1
|
Xiang Q, Wu Z, Zhao Y, Tian S, Lin J, Wang L, Jiang S, Sun Z, Li W. Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases. Bone Res 2024; 12:71. [PMID: 39658574 PMCID: PMC11632072 DOI: 10.1038/s41413-024-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
2
|
Yamamoto de Almeida L, Dietrich C, Duverger O, Lee JS. Acute hyperlipidemia has transient effects on large-scale bone regeneration in male mice. Sci Rep 2024; 14:25610. [PMID: 39463386 PMCID: PMC11514207 DOI: 10.1038/s41598-024-76992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Excessive dietary fat intake increases plasma lipid levels and has been associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fracture, especially in older postmenopausal women. The objective of this study was to investigate whether there are sex-related differences in lipid metabolism that could have an impact on large-scale bone regeneration. Because ribs provide a unique exception as the only bones capable of completely regenerating large-scale defects, we used a rib resection mouse model in which human features are recapitulated. After 10 days of exposure to a low-fat diet or high-fat diet (HFD), we performed large-scale rib resection surgeries on male and female mice (6-7 weeks old) with deletion of the low-density lipoprotein (LDL) receptor (Ldlr-/-) and age- and sex-matched wild-type (WT) mice were used as controls. Plasma analysis showed that short-term exposure to HFD significantly increases total cholesterol, LDL cholesterol, and triglycerides levels in Ldlr-/- mice but not in WT, with no differences between males and females. However, under HFD, callus bone volume was significantly reduced exclusively in male Ldlr-/- mice when compared to WT, although these differences were no longer apparent by 21 days after resection. Regardless of diet or genotype, BMD of regenerated ribs did not differ significantly between groups, although male mice typically had lower average BMD values. Together, these results suggest that short-term hyperlipidemia has transient effects on large-scale bone regeneration exclusively in male mice.
Collapse
Affiliation(s)
- Luciana Yamamoto de Almeida
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Catharine Dietrich
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
4
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
5
|
Warren A, Porter RM, Reyes-Castro O, Ali MM, Marques-Carvalho A, Kim HN, Gatrell LB, Schipani E, Nookaew I, O'Brien CA, Morello R, Almeida M. The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice. Nat Commun 2023; 14:3616. [PMID: 37330524 PMCID: PMC10276814 DOI: 10.1038/s41467-023-39392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
NAD is an essential co-factor for cellular energy metabolism and multiple other processes. Systemic NAD+ deficiency has been implicated in skeletal deformities during development in both humans and mice. NAD levels are maintained by multiple synthetic pathways but which ones are important in bone forming cells is unknown. Here, we generate mice with deletion of Nicotinamide Phosphoribosyltransferase (Nampt), a critical enzyme in the NAD salvage pathway, in all mesenchymal lineage cells of the limbs. At birth, NamptΔPrx1 exhibit dramatic limb shortening due to death of growth plate chondrocytes. Administration of the NAD precursor nicotinamide riboside during pregnancy prevents the majority of in utero defects. Depletion of NAD post-birth also promotes chondrocyte death, preventing further endochondral ossification and joint development. In contrast, osteoblast formation still occurs in knockout mice, in line with distinctly different microenvironments and reliance on redox reactions between chondrocytes and osteoblasts. These findings define a critical role for cell-autonomous NAD homeostasis during endochondral bone formation.
Collapse
Affiliation(s)
- Aaron Warren
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ryan M Porter
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Olivia Reyes-Castro
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Mohsin Ali
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Landon B Gatrell
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roy Morello
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Herrero-Manley L, Alabajos-Cea A, Suso-Martí L, Cuenca-Martínez F, Calatayud J, Casaña J, Viosca-Herrero E, Vázquez-Arce I, Ferrer-Sargues FJ, Blanco-Díaz M. Serum lipid biomarkers and inflammatory cytokines associated with onset and clinical status of patients with early knee osteoarthritis. Front Nutr 2023; 10:1126796. [PMID: 37006936 PMCID: PMC10050464 DOI: 10.3389/fnut.2023.1126796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionOsteoarthritis (OA) is a common joint condition and one of the greatest causes of disability worldwide. The role of serum lipid and inflammatory biomarkers in the origin and development of the disease is not clear, although it could have important implications for diagnosis and treatment. The primary aim of this study was to evaluate differences of serum lipid and inflammatory biomarkers with knee EOA in comparison with matched controls, in order to determine the role of these factors in the origin of EOA.MethodsFor this proposal, a cross-sectional study with a non-randomized sample was performed. 48 subjects with early osteoarthritis (EOA) and 48 matched controls were selected and serum lipid levels (total cholesterol, LDL, HDL) and inflammatory biomarkers C-reactive protein (CRP), uric acid (UA) were analyzed. In addition, clinical (pain, disability) and functional (gait speed, sit-to-stand) variables were measured to establish their relationship to serum lipid levels and inflammatory biomarkers.ResultsPatients with EOA showed higher levels of total cholesterol LDL, UA, and CRP. Higher levels of total cholesterol, LDL and CRP were correlated with higher levels of pain intensity and higher disability (p < 0.05). In addition, UA and CRP were inversely correlated with gait speed and sit-to-stand tests (r = −0.038 to −0.5, p < 0.05).ConclusionThese results highlight the relevance of metabolic and proinflammatory aspects in the early stages of knee OA and could be key to developing early diagnoses to prevent the onset and development of the disease.
Collapse
Affiliation(s)
- Luz Herrero-Manley
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
| | - Ana Alabajos-Cea
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
- Grupo de Investigación en Medicina Física y Rehabilitación, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Luis Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | | - Joaquín Calatayud
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
- *Correspondence: Joaquín Calatayud,
| | - José Casaña
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | | | - Isabel Vázquez-Arce
- Servicio de Medicina Física y Rehabilitación, Hospital La Fe, Valencia, Spain
| | | | - María Blanco-Díaz
- Department of Surgery and Medical Surgical Specialties, Faculty of Medicine and Health Sciences, University of Oviedo, Oviedo, Spain
| |
Collapse
|
7
|
Kodama J, Wilkinson KJ, Otsuru S. Nutrient metabolism of the nucleus pulposus: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100191. [PMID: 36590450 PMCID: PMC9801222 DOI: 10.1016/j.xnsj.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences. Clinical and preclinical studies have indicated a correlation between intervertebral degeneration (IDD) and systemic metabolic diseases such as diabetes, obesity, and dyslipidemia. However, a lack of understanding of the nutrient metabolism of NP cells is masking the underlying mechanism. Indeed, although previous studies indicated that glucose metabolism is essential for NP cells, the downstream metabolic pathways remain unknown, and the potential role of other nutrients, like amino acids and lipids, is understudied. In this literature review, we summarize the current understanding of nutrient metabolism in NP cells and discuss other potential metabolic pathways by referring to a human NP transcriptomic dataset deposited to the Gene Expression Omnibus, which can provide us hints for future studies of nutrient metabolism in NP cells and novel therapies for IDD.
