1
|
Pedreañez A, Carrero Y, Vargas R, Hernandez-Fonseca JP, Hernandez-Fonseca H, Mosquera JA. Role of Gut Microbiota in Dengue. Rev Med Virol 2024; 34:e2577. [PMID: 39215460 DOI: 10.1002/rmv.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Dengue is a disease caused by a flavivirus (DENV) and transmitted by the bite of a mosquito, primarily the Aedes aegypti and Aedes albopictus species. Previous studies have demonstrated a relationship between the host gut microbiota and the evolution of dengue. It seems to be a bidirectional relationship, in which the DENV can affect the microbiota by inducing alterations related to intestinal permeability, leading to the release of molecules from microbiota dysbiosis that can influence the evolution of dengue. The role of angiotensin II (Ang II) in the microbiota/dengue relationship is not well understood, but it is known that the renin-angiotensin system (RAS) is present in the intestinal tract and interacts with the gut microbiota. The possible effect of Ang II on the microbiota/Ang II/dengue relationship can be summarised as follows: the presence of Ang II induced hypertension, the increase in angiotensinogen, chymase, and microRNAs during the disease, the induction of vascular dysfunction, the production of trimethylamine N-oxide and the brain/microbiota relationship, all of which are elements present in dengue that could be part of the microbiota/Ang II/dengue interactions. These findings suggest the potential use of Ang II synthesis blockers and the use of AT1 receptor antagonists as therapeutic drugs in dengue.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, España
| | - Hugo Hernandez-Fonseca
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
- Anatomy, Physiology and Pharmacology Department, School of Veterinary Medicine, Saint George's University, Saint George, Grenada
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
2
|
Proença AB, Medeiros GR, Reis GDS, Losito LDF, Ferraz LM, Bargut TCL, Soares NP, Alexandre-Santos B, Campagnole-Santos MJ, Magliano DC, Nobrega ACLD, Santos RAS, Frantz EDC. Adipose tissue plasticity mediated by the counterregulatory axis of the renin-angiotensin system: Role of Mas and MrgD receptors. J Cell Physiol 2024; 239:e31265. [PMID: 38577921 DOI: 10.1002/jcp.31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Gabriela Rodrigues Medeiros
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Guilherme Dos Santos Reis
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza da França Losito
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza Mazzali Ferraz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Nícia Pedreira Soares
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Alexandre-Santos
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D'Angelo Carlo Magliano
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliete Dalla Corte Frantz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Pedreañez A, Carrero Y, Vargas R, Hernández-Fonseca JP, Mosquera JA. Role of angiotensin II in cellular entry and replication of dengue virus. Arch Virol 2024; 169:121. [PMID: 38753119 DOI: 10.1007/s00705-024-06040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have demonstrated the relevance of several soluble molecules in the pathogenesis of dengue. In this regard, a possible role for angiotensin II (Ang II) in the pathophysiology of dengue has been suggested by the observation of a blockade of Ang II in patients with dengue, increased expression of molecules related to Ang II production in the plasma of dengue patients, increased expression of circulating cytokines and soluble molecules related to the action of Ang II, and an apparent relationship between DENV, Ang II effects, and miRNAs. In addition, in ex vivo experiments, the blockade of Ang II AT1 receptor and ACE-1 (angiotensin converting enzyme 1), both of which are involved in Ang II production and its function, inhibits infection of macrophages by DENV, suggesting a role of Ang II in viral entry or in intracellular viral replication of the virus. Here, we discuss the possible mechanisms of Ang II in the entry and replication of DENV. Ang II has the functions of increasing the expression of DENV entry receptors, creation of clathrin-coated vesicles, and increasing phagocytosis, all of which are involved in DENV entry. This hormone also modulates the expression of the Rab5 and Rab7 proteins, which are important in the endosomal processing of DENV during viral replication. This review summarizes the data related to the possible involvement of Ang II in the entry of DENV into cells and its replication.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernández-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología (CNB- CSIC), Madrid, España
| | - Jesús Alberto Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|
4
|
Takeda Y, Yoshikawa T, Dai P. Angiotensin II participates in mitochondrial thermogenic functions via the activation of glycolysis in chemically induced human brown adipocytes. Sci Rep 2024; 14:10789. [PMID: 38734719 PMCID: PMC11088625 DOI: 10.1038/s41598-024-61774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with β-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, 103-5 Tanaka-Monzen-cho, Sakyo-ku, Kyoto, 606-8225, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
5
|
Mosquera-Sulbaran JA, Pedreañez A, Carrero Y, Hernandez-Fonseca JP. Angiotensin II and post-streptococcal glomerulonephritis. Clin Exp Nephrol 2024; 28:359-374. [PMID: 38170299 DOI: 10.1007/s10157-023-02446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Post-streptococcal glomerulonephritis (PSGN) is a consequence of the infection by group A beta-hemolytic streptococcus. During this infection, various immunological processes generated by streptococcal antigens are triggered, such as the induction of antibodies and immune complexes. This activation of the immune system involves both innate and acquired immunity. The immunological events that occur at the renal level lead to kidney damage with chronic renal failure as well as resolution of the pathological process (in most cases). Angiotensin II (Ang II) is a molecule with vasopressor and pro-inflammatory capacities, being an important factor in various inflammatory processes. During PSGN some events are defined that make Ang II conceivable as a molecule involved in the inflammatory processes during the disease. CONCLUSION This review is focused on defining which reported events would be related to the presence of this hormone in PSGN.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Facultad de Medicina, Cátedra de Inmunología, Escuela de Bioanálisis, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
6
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
7
|
Guimarães VHD, Marinho BM, Motta-Santos D, Mendes GDRL, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem 2023; 113:109252. [PMID: 36509338 DOI: 10.1016/j.jnutbio.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Obesity and metabolic disorders represent a significant global health problem and the gut microbiota plays an important role in modulating systemic homeostasis. Recent evidence shows that microbiota and its signaling pathways may affect the whole metabolism and the Renin-Angiotensin System (RAS), which in turn seems to modify microbiota. The present review aimed to investigate nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome components. A description of metabolic changes was obtained based on relevant scientific literature. The molecular and physiological mechanisms that impact the human microbiome were addressed, including the gut microbiota associated with obesity, diabetes, and hepatic steatosis. The RAS interaction signaling and modulation were analyzed. Strategies including the use of prebiotics, symbiotics, probiotics, and biotechnology may affect the gut microbiota and its impact on human health.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- School of Physical Education, Physiotherapy, and Occupational Therapy - EEFFTO, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela da Rocha Lemos Mendes
- Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Multitarget Potential of Phytochemicals from Traditional Medicinal Tree, Terminalia arjuna (Roxb. ex DC.) Wight & Arnot as Potential Medicaments for Cardiovascular Disease: An In-Silico Approach. Molecules 2023; 28:molecules28031046. [PMID: 36770716 PMCID: PMC9920080 DOI: 10.3390/molecules28031046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Terminalia arjuna (Roxb. ex DC.) Wight & Arnot of the Combretaceae family is one of the most frequently approved and utilized medicinal trees in the traditional medicinal system, which was used for the treatment of a variety of diseases, including cardiovascular disorders. The present study aims to identify phytochemicals from T. arjuna, that do not exhibit any toxicity and have significant cardioprotective activity using an in-silico technique. Four different cardiovascular proteins, namely human angiotensin receptor (PDB ID: 4YAY), P38 mitogen-activated protein kinase (MAPK, PDB ID: 4DLI), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-Co A) reductase (PDB ID: 1HW9), and human C-reactive protein (PDB ID: 1B09), were used as target proteins to identify potential inhibitors using a virtual screening of the phytochemicals in T. arjuna revealed casuarinin as a potential inhibitor of all selected target proteins with strong binding energy. Furthermore, MD simulations for a 100 ns time scale also revealed that most of the key protein contacts of all target proteins were retained throughout the simulation trajectories. Binding free energy calculations using the MM-GBSA approach also support a strong inhibitory effect of casuarinin on target proteins. Casuarinin's effective binding to these proteins lays the groundwork for the development of broad-spectrum drugs as well as the understanding of the underlying mechanism against cardiovascular diseases through in vivo and clinical studies.
