). Hyperphosphorylation of Ser14 in phosphorylase, and Ser7, Ser640 and Ser640/644 of GS, in the skeletal muscle of GM-/- mice compared with GM+/+ mice indicates that the PP1-GM complex is the major phosphatase that dephosphorylates these sites in vivo. Adrenaline caused a 2.4-fold increase in the phosphorylase (-/+AMP) activity ratio in the skeletal muscle of control mice compared to a 1.4 fold increase in GM-/- mice. Adrenaline also elicited a 67% decrease in the GS (-/+G6P) activity ratio in control mice but only a small decrease in the skeletal muscle of GM-/- mice indicating that GM is required for the full response of phosphorylase and GS to adrenaline. PP1-GM activity and the amount of PP1 bound to GM decreased 40% and 45% respectively, in response to adrenaline in control mice. The data support a model in which adrenaline stimulates phosphorylation of phosphorylase Ser14 and GS Ser7 in GM+/+ mice by both kinase activation and PP1-GM inhibition and the phosphorylation of GS Ser640 and Ser640/644 by PP1-GM inhibition alone. Insulin decreased the phosphorylation of GS Ser640 and Ser640/644 and stimulated the GS (-/+G6P) activity ratio by approximately 2-fold in the skeletal muscle of either GM-/- and or control mice, but the low basal and insulin stimulated GS activity ratios in GM-/- mice indicate that PP1-GM is essential for maintaining normal basal and maximum insulin stimulated GS activity ratios in vivo.
Collapse
Affiliation(s)
- Barry J Toole
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
41
|
Wu Y, Wang H, Brautigan DL, Liu Z. Activation of glycogen synthase in myocardium induced by intermittent hypoxia is much lower in fasted than in fed rats. Am J Physiol Endocrinol Metab 2007; 292:E469-75. [PMID: 17003235 DOI: 10.1152/ajpendo.00486.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obstructive sleep apnea is characterized by intermittent obstruction of the upper airway, which leads to intermittent hypoxia. Myocardial glycogen is a major energy resource for heart during hypoxia. Previous studies have demonstrated that intermittent hypoxia rapidly degrades myocardial glycogen and activates glycogen synthase (GS). However, the underlying mechanisms remain undefined. Because sleep apnea/intermittent hypoxia usually happens at night, whether intermittent hypoxia leads to GS activation in the postabsorptive state is not known. In the present study, male adult rats were studied after either an overnight fast or ad libitum feeding with or without intermittent ventilatory arrest (3 90-s periods at 10-min intervals). Hearts were quickly excised and freeze-clamped. Intermittent hypoxia induced a significant decrease in myocardial glycogen content in fed rats and stimulated GS in both fasted and fed rats. However, the portion of GS in the active form increased by approximately 38% in fasted rats compared with a larger, approximately 130% increase in fed rats. The basal G-6-P content was comparable in fasted and fed animals and increased approximately threefold after hypoxia. The basal phosphorylation states of Akt and GSK-3beta and the activity of protein phosphatase 1 (PP1) were comparable between fasted and fed control rats. Hypoxia significantly increased Akt phosphorylation and PP1 activity only in fed rats. In contrast, hypoxia did not induce significant change in GSK-3beta phosphorylation in either fasted or fed rats. We conclude that hypoxia activates GS in fed rat myocardium through a combination of rapid glycogenolysis, elevated local G-6-P content, and increased PP1 activity, and fasting attenuates this action independent of local G-6-P content.
Collapse
Affiliation(s)
- Yangsong Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, P. O. Box 801410, Charlottesville, VA 22908-1410, USA
| | | | | | | |
Collapse
|
42
|
Murphy E, Steenbergen C. Inhibition of GSK-3beta as a target for cardioprotection: the importance of timing, location, duration and degree of inhibition. Expert Opin Ther Targets 2007; 9:447-56. [PMID: 15948666 DOI: 10.1517/14728222.9.3.447] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in western countries such as the US. Myocardial infarction leads to loss of myocytes and with extremely limited ability to replenish cardiomyocytes, the heart exhibits depressed contractility. This ultimately results in hypertrophy of the remaining viable myocytes, which is the primary predictor for heart failure. Thus, drug therapies which can reduce myocyte cell death and reduce postischaemic dysfunction would be expected to greatly reduce cardiac hypertrophy and subsequent heart failure and death. Inhibition of glycogen synthase kinase (GSK)-3beta has been proposed as a strategy to improve postischaemic cardiomyocyte survival, as inhibition of GSK-3beta has been shown to reduce myocardial cell death following ischaemia and reperfusion. Therapies for inhibiting GSK are feasible as there are a number of newly developed specific inhibitors of GSK available, although most of these drugs have not been tested in long-term animal studies.