Collapse
Affiliation(s)
- Joe Kodama
- Corresponding authors at: 670 W Baltimore St. HSFIII 7173, Baltimore, MD 21201, USA.
| | | | - Satoru Otsuru
- Corresponding authors at: 670 W Baltimore St. HSFIII 7173, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, Cui L, Li G, Zhong H, Lin S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022; 14:3984. [PMID: 36235637 PMCID: PMC9570753 DOI: 10.3390/nu14193984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.
Collapse
Affiliation(s)
- Zhanpeng Su
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Zhixian Zong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinxia Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Liao Cui
- Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical Unversity, Zhanjiang 524023, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
9
|
Abstract
ObjectiveThe aim of this study was to classify the fetal skeletal dysplasias (FSD) in a series of affected fetuses based on radio-pathologic criteria. Materials and methods: We gathered clinicopathologic data of 72 cases which were diagnosed among 5995 autopsies performed over a 8-year period. Results: The prevalence of FSD was 1.2:100 autopsies. The overall sex ratio (M:F) was 1.25. Gestational age was between 17 and 24 weeks in 60% of cases. The FSD were classified into 13 distinct pathologic groups. Four major groups were identified: (1) Osteogenesis imperfecta (21 cases, 29%); (2) FGFR3 chondrodysplasia (18 cases, 25%); (3) Ciliopathies (9 cases, 12%); and (4) Sulfation disorders (7 cases, 10%). Thanatophoric dysplasia type 1 and lethal osteogenesis imperfecta were the most common skeletal dysplasias. Conclusion: Our study demonstrates the usefulness of the radio-pathologic examination in the diagnosis and accurate classification of the FSD, thus enabling better targeting of genetic counseling.
Collapse
Affiliation(s)
- Sihem Darouich
- LR99ES10 Laboratory of Human genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Fetopathology Unit, Hospital Habib Bougatfa, Bizerte, Tunisia
| | - Aida Masmoudi
- Department of Embryo-Fetopathology, Maternity and Neonatology Center, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
10
|
Expanding horizons of achondroplasia treatment: current options and future developments. Osteoarthritis Cartilage 2022; 30:535-544. [PMID: 34864168 DOI: 10.1016/j.joca.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Activating mutations in the FGFR3 receptor tyrosine kinase lead to most prevalent form of genetic dwarfism in humans, the achondroplasia. Many features of the complex function of FGFR3 in growing skeleton were characterized, which facilitated identification of therapy targets, and drove progress toward treatment. In August 2021, the vosoritide was approved for treatment of achondroplasia, which is based on a stable variant of the C-natriuretic peptide. Other drugs may soon follow, as several conceptually different inhibitors of FGFR3 signaling progress through clinical trials. Here, we review the current achondroplasia therapeutics, describe their mechanisms, and illuminate motivations leading to their development. We also discuss perspectives of curing achondroplasia, and options for repurposing achondroplasia drugs for dwarfing conditions unrelated to FGFR3.
Collapse
|
11
|
Welhaven HD, McCutchen CN, June RK. Effects of mechanical stimulation on metabolomic profiles of SW1353 chondrocytes: shear and compression. Biol Open 2022; 11:274218. [PMID: 35113136 PMCID: PMC8822358 DOI: 10.1242/bio.058895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Mechanotransduction is a biological phenomenon where mechanical stimuli are converted to biochemical responses. A model system for studying mechanotransduction are the chondrocytes of articular cartilage. Breakdown of this tissue results in decreased mobility, increased pain, and reduced quality of life. Either disuse or overloading can disrupt cartilage homeostasis, but physiological cyclical loading promotes cartilage homeostasis. To model this, we exposed SW1353 cells to cyclical mechanical stimuli, shear and compression, for different durations of time (15 and 30 min). By utilizing liquid chromatography-mass spectroscopy (LC-MS), metabolomic profiles were generated detailing metabolite features and biological pathways that are altered in response to mechanical stimulation. In total, 1457 metabolite features were detected. Statistical analyses identified several pathways of interest. Taken together, differences between experimental groups were associated with inflammatory pathways, lipid metabolism, beta-oxidation, central energy metabolism, and amino acid production. These findings expand our understanding of chondrocyte mechanotransduction under varying loading conditions and time periods. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hope D Welhaven
- Department of Chemistry & Biochemistry and Molecular Biosciences Program, Montana State University, Bozeman, MT 59717, USA
| | - Carley N McCutchen
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA.,Department of Microbiology & Cell Biology, Montana State University, Bozeman MT 59717, USA.,Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Yang Y, Zhang D, Guo D, Li J, Xu S, Wei J, Xie J, Zhou X. Osteoblasts impair cholesterol synthesis in chondrocytes via Notch1 signalling. Cell Prolif 2021; 54:e13156. [PMID: 34726809 PMCID: PMC8666287 DOI: 10.1111/cpr.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Previous reports have proposed the importance of signalling and material exchange between cartilage and subchondral bone. However, the specific experimental evidence is still insufficient to support the effect of this interdependent relationship on mutual cell behaviours. In this study, we aimed to investigate cellular lipid metabolism in chondrocytes induced by osteoblasts. Methods Osteoblast‐induced chondrocytes were established in a Transwell chamber. A cholesterol detection kit was used to detect cholesterol contents. RNA sequencing and qPCR were performed to assess changes in mRNA expression. Western blot analysis was performed to detect protein expression. Immunofluorescence staining was conducted to show the cellular distribution of proteins. Results Cholesterol levels were significantly decreased in chondrocytes induced by osteoblasts. Osteoblasts reduced cholesterol synthesis in chondrocytes by reducing the expression of a series of synthetases, including Fdft1, Sqle, Lss, Cyp51, Msmo1, Nsdhl, Sc5d, Dhcr24 and Dhcr7. This modulatory process involves Notch1 signalling. The expression of ncstn and hey1, an activator and a specific downstream target of Notch signalling, respectively, were decreased in chondrocytes induced by osteoblasts. Conclusions For the first time, we elucidated that communication with osteoblasts reduces cholesterol synthesis in chondrocytes through Notch1 signalling. This result may provide a better understanding of the effect of subchondral bone signalling on chondrocytes.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiachi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Papathanasiou I, Anastasopoulou L, Tsezou A. Cholesterol metabolism related genes in osteoarthritis. Bone 2021; 152:116076. [PMID: 34174501 DOI: 10.1016/j.bone.2021.116076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis plays a significant role in skeletal development and the dysregulation of cholesterol-related mechanism has been shown to be involved in the development of cartilage diseases including osteoarthritis (OA). Epidemiological studies have shown an association between elevated serum cholesterol levels and OA. Furthermore, abnormal lipid accumulation in chondrocytes as a result of abnormal regulation of cholesterol homeostasis has been demonstrated to be involved in the development of OA. Although, many in vivo and in vitro studies support the connection between cholesterol and cartilage degradation, the mechanisms underlying the complex interactions between lipid metabolism, especially HDL cholesterol metabolism, and OA remain unclear. The current review aims to address this problem and focuses on key molecular players of the HDL metabolism pathway and their role in ΟΑ pathogenesis. Understanding the complexity of biological processes implicated in OA pathogenesis, such as cholesterol metabolism, may lead to new targets for drug therapy of OA patients.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece
| | - Lydia Anastasopoulou
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen, 35392 Giessen, Germany
| | - Aspasia Tsezou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece.