Collapse
|
9
|
Da Eira D, Jani S, Stefanovic M, Ceddia RB. Obesogenic versus ketogenic diets in the regulation of the renin-angiotensin system in rat white and brown adipose tissues. Nutrition 2023; 105:111862. [PMID: 36356378 DOI: 10.1016/j.nut.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The ketogenic diet (KD) has been reported to reverse metabolic dysfunction in obesity. However, it remains unknown how the KD affects the balance between the classical and counterregulatory renin-angiotensin system (RAS) arms in adipose tissue, which carries important implications for metabolic function in adipocytes. The aim of this study was to compare the effects of the obesogenic diet and the KD on RAS balance in white and brown fat. METHODS Nine male Wistar rats were fed a standard chow (SC), 11 fed a high-fat sucrose-enriched (HFS) obesogenic diet, and 12 a KD. At the end of the 8-wk feeding period, subcutaneous inguinal (Sc Ing), epididymal (Epid), and interscapular brown adipose tissue (iBAT) fat depots were extracted and subsequently used for the measurement of RAS proteins and MasR gene expression. RESULTS In SC-fed rats, the Sc Ing fat displayed the highest levels of angiotensin-converting enzyme (ACE)1, but very low levels of angiotensin II types 1 and 2 receptors (AT1R and AT2R) and ACE2. Conversely, the highest levels of ACE2, AT1R, and AT2R were found in iBAT. The HFS diet increased AT1R protein in Sc Ing fat and iBAT, whereas the KD maintained low AT1R levels in these fat depots. However, in Sc Ing and Epid fat depots, the KD elevated AT2R levels and significantly reduced Epid ACE1 levels. CONCLUSION Despite fat depot-specific differences in RAS components, the obesogenic diet promoted the classical RAS arm, whereas the KD attenuated it and enhanced the counterregulatory arm.
Collapse
Affiliation(s)
- Daniel Da Eira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada
| | - Shailee Jani
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada
| | - Mateja Stefanovic
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada
| | - Rolando B Ceddia
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, North York, Ontario, Canada.
| |
Collapse
|
10
|
Angiotensin II Inhibits Adipogenic Differentiation and Promotes Mature Adipocyte Browning through the Corepressor CtBP1. Biomedicines 2022; 10:biomedicines10123131. [PMID: 36551887 PMCID: PMC9775054 DOI: 10.3390/biomedicines10123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of angiotensin II (Ang II) on regulating adipogenic differentiation and function remain unknown. In this study, we focus on revealing the role of C-terminal-binding protein 1 (CtBP1) on Ang II-mediated adipogenic differentiation and mature adipocyte browning. Amounts of 3T3-L1 and CtBP1-KO 3T3-L1 were treated with Ang II for 24 h and then induced adipogenic differentiation, or cells were first induced differentiation and then treated with Ang II. The expressions of CtBP1 and adipogenic markers were checked by Western blot. Transcription of CtBP1 was assayed by Real-time RT-PCR. Lipid droplet formation and size were detected by Oil Red O. Mitochondrial content and reactive oxygenspecies (ROS) were detected by Mito-tracker and MitoSOX. Mitochondrial respiratory function was detected with the corresponding kits. Mitochondrial membrane potential (MMP) (∆Ψm) was assayed by JC-1. The results show that Ang II promoted CtBP1 transcription and expression via AT1 receptor during 3T3-L1 adipogenic differentiation. Ang II significantly inhibited lipid droplet formation and adipogenic markers expression in 3T3-L1 differentiation, which was blocked by CtBP1 knockout. In mature 3T3-L1, Ang II treatment increased uncoupling protein-1 (UCP-1) expression and the number of lipid droplets, and also reduced lipid droplet size and single cell lipid accumulation, which was reversed by CtBP1 knockout. In addition, Ang II treatment enhanced mitochondrial numbers, ATP production, oxygen consumption rate (OCR) and ROS generation, and reduced MMP (∆Ψm) via CtBP1 in mature 3T3-L1 adipocytes. In conclusion, this study demonstrates that CtBP1 plays a key role in the inhibitory effect of Ang II on adipogenesis. Moreover, Ang II regulates the function of mature adipocyte via CtBP1, including promoting adipocyte browning, mitochondrial respiration and ROS generation.
Collapse
|
11
|
Mosquera-Sulbarán J, Ryder E, Pedreáñez A, Vargas R. Angiotensin II and human obesity. A narrative review of the pathogenesis. INVESTIGACIÓN CLÍNICA 2022. [DOI: 10.54817/ic.v63n4a09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Angiotensin II (Ang II) is a hormone and the main effector of the renin-angiotensin system (RAS). This peptide has crucial pathophysiologi-cal effects on hypertension, cardiac hypertrophy, endothelial proliferation, in-flammation and tissue remodelling through G protein-coupled receptors. The pro-inflammatory role of Ang II has been reported in various inflammatory pro-cesses. Obesity is linked to a chronic inflammatory process which in turn is the cause of some of its morbidities. Ang II is related to the comorbidities related to the comorbidities of obesity, which include alterations in the heart, kid-ney, hypertension and coagulation. In this regard, activation of AT1 receptors by Ang II can induce an inflammatory process mediated by the transcription factor NF-kB, triggering inflammation in various systems that are related to the comorbidities observed in obesity. The aim of this review was to highlight the pro-inflammatory effects of Ang II and the alterations induced by this hor-mone in various organs and systems in obesity. The search was done since 1990 through Medline, EMBASE and PubMed, using the keywords: angiotensin II; an-giotensin II, obesity; angiotensin II, kidney, obesity; angiotensin II, coagulation, obesity; angiotensin II, inflammation, obesity; angiotensin II, adipose tissue, obesity; angiotensin II, hypertension, obesity; angiotensin II, insulin resistance, obesity; angiotensin II, adiponectin, leptin, obesity; angiotensin II, COVID-19, obesity. Angiotensin II through its interaction with its AT1 receptor, can induce alterations in diverse systems that are related to the comorbidities observed in obesity. Therapeutic strategies to decrease the production and action of Ang II could improve the clinical conditions in individuals with obesity.
Collapse
Affiliation(s)
- Jesús Mosquera-Sulbarán
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Elena Ryder
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Adriana Pedreáñez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
12
|
Monteiro BL, Santos RAS, Mario EG, Araujo TS, Savergnini SSQ, Santiago AF, Muzzi RAL, Castro IC, Teixeira LG, Botion LM, Marinho BM, Santos SHS, Porto LCJ. Genetic deletion of Mas receptor in FVB/N mice impairs cardiac use of glucose and lipids. Peptides 2022; 151:170764. [PMID: 35151766 DOI: 10.1016/j.peptides.2022.170764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Angiotensin-(1-7) is a biologically active product of the renin-angiotensin system cascade and exerts inhibitory effects on inflammation, vascular and cellular growth mechanisms signaling through the G protein-coupled Mas receptor. The major purpose of the present study was to investigate the use of glucose and fatty acids by cardiac tissue in Mas knockout mice models. Serum levels of glucose, lipids, and insulin were measured in Mas-deficient and wild-type FVB/N mice. To investigate the cardiac use of lipids, the lipoprotein lipase, the gene expression of peroxisome proliferator-activated receptor alpha; carnitine palmitoyltransferase I and acyl-CoA oxidase were evaluated. To investigate the cardiac use of glucose, the insulin signaling through Akt/GLUT4 pathway, glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P) glycolytic intermediates, in addition to ATP, lactate and the glycogen content were measured. Despite normal body weight, cholesterol and insulin, Mas-Knockout mice presented hyperglycemia and hypertriglyceridemia, impaired insulin signaling, through reduced phosphorylation of AKT and decreased translocation of GLUT4 in response to insulin, with subsequent decrease of the cardiac G-6-P and F-6-P. Lactate production and glycogen content were not altered in Mas-KO hearts. Mas-KO presented reduced cardiac lipoprotein lipase activity and decreased translocation of CD36 in response to insulin. The expression of peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase I genes were lower in Mas-KO animals compared to wild-type animals. The ATP content of Mas-KO hearts was smaller than in wild-type. The present results suggest that genetic deletion of Mas produced a devastating effect on cardiac use of glucose and lipids, leading to lower energy efficiency in the heart.
