1
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Fatty Acids and their Proteins in Adipose Tissue Inflammation. Cell Biochem Biophys 2024; 82:35-51. [PMID: 37794302 PMCID: PMC10867084 DOI: 10.1007/s12013-023-01185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Chronic low-grade adipose tissue inflammation is associated with metabolic disorders. Inflammation results from the intertwined cross-talks of pro-inflammatory and anti-inflammatory pathways in the immune response of adipose tissue. In addition, adipose FABP4 levels and lipid droplet proteins are involved in systemic and tissue inflammation. Dysregulated adipocytes help infiltrate immune cells derived from bone marrow responsible for producing cytokines and chemokines. When adipose tissue expands in excess, adipocyte exhibits increased secretion of adipokines and is implicated in metabolic disturbances due to the release of free fatty acids. This review presents an emerging concept in adipose tissue fat metabolism, fatty acid handling and binding proteins, and lipid droplet proteins and their involvement in inflammatory disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, Queretaro, 76130, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
2
|
EL Nagar AG, Heddi I, Sosa-Madrid BS, Blasco A, Hernández P, Ibáñez-Escriche N. Genome-Wide Association Study of Maternal Genetic Effects on Intramuscular Fat and Fatty Acid Composition in Rabbits. Animals (Basel) 2023; 13:3071. [PMID: 37835677 PMCID: PMC10571580 DOI: 10.3390/ani13193071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Maternal genetic effects (MGE) could affect meat quality traits such as intramuscular fat (IMF) and its fatty acid composition. However, it has been scarcely studied, especially in rabbits. The objectives of the present study were, first, to assess the importance of MGE on intramuscular fat and fatty acid composition by applying a Bayesian maternal animal model in two rabbit lines divergently selected for IMF. The second objective was to identify genomic regions and candidate genes of MGE that are associated with the traits of these offspring, using Bayesian methods in a Genome Wide Association Study (GWAS). Quantitative analyses were performed using data from 1982 rabbits, and 349 animals from the 9th generation and 76 dams of the 8th generation with 88,512 SNPs were used for the GWAS. The studied traits were IMF, saturated fatty acids (total SFA, C14:0; myristic acid, C16:0; palmitic acid and C18:0; stearic acid), monounsaturated fatty acids (total MUFA, C16:1n-7; palmitoleic acid and C18:1n-9; oleic acid), polyunsaturated fatty acids (total PUFA, C18:2n-6; linoleic acid, C18:3n-3; α-linolenic acid and C20:4n-6; arachidonic acid), MUFA/SFA and PUFA/SFA. The proportion of phenotypic variance explained by the maternal genetic effect ranged from 8 to 22% for IMF, depending on the model. For fatty acid composition, the proportion of phenotypic variance explained by maternal genetic effects varied from 10% (C18:0) to 46% (MUFA) in a model including both direct and additive maternal genetic effects, together with the common litter effect as a random variable. In particular, there were significant direct maternal genetic correlations for C16:0, C18:1n9, C18:2n6, SFA, MUFA, and PUFA with values ranging from -0.53 to -0.89. Relevant associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU5 and OCU19 containing some relevant candidates (TANC2, ACE, MAP3K3, TEX2, PRKCA, SH3GL2, CNTLN, RPGRIP1L and FTO) related to lipid metabolism, binding, and obesity. These regions explained about 1.2 to 13.9% of the total genomic variance of the traits studied. Our results showed an important maternal genetic effect on IMF and its fatty acid composition in rabbits and identified promising candidate genes associated with these traits.
Collapse
Affiliation(s)
- Ayman G. EL Nagar
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
- Department of Animal Production, Faculty of Agriculture at Moshtohor, Benha University, Benha 13736, Egypt
| | - Imen Heddi
- Centro Regional de Selección y Reproducción Animal (CERSYRA), Av. del Vino, 10, 13300 Valdepeñas, Spain
| | - Bolívar Samuel Sosa-Madrid
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.G.E.N.)
| |
Collapse
|
3
|
Holloway GP, Nickerson JG, Lally JSV, Petrick HL, Dennis KMJH, Jain SS, Alkhateeb H, Bonen A. Co-overexpression of CD36 and FABPpm increases fatty acid transport additively, not synergistically, within muscle. Am J Physiol Cell Physiol 2022; 322:C546-C553. [PMID: 35138177 DOI: 10.1152/ajpcell.00435.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to determine the combined effects of over-expressing FABPpm and CD36 on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of ~0.019 and ~0.053 per unit protein change for FABPpm and CD36, respectively. We subsequently used these data to determine if increasing both proteins additively or synergistically increased fatty acid transport. Co-transfection of FABPpm and CD36 simultaneously increased protein content in whole muscle (FABPpm, +46%; CD36, +45%) and at the sarcolemma (FABPpm, +41% and CD36, +42%), as well as fatty acid transport rates (+50%). Since the relative effects of changing FABPpm and CD36 content had been independently determined, we were able to a predict a change in fatty acid transport based on the overexpression of plasmalemmal transporters in the co-transfection experiments. This prediction yielded an increase in fatty acid transport of +0.984 and +1.722 pmol/mg prot/15sec for FABPpm and CD36, respectively, for a total increase of +2.96 pmol/mg prot/15sec. This calculated determination was remarkably consistent with the measured change in transport, namely +2.89 pmol/mg prot/15sec. Altogether, these data indicate that increasing CD36 and FABPpm alters fatty acid transport rates additively, but not synergistically, suggesting an independent mechanism-of-action within muscle for each transporter. This conclusion was further supported by the observation that plasmalemmal CD36 and FABPpm did not co-immunoprecipitate.
Collapse
Affiliation(s)
- Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - James S V Lally
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather L Petrick
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Kaitlyn M J H Dennis
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Swati S Jain
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - Arend Bonen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| |
Collapse
|
4
|
Lack of pronounced changes in the expression of fatty acid handling proteins in adipose tissue and plasma of morbidly obese humans. Nutr Diabetes 2018; 8:3. [PMID: 29335416 PMCID: PMC5851429 DOI: 10.1038/s41387-017-0013-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/20/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background/Objectives Fatty acid handling proteins are involved in the process of accumulation of lipids in different fat tissue depots. Thus, the aim of the study was to estimate the expression of both fatty acid transport and binding proteins in the subcutaneous (SAT) and visceral adipose tissue (VAT) of patients with morbid obesity without metabolic syndrome, as well as the plasma concentrations of these transporters. Subjects/Methods Protein (Western blotting) and mRNA (Real-time PCR) expression of selected fatty acid handling proteins was assessed in the visceral and subcutaneous adipose tissue of 30 patients with morbid obesity. The control group consisted of 10 lean age-matched patients. Plasma levels of fatty acid protein transporters were also evaluated using ELISA method. Moreover, total plasma fatty acid composition and concentration was determined by gas-liquid chromatography (GLC). Results Significant increase in fatty acid translocase (FAT/CD36) mRNA (P = 0.03) and plasmalemmal (P = 0.01) expression was observed in VAT of patients with morbid obesity vs. lean subjects together with elevation of lipoprotein lipase (LPL), as well as peroxisome proliferator-activated receptor γ (PPARγ) in both examined compartments of adipose tissue. Moreover, in obese subjects plasma concentration of RBP4 was markedly elevated (P = 0.04) and sCD36 level presented a tendency for an increase (P = 0.08) with concomitant lack of changes in FABP4 concentration (P > 0.05). Conclusions Fatty acid transport into adipocytes may be, at least in part, related to the increased expression of FAT/CD36 in the VAT of morbidly obese patients, which is accompanied by augmented expression of LPL, as well as PPARγ. Probably, alternations in plasma concentrations of RBP4 and sCD36 in obese patients are associated with “unhealthy” fat distribution.
Collapse
|
5
|
Zafirovic S, Obradovic M, Sudar-Milovanovic E, Jovanovic A, Stanimirovic J, Stewart AJ, Pitt SJ, Isenovic ER. 17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats. Mol Cell Endocrinol 2017; 446:12-20. [PMID: 28163099 DOI: 10.1016/j.mce.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the in vivo effects of 17β-estradiol (E2) on myocardial metabolism and inducible nitric oxide synthase (iNOS) expression/activity in obese rats. Male Wistar rats were fed with a normal or a high fat (HF) diet (42% fat) for 10 weeks. Half of the HF fed rats were treated with a single dose of E2 while the other half were placebo-treated. 24 h after treatment animals were sacrificed. E2 reduced cardiac free fatty acid (FFA) (p < 0.05), L-arginine (p < 0.01), iNOS mRNA (p < 0.01), and protein (p < 0.05) levels and translocation of the FFA transporter (CD36) (p < 0.01) to the plasma membrane (PM) in HF fed rats. In contrast, Akt phosphorylation at Thr308 (p < 0.05) and translocation of the glucose transporter GLUT4 (p < 0.05) to the PM increased after E2 treatment in HF rats. Our results indicate that E2 acts via the PI3K/Akt signalling pathway to partially protect myocardial metabolism by attenuating the detrimental effects of increased iNOS expression/activity in HF fed rats.
Collapse
Affiliation(s)
- Sonja Zafirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Aleksandra Jovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Julijana Stanimirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Alan J Stewart
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom.
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom.