Collapse
Affiliation(s)
- Elizabeth Murphy
- National Institute of Environmental Health Sciences, Laboratory of Signal Transduction, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
43
|
Wang Q, Zhou Y, Evers BM. Neurotensin phosphorylates GSK-3alpha/beta through the activation of PKC in human colon cancer cells. Neoplasia 2006; 8:781-7. [PMID: 16984735 PMCID: PMC1584301 DOI: 10.1593/neo.06259] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotensin (NT), a gastrointestinal hormone, binds its receptor [neurotensin receptor (NTR)] to regulate the growth of normal and neoplastic intestinal cells; molecular mechanisms remain largely undefined. Glycogen synthase kinase-3 (GSK-3) regulates diverse cellular processes, including cell growth and apoptosis. Here, we show that NT induces the phosphorylation of GSK-3alpha/beta in the human colon cancer cell line HT29, HCT116, or SW480, which possesses high-affinity NTR. The effect of NT was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of MEK1 or phosphatidylinositol-3 kinase, suggesting a predominant role for PKC in GSK-3beta phosphorylation by NT. Pretreatment with Gö6976 (which inhibits PKCalpha and PKCbeta1) or downregulation of endogenous PKCalpha or PKCbeta1 blocked NT-mediated GSK-3beta (but not GSK-3alpha) phosphorylation. Moreover, a selective PKCbeta inhibitor, LY379196, reduced NT-mediated GSK-3beta (but not GSK-3alpha) phosphorylation, suggesting a role for PKCbeta1 in the NT-mediated phosphorylation of GSK-3beta and an undefined kinase in the NT-mediated phosphorylation of GSK-3alpha. Treatment with NT or the GSK-3 inhibitor SB216763 increased the expression of cyclin D1, a downstream effector protein of GSK-3 and a critical protein for the proliferation of various cells. Our results indicate that NT uses PKC-dependent pathways to modulate GSK-3, which may play a role in the NT regulation of intestinal cell growth.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
44
|
Greenberg CC, Danos AM, Brady MJ. Central role for protein targeting to glycogen in the maintenance of cellular glycogen stores in 3T3-L1 adipocytes. Mol Cell Biol 2006; 26:334-42. [PMID: 16354703 PMCID: PMC1317620 DOI: 10.1128/mcb.26.1.334-342.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of the protein phosphatase 1 (PP1) subunit protein targeting to glycogen (PTG) markedly enhances cellular glycogen levels. In order to disrupt the endogenous PTG-PP1 complex, small interfering RNA (siRNA) constructs against PTG were identified. Infection of 3T3-L1 adipocytes with PTG siRNA adenovirus decreased PTG mRNA and protein levels by >90%. In parallel, PTG reduction resulted in a >85% decrease in glycogen levels 4 days after infection, supporting a critical role for PTG in glycogen metabolism. Total PP1, glycogen synthase, and GLUT4 levels, as well as insulin-stimulated signaling cascades, were unaffected. However, PTG knockdown reduced glycogen-targeted PP1 protein levels, corresponding to decreased cellular glycogen synthase- and phosphorylase-directed PP1 activity. Interestingly, GLUT1 levels and acute insulin-stimulated glycogen synthesis rates were increased two- to threefold, and glycogen synthase activation in the presence of extracellular glucose was maintained. In contrast, glycogenolysis rates were markedly increased, suggesting that PTG primarily acts to suppress glycogen breakdown. Cumulatively, these data indicate that disruption of PTG expression resulted in the uncoupling of PP1 activity from glycogen metabolizing enzymes, the enhancement of glycogenolysis, and a dramatic decrease in cellular glycogen levels. Further, they suggest that reduction of glycogen stores induced cellular compensation by several mechanisms, but ultimately these changes could not overcome the loss of PTG expression.