Collapse
Affiliation(s)
- Brenda L Monteiro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Robson A S Santos
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Erica G Mario
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Thiago S Araujo
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Silvia S Q Savergnini
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Andrezza F Santiago
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Ruthnea A L Muzzi
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| | - Isabela C Castro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Lilian G Teixeira
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Leida M Botion
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Barbhara M Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Sergio H S Santos
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Laura C J Porto
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil; Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Cao X, Shi T, Zhang C, Jin W, Song L, Zhang Y, Liu J, Yang F, Rotimi CN, Xu A, Yang J. ACE2 pathway regulates thermogenesis and energy metabolism. eLife 2022; 11:72266. [PMID: 35014608 PMCID: PMC8776250 DOI: 10.7554/elife.72266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/09/2022] [Indexed: 12/02/2022] Open
Abstract
Identification of key regulators of energy homeostasis holds important therapeutic promise for metabolic disorders, such as obesity and diabetes. ACE2 cleaves angiotensin II (Ang II) to generate Ang-(1-7) which acts mainly through the Mas1 receptor. Here, we identify ACE2 pathway as a critical regulator in the maintenance of thermogenesis and energy expenditure. We found that ACE2 is highly expressed in brown adipose tissue (BAT) and that cold stimulation increases ACE2 and Ang-(1-7) levels in BAT and serum. Ace2 knockout mice (Ace2-/y) and Mas1 knockout mice (Mas1-/-) displayed impaired thermogenesis. Mice transplanted with brown adipose tissue from Mas1-/- display metabolic abnormalities consistent with those seen in the Ace2 and Mas1 knockout mice. In contrast, impaired thermogenesis of Leprdb/db obese diabetic mice and high-fat diet-induced obese mice were ameliorated by overexpression of Ace2 or continuous infusion of Ang-(1-7). Activation of ACE2 pathway was associated with improvement of metabolic parameters, including blood glucose, lipids, and energy expenditure in multiple animal models. Consistently, ACE2 pathway remarkably enhanced the browning of white adipose tissue. Mechanistically, we showed that ACE2 pathway activated Akt/FoxO1 and PKA pathway, leading to induction of UCP1 and activation of mitochondrial function. Our data propose that adaptive thermogenesis requires regulation of ACE2 pathway and highlight novel potential therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tingting Shi
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chuanhai Zhang
- Department of Physiology, University of Texas Meical Center at Dallas, Dallas, United States
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lini Song
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yichen Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jingyi Liu
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fangyuan Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Charles N Rotimi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Aimin Xu
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Jinkui Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2021; 474:63-81. [PMID: 34967935 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
15
|
Comparative Proteomic Analysis of tPVAT during Ang II Infusion. Biomedicines 2021; 9:biomedicines9121820. [PMID: 34944635 PMCID: PMC8698607 DOI: 10.3390/biomedicines9121820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, based on TMT labeling combined with LC-MS/MS, were performed on an in vivo Ang II infusion mice model to obtain a comprehensive view of the protein ensembles associated with thoracic PVAT (tPVAT) dysfunction induced by Ang II. In total, 5037 proteins were confidently identified, of which 4984 proteins were quantified. Compared with the saline group, 145 proteins were upregulated and 146 proteins were downregulated during Ang II-induced tPVAT pathogenesis. Bioinformatics analyses revealed that the most enriched GO terms were annotated as gene silencing, monosaccharide binding, and extracellular matrix. In addition, some novel proteins, potentially associated with Ang II infusion, were identified, such as acyl-CoA carboxylase α, very long-chain acyl-CoA synthetase (ACSVL), uncoupling protein 1 (UCP1), perilipin, RAS protein-specific guanine nucleotide-releasing factor 2 (RasGRF2), and hypoxia inducible factor 1α (HIF-1α). Ang II could directly participate in the regulation of lipid metabolism, transportation, and adipocyte differentiation by affecting UCP1 and perilipin. Importantly, the key KEGG pathways were involved in fatty acid biosynthesis, FABP3-PPARα/γ, RasGRF2-ERK-HIF-1α, RasGRF2-PKC-HIF-1α, and STAT3-HIF-1α axis. The present study provided the most comprehensive proteome profile of mice tPVAT and some novel insights into Ang II-mediated tPVAT dysfunction and will be helpful for understanding the possible relationship between local RAS activation and PVAT dysfunction.
Collapse
|
16
|
Aimo A, Vergaro G, Passino C, Clerico A. Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 2021; 58:530-545. [PMID: 34196254 DOI: 10.1080/10408363.2021.1942782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the progressive improvements in diagnosis and therapy during the first 20 years of this century, the morbidity and mortality of patients with heart failure (HF) remain high, resulting in an enormous health and economic burden. Only a further improvement in understanding the pathophysiological mechanisms related to the development of cardiac injury and dysfunction can allow more innovative and personalized approaches to HF management. The renin-angiotensin system (RAS) has a critical role in cardiovascular physiology by regulating blood pressure and electrolyte balance. The RAS is mainly regulated by both angiotensin converting enzyme (ACE) and type 2 angiotensin converting enzyme (ACE2). However, the balance between the various peptides and peptidases constituting the RAS/ACE pathway remains in great part unraveled in patients with HF. This review summarizes the role of the RAS/ACE axis in cardiac physiology and HF pathophysiology as well as some analytical issues relevant to the clinical and laboratory assessment of inter-relationships between these two systems. There is evidence that RAS peptides represent a dynamic network of peptides, which are altered in different HF states and influenced by medical therapy. However, the mechanisms of signal transduction have not been fully elucidated under physiological and pathophysiological conditions. Further investigations are necessary to explore novel molecular mechanisms related to the RAS, which will provide alternative therapeutic agents. Moreover, monitoring the circulating levels of active RAS peptides in HF patients may enable a personalized approach by facilitating assessment of the pathophysiological status of several cardiovascular diseases and thus better selection of therapies for HF patients.
Collapse
Affiliation(s)
- Alberto Aimo
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Aldo Clerico
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
17
|
ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond) 2021; 135:535-554. [PMID: 33533405 DOI: 10.1042/cs20200752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.
Collapse
|
18
|
Hong L, Wang Q, Chen M, Shi J, Guo Y, Liu S, Pan R, Yuan X, Jiang S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother 2021; 137:111365. [PMID: 33588264 DOI: 10.1016/j.biopha.2021.111365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear. OBJECTIVE We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways. METHODS Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE). RESULTS Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways. CONCLUSION Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.
Collapse
Affiliation(s)
- Luna Hong
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Wang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yimin Guo
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijian Pan
- Departments of Electric Power Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Hammoud SH, AlZaim I, Al-Dhaheri Y, Eid AH, El-Yazbi AF. Perirenal Adipose Tissue Inflammation: Novel Insights Linking Metabolic Dysfunction to Renal Diseases. Front Endocrinol (Lausanne) 2021; 12:707126. [PMID: 34408726 PMCID: PMC8366229 DOI: 10.3389/fendo.2021.707126] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
A healthy adipose tissue (AT) is indispensable to human wellbeing. Among other roles, it contributes to energy homeostasis and provides insulation for internal organs. Adipocytes were previously thought to be a passive store of excess calories, however this view evolved to include an endocrine role. Adipose tissue was shown to synthesize and secrete adipokines that are pertinent to glucose and lipid homeostasis, as well as inflammation. Importantly, the obesity-induced adipose tissue expansion stimulates a plethora of signals capable of triggering an inflammatory response. These inflammatory manifestations of obese AT have been linked to insulin resistance, metabolic syndrome, and type 2 diabetes, and proposed to evoke obesity-induced comorbidities including cardiovascular diseases (CVDs). A growing body of evidence suggests that metabolic disorders, characterized by AT inflammation and accumulation around organs may eventually induce organ dysfunction through a direct local mechanism. Interestingly, perirenal adipose tissue (PRAT), surrounding the kidney, influences renal function and metabolism. In this regard, PRAT emerged as an independent risk factor for chronic kidney disease (CKD) and is even correlated with CVD. Here, we review the available evidence on the impact of PRAT alteration in different metabolic states on the renal and cardiovascular function. We present a broad overview of novel insights linking cardiovascular derangements and CKD with a focus on metabolic disorders affecting PRAT. We also argue that the confluence among these pathways may open several perspectives for future pharmacological therapies against CKD and CVD possibly by modulating PRAT immunometabolism.