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| |
Collapse
|
6
|
Coles CA. Adipokines in Healthy Skeletal Muscle and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:133-60. [DOI: 10.1007/978-3-319-27511-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Sarvas JL, Niccoli S, Walser E, Khaper N, Lees SJ. Interleukin-6 deficiency causes tissue-specific changes in signaling pathways in response to high-fat diet and physical activity. Physiol Rep 2014; 2:2/7/e12064. [PMID: 24997069 PMCID: PMC4187557 DOI: 10.14814/phy2.12064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study was designed to investigate the role of interleukin‐6 (IL‐6) on high‐fat diet (HFD)‐induced glucose intolerance, and the response to voluntary physical activity in the prevention of insulin resistance. Six‐week‐old wild‐type (WT) and IL‐6 knockout (KO) mice with (RUN) or without (SED) access to running wheels were fed a HFD (60% from kcal) for 4 weeks. A glucose tolerance test revealed that blood glucose levels were 25–30% higher in KO RUN compared to all other groups. In WT RUN, weight gain was positively correlated with total caloric intake; however, this correlation was absent in KO RUN. In soleus muscle, there was a 2‐fold increase in SOCS3 expression in KO RUN compared to all other groups. In gastrocnemius and plantaris muscles, Akt phosphorylation was 31% higher in WT RUN compared to WT SED, but this effect of running was absent in KO mice. Additionally, there was a 2.4‐fold increase in leptin expression in KO RUN compared to KO SED in the gastrocnemius and plantaris muscles. In the liver, there was a 2‐ to 3.8‐fold increase in SOCS3 expression in KO SED compared to all other groups, and AMPKα phosphorylation was 27% higher in WT mice (both RUN and SED) compared to KO mice (both RUN and SED). This study provides new insights into the role of the IL‐6 in metabolism and energy storage, and highlights tissue‐specific changes in early signaling pathways in response to HFD for 4 weeks. The collective findings suggest that endogenous IL‐6 is important for the prevention of insulin resistance leading to type 2 diabetes. This study was designed to investigate the role of interleukin‐6 (IL‐6) on high‐fat diet (HFD)‐induced glucose intolerance, and the response to voluntary physical activity in the prevention of insulin resistance. This study provides new insight into the role of the IL‐6 in metabolism and energy storage, and highlights tissue‐specific changes in early signaling pathways in response to HFD for 4 weeks. The collective findings suggest that endogenous IL‐6 is important for the prevention of insulin resistance leading to type 2 diabetes.
Collapse
Affiliation(s)
- Jessica L Sarvas
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Sarah Niccoli
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Eric Walser
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Simon J Lees
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
8
|
Guadalupe-Grau A, Larsen S, Guerra B, Calbet JAL, Dela F, Helge JW. Influence of age on leptin induced skeletal muscle signalling. Acta Physiol (Oxf) 2014; 211:214-28. [PMID: 24605926 DOI: 10.1111/apha.12273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/03/2013] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
AIM Age associated fat mass accumulation could be because of dysregulation of leptin signalling in skeletal muscle. Thus, we investigated total protein expression and phosphorylation levels of the long isoform of the leptin receptor (OB-Rb), and leptin signalling through janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC), combined with the leptin signalling inhibitors suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in human skeletal muscle of different age. METHODS Vastus lateralis muscle biopsies were obtained from 39 men matched for BMI < 30 kg m(-2) and separated into three groups: 13 young (Y, 24 ± 4 years); 14 middle aged (MA, 44 ± 5 years) and 12 aged (A, 58 ± 8 years) subjects. RESULTS Whole body fat percentage and plasma leptin were higher (P < 0.05), whereas lean mass, plasma free testosterone and total testosterone were lower (P < 0.05) in A compared to Y. Skeletal muscle OB-Rb (170 KDa) protein expression and pTyr(1141) -OB-R170 were comparable between groups, whereas pTyr(985) -OB-R170 was lower in A compared to Y (P < 0.05). pSTAT3 levels tended (P = 0.09) to be lower (50%) in A compared to Y. In A, muscle PTP1B was greater and IRS-1 lower than Y and MA respectively (P < 0.05). PTyr(612) -IRS-1 tended to be lower in A than in Y (P = 0.09). Suppressor of cytokine signalling 3 (SOCS3) protein expression, pJAK2, pSer(1101) -IRS-1, pAMPKα and pACCβ were similar between groups. CONCLUSION Age is associated with dysregulation of the leptin signalling and increased PTP1B protein expression in skeletal muscle.
Collapse
Affiliation(s)
- A. Guadalupe-Grau
- Department of Physical Education; University of Las Palmas de Gran Canaria; Las Palmas de Gran Canaria Spain
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - S. Larsen
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - B. Guerra
- Department of Clinical Sciences; Molecular and Translational Endocrinology Group; Associate Unit of University of Las Palmas de Gran Canaria and Biomedical Institute “Alberto Sols” - CSIC; Las Palmas de Gran Canaria Spain
- ICIC; Cancer Research Institute of the Canary Islands; Las Palmas de Gran Canaria Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias; Las Palmas de Gran Canaria Spain
| | - J. A. L. Calbet
- Department of Physical Education; University of Las Palmas de Gran Canaria; Las Palmas de Gran Canaria Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias; Las Palmas de Gran Canaria Spain
| | - F. Dela
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
9
|
Lappas M. Effect of pre-existing maternal obesity, gestational diabetes and adipokines on the expression of genes involved in lipid metabolism in adipose tissue. Metabolism 2014; 63:250-62. [PMID: 24262292 DOI: 10.1016/j.metabol.2013.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine the effect of maternal obesity, gestational diabetes mellitus (GDM) and adipokines on the expression of genes involved in fatty acid uptake, transport, synthesis and metabolism. MATERIALS/METHODS Human subcutaneous and omental adipose tissues were obtained from lean, overweight and obese normal glucose tolerant (NGT) women and women with GDM. Quantitative RT-PCR (qRT-PCR) was performed to determine the level of expression. Adipose tissue explants were performed to determine the effect of the adipokines TNFα, IL-1β and leptin on adipose tissue gene expression. RESULTS Pre-existing maternal obesity and GDM are associated with decreased expression in genes involved in fatty acid uptake and intracellular transport (LPL, FATP2, FATP6, FABPpm and ASCL1), triacylglyceride (TAG) biosynthesis (MGAT1,7 MGAT2 and DGAT1), lipogenesis (FASN) and lipolysis (PNPLA2, HSL and MGLL). Decreased gene expression was also observed for the transcription factors involved in lipid metabolism (LXRα, PPARα, PPARδ, PPARγ, RXRα and SREBP1c). On the other hand, the gene expression of the adipokines TNFα, IL-1β and or leptin was increased in adipose tissue from obese and GDM women. Functional in vitro studies revealed that these adipokines decreased the gene expression of LPL, FATP2, FATP6, ASCL1, PNPLA2, PPARδ, PPARγ and RXRα. CONCLUSIONS Pregnancies complicated by pre-existing maternal obesity and GDM are associated with abnormal adipose tissue lipid metabolism, which may play a role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
10
|
Hamill RM, Aslan O, Mullen AM, O'Doherty JV, McBryan J, Morris DG, Sweeney T. Transcriptome analysis of porcine M. semimembranosus divergent in intramuscular fat as a consequence of dietary protein restriction. BMC Genomics 2013; 14:453. [PMID: 23829541 PMCID: PMC3710489 DOI: 10.1186/1471-2164-14-453] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/26/2013] [Indexed: 12/23/2022] Open
Abstract
Background Intramuscular fat (IMF) content is positively correlated with aspects of pork palatability, including flavour, juiciness and overall acceptability. The ratio of energy to protein in the finishing diet of growing pigs can impact on IMF content with consequences for pork quality. The objective of this study was to compare gene expression profiles of Musculus semimembranosus (SM) of animals divergent for IMF as a consequence of protein dietary restriction in an isocaloric diet. The animal model was derived through the imposition of low or high protein diets during the finisher stage in Duroc gilts. RNA was extracted from post mortem SM tissue, processed and hybridised to Affymetrix porcine GeneChip® arrays. Results IMF content of SM muscle was increased on the low protein diet (3.60 ± 0.38% versus 1.92 ± 0.35%). Backfat depth was also greater in animals on the low protein diet, and average daily gain and feed conversion ratio were lower, but muscle depth, protein content and moisture content were not affected. A total of 542 annotated genes were differentially expressed (DE) between animals on low and high protein diets, with 351 down-regulated and 191 up-regulated on the low protein diet. Transcript differences were validated for a subset of DE genes by qPCR. Alterations in functions related to cell cycle, muscle growth, extracellular matrix organisation, collagen development, lipogenesis and lipolysis, were observed. Expression of adipokines including LEP, TNFα and HIF1α were increased and the hypoxic stress response was induced. Many of the identified transcriptomic responses have also been observed in genetic and fetal programming models of differential IMF accumulation, indicating they may be robust biological indicators of IMF content. Conclusion An extensive perturbation of overall energy metabolism in muscle occurs in response to protein restriction. A low protein diet can modulate IMF content of the SM by altering gene pathways involved in lipid biosynthesis and degradation; however this nutritional challenge negatively impacts protein synthesis pathways, with potential consequences for growth.
Collapse
Affiliation(s)
- Ruth M Hamill
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | | | | | | | | | | | | |
Collapse
|
11
|
Yi X, Cao S, Chang B, Zhao D, Gao H, Wan Y, Shi J, Wei W, Guan Y. Effects of acute exercise and chronic exercise on the liver leptin-AMPK-ACC signaling pathway in rats with type 2 diabetes. J Diabetes Res 2013; 2013:946432. [PMID: 24455748 PMCID: PMC3877642 DOI: 10.1155/2013/946432] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 01/06/2023] Open
Abstract
AIM To investigate the effects of acute and chronic exercise on glucose and lipid metabolism in liver of rats with type 2 diabetes caused by a high fat diet and low dose streptozotocin (STZ). METHODS Animals were classified into control (CON), diabetes (DC), diabetic chronic exercise (DCE), and diabetic acute exercise (DAE) groups. RESULTS Compared to CON, the leptin levels in serum and liver and ACC phosphorylation were significantly higher in DC, but the levels of liver leptin receptor, AMPK α 1/2, AMPK α 1, and ACC proteins expression and phosphorylation were significantly lower in DC. In addition, the levels of liver glycogen reduced significantly, and the levels of TG and FFA increased significantly in DC compared to CON. Compared to DC, the levels of liver AMPK α 1/2, AMPK α 2, AMPK α 1, and ACC phosphorylation significantly increased in DCE and DAE. However, significant increase of the level of liver leptin receptor and glycogen as well as significant decrease of the level of TG and FFA were observed only in DEC. CONCLUSION Our study demonstrated that both acute and chronic exercise indirectly activated the leptin-AMPK-ACC signaling pathway and increased insulin sensitivity in the liver of type 2 diabetic rats. However, only chronic and long-term exercise improved glucose and lipid metabolism of the liver.