| |
Collapse
|
14
|
Pinson MR, Chung DD, Adams AM, Scopice C, Payne EA, Sivakumar M, Miranda RC. Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. Aging Dis 2021; 12:1516-1535. [PMID: 34527425 PMCID: PMC8407878 DOI: 10.14336/ad.2021.0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm that links prenatal and early life exposures that occur during crucial periods of development to health outcome and risk of disease later in life. Maternal exposures to stress, some psychoactive drugs and alcohol, and environmental chemicals, among others, may result in functional changes in developing fetal tissues, creating a predisposition for disease in the individual as they age. Extracellular vesicles (EVs) may be mediators of both the immediate effects of exposure during development and early childhood as well as the long-term consequences of exposure that lead to increased risk and disease severity later in life. Given the prevalence of diseases with developmental origins, such as cardiovascular disease, neurodegenerative disorders, osteoporosis, metabolic dysfunction, and cancer, it is important to identify persistent mediators of disease risk. In this review, we take this approach, viewing diseases typically associated with aging in light of early life exposures and discuss the potential role of EVs as mediators of lasting consequences.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amy M Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Chiara Scopice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Monisha Sivakumar
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
15
|
Yang Y, Wei J, Li J, Cui Y, Zhou X, Xie J. Lipid metabolism in cartilage and its diseases: a concise review of the research progress. Acta Biochim Biophys Sin (Shanghai) 2021; 53:517-527. [PMID: 33638344 DOI: 10.1093/abbs/gmab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The homeostasis of the vertebrate body depends on anabolic and catabolic activities that are closely linked the inside and outside of the cell. Lipid metabolism plays an essential role in these metabolic activities. Although a large amount of evidence shows that normal lipid metabolism guarantees the conventional physiological activities of organs in the vertebrate body and that abnormal lipid metabolism plays an important role in the occurrence and deterioration of cardiovascular-related diseases, such as obesity, atherosclerosis, and type II diabetes, little is known about the role of lipid metabolism in cartilage and its diseases. This review aims to summarize the latest advances about the function of lipid metabolism in cartilage and its diseases including osteoarthritis, rheumatoid arthritis, and cartilage tumors. With the gradual in-depth understanding of lipid metabolism in cartilage, treatment methods could be explored to focus on this metabolic process in various cartilage diseases.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jiachi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Statins repress hedgehog signaling in medulloblastoma with no bone toxicities. Oncogene 2021; 40:2258-2272. [PMID: 33649536 DOI: 10.1038/s41388-021-01701-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
The Hedgehog (Hh) pathway plays an indispensable role in bone development and genetic activation of the pathway results in medulloblastoma (MB), the most common malignant brain tumor in children. Inhibitors of Hh pathway (such as vismodegib and sonedigib), which are used to treat MB, cause irreversible defects in bone growth in young children. Cholesterol is required for the activation of the Hh pathway, and statins, inhibitors of cholesterol biosynthesis, suppress MB growth by repressing Hh signaling in tumor cells. Here, we investigate the role of cholesterol biosynthesis in the proliferation and Hh signaling in chondrocytes, and examine the bone development in mice after statin treatment. Statins significantly inhibited MB growth in young mice, but caused no defects in bone development. Conditional deletion of NADP steroid dehydrogenase-like (NSDHL), an enzyme necessary for cholesterol biosynthesis, suppressed cholesterol synthesis in chondrocytes, and disrupted the growth plate in mouse femur and tibia, indicating the important function of intracellular cholesterol in bone development. Hh pathway activation and the proliferation of chondrocytes were inhibited by statin treatment in vitro; however, statins did not impair bone growth in vivo due to insufficient penetration into the bone. Our studies reveal a critical role of cholesterol in bone development, and support the utilization of statins for treatment of MB as well as other Hh pathway-associated malignancies.
Collapse
|
17
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|
18
|
Kabalyk MA, Kovalenko TS, Nevzorova VA, Sukhanova GI. Effect of Arterial Hypertension and Hyperlipidemia on the Remodeling of Articular Cartilage and the Development of Osteoarthritis (Experimental Study). ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20:ijms20235840. [PMID: 31757091 PMCID: PMC6928971 DOI: 10.3390/ijms20235840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.