Collapse
Affiliation(s)
- Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Departmment of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yusra Al-Dhaheri
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
- *Correspondence: Ahmed F. El-Yazbi,
| |
Collapse
|
20
|
Aksoy H, Karadag AS, Wollina U. Angiotensin II receptors: Impact for COVID-19 severity. Dermatol Ther 2020; 33:e13989. [PMID: 32645228 PMCID: PMC7361069 DOI: 10.1111/dth.13989] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
COVID-19 is an outbreak of viral pneumonia which became a global health crisis, and the risk of morbidity and mortality of people with obesity are higher. SARS-CoV-2, the pathogen of COVID-19, enters into cells through binding to the Angiotensin Converting Enzyme (ACE) homolog-2 (ACE2). ACE2 is a regulator of two contrary pathways in renin angiotensin system (RAS): ACE-Ang-II-AT1R axis and ACE2-Ang 1-7-Mas axis. Viral entry process eventuates in downregulation of ACE2 and subsequent activation of ACE-Ang-II-AT1R axis. ACE-Ang II-AT1R axis increases lipid storage, reduces white-to-beige fat conversion and plays role in obesity. Conversely, adipose tissue is an important source of angiotensin, and obesity results in increased systemic RAS. ACE-Ang-II-AT1R axis, which has proinflammatory, profibrotic, prothrombotic, and vasoconstrictive effects, is potential mechanism of more severe SARS-CoV-2 infection. The link between obesity and severe COVID-19 may be attributed to ACE2 consumption and subsequent ACE-Ang-II-AT1R axis activation. Therefore, patients with SARS-CoV-2 infection may benefit from therapeutic strategies that activate ACE2-Ang 1-7-Mas axis, such as Ang II receptor blockers (ARBs), ACE inhibitors (ACEIs), Mas receptor agonists and ACE2.
Collapse
Affiliation(s)
- Hasan Aksoy
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Ayse Serap Karadag
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital of the Technical University, Dresden, Germany
| |
Collapse
|
21
|
Giori IG, Magliano DC, Alexandre-Santos B, Fernandes T, Oliveira EM, Vieira CP, Conte-Junior CA, Ceddia RB, Nobrega ACL, Frantz EDC. Enalapril and treadmill running reduce adiposity, but only the latter causes adipose tissue browning in mice. J Cell Physiol 2020; 236:900-910. [PMID: 32617979 DOI: 10.1002/jcp.29900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
This study investigated whether regulation of the renin-angiotensin system (RAS) by enalapril and/or aerobic exercise training (AET) causes browning of the subcutaneous white adipose tissue (sWAT). C57BL/6 mice were fed either a standard chow or a high-fat (HF) diet for 16 weeks. At Week 8, HF-fed animals were divided into sedentary (HF), enalapril (HF-E), AET (HF-T), and enalapril plus AET (HF-ET) groups. Subsequently, sWAT was extracted for morphometry, determination of RAS expression, and biomarkers of WAT browning. The HF group displayed adipocyte hypertrophy and induction of the classical RAS axis. Conversely, all interventions reduced adiposity and induced the counterregulatory RAS axis. However, only AET raised plasma irisin, increased peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 levels, and the expression of PR-domain containing 16 in sWAT. Therefore, we concluded that AET-induced sWAT browning was independent of the counterregulatory axis shifting of RAS in HF diet-induced obesity.
Collapse
Affiliation(s)
- Isabele G Giori
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - D'Angelo C Magliano
- Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Beatriz Alexandre-Santos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Tiago Fernandes
- National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Edilamar M Oliveira
- National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Carla P Vieira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Rolando B Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Antonio C L Nobrega
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil
| | - Eliete D C Frantz
- Laboratory of Exercise Sciences, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.,National Institute for Science and Technology, INCT Physical (In)activity and Exercise, CNPq, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Meira E Cruz M, Miyazawa M, Gozal D. Putative contributions of circadian clock and sleep in the context of SARS-CoV-2 infection. Eur Respir J 2020; 55:2001023. [PMID: 32350105 PMCID: PMC7191115 DOI: 10.1183/13993003.01023-2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the aetiological agent of the pandemic coronavirus disease 2019 (COVID-19), is a newly found member of the Coronaviridae family, and is closely related to, albeit with important differences from, SARS-CoV [1]. It enters human cells through the binding of surface spike (S) glycoprotein with angiotensin-converting enzyme 2 (ACE2) [2–4]. The distal S1 subunit of the S protein is responsible for receptor binding, while the transmembrane S2 subunit mediates fusion between the viral envelope and the target cell membrane following proteolytic cleavage by specific cellular enzymes such as transmembrane serine protease 2 for S protein priming [5]. As it is likely that expression levels of ACE2 affect the efficiency of virus attachment and entry, as well as disease severity [6], and the interactions between viral S protein and ACE2 may directly cause lung injury [7], ACE2 may be a potential target of therapeutic and preventative interventions [8]. Circadian deregulation and poor or insufficient sleep may facilitate COVID-19 infection and severity https://bit.ly/2VUlIIJ
Collapse
Affiliation(s)
- Miguel Meira E Cruz
- Sleep Unit, Cardiovascular Center of University of Lisbon, Lisbon School of Medicine, Lisbon, Portugal
- Equal contributors
| | - Masaaki Miyazawa
- Dept of Immunology, Faculty of Medicine and Anti-Aging Center, Kindai University, Osaka, Japan
- Equal contributors
| | - David Gozal
- Dept of Child Health and the Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
23
|
Vargas-Castillo A, Tobon-Cornejo S, Del Valle-Mondragon L, Torre-Villalvazo I, Schcolnik-Cabrera A, Guevara-Cruz M, Pichardo-Ontiveros E, Fuentes-Romero R, Bader M, Alenina N, Vidal-Puig A, Hong E, Torres N, Tovar AR. Angiotensin-(1-7) induces beige fat thermogenesis through the Mas receptor. Metabolism 2020; 103:154048. [PMID: 31843339 DOI: 10.1016/j.metabol.2019.154048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Angiotensin-(1-7) [Ang-(1-7)], a component of the renin angiotensin system, is a vasodilator that exerts its effects primarily through the Mas receptor. The discovery of the Mas receptor in white adipose tissue (WAT) suggests an additional role for this peptide. The aim of the present study was to assess whether Ang-(1-7) can induce the expression of thermogenic genes in white adipose tissue and increase mitochondrial respiration in adipocytes. MATERIALS/METHODS Stromal Vascular fraction (SVF)-derived from mice adipose tissue was stimulated for one week with Ang-(1-7), then expression of beige markers and mitochondrial respiration were assessed. Mas+/+ and Mas-/- mice fed a control diet or a high fat-sucrose diet (HFSD) were exposed to a short or long term infusion of Ang-(1-7) and body weight, body fat, energy expenditure, cold resistance and expression of beige markers were assessed. Also, transgenic rats overexpressing Ang-(1-7) were fed with a control diet or a high fat-sucrose diet and the same parameters were assessed. Ang-(1-7) circulating levels from human subjects with different body mass index (BMI) or age were measured. RESULTS Incubation of adipocytes derived from SVF with Ang-(1-7) increased the expression of beige markers. Infusion of Ang-(1-7) into lean and obese Mas+/+mice also induced the expression of Ucp1 and some beige markers, an effect not observed in Mas-/- mice. Mas-/- mice had increased body weight gain and decreased cold resistance, whereas rats overexpressing Ang-(1-7) showed the opposite effects. Overexpressing rats exposed to cold developed new thermogenic WAT in the anterior interscapular area. Finally, in human subjects the higher the BMI, low circulating concentration of Ang-(1-7) levels were detected. Similarly, the circulating levels of Ang-(1-7) peptide were reduced with age. CONCLUSION These data indicate that Ang-(1-7) stimulates beige markers and thermogenesis via the Mas receptor, and this evidence suggests a potential therapeutic use to induce thermogenesis of WAT, particularly in obese subjects that have reduced circulating concentration of Ang-(1-7).