Collapse
Affiliation(s)
- Xuejie Yi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
- Department of Exercise Science, Shenyang Sport University, Shenyang, China
| | - Shicheng Cao
- Department of Sport Medicine, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bo Chang
- Department of Exercise Science, Shenyang Sport University, Shenyang, China
| | - Dalin Zhao
- Department of Exercise Science, Shenyang Sport University, Shenyang, China
| | - Haining Gao
- Department of Exercise Science, Shenyang Sport University, Shenyang, China
| | - Yihan Wan
- Department of Exercise Science, Shenyang Sport University, Shenyang, China
| | - Jiaojiao Shi
- Department of Exercise Science, Shenyang Sport University, Shenyang, China
| | - Wei Wei
- Department of Exercise Science, Shenyang Sport University, Shenyang, China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
- *Yifu Guan:
| |
Collapse
|
12
|
Niedowicz DM, Studzinski CM, Weidner AM, Platt TL, Kingry KN, Beckett TL, Bruce-Keller AJ, Keller JN, Murphy MP. Leptin regulates amyloid β production via the γ-secretase complex. Biochim Biophys Acta Mol Basis Dis 2012; 1832:439-44. [PMID: 23274884 DOI: 10.1016/j.bbadis.2012.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of β-amyloid (Aβ), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the β- and γ-secretases. Though the underlying causes of Aβ accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al. (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aβ levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aβ accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, β-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD.
Collapse
|
13
|
Hoshino D, Yoshida Y, Holloway GP, Lally J, Hatta H, Bonen A. Clenbuterol, a β2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2012; 302:R373-84. [DOI: 10.1152/ajpregu.00183.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Clenbuterol, a β2-adrenergic agonist, reduces mitochondrial content and enzyme activities in skeletal muscle, but the mechanism involved has yet to be identified. We examined whether clenbuterol-induced changes in the muscles' metabolic profile and the intrinsic capacity of mitochondria to oxidize substrates are associated with reductions in the nuclear receptor coactivator PGC-1 alpha and/or an increase in the nuclear corepressor RIP140. In rats, clenbuterol was provided in the drinking water (30 mg/l). In 3 wk, this increased body (8%) and muscle weights (12–17%). In red (R) and white (W) muscles, clenbuterol induced reductions in mitochondrial content (citrate synthase: R, 27%; W, 52%; cytochrome- c oxidase: R, 24%; W, 34%), proteins involved in fatty acid transport (fatty acid translocase/CD36: R, 36%; W, 35%) and oxidation [β-hydroxyacyl CoA dehydrogenase (β-HAD): R, 33%; W, 62%], glucose transport (GLUT4: R, 8%; W, 13%), lactate transport monocarboxylate transporter (MCT1: R, 61%; W, 37%), and pyruvate oxidation (PDHE1α, R, 18%; W, 12%). Concurrently, only red muscle lactate dehydrogenase activity (25%) and MCT4 (31%) were increased. Palmitate oxidation was reduced in subsarcolemmal (SS) (R, 30%; W, 52%) and intermyofibrillar (IMF) mitochondria (R, 17%; W, 44%) along with reductions in β-HAD activity (SS: R, 17%; W, 51%; IMF: R, 20%; W, 57%). Pyruvate oxidation was only reduced in SS mitochondria (R, 20%; W, 28%), but this was not attributable solely to PDHE1α, which was reduced in both SS (R, 21%; W, 20%) and IMF mitochondria (R, 15%; W, 43%). These extensive metabolic changes induced by clenbuterol were associated with reductions in PGC-1α (R, 37%; W, 32%) and increases in RIP140 (R, 23%; W, 21%). This is the first evidence that clenbuterol appears to exert its metabolic effects via simultaneous and reciprocal changes in the nuclear receptor coactivator PGC-1α and the nuclear corepressor RIP140.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan; and
| | - Yuko Yoshida
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P. Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - James Lally
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan; and
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Zajac DM, Cerasale DJ, Landman S, Guglielmo CG. Behavioral and physiological effects of photoperiod-induced migratory state and leptin on Zonotrichia albicollis: II. Effects on fatty acid metabolism. Gen Comp Endocrinol 2011; 174:269-75. [PMID: 21925178 DOI: 10.1016/j.ygcen.2011.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The migratory flights of birds are fuelled largely by fatty acids. Fatty acid transporters, including FAT/CD36, FABPpm and H-FABP, and enzymes involved in fatty acid oxidation (CPT, CS, HOAD) are seasonally up-regulated in flight muscle to meet the demands of this intense aerobic exercise. The mechanisms that control these biochemical changes in response to migration are mostly unknown. We studied the effects of a photoperiod-induced migratory state and a 7 day treatment with murine leptin (1 μg/g body mass, twice per day) on fatty acid metabolism in captive white-throated sparrows. Sparrows that were exposed to a long-day migratory photoperiod increased flight muscle FAT/CD36 and H-FABP mRNA by 154% and 589%, respectively, and had 32% higher H-FABP protein than birds kept on a short-day photoperiod that mimicked wintering conditions. Migrants increased activities of flight muscle CPT, CS and HOAD by 57%, 23% and 74%, respectively, and decreased LDH activity by 31%, reflecting an increase in aerobic relative to anaerobic capacity. The expression of fatty acid transporters and the activities of metabolic enzymes in cardiac muscle were unaffected by migratory state. Leptin had no effect on transport proteins or enzymes in either skeletal or cardiac muscle suggesting that other signaling pathways control fatty acid metabolism during migration. These data indicate that photoperiod alone is sufficient to prime flight muscles for migratory flights by promoting enhanced protein-mediated fatty acid transport and oxidation. However, the endocrine controls and other factors underlying these changes remain to be thoroughly investigated.
Collapse
Affiliation(s)
- Daria M Zajac
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | | | |
Collapse
|
15
|
Barquissau V, Morio B. Physiopathologie de l’insulinorésistance dans le muscle squelettique et implication des fonctions mitochondriales. NUTR CLIN METAB 2011. [DOI: 10.1016/j.nupar.2011.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Stefanyk LE, Gulli RA, Ritchie IR, Chabowski A, Snook LA, Bonen A, Dyck DJ. Recovered insulin response by 2 weeks of leptin administration in high-fat fed rats is associated with restored AS160 activation and decreased reactive lipid accumulation. Am J Physiol Regul Integr Comp Physiol 2011; 301:R159-71. [PMID: 21525176 DOI: 10.1152/ajpregu.00636.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leptin is an adipokine that increases fatty acid (FA) oxidation, decreases intramuscular lipid stores, and improves insulin response in skeletal muscle. In an attempt to elucidate the underlying mechanisms by which these metabolic changes occur, we administered leptin (Lep) or saline (Sal) by miniosmotic pumps to rats during the final 2 wk of a 6-wk low-fat (LF) or high-fat (HF) diet. Insulin-stimulated glucose transport was impaired by the HF diet (HF-Sal) but was restored with leptin administration (HF-Lep). This improvement was associated with restored phosphorylation of Akt and AS160 and decreased in reactive lipid species (ceramide, diacylglycerol), known inhibitors of the insulin-signaling cascade. Total muscle citrate synthase (CS) activity was increased by both leptin and HF diet, but was not additive. Leptin increased subsarcolemmal (SS) and intramyofibrillar (IMF) mitochondria CS activity. Total muscle, sarcolemmal, and mitochondrial (SS and IMF) FA transporter (FAT/CD36) protein content was significantly increased with the HF diet, but not altered by leptin. Therefore, the decrease in reactive lipid stores and subsequent improvement in insulin response, secondary to leptin administration in rats fed a HF diet was not due to a decrease in FA transport protein content or altered cellular distribution.
Collapse
Affiliation(s)
- Leslie E Stefanyk
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
17
|
Guri AJ, Bassaganya-Riera J. Systemic effects of white adipose tissue dysregulation and obesity-related inflammation. Obesity (Silver Spring) 2011; 19:689-700. [PMID: 20930712 DOI: 10.1038/oby.2010.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amir J Guri
- Nutritional Immunology and Molecular Medicine Laboratory, CyberInfrastructure Division, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
18
|
Ritchie IRW, Gulli RA, Stefanyk LE, Harasim E, Chabowski A, Dyck DJ. Restoration of skeletal muscle leptin response does not precede the exercise-induced recovery of insulin-stimulated glucose uptake in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 2010; 300:R492-500. [PMID: 21084675 DOI: 10.1152/ajpregu.00602.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin administration increases fatty acid (FA) oxidation rates and decreases lipid storage in oxidative skeletal muscle, thereby improving insulin response. We have previously shown high-fat (HF) diets to rapidly induce skeletal muscle leptin resistance, prior to the disruption of normal muscle FA metabolism (increase in FA transport; accumulation of triacylglycerol, diacylglycerol, ceramide) that occurs in advance of impaired insulin signaling and glucose transport. All of this occurs within a 4-wk period. Conversely, exercise can rapidly improve insulin response, in as little as one exercise bout. Thus, if the early development of leptin resistance is a contributor to HF diet-induced insulin resistance (IR) in skeletal muscle, then it is logical to predict that the rapid restoration of insulin response by exercise training would be preceded by the recovery of leptin response. In the current study, we sought to determine 1) whether 1, 2, or 4 wk of exercise training was sufficient to restore leptin response in isolated soleus muscle of rats already consuming a HF diet (60% kcal), and 2) whether this preceded the training-induced corrections in FA metabolism and improved insulin-stimulated glucose transport. In the low-fat (LF)-fed control group, insulin increased glucose transport by 153% and leptin increased AMPK and ACC phosphorylation and the rate of palmitate oxidation (+73%). These responses to insulin and leptin were either severely blunted or absent following 4 wk of HF feeding. Exercise intervention decreased muscle ceramide content (-28%) and restored insulin-stimulated glucose transport to control levels within 1 wk; muscle leptin response (AMPK and ACC phosphorylation, FA oxidation) was also restored, but not until the 2-wk time point. In conclusion, endurance exercise training is able to restore leptin response, but this does not appear to be a necessary precursor for the restoration of insulin response.