Collapse
|
20
|
Zhang H, Wei Q, Tsushima H, Puviindran V, Tang YJ, Pathmanapan S, Poon R, Ramu E, Al-Jazrawe M, Wunder J, Alman BA. Intracellular cholesterol biosynthesis in enchondroma and chondrosarcoma. JCI Insight 2019; 5:127232. [PMID: 31039139 DOI: 10.1172/jci.insight.127232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enchondroma and chondrosarcoma are the most common benign and malignant cartilaginous neoplasms. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) are present in the majority of these tumors. We performed RNA-seq analysis on chondrocytes from Col2a1Cre;Idh1LSL/+ animals and found that genes implied in cholesterol synthesis pathway were significantly upregulated in the mutant chondrocytes. We examined the phenotypic effect of inhibiting intracellular cholesterol biosynthesis on enchondroma formation by conditionally deleting SCAP (sterol regulatory element-binding protein cleavage-activating protein), a protein activating intracellular cholesterol synthesis, in IDH1 mutant mice. We found fewer enchondromas in animals lacking SCAP. Furthermore, in chondrosarcomas, pharmacological inhibition of intracellular cholesterol synthesis significantly reduced chondrosarcoma cell viability in vitro and suppressed tumor growth in vivo. Taken together, these data suggest that intracellular cholesterol synthesis is a potential therapeutic target for enchondromas and chondrosarcomas.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Cell Biology and.,Department of Orthopeadic Surgery, Duke University, Durham, North Carolina, USA
| | - Qingxia Wei
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Vijitha Puviindran
- Department of Orthopeadic Surgery, Duke University, Durham, North Carolina, USA
| | - Yuning J Tang
- Department of Cell Biology and.,Department of Orthopeadic Surgery, Duke University, Durham, North Carolina, USA
| | - Sinthu Pathmanapan
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raymond Poon
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eyal Ramu
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mushriq Al-Jazrawe
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jay Wunder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Benjamin A Alman
- Department of Cell Biology and.,Department of Orthopeadic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
21
|
Zhang Y, Yu J, Zhang J, Hua Y. Simvastatin With PRP Promotes Chondrogenesis of Bone Marrow Stem Cells In Vitro and Wounded Rat Achilles Tendon-Bone Interface Healing In Vivo. Am J Sports Med 2019; 47:729-739. [PMID: 30668918 DOI: 10.1177/0363546518819108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons and ligaments are joined to bone in a specialized interface that transmits force from muscle to bone and permits body movement. Tendon/ligament injuries always occur in the interface areas, and injured tendons/ligaments have a limited healing response because the insertion site is composed of a fibrocartilaginous zone. PURPOSE To study the effect of simvastatin with platelet-rich plasma (PRP) on chondrogenesis of rat bone marrow stem cells (BMSCs) in vitro and wounded rat Achilles tendon-bone interface healing in vivo. STUDY DESIGN Controlled laboratory study. METHODS The in vitro model was performed by the culture of rat BMSCs with various concentrations of simvastatin (0, 10, 50, 100 nM) for 2 weeks. The effect of simvastatin on the chondrogenic differentiation of the BMSCs was examined by histochemical analysis and real-time quantitative reverse transcription polymerase chain reaction. The in vivo model was carried out by testing the healing effect of simvastatin with PRP on 12 wounded rat Achilles tendon-bone interfaces. RESULTS Simvastatin induced chondrogenic differentiation of rat BMSCs in a concentration-dependent manner as evidenced by histological staining and real-time quantitative reverse transcription polymerase chain reaction. The wounds treated with simvastatin alone or with simvastatin-containing PRP gel healed much faster than the wounds treated with saline alone or PRP alone. Histological analysis showed that higher percentages of healed tissues were positively stained with safranin O and fast green in wounds treated with simvastatin-containing PRP gel than in the other 3 groups. Immunohistochemical analysis further demonstrated these findings, as evidenced by more positively stained healed tissues with collagen I and II antibodies in the wound areas treated with simvastatin-containing PRP gel than the other 3 groups. CONCLUSION The combination of simvastatin with PRP induced chondrogenesis of BMSCs in vitro and enhanced fibrocartilage formation in vivo. The simvastatin-PRP gel treatment promotes wounded tendon-bone interface healing in clinical treatment. CLINICAL RELEVANCE The combination of simvastatin with PRP may be a good clinical treatment for wounded tendon/ligament junction healing, especially for acute sports-related tendon/ligament injuries.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| | - Jing Yu
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| | - Jiefeng Zhang
- Department of Trauma Surgery, Taian City Central Hospital, Taian, China
| | - Yongxin Hua
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| |
Collapse
|
22
|
Liu Q, Wang Z, Dong X, Wang H, Lan J. Calcium, Phosphorus and Oxygen Around Implant at Early Osseointegration in Hyperlipidemic Rats. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qibo Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
- Department of Prosthodontics, School of Stomotology, Shandong University
| | - Zhifeng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
- Department of Pediatric Dentistry, School of Stomotology, Shandong University
| | - Xiaofei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Hui Wang
- Department of Dental Implantology, Affiliated Stomological Hospital of Suzhou University
| | - Jing Lan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
- Department of Prosthodontics, School of Stomotology, Shandong University
| |
Collapse
|
23
|
Tsushima H, Tang YJ, Puviindran V, Hsu SHC, Nadesan P, Yu C, Zhang H, Mirando AJ, Hilton MJ, Alman BA. Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis. Development 2018; 145:dev.162396. [PMID: 29899135 PMCID: PMC6053657 DOI: 10.1242/dev.162396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/01/2018] [Indexed: 01/12/2023]
Abstract
During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here, we have investigated conditional deletion of Scap or of Insig1 and Insig2 (Scap inhibits intracellular biosynthesis and Insig proteins activate intracellular biosynthesis). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, whereas mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, whereas deletion of Insig genes in chondrocytes caused a mild dwarfism and shortening of the hypertrophic zone. In vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and these data support pharmacological modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies. Summary: Conditional deletion of genes that regulate intracellular cholesterol biosynthesis in mesenchymal cells or chondrocytes shows that precise regulation of biosynthesis is required for chondrocyte homeostasis and long bone growth.