Collapse
Affiliation(s)
- Cynthia C Greenberg
- Department of Medicine, University of Chicago, MC1027, 5841 S. Maryland Ave., Chicago, IL 60637-1470, USA
| | | | | |
Collapse
|
45
|
Huang J, Imamura T, Babendure JL, Lu JC, Olefsky JM. Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes. J Biol Chem 2005; 280:42300-6. [PMID: 16239226 DOI: 10.1074/jbc.m510920200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the cytoskeletal network is important for insulin-induced glucose uptake, several studies have assessed the effects of microtubule disruption on glucose transport with divergent results. Here, we investigated the effects of microtubule-depolymerizing reagent, nocodazole and colchicine, on GLUT4 translocation in 3T3-L1 adipocytes. After nocodazole treatment to disrupt microtubules, GLUT4 vesicles were dispersed from the perinuclear region in the basal state, and insulin-induced GLUT4 translocation was partially inhibited by 20-30%, consistent with other reports. We found that platelet-derived growth factor (PDGF), which did not stimulate GLUT4 translocation in intact cells, was surprisingly able to enhance GLUT4 translocation to approximately 50% of the maximal insulin response, in nocodazole-treated cells with disrupted microtubules. This effect of PDGF was blocked by pretreatment with wortmannin and attenuated in cells pretreated with cytochalasin D. Using confocal microscopy, we found an increased co-localization of GLUT4 and F-actin in nocodazole-treated cells upon PDGF stimulation compared with control cells. Furthermore, microinjection of small interfering RNA targeting the actin-based motor Myo1c, but not the microtubule-based motor KIF3, significantly inhibited both insulin- and PDGF-stimulated GLUT4 translocation after nocodazole treatment. In summary, our data suggest that 1) proper perinuclear localization of GLUT4 vesicles is a requirement for insulin-specific stimulation of GLUT4 translocation, and 2) nocodazole treatment disperses GLUT4 vesicles from the perinuclear region allowing them to engage insulin and PDGF-sensitive actin filaments, which can participate in GLUT4 translocation in a phosphatidylinositol 3-kinase-dependent manner.
Collapse
Affiliation(s)
- Jie Huang
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | | | |
Collapse
|
46
|
Brautigan DL, Brown M, Grindrod S, Chinigo G, Kruszewski A, Lukasik SM, Bushweller JH, Horal M, Keller S, Tamura S, Heimark DB, Price J, Larner AN, Larner J. Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action. Biochemistry 2005; 44:11067-73. [PMID: 16101290 DOI: 10.1021/bi0508845] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insulin-stimulated glucose disposal in skeletal muscle proceeds predominantly through a nonoxidative pathway with glycogen synthase as a rate-limiting enzyme, yet the mechanisms for insulin activation of glycogen synthase are not understood despite years of investigation. Isolation of putative insulin second messengers from beef liver yielded a pseudo-disaccharide consisting of pinitol (3-O-methyl-d-chiro-inositol) beta-1,4 linked to galactosamine chelated with Mn(2+) (called INS2). Here we show that chemically synthesized INS2 has biological activity that significantly enhances insulin reduction of hyperglycemia in streptozotocin diabetic rats. We used computer modeling to dock INS2 onto the known three-dimensional crystal structure of protein phosphatase 2C (PP2C). Modeling and FlexX/CScore energy minimization predicted a unique favorable site on PP2C for INS2 in a surface cleft adjacent to the catalytic center. Binding of INS2 is predicted to involve formation of multiple H-bonds, including one with residue Asp163. Wild-type PP2C activity assayed with a phosphopeptide substrate was potently stimulated in a dose-dependent manner by INS2. In contrast, the D163A mutant of PP2C was not activated by INS2. The D163A mutant and wild-type PP2C in the absence of INS2 had the same Mn(2+)-dependent phosphatase activity with p-nitrophenyl phosphate as a substrate, showing that this mutation did not disrupt the catalytic site. We propose that INS2 allosterically activates PP2C, fulfilling the role of a putative mediator mimetic of insulin signaling to promote protein dephosphorylation and metabolic responses.
Collapse
Affiliation(s)
- D L Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ou H, Yan L, Osmanovic S, Greenberg CC, Brady MJ. Spatial reorganization of glycogen synthase upon activation in 3T3-L1 adipocytes. Endocrinology 2005; 146:494-502. [PMID: 15486231 DOI: 10.1210/en.2004-1022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dephosphorylation of glycogen synthase is a key step in the stimulation of glycogen synthesis by insulin. To further investigate the hormonal regulation of glycogen synthase activity, enzymatic localization in 3T3-L1 adipocytes was determined by immunocytochemistry and confocal microscopy. In basal cells, glycogen synthase and the protein phosphatase-1-glycogen-targeting subunit, protein targeting to glycogen (PTG), were diffusely distributed throughout the cell. Insulin treatment had no effect on PTG distribution but resulted in a reorganization of glycogen synthase into punctate clusters. Glycogen synthase aggregation was restricted to discrete cellular sites, presumably where glycogen synthesis occurred. Omission of extracellular glucose or substitution with 2-deoxy-glucose blocked the insulin-induced redistribution of glycogen synthase. Addition of the glycogenolytic agent forskolin after insulin stimulation disrupted the clusters of glycogen synthase protein, restoring the immunostaining pattern to the basal state. Conversely, adenoviral-mediated overexpression of PTG resulted in the insulin-independent dephosphorylation of glycogen synthase and a redistribution of the enzyme from the cytosolic- to glycogen-containing fractions. The effects of PTG on glycogen synthase activity were mediated by multisite dephosphorylation, which was enhanced by insulin and 2-deoxy-glucose, and required a functional glycogen synthase-binding domain on PTG. However, PTG overexpression did not induce distinct glycogen synthase clustering in fixed cells, presumably because cellular glycogen levels were increased more than 7-fold under these conditions, resulting in a diffusion of sites where glycogen elongation occurred. Cumulatively, these data indicate that the hormonal regulation of glycogen synthesis rates in 3T3-L1 adipocytes is mediated in part through changes in the subcellular localization of glycogen synthase.