Collapse
Affiliation(s)
- Ian R W Ritchie
- Dept. of Human Health and Nutritional Sciences, Animal Science and Nutrition Bldg., Rm 205, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Stefanyk LE, Dyck DJ. The interaction between adipokines, diet and exercise on muscle insulin sensitivity. Curr Opin Clin Nutr Metab Care 2010; 13:255-9. [PMID: 20216410 DOI: 10.1097/mco.0b013e328338236e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW High-fat diets lead to obesity and increase the risk of developing insulin resistance and type 2 diabetes. Adipose tissue and skeletal muscle act as endocrine organs, and produce various cytokines that can potentially alter peripheral insulin sensitivity. The purpose of the present review is to briefly summarize the effects of major cytokines (leptin, adiponectin, tumor necrosis factor-alpha, and interleukin-6) on muscle metabolism and insulin response, with a focus on the effects of diet and exercise. RECENT FINDINGS Leptin and adiponectin improve insulin sensitivity. However, in obesity there is a diminished response to these adipokines. This resistance can be induced very rapidly and may lead to subsequent impairments in insulin response. Tumor necrosis factor-alpha is a proinflammatory cytokine that has been implicated as a mediator of insulin resistance, particularly in obesity. Interleukin-6 was the first identified myokine. There is evidence to implicate interleukin-6 both as a mediator of impaired insulin action in obesity, and also as a facilitator of increased fuel metabolism during exercise. The effect of each of these cytokines on muscle insulin sensitivity can be modulated by diet and exercise. SUMMARY Much of the information summarized in the present review focuses on the effects of various cytokines in isolation, although in vivo there can be considerable interaction with each other. Future research should consider these potential interactions.
Collapse
Affiliation(s)
- Leslie E Stefanyk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
20
|
Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010; 2010:476279. [PMID: 20445742 PMCID: PMC2860140 DOI: 10.1155/2010/476279] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/20/2010] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.
Collapse
|
21
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
22
|
Fuentes T, Ara I, Guadalupe-Grau A, Larsen S, Stallknecht B, Olmedillas H, Santana A, Helge JW, Calbet JAL, Guerra B. Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance. Exp Physiol 2009; 95:160-71. [PMID: 19717488 DOI: 10.1113/expphysiol.2009.049270] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin signalling and signal transducer and activator of transcription 3 (STAT3) phosphorylation and reduce AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation. Deltoid and vastus lateralis muscle biopsies were obtained from 20 men: 10 non-obese control subjects (mean +/- s.d. age, 31 +/- 5 years; height, 184 +/- 9 cm; weight, 91 +/- 13 kg; and percentage body fat, 24.8 +/- 5.8%) and 10 obese (age, 30 +/- 7 years; height, 184 +/- 8 cm; weight, 115 +/- 8 kg; and percentage body fat, 34.9 +/- 5.1%). Skeletal muscle OB-R170 (OB-R long isoform) protein expression was 28 and 25% lower (both P < 0.05) in arm and leg muscles, respectively, of obese men compared with control subjects. In normal-weight subjects, SOCS3 protein expression, and STAT3, AMPKalpha and ACCbeta phosphorylation, were similar in the deltoid and vastus lateralis muscles. In obese subjects, the deltoid muscle had a greater amount of leptin receptors than the vastus lateralis, whilst SOCS3 protein expression was increased and basal STAT3, AMPKalpha and ACCbeta phosphorylation levels were reduced in the vastus lateralis compared with the deltoid muscle (all P < 0.05). In summary, skeletal muscle leptin receptors and leptin signalling are reduced in obesity, particularly in the leg muscles.
Collapse
Affiliation(s)
- T Fuentes
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Canary Island, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab 2009; 34:396-402. [PMID: 19448705 DOI: 10.1139/h09-037] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest tissue responsible for the insulin-stimulated disposal of glucose. However, identifying the link between excess body fat and impaired insulin sensitivity in skeletal muscle has been difficult. Several adipose-derived cytokines (adipokines) have been implicated in the impairment of insulin sensitivity, while adipokines such as leptin and adiponectin exert an insulin-sensitizing effect. Leptin and adiponectin have each been shown to increase fatty acid (FA) oxidation and decrease triglyceride storage in muscle, which may explain, in part, the insulin-sensitizing effect of these cytokines. Recent evidence strongly implicates an increased localization of the FA transporters to the plasma membrane (PM) as an important factor in the accumulation of intramuscular lipids with high-fat diets and obesity. Perhaps surprisingly, relatively little attention has been paid to the ability of insulin-sensitizing compounds, such as leptin and adiponectin, to decrease the abundance of FA transporters in the PM, thereby decreasing lipid accumulation. In the case of both adipokines, there is also evidence that a resistance to their ability to stimulate FA oxidation in skeletal muscle develops during obesity. One of our recent studies indicates that this development can be very rapid (i.e., within days), and precedes the increase in lipid uptake and accumulation that leads to insulin resistance. It is noteworthy that leptin resistance can be modulated by both diet and training in rodents. Further studies examining the underlying mechanisms of the development of leptin and adiponectin resistance are warranted.
Collapse
Affiliation(s)
- David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
24
|
Jørgensen SB, Honeyman J, Oakhill JS, Fazakerley D, Stöckli J, Kemp BE, Steinberg GR. Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab 2009; 297:E57-66. [PMID: 19435854 DOI: 10.1152/ajpendo.90744.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hormone resistin is elevated in obesity and impairs glucose homeostasis. Here, we examined the effect of oligomerized human resistin on insulin signaling and glucose metabolism in skeletal muscle and myotubes. This was investigated by incubating mouse extensor digitorum longus (EDL) and soleus muscles and L6 myotubes with physiological concentrations of resistin and assessing insulin-stimulated glucose uptake, cellular signaling, suppressor of cytokine signaling 3 (SOCS-3) mRNA, and GLUT4 translocation. We found that resistin at a concentration of 30 ng/ml decreased insulin-stimulated glucose uptake by 30-40% in soleus muscle and myotubes, whereas in EDL muscle insulin-stimulated glucose uptake was impaired at a resistin concentration of 100 ng/ml. Impaired insulin-stimulated glucose uptake was not associated with reduced Akt phosphorylation or IRS-1 protein or increased SOCS-3 mRNA expression. To further investigate the site(s) at which resistin impairs glucose uptake we treated myotubes and skeletal muscle with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) and found that, although resistin did not impair AMPK activation, it reduced AICAR-stimulated glucose uptake. These data suggested that resistin impairs glucose uptake at a point common to insulin and AMPK signaling pathways, and we thus measured AS160/TBC1D4 Thr(642) phosphorylation and GLUT4 translocation in myotubes. Resistin did not impair TBC1D4 phosphorylation but did reduce both insulin and AICAR-stimulated GLUT4 plasma membrane translocation. We conclude that resistin impairs insulin-stimulated glucose uptake by mechanisms involving reduced plasma membrane GLUT4 translocation but independent of the proximal insulin-signaling cascade, AMPK, and SOCS-3.
Collapse
Affiliation(s)
- Sebastian Beck Jørgensen
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Araujo RL, Andrade BM, da Silva ML, Ferreira ACF, Carvalho DP. Tissue-specific deiodinase regulation during food restriction and low replacement dose of leptin in rats. Am J Physiol Endocrinol Metab 2009; 296:E1157-63. [PMID: 19208852 DOI: 10.1152/ajpendo.90869.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between thyroid function and leptin has been extensively studied; however, the mechanisms underlying the changes in thyroid hormone economy that occur during caloric deprivation remain elusive. Our goal was to evaluate the thyroid function of rats submitted to 40% food restriction after chronic leptin replacement. Caloric restriction for 25 days led to significantly reduced serum leptin, thyroid-stimulating hormone (TSH), thyroxine (T(4)), and triiodothyronine (T(3)) and increased serum corticosterone, while liver, kidney, and thyroid type I deiodinase (D1) and brown adipose tissue (BAT) type II deiodinase (D2) activities were decreased and hypothalamic D2 was significantly increased. Interestingly, thyroid iodide uptake was unchanged by caloric restriction, but thyroperoxidase (TPO) activity was significantly reduced. Leptin replacement for the last 10 days of caloric restriction normalized serum leptin and TSH levels, but serum T(4) and T(3) levels and thyroid D1 and TPO activities were not reestablished. Also, a negative effect of leptin administration on Na(+)-I(-) symporter function was detected. Liver and kidney D1 and hypothalamic and BAT D2 were normalized by leptin, while pituitary D2 was significantly decreased. In conclusion, a tissue-specific modulation of deiodinases might be implicated in the normalization of thyroid function during leptin replacement in food-restricted rats. Although leptin restores the hypothalamus-pituitary axis during food restriction, it exerts a direct negative effect on the thyroid gland; thus normalization of serum thyroid hormones might depend on changes in deiodinase activities and the long-term thyroid stimulation by TSH to counterbalance the direct negative effects of leptin on the thyroid gland.
Collapse
Affiliation(s)
- R L Araujo
- Instituto de Biofísica Carlos Chagas Filho, CCS-Bloco G-Cidade Universitária, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | |
Collapse
|
26
|
Holloway GP, Benton CR, Mullen KL, Yoshida Y, Snook LA, Han XX, Glatz JFC, Luiken JJFP, Lally J, Dyck DJ, Bonen A. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab 2009; 296:E738-47. [PMID: 19141681 DOI: 10.1152/ajpendo.90896.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intramuscular triacylglycerol (IMTG) accumulation in obesity has been attributed to increased fatty acid transport and/or to alterations in mitochondrial fatty acid oxidation. Alternatively, an imbalance in these two processes may channel fatty acids into storage. Therefore, in red and white muscles of lean and obese Zucker rats, we examined whether the increase in IMTG accumulation was attributable to an increased rate of fatty acid transport rather than alterations in subsarcolemmal (SS) or intermyofibrillar (IMF) mitochondrial fatty acid oxidation. In obese animals selected parameters were upregulated, including palmitate transport (red: +100%; white: +51%), plasmalemmal FAT/CD36 (red: +116%; white: +115%; not plasmalemmal FABPpm, FATP1, or FATP4), IMTG concentrations (red: approximately 2-fold; white: approximately 4-fold), and mitochondrial content (red +30%). Selected mitochondrial parameters were also greater in obese animals, namely, palmitate oxidation (SS red: +91%; SS white: +26%; not IMF mitochondria), FAT/CD36 (SS: +65%; IMF: +65%), citrate synthase (SS: +19%), and beta-hydroxyacyl-CoA dehydrogenase activities (SS: +20%); carnitine palmitoyltransferase-I activity did not differ. A comparison of lean and obese rat muscles revealed that the rate of change in IMTG concentration was eightfold greater than that of fatty acid oxidation (SS mitochondria), when both parameters were expressed relative to fatty transport. Thus fatty acid transport, esterification, and oxidation (SS mitochondria) are upregulated in muscles of obese Zucker rats, with these effects being most pronounced in red muscle. The additional fatty acid taken up is channeled primarily to esterification, suggesting that upregulation in fatty acid transport as opposed to altered fatty acid oxidation is the major determinant of intramuscular lipid accumulation.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The purpose of this review is to provide information about the role of exercise in the prevention of skeletal muscle insulin resistance, that is, the inability of insulin to properly cause glucose uptake into skeletal muscle. Insulin resistance is associated with high levels of stored lipids in skeletal muscle cells. Aerobic exercise training decreases the amounts of these lipid products and increases the lipid oxidative capacity of muscle cells. Thus, aerobic exercise training may prevent insulin resistance by correcting a mismatch between fatty acid uptake and fatty acid oxidation in skeletal muscle. Additionally, a single session of aerobic exercise increases glucose uptake by muscle during exercise, increases the ability of insulin to promote glucose uptake, and increases glycogen accumulation after exercise, all of which are important to blood glucose control. There also is some indication that resistance exercise may be effective in preventing insulin resistance. The information provided is intended to help clinicians understand and explain the roles of exercise in reducing insulin resistance.