Collapse
Affiliation(s)
- Hidetoshi Tsushima
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Shu-Hsuan Claire Hsu
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Puviindran Nadesan
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Chunying Yu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Anthony J Mirando
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
24
|
Tan Z, Niu B, Tsang KY, Melhado IG, Ohba S, He X, Huang Y, Wang C, McMahon AP, Jauch R, Chan D, Zhang MQ, Cheah KSE. Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genet 2018; 14:e1007346. [PMID: 29659575 PMCID: PMC5919691 DOI: 10.1371/journal.pgen.1007346] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
The growth plate mediates bone growth where SOX9 and GLI factors control chondrocyte proliferation, differentiation and entry into hypertrophy. FOXA factors regulate hypertrophic chondrocyte maturation. How these factors integrate into a Gene Regulatory Network (GRN) controlling these differentiation transitions is incompletely understood. We adopted a genome-wide whole tissue approach to establish a Growth Plate Differential Gene Expression Library (GP-DGEL) for fractionated proliferating, pre-hypertrophic, early and late hypertrophic chondrocytes, as an overarching resource for discovery of pathways and disease candidates. De novo motif discovery revealed the enrichment of SOX9 and GLI binding sites in the genes preferentially expressed in proliferating and prehypertrophic chondrocytes, suggesting the potential cooperation between SOX9 and GLI proteins. We integrated the analyses of the transcriptome, SOX9, GLI1 and GLI3 ChIP-seq datasets, with functional validation by transactivation assays and mouse mutants. We identified new SOX9 targets and showed SOX9-GLI directly and cooperatively regulate many genes such as Trps1, Sox9, Sox5, Sox6, Col2a1, Ptch1, Gli1 and Gli2. Further, FOXA2 competes with SOX9 for the transactivation of target genes. The data support a model of SOX9-GLI-FOXA phasic GRN in chondrocyte development. Together, SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon hypertrophy, FOXA competes with SOX9, and control toward terminal differentiation passes to FOXA, RUNX, AP1 and MEF2 factors. In the development of the mammalian growth plate, while several transcription factors are individually well known for their key roles in regulating phases of chondrocyte differentiation, there is little information on how they interact and cooperate with each other. We took an unbiased genome wide approach to identify the transcription factors and signaling pathways that play dominant roles in the chondrocyte differentiation cascade. We developed a searchable library of differentially expressed genes, GP-DGEL, which has fine spatial resolution and global transcriptomic coverage for discovery of processes, pathways and disease candidates. Our work identifies a novel regulatory mechanism that integrates the action of three transcription factors, SOX9, GLI and FOXA. SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon entry into prehypertrophy, FOXA competes with SOX9, and control of hypertrophy passes to FOXA, RUNX, AP1 and MEF2 factors.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ben Niu
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ian G. Melhado
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Shinsuke Ohba
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yongheng Huang
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Cheng Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Ralf Jauch
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Dallas, Texas, United States of America
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, China
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail:
| |
Collapse
|
25
|
Bakker B, Eijkel GB, Heeren RMA, Karperien M, Post JN, Cillero-Pastor B. Oxygen-Dependent Lipid Profiles of Three-Dimensional Cultured Human Chondrocytes Revealed by MALDI-MSI. Anal Chem 2017; 89:9438-9444. [PMID: 28727417 PMCID: PMC5588094 DOI: 10.1021/acs.analchem.7b02265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Articular
cartilage is exposed to a gradient of oxygen levels ranging
from 5% at the surface to 1% in the deepest layers. While most cartilage
research is performed in supraphysiological oxygen levels (19–21%),
culturing chondrocytes under hypoxic oxygen levels (≤8%) promotes
the chondrogenic phenotype. Exposure of cells to various oxygen levels
alters their lipid metabolism, but detailed studies examining how
hypoxia affects lipid metabolism in chondrocytes are lacking. To better
understand the chondrocyte’s behavior in response to oxygen,
we cultured 3D pellets of human primary chondrocytes in normoxia (20%
oxygen) and hypoxia (2.5% oxygen) and employed matrix-assisted laser
desorption ionization mass spectrometry imaging (MALDI-MSI) in order
to characterize the lipid profiles and their spatial distribution.
In this work we show that chondrocytes cultured in hypoxia and normoxia
can be differentiated by their lipid profiles. Among other species,
phosphatidylglycerol species were increased in normoxic pellets, whereas
phosphatidylinositol species were the most prominent lipids in hypoxic
pellets. Moreover, spatial mapping revealed that phospahtidylglyycerol
species were less prominent in the center of pellets where the oxygen
level is lower. Additional analysis revealed a higher abundance of
the mitochondrial-specific lipids, cardiolipins, in normoxic conditions.
In conclusion MALDI-MSI described specific lipid profiles that could
be used as sensors of oxygen level changes and may especially be relevant
for retaining the chondrogenic phenotype, which has important implications
for the treatment of bone and cartilage diseases.
Collapse
Affiliation(s)
- Brenda Bakker
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , 7522 NB Enschede, The Netherlands
| | - Gert B Eijkel
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , 6229 ER Maastricht, The Netherlands
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , 6229 ER Maastricht, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , 7522 NB Enschede, The Netherlands
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , 7522 NB Enschede, The Netherlands
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , 6229 ER Maastricht, The Netherlands
| |
Collapse
|
26
|
Braune J, Weyer U, Matz-Soja M, Hobusch C, Kern M, Kunath A, Klöting N, Kralisch S, Blüher M, Gebhardt R, Zavros Y, Bechmann I, Gericke M. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism. Diabetologia 2017; 60:889-899. [PMID: 28233033 DOI: 10.1007/s00125-017-4223-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. METHODS Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo -/-). RESULTS Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. CONCLUSIONS/INTERPRETATION Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.
Collapse
Affiliation(s)
- Julia Braune
- Institute of Anatomy, Leipzig University, Oststrasse 25, D-04317, Leipzig, Germany
| | - Ulrike Weyer
- Institute of Anatomy, Leipzig University, Oststrasse 25, D-04317, Leipzig, Germany
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Constance Hobusch
- Institute of Anatomy, Leipzig University, Oststrasse 25, D-04317, Leipzig, Germany
| | - Matthias Kern
- German Center of Diabetes Research (DZD), Leipzig, Germany
| | - Anne Kunath
- IFB Adiposity Disease, Core Unit, Leipzig University, Leipzig, Germany
| | - Nora Klöting
- IFB Adiposity Disease, Core Unit, Leipzig University, Leipzig, Germany
| | - Susann Kralisch
- Department of Medicine, Leipzig University, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, Leipzig University, Leipzig, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, USA
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Oststrasse 25, D-04317, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Oststrasse 25, D-04317, Leipzig, Germany.
| |
Collapse
|
27
|
Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn 2017; 246:291-309. [PMID: 27987249 DOI: 10.1002/dvdy.24479] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurence Legeai-Mallet
- Imagine Institute, Inserm U1163, Université Paris Descartes, Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
28
|
Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016; 5:610-618. [PMID: 27965220 PMCID: PMC5227059 DOI: 10.1302/2046-3758.512.bjr-2016-0102.r2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023] Open
Abstract
In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610-618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.