Collapse
MESH Headings
- Adipose Tissue, Beige/drug effects
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adult
- Angiotensin I/pharmacology
- Animals
- Cell Respiration/drug effects
- Cell Respiration/genetics
- Cells, Cultured
- Energy Metabolism/genetics
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Peptide Fragments/pharmacology
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Rats
- Rats, Transgenic
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Young Adult
Collapse
Affiliation(s)
- Ariana Vargas-Castillo
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; Deparmento de Farmacobiología, Centro de Investigación y de Estudios Avanzados Sede Sur, Ciudad de México 14330, Mexico
| | - Sandra Tobon-Cornejo
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | | | - Ivan Torre-Villalvazo
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Alejandro Schcolnik-Cabrera
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Martha Guevara-Cruz
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Edgar Pichardo-Ontiveros
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Rebeca Fuentes-Romero
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin 13092, Germany; Charité University Medicine Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom
| | - Enrique Hong
- Deparmento de Farmacobiología, Centro de Investigación y de Estudios Avanzados Sede Sur, Ciudad de México 14330, Mexico
| | - Nimbe Torres
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Armando R Tovar
- Departmento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico.
| |
Collapse
|
24
|
Tyurin-Kuzmin PA, Kalinina NI, Kulebyakin KY, Balatskiy AV, Sysoeva VY, Tkachuk VA. Angiotensin receptor subtypes regulate adipose tissue renewal and remodelling. FEBS J 2020; 287:1076-1087. [PMID: 31899581 DOI: 10.1111/febs.15200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
Obesity is often associated with high systemic and local renin-angiotensin system (RAS) activity in adipose tissue. Adipose-derived mesenchymal stem/stromal cells (ADSCs), responsible for adipose tissue growth upon high-fat diet, express multiple angiotensin II receptor isoforms, including angiotensin II type 1 receptor (AT1 R), angiotensin II type 2 receptor (AT2 R), Mas and Mas-related G protein-coupled receptor D. Although AT1 R is expressed on most ADSCs, other angiotensin receptors are co-expressed on a small subpopulation of the cells, a phenomenon that results in a complex response pattern. Following AT1 R activation, the effects are transient due to rapid receptor internalisation. This short-lived effect can be prevented by heteromerisation with AT2 R, a particularly important strategy for the regulation of ADSC differentiation and secretory activity. Heteromeric AT2 R might be especially important for the generation of thermogenic beige adipocytes. This review summarises current data regarding the regulation of adipose tissue renewal and particularly ADSC adipogenic differentiation and secretory activity by RAS, with an emphasis on AT2 R and its effects. We reveal a new scheme that implicates AT2 R into the regulation of ADSC hormonal sensitivity.
Collapse
Affiliation(s)
- Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Natalia I Kalinina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Konstantin Y Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Alexander V Balatskiy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia.,Department of Clinical Diagnostics, Medical Centre, Lomonosov Moscow State University, Russia.,National Medical Research Centre in Cardiology, Russia
| | - Veronika Y Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia.,National Medical Research Centre in Cardiology, Russia
| |
Collapse
|
25
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
26
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
27
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
28
|
Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019; 20:E2787. [PMID: 31181590 PMCID: PMC6600229 DOI: 10.3390/ijms20112787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11β-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
| | - Rodrigo Romero-Nava
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
- Laboratorio de investigación en Farmacología, Hospital Infantil de México Federico Gómez, Mexico city 06720, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - L Gabriela Sánchez-Lozada
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| |
Collapse
|
29
|
Américo ALV, Muller CR, Vecchiatto B, Martucci LF, Fonseca-Alaniz MH, Evangelista FS. Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue. PLoS One 2019; 14:e0215896. [PMID: 31022246 PMCID: PMC6483229 DOI: 10.1371/journal.pone.0215896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
We investigate the effects of aerobic exercise training (AET) on the thermogenic response, substrate metabolism and renin angiotensin system (RAS) in the subcutaneous white adipose tissue (SC-WAT) of mice fed cafeteria diet (CAF). Male C57BL/6J mice were assigned into groups CHOW-SED (chow diet, sedentary; n = 10), CHOW-TR (chow diet, trained; n = 10), CAF-SED (CAF, sedentary; n = 10) and CAF-TR (CAF, trained; n = 10). AET consisted in running sessions of 60 min at 60% of maximal speed, five days per week for eight weeks. The CAF-SED group showed higher body weight and adiposity, glucose intolerance and insulin resistance (IR), while AET prevented such damages in CAF-TR group. AET reduced the p-AKT/t-AKT ratio and increased ATGL expression in CHOW-TR and CAF-TR groups and increased t-HSL and p-HSL/t-HSL ratio in CAF-TR. AET prevented adipocyte hypertrophy in CAF-TR group and increased UCP-1 protein expression only in CHOW-TR. Serum ACE2 increased in CHOW-TR and CAF-TR groups, and Ang (1–7) increased in the CHOW-TR group. In the SC-WAT, CAF-TR group increased the expression of AT1, AT2 and Mas receptors, whereas CHOW-TR increased Ang (1–7) and Ang (1–7)/Ang II ratio in SC-WAT. No changes were observed in ACE and Ang II. Positive correlations were observed between UCP-1 and kITT (r = 0.6), between UCP-1 and Ang (1–7) concentration (r = 0.6), and between UCP-1 and Ang (1–7)/Ang II ratio (r = 0.7). In conclusion, the AET prevented obesity and IR, reduced insulin signaling proteins and increased lipolysis signaling proteins in the SC-WAT. In addition, the CAF diet precludes the AET-induced thermogenic response and the partial modulation of the RAS suggests that the protective effect of AET against obesity and IR could not be associated with SC-WAT RAS.
Collapse
Affiliation(s)
- Anna Laura V. Américo
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cynthia R. Muller
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Bruno Vecchiatto
- School of Arts, Science and Humanities, University of Sao Paulo, São Paulo, Brazil
| | - Luiz Felipe Martucci
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Fabiana S. Evangelista
- School of Arts, Science and Humanities, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
30
|
Lingesh A, Paul D, Naidu V, Satheeshkumar N. AMPK activating and anti adipogenic potential of Hibiscus rosa sinensis flower in 3T3-L1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:123-130. [PMID: 30593890 DOI: 10.1016/j.jep.2018.12.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The flowers of Hibiscus rosa sinensis has array of pharmacological actions. They are used in preparation of herbal decoction and teas, which have been used traditionally to reduce body weight and for its effect on metabolic syndrome. AIM OF THE STUDY To investigate the anti adipogenic efficacy of major fraction from ethyl acetate extract of the Hibiscus rosa sinensis flower at 25 and 50 µg/mL (HRF 25 and 50 µg/mL) in 3T3-L1 cells and delineate its possible mechanism of action. MATERIALS AND METHODS Pre adipocyte 3T3-L1 cells were differentiated in the presence and absence of HRF 25 and 50 µg/mL, their lipid accumulation was measured qualitatively by Oil red O staining and quantitatively by triglyceride estimation. Effect on adipolysis was determined, adipogenic and its regulatory gene and protein expression were studied and effect of HRF 25 and 50 µg/mL on AMPK was confirmed in the presence of dorsomorphin. RESULTS Treatment with HRF 25 and 50 µg/mL activated AMP-activated protein kinase (AMPK) and was found to alleviate triglyceride accumulation significantly (p < 0.001) by 1.6 and 2.3 times respectively in pre adipocytes during differentiation. HRF 25 and 50 µg/mL also nonsignificantly reduced lipolysis which releases free fatty acids, a major contributing factor for insulin resistance. Activation of AMPK by phosphorylation has led to reduced gene and protein expression of adipogenic factors Peroxisome proliferator- activated receptor gamma (PPAR-γ), CCAT/enhancer binding protein alpha (C/EBPα), Sterol regulatory element- binding protein-1c (SREBP-1c) and their targets Fatty acid binding protein 4 (FABP4), Fatty acid synthase (FAS), Perilipin and enhanced Adiponectin expression. Treatment with HRF 25 and 50 µg/mL also resulted in inactivation of Acetyl-CoA carboxylase (ACC) by enhancing ACC phosphorylation, which reduced the levels of malonyl-CoA an allosteric inhibitor of carnitine palmitoyl transferase 1 (CPT1). Enhanced CPT1 levels causes induction of fatty acid β- oxidation. Effects of HRF were nullified in the presence of AMPK antagonist dorsomorphin. CONCLUSION In summary, HRF treatments reduced adipogenesis, enhanced factors regulating fatty acid oxidation and this is mediated by AMPK activation. The results conclusively showed anti-obesity potential of HRF and it might be helpful in treatment of associated complications.