Collapse
|
28
|
Abstract
AIM Lipids are important in constituting cell structure and participating in many biological processes, particularly in energy supplementation to cells. The aim of the present study is to elucidate the action of lipid metabolism-associated genes on rat liver regeneration (LR). METHODS Lipid metabolism-associated genes were obtained by collecting website data and retrieving related articles, and their expression changes in the regenerating rat liver were checked by the Rat Genome 230 2.0 array. RESULTS In total, 280 genes involved in lipid metabolism were proven to be LR-associated by comparing the gene expression discrepancy between the partial-hepatectomy and sham-operation groups. The initial and total expression numbers of these genes occurring in the initial phase, G(0)/G(1) transition, cell proliferation, cell differentiation, and structure-functional rebuilding of LR were 128, 33, 135, 6, and 267, 147, 1026, 306, respectively, illustrating that these genes were initially expressed mainly in the initiation stage and functioned in different phases. Upregulation (850 times) and downregulation (749 times), as well as 25 types of expression patterns, showed that the physiological and biochemical activities were diverse and complicated in LR. CONCLUSION According to the results of the chip detection, it was presumed that fatty acid synthesis at 24-66 h, leukotriene and androgen synthesis at 16-168 h, prostaglandin synthesis at 2-96 h, triglyceride synthesis at 18-24 h, glycosphingolipid synthesis at 0.5-66 h, metabolism of phosphatidyl inositol and sphingomyelin at 2-16 h, and cholesterol catabolism at 30-168 h were enhanced. Throughout almost the whole LR, the genes participating in estrogen, glucocorticoid, and progesterone synthesis, and triglyceride catabolism were upregulated, while phospholipid and glycosphingolipid catabolism were downregulated.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, Henan, Xinziang, China
| | | | | |
Collapse
|
29
|
Ribeiro SML, dos Santos ZA, da Silva RJ, Louzada E, Donato J, Tirapegui J. [Leptin: aspects on energetic balance, physical exercise and athletic amenorhea]. ACTA ACUST UNITED AC 2008; 51:11-24. [PMID: 17435851 DOI: 10.1590/s0004-27302007000100005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/07/2006] [Indexed: 11/22/2022]
Abstract
The aim of this manuscript was to review the knowledge about leptin, detailing its relationship with energetic intake and physical activity. Leptin is an adipocyte hormone, recognized mainly for its putative role in control of energy expenditure, food intake, body weight and reproductive function. Leptin has still important peripheral actions, including its role on the ovarian tissue. The intracellular signaling mechanisms are recognized in hypothalamus, but in peripheral tissue are not fully understood. The exercise, when practiced by women, if not appropriately planned according to food intake, can modify the leptin release. When energy imbalances induced by exercise and/or deficient food ingestion occurs, low leptin levels are observed, leading to a reduction in GnRH (gonadotropin-release hormone), in LH (luteinizing hormone) and FSH (follicle-stimulating hormone) in pituitary, and consequently a minor release of ovarian estrogens. This process is named hypothalamic amenorrhea, and has repercussions in the woman's health. In this perspective, it is important to emphasize the need to evaluate the energy expenditure from exercise and to formulate adequate alimentary plans to these individuals.
Collapse
Affiliation(s)
- Sandra Maria Lima Ribeiro
- Grupo de Estudos em Nutrição e Atividade Física, Programa de Pós Graduação Stricto Sensu em Educação Física da Universidade São Judas Tadeu, São Paulo.
| | | | | | | | | | | |
Collapse
|
30
|
Smith J, Su X, El-Maghrabi R, Stahl PD, Abumrad NA. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. J Biol Chem 2008; 283:13578-85. [PMID: 18353783 DOI: 10.1074/jbc.m800008200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
FAT/CD36 is a membrane scavenger receptor that facilitates long chain fatty acid uptake by muscle. Acute increases in membrane CD36 and fatty acid uptake have been reported in response to insulin and contraction. In this study we have explored protein ubiquitination as one potential mechanism for the regulation of CD36 level. CD36 expressed in Chinese hamster ovary (CHO) or HEK 293 cells was found to be polyubiquitinated via a process involving both lysines 48 and 63 of ubiquitin. Using CHO cells expressing the insulin receptor (CHO/hIR) and CD36, it is shown that addition of insulin (100 nm, 10 and 30 min) significantly reduced CD36 ubiquitination. In contrast, ubiquitination was strongly enhanced by fatty acids (200 microm palmitate or oleate, 2 h). Similarly, endogenous CD36 in C2C12 myotubes was ubiquitinated, and this was enhanced by oleic acid treatment, which also reduced total CD36 protein in cell lysates. Insulin reduced CD36 ubiquitination, increased CD36 protein, and inhibited the opposite effects of fatty acids on both parameters. These changes were paralleled by changes in fatty acid uptake, which could be blocked by the CD36 inhibitor sulfosuccinimidyl oleate. Mutation of the two lysine residues in the carboxyl-terminal tail of CD36 markedly attenuated ubiquitination of the protein expressed in CHO cells and was associated with increased CD36 level and enhanced oleate uptake and incorporation into triglycerides. In conclusion, fatty acids and insulin induce opposite alterations in CD36 ubiquitination, modulating CD36 level and fatty acid uptake. Altered CD36 turnover may contribute to abnormal fatty acid uptake in the insulin-resistant muscle.
Collapse
Affiliation(s)
- Jill Smith
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
31
|
Nickerson JG, Momken I, Benton CR, Lally J, Holloway GP, Han XX, Glatz JFC, Chabowski A, Luiken JJFP, Bonen A. Protein-mediated fatty acid uptake: regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl Physiol Nutr Metab 2008; 32:865-73. [PMID: 18059611 DOI: 10.1139/h07-084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid transport into heart and skeletal muscle occurs largely through a highly regulated protein-mediated mechanism involving a number of fatty acid transporters. Chronically altered muscle activity (chronic muscle stimulation, denervation) alters fatty acid transport by altering the expression of fatty acid transporters and (or) their subcellular location. Chronic exposure to leptin downregulates while insulin upregulates fatty acid transport by altering concomitantly the expression of fatty acid transporters. Fatty acid transport can also be regulated within minutes, by muscle contraction, AMP-activated protein kinase activation, leptin, and insulin, through induction of the translocation of fatty acid translocase (FAT)/CD36 from its intracellular depot to the plasma membrane. In insulin-resistant muscle, a permanent relocation of FAT/CD36 to the sarcolemma appears to account for the excess accretion of intracellular lipids that interfere with insulin signaling. Recent work has also shown that FAT/ CD36, but not plasma membrane associated fatty acid binding protein, is involved, along with carnitine palmitoyltransferase, in regulating mitochondrial fatty acid oxidation. Finally, studies in FAT/CD36 null mice indicate that this transporter has a key role in regulating fatty acid metabolism in muscle.
Collapse
Affiliation(s)
- James G Nickerson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Han XX, Chabowski A, Tandon NN, Calles-Escandon J, Glatz JFC, Luiken JJFP, Bonen A. Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle. Am J Physiol Endocrinol Metab 2007; 293:E566-75. [PMID: 17519284 DOI: 10.1152/ajpendo.00106.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined, in muscle of lean and obese Zucker rats, basal, insulin-induced, and contraction-induced fatty acid transporter translocation and fatty acid uptake, esterification, and oxidation. In lean rats, insulin and contraction induced the translocation of the fatty acid transporter FAT/CD36 (43 and 41%, respectively) and plasma membrane-associated fatty acid binding protein (FABPpm; 19 and 60%) and increased fatty acid uptake (63 and 40%, respectively). Insulin and contraction increased lean muscle palmitate esterification and oxidation 72 and 61%, respectively. In obese rat muscle, basal levels of sarcolemmal FAT/CD36 (+33%) and FABPpm (+14%) and fatty acid uptake (+30%) and esterification (+32%) were increased, whereas fatty acid oxidation was reduced (-28%). Insulin stimulation of obese rat muscle increased plasmalemmal FABPpm (+15%) but not plasmalemmal FAT/CD36, blunted fatty acid uptake and esterification, and failed to reduce fatty acid oxidation. In contracting obese rat muscle, the increases in fatty acid uptake and esterification and FABPpm translocation were normal, but FAT/CD36 translocation was impaired and fatty acid oxidation was blunted. There was no relationship between plasmalemmal fatty acid transporters and palmitate partitioning. In conclusion, fatty acid metabolism is impaired at several levels in muscles of obese Zucker rats; specifically, they are 1) insulin resistant with respect to FAT/CD36 translocation and fatty acid uptake, esterification, and oxidation and 2) contraction resistant with respect to fatty acid oxidation and FAT/CD36 translocation, but, conversely, 3) obese muscles are neither insulin nor contraction resistant at the level of FABPpm. Finally, 4) there is no evidence that plasmalemmal fatty acid transporters contribute to the channeling of fatty acids to specific metabolic destinations within the muscle.