Collapse
Affiliation(s)
- A A Abubakar
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M M Noordin
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - T I Azmi
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - U Kaka
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M Y Loqman
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
29
|
Nguyen DN, Jiang P, Stensballe A, Bendixen E, Sangild PT, Chatterton DEW. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine. J Proteomics 2016; 139:95-102. [PMID: 26996464 DOI: 10.1016/j.jprot.2016.03.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/14/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Bovine lactoferrin (bLF) may modulate neonatal intestinal inflammation. Previous studies in intestinal epithelial cells (IECs) indicated that moderate bLF doses enhance proliferation whereas high doses trigger inflammation. To further elucidate cellular mechanisms, we profiled the porcine IEC proteome after stimulation with bLF at 0, 0.1, 1 and 10g/L by LC-MS-based proteomics. Key pathways were analyzed in the intestine of formula-fed preterm pigs with and without supplementation of 10g/L bLF. Levels of 123 IEC proteins were altered by bLF. Low bLF doses (0.1-1g/L) up-regulated 11 proteins associated with glycolysis, energy metabolism and protein synthesis, indicating support of cell survival. In contrast, a high bLF dose (10g/L) up-regulated three apoptosis-inducing proteins, down-regulated five anti-apoptotic and proliferation-inducing proteins and 15 proteins related to energy and amino acid metabolism, and altered three proteins enhancing the hypoxia inducible factor-1 (HIF-1) pathway. In the preterm pig intestine, bLF at 10g/L decreased villus height/crypt depth ratio and up-regulated the Bax/Bcl-2 ratio and HIF-1α, indicating elevated intestinal apoptosis and inflammation. In conclusion, bLF dose-dependently affects IECs via metabolic, apoptotic and inflammatory pathways. It is important to select an appropriate dose when feeding neonates with bLF to avoid detrimental effects exerted by excessive doses. BIOLOGICAL SIGNIFICANCE The present work elucidates dose-dependent effects of bLF on the proteomic changes of IECs in vitro supplemented with data from a preterm pig study confirming detrimental effects of enteral feeding with the highest dose of bLF (10g/L). The study contributes to further understanding on mechanisms that bLF, as an important milk protein, can regulate the homeostasis of the immature intestine. Results from this study urge neonatologists to carefully consider the dose of bLF to supplement into infant formula used for preterm neonates.
Collapse
Affiliation(s)
- Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1958, Denmark; Department of Food Science, University of Copenhagen, DK-1958, Denmark
| | - Pingping Jiang
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1958, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, DK-9220, Denmark
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Denmark
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1958, Denmark
| | - Dereck E W Chatterton
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1958, Denmark; Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| |
Collapse
|
30
|
Sfrp2 is a transcriptional target of SREBP-1 in mouse chondrogenic cells. Mol Cell Biochem 2015; 406:163-71. [DOI: 10.1007/s11010-015-2434-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
|
31
|
Bush JR, Bérubé NG, Beier F. A new prescription for growth? Statins, cholesterol and cartilage homeostasis. Osteoarthritis Cartilage 2015; 23:503-6. [PMID: 25595698 DOI: 10.1016/j.joca.2015.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/22/2014] [Accepted: 01/04/2015] [Indexed: 02/02/2023]
Affiliation(s)
- J R Bush
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada; Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - N G Bérubé
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada; Department of Paediatrics, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - F Beier
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
32
|
Rocha B, Cillero-Pastor B, Eijkel G, Bruinen AL, Ruiz-Romero C, Heeren RMA, Blanco FJ. Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging. Proteomics 2015; 15:702-13. [PMID: 25346268 DOI: 10.1002/pmic.201400260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/05/2014] [Accepted: 10/20/2014] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSC) are an interesting alternative for cell-based therapy of cartilage defects attributable to their capacity to differentiate toward chondrocytes in the process termed chondrogenesis. The metabolism of lipids has recently been associated with the modulation of chondrogenesis and also with the development of pathologies related to cartilage degeneration. Information about the distribution and modulation of lipids during chondrogenesis could provide a panel of putative chondrogenic markers. Thus, the discovery of new lipid chondrogenic markers could be highly valuable for improving MSC-based cartilage therapies. In this work, MS imaging was used to characterize the spatial distribution of lipids in human bone marrow MSCs during the first steps of chondrogenic differentiation. The analysis of MSC micromasses at days 2 and 14 of chondrogenesis by MALDI-MSI led to the identification of 20 different lipid species, including fatty acids, sphingolipids, and phospholipids. Phosphocholine, several sphingomyelins, and phosphatidylcholines were found to increase during the undifferentiated chondrogenic stage. A particularly detected lipid profile was verified by TOF secondary ion MS. Using this technology, a higher intensity of phosphocholine-related ions was observed in the peripheral region of the micromasses collected at day 14.
Collapse
Affiliation(s)
- Beatriz Rocha
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC - Hospital Universitario de A Coruña, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Patra D, DeLassus E, Liang G, Sandell LJ. Cartilage-specific ablation of site-1 protease in mice results in the endoplasmic reticulum entrapment of type IIb procollagen and down-regulation of cholesterol and lipid homeostasis. PLoS One 2014; 9:e105674. [PMID: 25147951 PMCID: PMC4141819 DOI: 10.1371/journal.pone.0105674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
The proprotein convertase site-1 protease (S1P) converts latent ER-membrane bound transcription factors SREBPs and ATF6 to their active forms. SREBPs are involved in cholesterol and fatty acid homeostasis whereas ATF6 is involved in unfolded protein response pathways (UPR). Cartilage-specific ablation of S1P in mice (S1Pcko) results in abnormal cartilage devoid of type II collagen protein (Col II). S1Pcko mice also lack endochondral bone development. To analyze S1Pcko cartilage we performed double-labeled immunofluorescence studies for matrix proteins that demonstrated that type IIB procollagen is trapped inside the ER in S1Pcko chondrocytes. This retention is specific to type IIB procollagen; other cartilage proteins such as type IIA procollagen, cartilage oligomeric matrix protein (COMP) and aggrecan are not affected. The S1Pcko cartilage thus exhibits COMP-, aggrecan-, and type IIA procollagen-derived matrices but is characterized by the absence of a type IIB procollagen-derived matrix. To understand the molecular reason behind S1Pcko phenotypes we performed genome-wide transcriptional profiling of cartilage isolated from S1Pcko and wild type littermates. While the UPR pathways are unaffected, the SREBPs-directed cholesterol and fatty acid pathways are significantly down-regulated in S1Pcko chondrocytes, with maximal down-regulation of the stearoyl-CoA desaturase-1 (Scd1) gene. However, mouse models that lack Scd1 or exhibit reduction in lipid homeostasis do not suffer from the ER retention of Col II or lack endochondral bone. These studies indicate an indispensable role for S1P in type IIB procollagen trafficking from the ER. This role appears not to be related to lipid pathways or other current known functions of S1P and is likely dependent on additional, yet unknown, S1P substrates in chondrocytes.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elizabeth DeLassus