Collapse
Affiliation(s)
- Hesheng Ou
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
48
|
Cheon SS, Nadesan P, Poon R, Alman BA. Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 2004; 293:267-74. [PMID: 14729464 DOI: 10.1016/j.yexcr.2003.09.029] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Beta-catenin is a critical regulator of cell behavior during embryogenesis and neoplastic processes. It also plays a crucial role in repair by modulating dermal fibroblast activity during the proliferative phase of cutaneous wound healing. We hypothesize that growth factors liberated during the initial phase of wound healing convey signals to induce activation of beta-catenin-mediated TCF-dependent signaling during the proliferative phase. Dermal fibroblasts were isolated and cultured from mice containing a beta-galactosidase reporter responsive to beta-catenin-TCF transactivation (TCF-beta-gal). Cells were stimulated with growth factors present at the initial phase of wound healing. EGF and TGF-beta1 significantly increased beta-catenin protein levels and transcriptional activity, whereas beta-catenin mRNA expression was unaffected. This increase was attributed to inactivation of GSK-3beta, a kinase important for beta-catenin destabilization. Subcutaneous injection of EGF or TGF-beta1 before wounding of TCF-beta-gal mice resulted in larger scars and fibroblasts within these wounds that strongly stained for beta-galactosidase, indicating significant beta-catenin transcriptional activity in vivo. Thus, beta-catenin-mediated signaling is activated downstream of growth factors released during the initial phase of wound repair, and may act during the proliferative phase of wound healing to integrate signals from initial phase factors into the expression of genes important during the later, remodeling phase.
Collapse
Affiliation(s)
- Sophia S Cheon
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
49
|
Ueki K, Fruman DA, Yballe CM, Fasshauer M, Klein J, Asano T, Cantley LC, Kahn CR. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem 2003; 278:48453-66. [PMID: 14504291 DOI: 10.1074/jbc.m305602200] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.
Collapse
Affiliation(s)
- Kohjiro Ueki
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Whiteman EL, Chen JJ, Birnbaum MJ. Platelet-derived growth factor (PDGF) stimulates glucose transport in 3T3-L1 adipocytes overexpressing PDGF receptor by a pathway independent of insulin receptor substrates. Endocrinology 2003; 144:3811-20. [PMID: 12933652 DOI: 10.1210/en.2003-0480] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Insulin is unique among growth factors and hormones in its ability to control metabolic functions such as the stimulation of glucose uptake and glucose transporter (GLUT4) translocation in physiological target tissues, such as muscle and adipose cells. Nonetheless, the mechanisms underlying this specificity have remained incompletely understood, particularly in view of the ability of some growth factors to mimic insulin-dependent early signaling events. In this study, we have probed the basis of insulin specificity by overexpressing in hormone-responsive 3T3-L1 adipocytes wild-type platelet-derived growth factor (PDGF) receptor (PDGFR)-beta and selected, informative mutant receptor proteins. We show that such adipocytes overexpressing wild-type PDGFR on exposure to cognate growth factor activate glucose transport, GLUT4 translocation, and the serine-threonine protein kinase Akt/protein kinase B to a degree comparable with that produced in response to insulin. In addition, PDGF elicits the robust generation of phosphatidylinositol-3,4,5-trisphosphate in vivo in PDGFR-overexpressing 3T3-L1 adipocytes. Expression of PDGFR-beta mutant proteins demonstrates that these responses require the presence of an intact phosphatidylinositol 3-kinase (PI3K)-binding site on the overexpressed PDGF receptor. Furthermore, PDGF stimulates these effects independent of insulin receptor substrate(IRS)-1 or IRS-2 tyrosine phosphorylation or docking to activated PI3K. These data demonstrate that 1) the basis of insulin-specific glucose transport in cultured adipocytes is the low level of receptors for other growth factors and 2) in the presence of adequate receptors, PDGF is fully capable of activating glucose transport in a manner requiring PI3K and subsequent phosphatidylinositol-3,4,5-trisphosphate accumulation but independent of insulin, insulin receptor, and IRS proteins.
Collapse
Affiliation(s)
- Eileen L Whiteman
- Howard Hughes Medical Institute, Cox Institute, Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|