Collapse
Affiliation(s)
- Xiao-Xia Han
- Dept. of Human Health and Nutritional Sciences, Univ. of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
33
|
Bonen A, Han XX, Habets DDJ, Febbraio M, Glatz JFC, Luiken JJFP. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 2007; 292:E1740-9. [PMID: 17264223 DOI: 10.1152/ajpendo.00579.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid translocase (FAT)/CD36 is involved in regulating the uptake of long-chain fatty acids into muscle cells. However, the contribution of FAT/CD36 to fatty acid metabolism remains unknown. We examined the role of FAT/CD36 on fatty acid metabolism in perfused muscles (soleus and red and white gastrocnemius) of wild-type (WT) and FAT/CD36 null (KO) mice. In general, in muscles of KO mice, 1) insulin sensitivity and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) sensitivity were normal, 2) key enzymes involved in fatty acid oxidation were altered minimally or not at all, and 3) except for an increase in soleus muscle FATP1 and FATP4, these fatty acid transporters were not altered in red and white gastrocnemius muscles, whereas plasma membrane-bound fatty acid binding protein was not altered in any muscle. In KO muscles perfused under basal conditions (i.e., no insulin, no AICAR), rates of hindquarter fatty acid oxidation were reduced by 26%. Similarly, in oxidative but not glycolytic muscles, the basal rates of triacylglycerol esterification were reduced by 40%. When muscles were perfused with insulin, the net increase in fatty acid esterification was threefold greater in the oxidative muscles of WT mice compared with the oxidative muscles in KO mice. With AICAR-stimulation, the net increase in fatty acid oxidation by hindquarter muscles was 3.7-fold greater in WT compared with KO mice. In conclusion, the present studies demonstrate that FAT/CD36 has a critical role in regulating fatty acid esterification and oxidation, particularly during stimulation with insulin or AICAR.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | | | | | |
Collapse
|
34
|
Dube JJ, Bhatt BA, Dedousis N, Bonen A, O'Doherty RM. Leptin, skeletal muscle lipids, and lipid-induced insulin resistance. Am J Physiol Regul Integr Comp Physiol 2007; 293:R642-50. [PMID: 17491114 DOI: 10.1152/ajpregu.00133.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin-induced increases in insulin sensitivity are well established and may be related to the effects of leptin on lipid metabolism. However, the effects of leptin on the levels of lipid metabolites implicated in pathogenesis of insulin resistance and the effects of leptin on lipid-induced insulin resistance are unknown. The current study addressed in rats the effects of hyperleptinemia (HL) on insulin action and markers of skeletal muscle (SkM) lipid metabolism in the absence or presence of acute hyperlipidemia induced by an infusion of a lipid emulsion. Compared with controls (CONT), HL increased insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp ( approximately 15%), and increased SkM Akt ( approximately 30%) and glycogen synthase kinase 3 alpha ( approximately 52%) phosphorylation. These improvements in insulin action were associated with decreased SkM triglycerides (TG; approximately 61%), elevated ceramides ( approximately 50%), and similar diacylglycerol (DAG) levels in HL compared with CONT. Acute hyperlipidemia in CONT decreased insulin sensitivity ( approximately 25%) and increased SkM DAG ( approximately 33%) and ceramide ( approximately 60%) levels. However, hyperlipidemia did not induce insulin resistance or SkM DAG and ceramide accumulation in HL. SkM total fatty acid transporter CD36, plasma membrane fatty acid binding protein, acetyl Co-A carboxylase phosphorylation, and fatty acid oxidation were similar in HL compared with CONT. However, HL decreased SkM protein kinase C theta (PKC theta), a kinase implicated in mediating the detrimental effects of lipids on insulin action. We conclude that increases in insulin sensitivity induced by HL are associated with decreased levels of SkM TG and PKC theta and increased SkM insulin signaling, but not with decreases in other lipid metabolites implicated in altering SkM insulin sensitivity (DAG and ceramide). Furthermore, insulin resistance induced by an acute lipid infusion is prevented by HL.
Collapse
Affiliation(s)
- John J Dube
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
35
|
Holloway GP, Lally J, Nickerson JG, Alkhateeb H, Snook LA, Heigenhauser GJF, Calles-Escandon J, Glatz JFC, Luiken JJFP, Spriet LL, Bonen A. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. J Physiol 2007; 582:393-405. [PMID: 17478525 PMCID: PMC2075306 DOI: 10.1113/jphysiol.2007.135301] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transport of long-chain fatty acids (LCFAs) across mitochondrial membranes is regulated by carnitine palmitoyltransferase I (CPTI) activity. However, it appears that additional fatty acid transport proteins, such as fatty acid translocase (FAT)/CD36, influence not only LCFA transport across the plasma membrane, but also LCFA transport into mitochondria. Plasma membrane-associated fatty acid binding protein (FABPpm) is also known to be involved in sacrolemmal LCFA transport, and it is also present on the mitochondria. At this location, it has been identified as mitochondrial aspartate amino transferase (mAspAT), despite being structurally identical to FABPpm. Whether this protein is also involved in mitochondrial LCFA transport and oxidation remains unknown. Therefore, we have examined the ability of FABPpm/mAspAT to alter mitochondrial fatty acid oxidation. Muscle contraction increased (P < 0.05) the mitochondrial FAT/CD36 content in rat (+22%) and human skeletal muscle (+33%). By contrast, muscle contraction did not alter the content of mitochondrial FABPpm/mAspAT protein in either rat or human muscles. Electrotransfecting rat soleus muscles, in vivo, with FABPpm cDNA increased FABPpm protein in whole muscle (+150%; P < 0.05), at the plasma membrane (+117%; P < 0.05) and in mitochondria (+80%; P < 0.05). In these FABPpm-transfected muscles, palmitate transport into giant vesicles was increased by +73% (P < 0.05), and fatty acid oxidation in intact muscle was increased by +18% (P < 0.05). By contrast, despite the marked increase in mitochondrial FABPpm/mAspAT protein content (+80%), the rate of mitochondrial palmitate oxidation was not altered (P > 0.05). However, electrotransfection increased mAspAT activity by +70% (P < 0.05), and the mitochondrial FABPpm/mAspAT protein content was significantly correlated with mAspAT activity (r = 0.75). It is concluded that FABPpm has two distinct functions depending on its subcellular location: (a) it contributes to increasing sarcolemmal LCFA transport while not contributing directly to LCFA transport into mitochondria; and (b) its primary role at the mitochondria level is to transport reducing equivalents into the matrix.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Canada, N1G 2W1.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bonen A, Chabowski A, Luiken JJFP, Glatz JFC. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda) 2007; 22:15-29. [PMID: 17342856 DOI: 10.1152/physiologyonline.2007.22.1.15] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
37
|
Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SLM, Han XX, Koonen DPY, Glatz JFC, Luiken JJFP. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 2007; 63:245-9. [PMID: 15294038 DOI: 10.1079/pns2004331] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fatty acid (FA) translocase (FAT)/CD36 is a key protein involved in regulating the uptake of FA across the plasma membrane in heart and skeletal muscle. A null mutation of FAT/CD36 reduces FA uptake rates and metabolism, while its overexpression increases FA uptake rates and metabolism. FA uptake into the myocyte may be regulated (a) by altering the expression of FAT/CD36, thereby increasing the plasmalemmal content of this protein (i.e. streptozotocin-induced diabetes, chronic muscle stimulation), or (b) by relocating this protein to the plasma membrane, without altering its expression (i.e. obese Zucker rats). By repressing FAT/CD36 expression, and thereby lowering the plasmalemmal FAT/CD36 (i.e. leptin-treated animals), the rate of FA transport is reduced. Within minutes of beginning muscle contraction or being exposed to insulin FA transport is increased. This increase is a result of the contraction- and insulin-induced translocation of FAT/CD36 from an intracellular depot to the cell surface. Neither PPARα nor PPARγ activation alter FAT/CD36 expression in muscle, despite the fact that PPARα activation increases FAT/CD36 by 80% in liver. A novel observation is that FAT/CD36 also appears to be involved in mitochondrial FA oxidation, as this protein is located on the mitochondrial membrane and seems to be required to participate in moving FA across the mitochondrial membrane. Clearly, FAT/CD36 has an important role in FA homeostasis in skeletal muscle and the heart.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Guerra B, Santana A, Fuentes T, Delgado-Guerra S, Cabrera-Socorro A, Dorado C, Calbet JAL. Leptin receptors in human skeletal muscle. J Appl Physiol (1985) 2007; 102:1786-92. [PMID: 17234799 DOI: 10.1152/japplphysiol.01313.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human skeletal muscle expresses leptin receptor mRNA; however, it remains unknown whether leptin receptors (OB-R) are also expressed at the protein level. Fourteen healthy men (age = 33.1 +/- 2.0 yr, height = 175.9 +/- 1.7 cm, body mass = 81.2 +/- 3.8 kg, body fat = 22.5 +/- 1.9%; means +/- SE) participated in this investigation. The expression of OB-R protein was determined in skeletal muscle, subcutaneous adipose tissue, and hypothalamus using a polyclonal rabbit anti-human leptin receptor. Three bands with a molecular mass close to 170, 128, and 98 kDa were identified by Western blot with the anti-OB-R antibody. All three bands were identified in skeletal muscle: the 98-kDa and 170-kDa bands were detected in hypothalamus, and the 98-kDa and 128-kDa bands were detected in thigh subcutaneous adipose tissue. The 128-kDa isoform was not detected in four subjects, whereas in the rest its occurrence was fully explained by the presence of intermuscular adipose tissue, as demonstrated using an anti-perilipin A antibody. No relationship was observed between the basal concentration of leptin in serum and the 170-kDa band density. In conclusion, a long isoform of the leptin receptor with a molecular mass close to 170 kDa is expressed at the protein level in human skeletal muscle. The amount of 170-kDa protein appears to be independent of the basal concentration of leptin in serum.