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
34
|
Villalvilla A, Gómez R, Largo R, Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci 2013; 14:20793-808. [PMID: 24135873 PMCID: PMC3821643 DOI: 10.3390/ijms141020793] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022] Open
Abstract
Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-915-504-800; Fax: +34-915-442-636
| | - Rodolfo Gómez
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; E-Mail:
| | - Raquel Largo
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| | - Gabriel Herrero-Beaumont
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| |
Collapse
|
35
|
Kramer J, Bartsch M, Krug D, Klinger M, Nitschke M, Rohwedel J. Simvastatin modulates mouse embryonic stem cell-derived chondrogenesis in vitro. Toxicol In Vitro 2012; 26:1170-6. [PMID: 22771337 DOI: 10.1016/j.tiv.2012.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
It has been studied in detail that cellular differentiation during chondrogenesis can be recapitulated in vitro by differentiation of embryonic stem (ES) cells as embryoid bodies (EBs). We here used this model system of cartilage development to analyze the effect of simvastatin, a potentially embryotoxic substance. Statins are a group of drugs used to treat hypercholesterolaemia. We found that simvastatin activated cartilage nodule formation during EB differentiation. Extended application of simvastatin resulted in enhanced expression of cartilage marker molecules and prolonged persistence of cartilage nodules. Expression of collagen type II was upregulated during simvastatin-induced chondrogenic ES cell differentiation as demonstrated by quantitative real time PCR. However, immunostaining for cartilage marker molecules revealed that cartilage nodules within simvastatin-treated EBs were defective, bearing cavities of cell loss. Furthermore, caspase activity was reduced in comparison to untreated controls indicating reduced apoptosis. Taken together, we may speculate that simvastatin prolongs survival of chondrocytes and disrupts cellular integrity of cartilage nodules during EB development by affecting apoptotic mechanisms. The study underlines that ES cell-derived EBs are a useful in vitro model to screen substances for their embryotoxic and teratogenic potential.
Collapse
Affiliation(s)
- J Kramer
- Medical Dept. I and Dept. of Virology and Cell Biology, University of Lübeck, 23538 Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, Tetradis S, Demer L, Aghaloo T, Tintut Y. Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res 2012; 27:309-18. [PMID: 21987408 PMCID: PMC3274629 DOI: 10.1002/jbmr.541] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hyperlipidemia increases the risk for generation of lipid oxidation products, which accumulate in the subendothelial spaces of vasculature and bone. Atherogenic high-fat diets increase serum levels of oxidized lipids, which are known to attenuate osteogenesis in culture and to promote bone loss in mice. In this study, we investigated whether oxidized lipids affect bone regeneration and mechanical strength. Wild-type (WT) and hyperlipidemic (Ldlr(-/-)) mice were placed on a high-fat (HF) diet for 13 weeks. Bilateral cranial defects were introduced on each side of the sagittal suture, and 5 weeks postsurgery on the respective diets, the repair/regeneration of cranial bones and mechanical properties of femoral bones were assessed. MicroCT and histological analyses demonstrated that bone regeneration was significantly impaired by the HF diet in WT and Ldlr(-/-) mice. In femoral bone, cortical bone volume fraction (bone volume [BV]/tissue volume [TV]) was significantly reduced, whereas cortical porosity was increased by the HF diet in Ldlr(-/-) but not in WT mice. Femoral bone strength and stiffness, measured by three-point bending analysis, were significantly reduced by the HF diet in Ldlr(-/-), but not in WT mice. Serum analysis showed that the HF diet significantly increased levels of parathyroid hormone, tumor necrosis factor (TNF)-α, calcium, and phosphorus, whereas it reduced procollagen type I N-terminal propeptide, a serum marker of bone formation, in Ldlr(-/-), but not in WT mice. The serum level of carboxyl-terminal collagen crosslinks, a marker for bone resorption, was also 1.7-fold greater in Ldlr(-/-) mice. These findings suggest that hyperlipidemia induces secondary hyperparathyroidism and impairs bone regeneration and mechanical strength.
Collapse
Affiliation(s)
- Flavia Pirih
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Archer A, Srinivas Kitambi S, L. Hallgren S, Pedrelli M, Håkan Olsén K, Mode A, Gustafsson JÅ. The Liver X-Receptor (Lxr) Governs Lipid Homeostasis in Zebrafish during Development. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojemd.2012.24012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Woods A, James CG, Wang G, Dupuis H, Beier F. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-alpha signalling in endochondral bone growth. J Cell Mol Med 2011; 13:3497-516. [PMID: 20196782 PMCID: PMC4516504 DOI: 10.1111/j.1582-4934.2009.00684.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Elucidating the signalling pathways that regulate chondrocyte differentiation, such as the actin cytoskeleton and Rho GTPases, during development is essential for understanding of pathological conditions of cartilage, such as chondrodysplasias and osteoarthritis. Manipulation of actin dynamics in tibia organ cultures isolated from E15.5 mice results in pronounced enhancement of endochondral bone growth and specific changes in growth plate architecture. Global changes in gene expression were examined of primary chondrocytes isolated from embryonic tibia, treated with the compounds cytochalasin D, jasplakinolide (actin modifiers) and the ROCK inhibitor Y27632. Cytochalasin D elicited the most pronounced response and induced many features of hypertrophic chondrocyte differentiation. Bioinformatics analyses of microarray data and expression validation by real-time PCR and immunohistochemistry resulted in the identification of the nuclear receptor retinoid related orphan receptor-α (Ror-α) as a novel putative regulator of chondrocyte hypertrophy. Expression of Ror-α target genes, (Lpl, fatty acid binding protein 4 [Fabp4], Cd36 and kruppel-like factor 5 [Klf15]) were induced during chondrocyte hypertrophy and by cytochalasin D and are cholesterol dependent. Stimulation of Ror-α by cholesterol results in increased bone growth and enlarged, rounded cells, a phenotype similar to chondrocyte hypertrophy and to the changes induced by cytochalasin D, while inhibition of cholesterol synthesis by lovastatin inhibits cytochalasin D induced bone growth. Additionally, we show that in a mouse model of cartilage specific (Col2-Cre) Rac1, inactivation results in increased Hif-1α (a regulator of Rora gene expression) and Ror-α+ cells within hypertrophic growth plates. We provide evidence that cholesterol signalling through increased Ror-α expression stimulates chondrocyte hypertrophy and partially mediates responses of cartilage to actin dynamics.