Collapse
Affiliation(s)
- A Lingesh
- Drug Metabolism and Interactions Research Lab, Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - David Paul
- Drug Metabolism and Interactions Research Lab, Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vgm Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Shantipur, Parli Part, Mirza, Assam 781125, India
| | - N Satheeshkumar
- Drug Metabolism and Interactions Research Lab, Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
31
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
32
|
Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci (Lond) 2018; 132:1487-1507. [PMID: 30037837 DOI: 10.1042/cs20180276] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Overactivation of the renin-angiotensin (Ang) system (RAS) increases the classical arm (Ang-converting enzyme (ACE)/Ang II/Ang type 1 receptor (AT1R)) to the detriment of the protective arm (ACE2/Ang 1-7/Mas receptor (MasR)). The components of the RAS are present locally in white adipose tissue (WAT) and skeletal muscle, which act co-operatively, through specific mediators, in response to pathophysiological changes. In WAT, up-regulation of the classical arm promotes lipogenesis and reduces lipolysis and adipogenesis, leading to adipocyte hypertrophy and lipid storage, which are related to insulin resistance and increased inflammation. In skeletal muscle, the classical arm promotes protein degradation and increases the inflammatory status and oxidative stress, leading to muscle wasting. Conversely, the protective arm plays a counter-regulatory role by opposing the effect of Ang II. The accumulation of adipose tissue and muscle mass loss is associated with a higher risk of morbidity and mortality, which could be related, in part, to overactivation of the RAS. On the other hand, exercise training (ExT) shifts the balance of the RAS towards the protective arm, promoting the inhibition of the classical arm in parallel with the stimulation of the protective arm. Thus, fat mobilization and maintenance of muscle mass and function are facilitated. However, the mechanisms underlying exercise-induced changes in the RAS remain unclear. In this review, we present the RAS as a key mechanism of WAT and skeletal muscle metabolic dysfunction. Furthermore, we discuss the interaction between the RAS and exercise and the possible underlying mechanisms of the health-related aspects of ExT.
Collapse
|
33
|
Pahlavani M, Kalupahana NS, Ramalingam L, Moustaid-Moussa N. Regulation and Functions of the Renin-Angiotensin System in White and Brown Adipose Tissue. Compr Physiol 2017; 7:1137-1150. [PMID: 28915321 DOI: 10.1002/cphy.c160031] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The renin angiotensin system (RAS) is a major regulator of blood pressure, fluid, and electrolyte homeostasis. RAS precursor angiotensinogen (Agt) is cleaved into angiotensin I (Ang I) and II (Ang II) by renin and angiotensin converting enzyme (ACE), respectively. Major effects of Ang II, the main bioactive peptide of this system, is mediated by G protein coupled receptors, Angiotensin Type 1 (AGTR1, AT1R) and Type 2 (AGTR2, AT2R) receptors. Further, the discovery of additional RAS peptides such as Ang 1-7 generated by the action of another enzyme ACE2 identified novel functions of this complex system. In addition to the systemic RAS, several local RAS exist in organs such as the brain, kidney, pancreas, and adipose tissue. The expression and regulation of various components of RAS in adipose tissue prompted extensive research into the role of adipose RAS in metabolic diseases. Indeed, animal studies have shown that adipose-derived Agt contributes to circulating RAS, kidney, and blood pressure regulation. Further, mice overexpressing Agt have high blood pressure and increased adiposity characterized by inflammation, adipocyte hypertrophy, and insulin resistance, which can be reversed at least in part by RAS inhibition. These findings highlight the importance of this system in energy homeostasis, especially in the context of obesity. This overview article discusses the depot-specific functions of adipose RAS, genetic and pharmacological manipulations of RAS, and its applications to adipogenesis, thermogenesis, and overall energy homeostasis. © 2017 American Physiological Society. Compr Physiol 7:1137-1150, 2017.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA.,Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
34
|
Than A, Xu S, Li R, Leow MKS, Sun L, Chen P. Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduct Target Ther 2017; 2:17022. [PMID: 29263921 PMCID: PMC5661636 DOI: 10.1038/sigtrans.2017.22] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
Brown adipose tissue dissipates energy in the form of heat. Recent studies have shown that adult humans possess both classical brown and beige adipocytes (brown-like adipocytes in white adipose tissue, WAT), and stimulating brown and beige adipocyte formation can be a new avenue to treat obesity. Angiotensin II (AngII) is a peptide hormone that plays important roles in energy metabolism via its angiotensin type 1 or type 2 receptors (AT1R and AT2R). Adipose tissue is a major source of AngII and expresses both types of its receptors, implying the autocrine and paracrine role of AngII in regulating adipose functions and self-remodeling. Here, based on the in vitro studies on primary cultures of mouse white adipocytes, we report that, AT2R activation, either by AngII or AT2R agonist (C21), induces white adipocyte browning, by increasing PPARγ expression, at least in part, via ERK1/2, PI3kinase/Akt and AMPK signaling pathways. It is also found that AngII–AT2R enhances brown adipogenesis. In the in vivo studies on mice, administration of AT1R antagonist (ZD7155) or AT2R agonist (C21) leads to the increase of WAT browning, body temperature and serum adiponectin, as well as the decrease of WAT mass and the serum levels of TNFα, triglycerides and free fatty acids. In addition, AT2R-induced browning effect is also observed in human white adipocytes, as evidenced by the increased UCP1 expression and oxygen consumption. Finally, we provide evidence that AT2R plays important roles in hormone T3-induced white adipose browning. This study, for the first time, reveals the browning and brown adipogenic effects of AT2R and suggests a potential therapeutic target to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shaohai Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ru Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Lei Sun
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|
36
|
Neprilysin facilitates adipogenesis through potentiation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Mol Cell Biochem 2017; 430:1-9. [DOI: 10.1007/s11010-017-2948-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022]
|
37
|
Slamkova M, Zorad S, Krskova K. Alternative renin-angiotensin system pathways in adipose tissue and their role in the pathogenesis of obesity. Endocr Regul 2016; 50:229-240. [DOI: 10.1515/enr-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Adipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.
Collapse
Affiliation(s)
- M Slamkova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - S Zorad
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - K Krskova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
38
|
The adipose tissue and the involvement of the renin-angiotensin-aldosterone system in cardiometabolic syndrome. Cell Tissue Res 2016; 366:543-548. [PMID: 27734151 DOI: 10.1007/s00441-016-2515-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/14/2016] [Indexed: 01/17/2023]
Abstract
Cardiometabolic diseases are linked to a cluster of modifiable factors, including risk factors closely related to central adiposity. Chronic renin-angiotensin-aldosterone system (RAAS) activation has far-reaching effects on cardiometabolic risk and is a substantial contributor to this clinical condition. RAAS components are locally expressed in the vessels and adipose tissue. This review appoints RAAS, through the classical and the alternative view, as the main mediator of the cross-talk in cardiometabolic syndrome.