Collapse
Affiliation(s)
- Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Canary Island, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
Steinberg GR, Michell BJ, van Denderen BJW, Watt MJ, Carey AL, Fam BC, Andrikopoulos S, Proietto J, Görgün CZ, Carling D, Hotamisligil GS, Febbraio MA, Kay TW, Kemp BE. Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab 2006; 4:465-74. [PMID: 17141630 DOI: 10.1016/j.cmet.2006.11.005] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 08/29/2006] [Accepted: 11/09/2006] [Indexed: 02/06/2023]
Abstract
Elevated levels of tumor necrosis factor (TNFalpha) are implicated in the development of insulin resistance, but the mechanisms mediating these chronic effects are not completely understood. We demonstrate that TNFalpha signaling through TNF receptor (TNFR) 1 suppresses AMPK activity via transcriptional upregulation of protein phosphatase 2C (PP2C). This in turn reduces ACC phosphorylation, suppressing fatty-acid oxidation, increasing intramuscular diacylglycerol accumulation, and causing insulin resistance in skeletal muscle, effects observed both in vitro and in vivo. Importantly even at pathologically elevated levels of TNFalpha observed in obesity, the suppressive effects of TNFalpha on AMPK signaling are reversed in mice null for both TNFR1 and 2 or following treatment with a TNFalpha neutralizing antibody. Our data demonstrate that AMPK is an important TNFalpha signaling target and is a contributing factor to the suppression of fatty-acid oxidation and the development of lipid-induced insulin resistance in obesity.
Collapse
MESH Headings
- Adenylate Kinase/biosynthesis
- Adenylate Kinase/genetics
- Animals
- Insulin Resistance/genetics
- Lipid Metabolism/genetics
- Mice
- Mice, Mutant Strains
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Obesity/enzymology
- Obesity/genetics
- Obesity/pathology
- Oxidation-Reduction
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Protein Phosphatase 2C
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction/genetics
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Gregory R Steinberg
- St Vincent's Institute and Department of Medicine, University of Melbourne, Fitzroy, Vic, 3065, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chabowski A, Chatham JC, Tandon NN, Calles-Escandon J, Glatz JFC, Luiken JJFP, Bonen A. Fatty acid transport and FAT/CD36 are increased in red but not in white skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab 2006; 291:E675-82. [PMID: 16684853 DOI: 10.1152/ajpendo.00096.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increased rate of fatty acid transport into skeletal muscle has been has been linked to the accumulation of intramuscular lipids and insulin resistance, and red muscles are more susceptible than white muscles in developing fatty acid-mediated insulin resistance. Therefore, we examined in Zucker diabetic fatty (ZDF) rats, relative to lean rats, 1) whether rates of fatty acid transport and transporters (FAT/CD36 and FABPpm) were upregulated in skeletal muscle during the transition from insulin resistance (week 6) to type 2 diabetes (weeks 12 and 24), 2) whether such changes occurred primarily in red skeletal muscle, and 3) whether changes in FAT/CD36 and GLUT4 were correlated. In red muscles of ZDF compared with lean rats, the rates of fatty acid transport were upregulated (+66%) early in life (week 6). Compared with the increase in fatty acid transport in lean red muscle from weeks 12-24 (+57%), the increase in fatty acid transport rate in ZDF red muscle was 50% greater during this same period. In contrast, no differences in fatty acid transport rates were observed in the white muscles of lean and ZDF rats at any time (weeks 6-24). In red muscle only, there was an inverse relationship between FAT/CD36 and GLUT4 protein expression as well as their plasmalemmal content. These studies have shown that, 1) before the onset of diabetes, as well as during diabetes, fatty acid transport and FAT/CD36 expression and plasmalemmal content are upregulated in ZDF rats, but importantly, 2) these changes occurred only in red, not white, muscles of ZDF rats.
Collapse
Affiliation(s)
- Adrian Chabowski
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Steinberg GR, McAinch AJ, Chen MB, O'Brien PE, Dixon JB, Cameron-Smith D, Kemp BE. The suppressor of cytokine signaling 3 inhibits leptin activation of AMP-kinase in cultured skeletal muscle of obese humans. J Clin Endocrinol Metab 2006; 91:3592-7. [PMID: 16822822 DOI: 10.1210/jc.2006-0638] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Leptin is thought to regulate whole-body adiposity and insulin sensitivity, at least in part, by stimulating fatty acid metabolism via activation of AMP-kinase (AMPK) in skeletal muscle. Human obesity is associated with leptin resistance, and recent studies have demonstrated that hypothalamic expression of the suppressors of cytokine signaling 3 (SOCS3) regulates leptin sensitivity in rodents. OBJECTIVE The objective of the study was to investigate the effects of leptin on fatty acid oxidation and AMPK signaling in primary myotubes derived from lean and obese skeletal muscle and evaluate the contribution of SOCS3 to leptin resistance and AMPK signaling in obese humans. RESULTS We demonstrate that leptin stimulates AMPK activity and increases AMPK Thr172 and acetyl-CoA carboxylase-beta Ser222 phosphorylation and fatty acid oxidation in lean myotubes but that in obese subjects leptin-dependent AMPK signaling and fatty acid oxidation are suppressed. Reduced activation of AMPK was associated with elevated expression of IL-6 ( approximately 3.5-fold) and SOCS3 mRNA ( approximately 2.5-fold) in myotubes of obese subjects. Overexpression of SOCS3 via adenovirus-mediated infection in lean myotubes to a similar degree as observed in obese myotubes prevented leptin but not AICAR (5-amino-imidazole-4-carboxamide-1-beta-d-ribofuranoside) activation of AMPK signaling. CONCLUSIONS These data demonstrate that SOCS3 inhibits leptin activation of AMPK. These data suggest that this impairment of leptin signaling in skeletal muscle may contribute to the aberrant regulation of fatty acid metabolism observed in obesity and that pharmacological activation of AMPK may be an effective therapy to bypass SOCS3-mediated skeletal muscle leptin resistance for the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Gregory R Steinberg
- St. Vincent's Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chabowski A, Górski J, Calles-Escandon J, Tandon NN, Bonen A. Hypoxia-induced fatty acid transporter translocation increases fatty acid transport and contributes to lipid accumulation in the heart. FEBS Lett 2006; 580:3617-23. [PMID: 16753149 DOI: 10.1016/j.febslet.2006.05.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Protein-mediated LCFA transport across plasma membranes is highly regulated by the fatty acid transporters FAT/CD36 and FABPpm. Physiologic stimuli (insulin stimulation, AMP kinase activation) induce the translocation of one or both transporters to the plasma membrane and increase the rate of LCFA transport. In the hypoxic/ischemic heart, intramyocardial lipid accumulation has been attributed to a reduced rate of fatty acid oxidation. However, since acute hypoxia (15 min) activates AMPK, we examined whether an increased accumulation of intramyocardial lipid during hypoxia was also attributable to an increased rate of LCFA uptake as a result AMPK-induced translocation of FAT/CD36 and FABPpm. In cardiac myocytes, hypoxia (15 min) induced the redistribution of FAT/CD36 from an intracellular pool (LDM) (-25%, P<0.05) to the plasma membranes (PM) (+54%, P<0.05). Hypoxia also induced an increase in FABPpm at the PM (+56%, P<0.05) and a concomitant FABPpm reduction in the LDM (-24%, P<0.05). Similarly, in intact, Langendorff perfused hearts, hypoxia induced the translocation of a both FAT/CD36 and FABPpm to the PM (+66% and +61%, respectively, P<0.05), with a concomitant decline in FAT/CD36 and FABPpm in the LDM (-24% and -23%, respectively, P<0.05). Importantly, the increased plasmalemmal content of these transporters was associated with increases in the initial rates of palmitate uptake into cardiac myocytes (+40%, P<0.05). Acute hypoxia also redirected palmitate into intracellular lipid pools, mainly to PL and TG (+48% and +28%, respectively, P<0.05), while fatty acid oxidation was reduced (-35%, P<0.05). Thus, our data indicate that the increased intracellular lipid accumulation in hypoxic hearts is attributable to both: (a) a reduced rate of fatty acid oxidation and (b) an increased rate of fatty acid transport into the heart, the latter being attributable to a hypoxia-induced translocation of fatty acid transporters.
Collapse
Affiliation(s)
- Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, ul. Mickiewicza 2C, 15-089 Bialystok, Poland.
| | | | | | | | | |
Collapse
|
43
|
Chabowski A, Górski J, Bonen A. Regulation of fatty acid transport: from transcriptional to posttranscriptional effects. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:259-63. [PMID: 16724206 DOI: 10.1007/s00210-006-0075-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Bonen A, Nickerson JG, Momken I, Chabowski A, Calles-Escandon J, Tandon NN, Glatz JFC, Luiken JJFP. Tissue-Specific and Fatty Acid Transporter-Specific Changes in Heart and Soleus Muscle Over a 1-yr Period. Mol Cell Biochem 2006; 291:145-54. [PMID: 16718359 DOI: 10.1007/s11010-006-9208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/30/2006] [Indexed: 11/25/2022]
Abstract
Rates of fatty acid oxidation increase rapidly in both rat heart and skeletal muscle in the early postnatal period. Therefore, we examined in heart and soleus muscle, (a) whether there were rapid changes in fatty acid transporter (FAT/CD36, FABPpm) mRNA and protein expression early in life (days 10 -36) and thereafter (days 84, 160, 365), and (b) whether the rates of fatty acid transport and the plasmalemmal content of FAT/CD36 and FABPpm were altered. Protein expression was altered rapidly from day 10-36 in both heart (FAT/CD36 only, +21%, P < 0.05)) and soleus muscle (FAT/CD36 + 100%, P < 0.05; FABPpm -20%, P < 0.05), with no further changes thereafter (P < 0.05). Rates of fatty acid transport (day 10 vs day 160) were increased in heart (+33%, P < 0.05) and muscle (+85%, P < 0.05), and were associated with concomitant increases in plasmalemmal FABPpm (+44%, P < 0.05) and FAT/CD36 (+16%, P < 0.05) in the heart, and only plasmalemmal FAT/CD36 in muscle (+90%, P < 0.05). Therefore, known changes in the rates of fatty acid oxidation in heart and muscle early in life appear to be accompanied by a concurrent upregulation in the rates of fatty acid transport and the expression of FAT/CD36 in heart and muscle, as well as an increase in plasmalemmal FAT/CD36 and FABPpm in the heart, and only plasmalemmal FAT/CD36 in soleus muscle. We speculate that the rapid upregulation of fatty acid transport rates in heart and muscle are needed to support the increased rates of fatty oxidation that have been previously observed in these tissues.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, Steinberg GR. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 2006; 12:541-8. [PMID: 16604088 DOI: 10.1038/nm1383] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 02/23/2006] [Indexed: 12/19/2022]
Abstract
Ciliary neurotrophic factor (CNTF) induces weight loss and improves glucose tolerance in humans and rodents. CNTF is thought to act centrally by inducing hypothalamic neurogenesis to modulate food intake and peripherally by altering hepatic gene expression, in a manner similar to that of leptin. Here, we show that CNTF signals through the CNTFRalpha-IL-6R-gp130beta receptor complex to increase fatty-acid oxidation and reduce insulin resistance in skeletal muscle by activating AMP-activated protein kinase (AMPK), independent of signaling through the brain. Thus, our findings further show that the antiobesogenic effects of CNTF in the periphery result from direct effects on skeletal muscle, and that these peripheral effects are not suppressed by diet-induced or genetic models of obesity, an essential requirement for the therapeutic treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Matthew J Watt
- Cellular and Molecular Metabolism Laboratory, School of Medical Sciences, Royal Melbourne Institute of Technology, PO Box 71, Bundoora, 3083, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Benton CR, Koonen DPY, Calles-Escandon J, Tandon NN, Glatz JFC, Luiken JJFP, Heikkila JJ, Bonen A. Differential effects of contraction and PPAR agonists on the expression of fatty acid transporters in rat skeletal muscle. J Physiol 2006; 573:199-210. [PMID: 16484294 PMCID: PMC1779691 DOI: 10.1113/jphysiol.2006.106013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have examined over the course of a 1-week period the independent and combined effects of chronically increased muscle contraction and the peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma activators, Wy 14,643 and rosiglitazone, on the expression and plasmalemmal content of the fatty acid transporters, FAT/CD36 and FABPpm, as well as on the rate of fatty acid transport. In resting muscle, the activation of either PPARalpha or PPARgamma failed to induce the protein expression of FAT/CD36. PPARalpha activation also failed to induce the protein expression of FABPpm. In contrast, PPARgamma activation induced the expression of FABPpm protein (40%; P < 0.05). Chronic muscle contraction increased the protein expression of FAT/CD36 (approximately 50%; P < 0.05), whereas FABPpm was slightly increased (12%; P < 0.05). Neither PPARalpha nor PPARgamma activation altered the contraction-induced expression of FAT/CD36 or FABPpm. Changes in protein expression of FAT/CD36 or FABPpm, induced by either contractions or by administration of rosiglitazone, were largely attributable to increased transcription. The contraction-induced increments in FAT/CD36 were accompanied by parallel increments in plasmalemmal FAT/CD36 and in rates of fatty acid transport (P < 0.05). Up-regulation of FABPpm expression was, however, accompanied by a reduction in plasmalemmal FABPpm, which did not affect the rates of long chain fatty acid (LCFA) transport. These studies have shown that in skeletal muscle (i) neither PPARalpha nor PPARgamma activation alters FAT/CD36 expression, (ii) PPARgamma activation selectively up-regulates FABPpm expression and (iii) contraction-induced up-regulation of LCFA transport does not appear to occur via activation of either PPARalpha or PPARgamma.
Collapse
Affiliation(s)
- Carley R Benton
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 2W1
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bonen A, Tandon NN, Glatz JFC, Luiken JJFP, Heigenhauser GJF. The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. Int J Obes (Lond) 2006; 30:877-83. [PMID: 16418758 DOI: 10.1038/sj.ijo.0803212] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Long-chain fatty acids (LCFAs) cross the plasma membrane via a protein-mediated mechanism involving one or more LCFA-binding proteins. Among these, FAT/CD36 has been identified as key LCFA transporter in the heart and skeletal muscle, where it is regulated acutely and chronically by insulin. In skeletal muscle, FAT/CD36 expression and/or subcellular distribution is altered in obesity and type 2 diabetes. There is limited information as to whether the expression of this protein is also altered in subcutaneous and/or visceral adipose tissue depots in human obesity or type 2 diabetes. OBJECTIVES To compare (a) the expression of FAT/CD36 in subcutaneous and visceral adipose tissue depots in lean, overweight, and obese individuals and in type 2 diabetics, (b) to determine whether the protein expression of FAT/CD36 in these depots is associated with the severity of insulin resistance (type 2 diabetes>obese>overweight/lean) and (c) whether FAT/CD36 protein expression in these adipose tissue depots is associated with alterations in circulating substrates and hormones. SUBJECTS Subjects who were undergoing abdominal surgery and who were lean (n=10; three men, seven women), overweight (n=10; three men, seven women) or obese (n=7; one man, six women), or who had been diagnosed with type 2 diabetes (n=5; one man, four women) participated in this study. MEASUREMENTS Subcutaneous and visceral adipose tissue samples, as well as blood samples, were obtained from the subjects while under general anesthesia. Adipose tissue samples were analyzed for FAT/CD36 using Western blotting. Serum samples were analyzed for glucose, insulin, FFA and leptin. BMI was also calculated. RESULTS Subcutaneous adipose tissue FAT/CD36 expression was upregulated by +58, +76 and +150% in overweight, obese and type 2 diabetics, respectively. Relative to subcutaneous adipose tissue, visceral adipose tissue FAT/CD36 expression was upregulated in lean (+52%) and overweight subjects (+30%). In contrast, in obese subjects and type 2 diabetics, no difference in FAT/CD36 protein expression was observed between their subcutaneous and visceral adipose tissue depots (P>0.05). The subcutaneous adipose tissue FAT/CD36 expression (R=0.85) and the visceral adipose tissue FAT/CD36 expression (R=0.77) were associated with alteration in BMI and circulating glucose and insulin. CONCLUSIONS Subcutaneous adipose tissue FAT/CD36 expression is upregulated in obesity and type 2 diabetes. As FAT/CD36 expression is not different in lean, overweight and obese subjects, and was only increased in type 2 diabetics, it appears that visceral adipose tissue FAT/CD36 may respond in a less dynamic manner to metabolic disturbances than subcutaneous adipose tissue FAT/CD36.
Collapse
Affiliation(s)
- A Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids liberated from adipose tissue adhering to the muscle cells. The regulation of utilization of the different lipid sources in skeletal muscle during exercise is reviewed, and the influence of diet, training, and gender is discussed. Major points deliberated are the methods utilized to measure uptake and oxidation of LCFA during exercise in humans. The role of the various lipid-binding proteins in transmembrane and cytosolic transport of lipids is considered as well as regulation of lipid entry into the mitochondria, focusing on the putative role of AMP-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC), and carnitine during exercise. The possible contribution to fuel provision during exercise of circulating VLDL-TG as well as the role of IMTG is discussed from a methodological point of view. The contribution of IMTG for energy provision may not be large, covering ∼10% of total energy provision during fasting exercise in male subjects, whereas in females, IMTG may cover a larger proportion of energy delivery. Molecular mechanisms involved in breakdown of IMTG during exercise are also considered focusing on hormone-sensitive lipase (HSL). Finally, the role of lipids in development of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed.
Collapse
Affiliation(s)
- Bente Kiens
- Copenhagen Muscle Research Centre, Dept. of Human Physiology, Institute of Exercise and Sports Sciences, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
49
|
Ho M, Foxall S, Higginbottom M, Donofrio DM, Liao J, Richardson PJ, Maneuf YP. Leptin-mediated inhibition of the insulin-stimulated increase in fatty acid uptake in differentiated 3T3-L1 adipocytes. Metabolism 2006; 55:8-12. [PMID: 16324913 DOI: 10.1016/j.metabol.2005.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 06/16/2005] [Indexed: 01/09/2023]
Abstract
The effects of insulin and leptin on fatty acid uptake in differentiated (adipocytes) and undifferentiated 3T3-L1 cells were investigated. It was demonstrated that in undifferentiated 3T3-L1 cells, insulin and leptin have no effect on fatty acid uptake. In differentiated 3T3-L1 adipocytes, insulin had a concentration-dependent stimulatory effect on fatty acid uptake, whereas leptin on its own had no effect. Leptin, when coincubated with 10 nmol/L insulin, resulted in a concentration-dependent inhibition of the insulin-stimulated fatty acid uptake in differentiated 3T3-L1 cells. These results indicate that leptin has a direct inhibitory effect on the stimulation of fatty acid uptake by insulin in differentiated murine adipocytes.
Collapse
Affiliation(s)
- Michael Ho
- Department of Biology, Cambridge Biotechnology Ltd, Babraham Research Campus, Cambridge CB2 1XJ , UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Balasubramaniyan V, Nalini N. Intraperitoneal leptin regulates lipid metabolism in ethanol supplemented Mus musculas heart. Life Sci 2006; 78:831-7. [PMID: 16137712 DOI: 10.1016/j.lfs.2005.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 05/23/2005] [Indexed: 01/24/2023]
Abstract
Diseases of the heart and blood vessels are a major cause of illness and disability worldwide. The relationship between ethanol consumption and cardiovascular disease are both complex and interconnected. Our aim of this study was to explore the effect of leptin on lipid metabolism in ethanol supplemented mice. Male Swiss mice (Mus musculas) weighing 25+/-2 g were administered ethanol (6.32 g kg(-1) body weight) for the first 30 days. Subsequently, ethanol fed mice were given intraperitoneal injections of exogenous mouse recombinant leptin (230 microg kg(-1) body weight) every alternate day for 15 days. Food and water intake and total body weight were measured every day and at the end of the experimental period of 45 days, plasma and cardiac lipids were analyzed. Exogenous leptin injections to ethanol fed mice significantly (P < 0.05) prevented the accumulation of total cholesterol, phospholipids (PL), triglycerides (TG) and free fatty acids (FFA) in the mouse heart and blood as compared to the untreated ethanol fed mice whereas, the plasma concentration of free cholesterol was significantly increased on leptin administration as compared to normal untreated mice. Moreover leptin administration significantly elevated the activities of cardiac lipoprotein lipase (LPL) and plasma lecithin cholesterol acyl transferase (LCAT) and significantly reduced the activities of cardiac HMG CoA reductase and cholesterol ester synthase (CES) on leptin administration to ethanol fed mice. Thus we could postulate that an increase in systemic leptin level prevents the accumulation of lipids in the plasma and heart of ethanol treated mice.
Collapse
Affiliation(s)
- V Balasubramaniyan
- Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar- 608 002, Tamilnadu, India
| | | |
Collapse
|