Collapse
|
39
|
Kusuyama J, Komorizono A, Bandow K, Ohnishi T, Matsuguchi T. CXCL3 positively regulates adipogenic differentiation. J Lipid Res 2016; 57:1806-1820. [PMID: 27512010 DOI: 10.1194/jlr.m067207] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/19/2022] Open
Abstract
Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2 (CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown of either CXCL3 or CXCR2 by specific siRNA effectively inhibited the course of adipogenic differentiation. CXCL3 treatment of 3T3-L1 cells significantly induced the phosphorylation of ERK and c-jun N-terminal kinase (JNK). Furthermore, CXCL3-induced CCAAT-enhancer binding protein (C/EBP)β and δ expression was suppressed by both ERK and JNK-specific inhibitors. Furthermore, chromatin immunoprecipitation assay revealed functional binding of PPARγ2 within the cxcl3 promoter region. Taken together, these results have indicated that CXCL3 is a novel adipokine that facilitates adipogenesis in an autocrine and/or a paracrine manner through induction of c/ebpb and c/ebpd.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Anna Komorizono
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Saitama, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
40
|
Li H, Li M, Liu P, Wang Y, Zhang H, Li H, Yang S, Song Y, Yin Y, Gao L, Cheng S, Cai J, Tian G. Telmisartan Ameliorates Nephropathy in Metabolic Syndrome by Reducing Leptin Release From Perirenal Adipose Tissue. Hypertension 2016; 68:478-90. [PMID: 27296996 DOI: 10.1161/hypertensionaha.116.07008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) is associated with nephropathy. Along with common risk factors such as hypertension and hyperglycemia, adipocytokines released from perirenal adipose tissue (PRAT) are implicated in the pathogenesis of MetS nephropathy. The study was designed to elucidate the adverse effects of PRAT-derived leptin on nephropathy and to determine whether the angiotensin II type 1 receptor antagonist telmisartan exerts a renoprotective effect by decreasing the PRAT-derived leptin level in the high-fat diet-induced MetS rat. In MetS rats, PRAT-derived leptin expression increased concomitant with dysfunction of adipogenesis, and the activities of the angiotensin II-angiotensin II type 1 receptor and the angiotensin-converting enzyme 2-angiotensin (1-7)-Mas receptor axes were imbalanced in PRAT. PRAT-derived leptin from MetS rats promoted proliferation of rat glomerular endothelial cells (GERs) by activating the p38 MAPK (mitogen-activated protein kinase) pathway, thereby contributing to the development of nephropathy. Long-term telmisartan treatment improved metabolic parameters and renal function, decreased the amount of PRAT, promoted adipogenesis, increased the expression of angiotensin-converting enzyme 2, restored balanced activities of the angiotensin II-AT1R and angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axes, and exerted an indirect renoprotective effect on MetS rats by decreasing PRAT-derived leptin release. Our results demonstrate a novel link between nephropathy and PRAT in MetS and show that telmisartan confers an underlying protective effect on visceral adipose tissue and the kidney, suggesting that it has potential as a therapeutic agent for the treatment of MetS-associated nephropathy.
Collapse
Affiliation(s)
- Hao Li
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Min Li
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Ping Liu
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - YaPing Wang
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Heng Zhang
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - HongBin Li
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - ShiFeng Yang
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Yan Song
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - YanRong Yin
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Lan Gao
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Si Cheng
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Jun Cai
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| | - Gang Tian
- From the Department of Critical Care Medicine (H.L., L.G.), Department of Cardiology (M.L., H.Z., H.L., Y.Y., S.C., G.T.), Department of Nephrology (S.Y.), and Department of Ultrasound Medicine (Y.S.), The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; Department of Endocrinology, The Affiliated Xi'an Central Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P.R. China (P.L.); Department of Geriatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P. R. China (Y.W.); Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College (J.C.); and Key Laboratory of Shaanxi Province on Molecular Cardiology and Key Laboratory of Ministry of Education of People's Republic of China on Environment and Genes Related to Diseases, Xi'an, Shaanxi, P. R. China (H.L., G.T.)
| |
Collapse
|
41
|
Liu Q, Lu D, Wang S, Wang K, Zhang Q, Wang Y, Fang P, Li Z, Geng J, Shan Q. Renal denervation significantly attenuates cardiorenal fibrosis in rats with sustained pressure overload. ACTA ACUST UNITED AC 2016; 10:587-596.e4. [PMID: 27288113 DOI: 10.1016/j.jash.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/07/2016] [Accepted: 05/14/2016] [Indexed: 12/22/2022]
Abstract
To investigate the effects of renal denervation (RDN) on comprehensive cardiac and renal fibrosis in cardiomyopathy. Five weeks after successful transverse aortic constriction (TAC)-induced cardiomyopathy model building, Sprague-Dawley rats were randomly assigned to three groups: (1) RDN, (2) sham, and (3) losartan. Sham TAC rats served as control group. Compared with control, TAC groups showed a significant decrease in left ventricle ejection fraction and increase in ventricular septum thickness and left atrium diameter on echocardiography after 5 weeks. At 10 weeks post-TAC, venous blood samples were collected for fibrosis biochemical assay. Heart and kidney samples were also harvested for fibrosis pathophysiological detection. Cardiac and renal fibrosis quantity results showed that, compared with sham group, collagen volume fraction was significantly decreased in RDN group more than in losartan group. Biochemical parameters such as tumor necrosis factor α, aldosterone, and B-type natriuretic peptide levels as well as biomarkers for fibrosis such as procollagen type I N-terminal propeptide and procollagen type III N-terminal propeptide concentrations were significantly decreased in RDN group in comparison with sham. In addition, compared with sham group, left ventricle tissue protein expression of transforming growth factor-β1 and angiotensin II type I receptor was downregulated, and angiotensin-converting enzyme 2 was upregulated in RDN but not in losartan group. RDN significantly attenuates cardiac and renal fibrosis in cardiomyopathy. Differing from losartan, which only has angiotensin II type I receptor inhibition effects, RDN comprehensively suppresses cardiac and renal fibrogenesis through multiple pathways.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dasheng Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengchan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Fang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenzhen Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Geng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qijun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
42
|
Pernomian L, Pernomian L, Gomes MS, da Silva CH. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists. Eur J Pharmacol 2015; 769:143-6. [DOI: 10.1016/j.ejphar.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 11/28/2022]
|
43
|
Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res 2015; 101:41-55. [DOI: 10.1016/j.phrs.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 12/14/2022]
|
44
|
Bader M, Alenina N, Andrade-Navarro MA, Santos RA. MAS and its related G protein-coupled receptors, Mrgprs. Pharmacol Rev 2015; 66:1080-105. [PMID: 25244929 DOI: 10.1124/pr.113.008136] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Mas-related G protein-coupled receptors (Mrgprs or Mas-related genes) comprise a subfamily of receptors named after the first discovered member, Mas. For most Mrgprs, pruriception seems to be the major function based on the following observations: 1) they are relatively promiscuous in their ligand specificity with best affinities for itch-inducing substances; 2) they are expressed in sensory neurons and mast cells in the skin, the main cellular components of pruriception; and 3) they appear in evolution first in tetrapods, which have arms and legs necessary for scratching to remove parasites or other noxious substances from the skin before they create harm. Because parasites coevolved with hosts, each species faced different parasitic challenges, which may explain another striking observation, the multiple independent duplication and expansion events of Mrgpr genes in different species as a consequence of parallel adaptive evolution. Their predominant expression in dorsal root ganglia anticipates additional functions of Mrgprs in nociception. Some Mrgprs have endogenous ligands, such as β-alanine, alamandine, adenine, RF-amide peptides, or salusin-β. However, because the functions of these agonists are still elusive, the physiologic role of the respective Mrgprs needs to be clarified. The best studied Mrgpr is Mas itself. It was shown to be a receptor for angiotensin-1-7 and to exert mainly protective actions in cardiovascular and metabolic diseases. This review summarizes the current knowledge about Mrgprs, their evolution, their ligands, their possible physiologic functions, and their therapeutic potential.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Miguel A Andrade-Navarro
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Robson A Santos
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| |
Collapse
|
45
|
Riedel J, Badewien-Rentzsch B, Kohn B, Hoeke L, Einspanier R. Characterization of key genes of the renin-angiotensin system in mature feline adipocytes and during in vitro adipogenesis. J Anim Physiol Anim Nutr (Berl) 2015; 100:1139-1148. [PMID: 26452529 DOI: 10.1111/jpn.12392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 07/24/2015] [Indexed: 01/04/2023]
Abstract
Obesity is a growing health problem in humans as well as companion animals. In the development and progression of obesity-associated diseases, the members of the renin-angiotensin system (RAS) are proposed to be involved. Particularly, the prevalence of type 2 diabetes mellitus in cats has increased enormously which is often been linked to obesity as well as to RAS. So far, reports about the expression of a local RAS in cat adipocytes are missing. Therefore, we investigated the mRNA expression of various RAS genes as well as the adipocyte marker genes adiponectin, leptin and PPAR-γ in feline adipocytes using quantitative PCR. To characterize the gene expression during adipogenesis, feline pre-adipocytes were differentiated into adipocytes in a primary cell culture and the expression of RAS key genes measured. All major RAS components were expressed in feline cells, but obvious differences in the expression between pre-adipocytes and the various differentiation stages were found. Interestingly, the two enzymes ACE and ACE2 showed an opposite expression course. In addition to the in vitro experiments, mature adipocytes were isolated from subcutaneous and visceral adipose tissue. Significant differences between both fat depots were found for ACE as well as AT1 receptor with greater expression in subcutaneous than in visceral adipocytes. Visceral adipocytes had significantly higher adiponectin and PPAR-γ mRNA level compared to the subcutaneous fat cells. Concerning the nutritional status, a significant lower expression of ACE2 was measured in subcutaneous adipocytes of overweight cats. In summary, the results show the existence of a potentially functional local RAS in feline adipose tissue which is differentially regulated during adipogenesis and dependent on the fat tissue depot and nutritional status. These findings are relevant for understanding the development of obesity-associated diseases in cats such as diabetes mellitus.
Collapse
Affiliation(s)
- J Riedel
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - B Badewien-Rentzsch
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - B Kohn
- Small Animal Clinic, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - L Hoeke
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - R Einspanier
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
46
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
47
|
Wang J, Matafonov A, Madkhali H, Mahdi F, Watson D, Schmaier AH, Gailani D, Shariat-Madar Z. Prolylcarboxypeptidase independently activates plasma prekallikrein (fletcher factor). Curr Mol Med 2015; 14:1173-85. [PMID: 25324000 DOI: 10.2174/1566524014666141015153519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022]
Abstract
Prolylcarboxypeptidase isoform 1 (PRCP1) is capable of regulating numerous autocrines and hormones, such as angiotensin II, angiotensin III, αMSH1-13, and DesArg(9) bradykinin. It does so by cleaving a C-terminal PRO-X bond. Recent work also indicates that the human PRCP1 activates plasma prekallikrein (PK) to kallikrein on endothelial cells through an uncharacterized mechanism. This study aims to identify PRCP1 binding interaction and cleavage site on PK. Recently, a cDNA encoding a novel splice variant of the human PRCP1 was identified. This isoform differed only in the N-terminal region of the deduced amino acid sequence. Using structural and functional studies, a combination of peptide mapping and site-directed mutagenesis approaches were employed to investigate the interaction of PRCP1 with PK. Three PRCP peptides, in decreasing order of potency, from 1) the N-terminus of the secreted protein, 2) spanning the opening of the active site pocket, and 3) in the dimerization region inhibit PRCP activation of PK on endothelial cells. Investigations also tested the hypothesis that PRCP cleavage site on PK is between its C-terminal Pro 637 (P(637)) and Ala 638 (A(638)). Recombinant forms of PK with C-terminal alanine mutagenesis or a stop codon is activated equally as wild type PK by PRCP. In conclusion, PRCP1 interacts with PK at multiple sites for PK activation. PRCP1 also enhances FXIIa activation of PK, suggesting that its activation site on PK is not identical to that of FXIIa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Z Shariat-Madar
- Department of Pharmacology, The University of Mississippi, University, MS 38677- 1848, USA.
| |
Collapse
|
48
|
Palominos MM, Dünner NH, Wabitsch M, Rojas CV. Angiotensin II directly impairs adipogenic differentiation of human preadipose cells. Mol Cell Biochem 2015; 408:115-22. [PMID: 26112903 DOI: 10.1007/s11010-015-2487-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/18/2015] [Indexed: 01/20/2023]
Abstract
Angiotensin II reduces adipogenic differentiation of preadipose cells present in the stroma-vascular fraction of human adipose tissue, which also includes several cell types. Because of the ability of non-adipose lineage cells in the stroma-vascular fraction to respond to angiotensin II, it is not possible to unequivocally ascribe the anti-adipogenic response to a direct effect of this hormone on preadipose cells. Therefore, we used the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell strain to investigate the consequences of angiotensin II treatment on adipogenic differentiation under serum-free conditions, by assessing expression of typical adipocyte markers perilipin and fatty acid-binding protein 4 (FABP4), at the transcript and protein level. Reverse transcription-polymerase chain reaction showed that perilipin and FABP4 transcripts were, respectively, reduced to 0.33 ± 0.07 (P < 0.05) and 0.41 ± 0.19-fold (P < 0.05) in SGBS cells induced to adipogenic differentiation in the presence of angiotensin II. Western Blot analysis corroborated reduction of the corresponding proteins to 0.23 ± 0.21 (P < 0.01) and 0.46 ± 0.30-fold (P < 0.01) the respective controls without angiotensin II. Angiotensin II also impaired morphological changes associated with early adipogenesis. Hence, we demonstrated that angiotensin II is able to directly reduce adipogenic differentiation of SGBS preadipose cells.
Collapse
Affiliation(s)
- Marisol M Palominos
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Clasificador 7 Correo 7, Santiago, Chile
| | - Natalia H Dünner
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Clasificador 7 Correo 7, Santiago, Chile
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Cecilia V Rojas
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Clasificador 7 Correo 7, Santiago, Chile. .,Institute of Nutrition and Food Technology, Universidad de Chile, Casilla, 138-11, Santiago, Chile.
| |
Collapse
|
49
|
Than A, He HL, Chua SH, Xu D, Sun L, Leow MKS, Chen P. Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. J Biol Chem 2015; 290:14679-91. [PMID: 25931124 DOI: 10.1074/jbc.m115.643817] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Brown adipose tissue expends energy in the form of heat via the mitochondrial uncoupling protein UCP1. Recent studies showed that brown adipose tissue is present in adult humans and may be exploited for its anti-obesity and anti-diabetes actions. Apelin is an adipocyte-derived hormone that plays important roles in energy metabolism. Here, we report that apelin-APJ signaling promotes brown adipocyte differentiation by increasing the expressions of brown adipogenic and thermogenic transcriptional factors via the PI3K/Akt and AMPK signaling pathways. It is also found that apelin relieves the TNFα inhibition on brown adipogenesis. In addition, apelin increases the basal activity of brown adipocytes, as evidenced by the increased PGC1α and UCP1 expressions, mitochondrial biogenesis, and oxygen consumption. Finally, we provide both in vitro and in vivo evidence that apelin is able to increase the brown-like characteristics in white adipocytes. This study, for the first time, reveals the brown adipogenic and browning effects of apelin and suggests a potential therapeutic route to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Hui Ling He
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Si Hui Chua
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Dan Xu
- the Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, and
| | - Lei Sun
- the Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, and
| | - Melvin Khee-Shing Leow
- the Endocrine and Diabetes Clinic, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Peng Chen
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457,
| |
Collapse
|
50
|
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 2015; 308:E435-49. [PMID: 25564475 DOI: 10.1152/ajpendo.00391.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is an enzymatic cascade functioning in a paracrine and autocrine fashion. In animals and humans, RAAS intrinsic to tissues modulates food intake, metabolic rate, adiposity, insulin sensitivity, and insulin secretion. A large array of observations shows that dysregulation of RAAS in the metabolic syndrome favors type 2 diabetes. Remarkably, angiotensin-converting enzyme inhibitors, suppressing the synthesis of angiotensin II (ANG II), and angiotensin receptor blockers, targeting the ANG II type 1 receptor, prevent diabetes in patients with hypertensive or ischemic cardiopathy. These drugs interrupt the negative feedback loop of ANG II on the RAAS cascade, which results in increased production of angiotensins. In addition, they change the tissue expression of RAAS components. Therefore, the concept of a dual axis of RAAS regarding glucose homeostasis has emerged. The RAAS deleterious axis increases the production of inflammatory cytokines and raises oxidative stress, exacerbating the insulin resistance and decreasing insulin secretion. The beneficial axis promotes adipogenesis, blocks the production of inflammatory cytokines, and lowers oxidative stress, thereby improving insulin sensitivity and secretion. Currently, drugs targeting RAAS are not given for the purpose of preventing diabetes in humans. However, we anticipate that in the near future the discovery of novel means to modulate the RAAS beneficial axis will result in a decisive therapeutic breakthrough.
Collapse
Affiliation(s)
- Guillaume A Favre
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Vincent L M Esnault
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Emmanuel Van Obberghen
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|