Collapse
Affiliation(s)
- Anita Woods
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Sage AP, Lu J, Atti E, Tetradis S, Ascenzi MG, Adams DJ, Demer LL, Tintut Y. Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J Bone Miner Res 2011; 26:1197-206. [PMID: 21611962 PMCID: PMC3312754 DOI: 10.1002/jbmr.312] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In hyperlipidemia, oxidized lipids accumulate in vascular tissues and trigger atherosclerosis. Such lipids also deposit in bone tissues, where they may promote osteoporosis. We found previously that oxidized lipids attenuate osteogenesis and that parathyroid hormone (PTH) bone anabolism is blunted in hyperlipidemic mice, suggesting that osteoporotic patients with hyperlipidemia may develop resistance to PTH therapy. To determine if oxidized lipids account for this PTH resistance, we blocked lipid oxidation products in hyperlipidemic mice with an ApoA-I mimetic peptide, D-4F, and the bone anabolic response to PTH treatment was assessed. Skeletally immature Ldlr(-/-) mice were placed on a high-fat diet and treated with D-4F peptide and/or with intermittent PTH(1-34) injections. As expected, D-4F attenuated serum lipid oxidation products and tissue lipid deposition induced by the diet. Importantly, D-4F treatment attenuated the adverse effects of dietary hyperlipidemia on PTH anabolism by restoring micro-computed tomographic parameters of bone quality-cortical mineral content, area, and thickness. D-4F significantly reduced serum markers of bone resorption but not bone formation. PTH and D-4F, together but not separately, also promoted bone anabolism in an alternative model of hyperlipidemia, Apoe(-/-) mice. In normolipemic mice, D-4F cotreatment did not further enhance the anabolic effects of PTH, indicating that the mechanism is through its effects on lipids. These findings suggest that oxidized lipids mediate hyperlipidemia-induced PTH resistance in bone through modulation of bone resorption.
Collapse
Affiliation(s)
- Andrew P Sage
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu S, Zang W, Li X, Sun H. Proepithelin stimulates growth plate chondrogenesis via nuclear factor-kappaB-p65-dependent mechanisms. J Biol Chem 2011; 286:24057-67. [PMID: 21566130 DOI: 10.1074/jbc.m110.201368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proepithelin, a previously unrecognized growth factor in cartilage, has recently emerged as an important regulator for cartilage formation and function. In the present study, we provide several lines of evidences in proepithelin-mediated induction of cell proliferation, differentiation, and apoptosis in the metatarsal growth plate. Proepithelin-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by pyrrolidine dithiocarbamate, a known NF-κB inhibitor. In rat growth plate chondrocytes, proepithelin induced NF-κB-p65 nuclear translocation, and nuclear NF-κB-p65 initiated its target gene cyclin D1 to regulate chondrocyte functions. The inhibition of NF-κB-p65 expression and activity (by p65 short interfering RNA (siRNA) and pyrrolidine dithiocarbamate, respectively) in chondrocytes reversed the proepithelin-mediated induction of cell proliferation and differentiation and the proepithelin-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of proepithelin on NF-κB activation. Finally, using siRNA and antisense strategies, we demonstrated that endogenously produced proepithelin by chondrocytes is important for chondrocyte growth in serum-deprived conditions. These results support the hypothesis that the induction of NF-κB activity of in growth plate chondrocytes is critical in proepithelin-mediated growth plate chondrogenesis and longitudinal bone growth.
Collapse
Affiliation(s)
- Shufang Wu
- First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, 710061 China.
| | | | | | | |
Collapse
|
41
|
Sun H, Zang W, Zhou B, Xu L, Wu S. DHEA suppresses longitudinal bone growth by acting directly at growth plate through estrogen receptors. Endocrinology 2011; 152:1423-33. [PMID: 21303941 DOI: 10.1210/en.2010-0920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dehydroepiandrosterone (DHEA) is produced by the adrenal cortex and is the most abundant steroid in humans. Although in some physiological and pathological conditions the increased secretion of DHEA and its sulfated form is associated with accelerated growth rate and skeletal maturation, it is unclear whether DHEA can affect longitudinal bone growth and skeletal maturation by acting directly at the growth plate. In our study, DHEA suppressed metatarsal growth, growth plate chondrocyte proliferation, and hypertrophy/differentiation. In addition, DHEA increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, DHEA reduced chondrocyte proliferation and induced apoptosis. The DHEA-induced inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was nullified by culturing metatarsals with DHEA in the presence of ICI 182,780, an inhibitor of estrogen receptor, but not in the presence of Casodex, an inhibitor of androgen receptor. Lastly, nuclear factor-κB DNA binding activity was inhibited by the addition of DHEA in the medium of cultured chondrocyte. Our findings indicate that DHEA suppressed bone growth by acting directly at growth plate through estrogen receptor. Such growth inhibition is mediated by decreased chondrocyte proliferation and hypertrophy/differentiation and by increased chondrocyte apoptosis.
Collapse
Affiliation(s)
- Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical College of Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, People's Republic of China.
| | | | | | | | | |
Collapse
|
42
|
Bernstein P, Sticht C, Jacobi A, Liebers C, Manthey S, Stiehler M. Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation. Osteoarthritis Cartilage 2010; 18:1596-607. [PMID: 20883804 DOI: 10.1016/j.joca.2010.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The use of mesenchymal stem cells (MSCs) for cartilage regeneration is hampered by lack of knowledge about the underlying molecular differences between chondrogenically stimulated chondrocytes and MSCs. The aim of this study was to evaluate differences in phenotype and gene expression between primary human chondrocytes and MSCs during chondrogenic differentiation in three-dimensional (3D) pellet culture (PC). MATERIALS AND METHODS Chondrocytes isolated from cartilage samples obtained during total knee alloarthroplastic procedure (N=8) and MSCs, purified from bone marrow aspirates of healthy donors (N=8), were cultivated in PC under chondrogenic conditions. Immunohistology and quantitative reverse transcribing PCR (RT-PCR) were performed for chondrogenic-specific markers (i.e., Sox9, Collagen II). Global gene expression of the so-cultivated chondrocytes and MSCs was assessed by a novel approach of microarray-based pathway analysis. Refinement of data was done by hypothesis-driven gene expression omnibus (GEO) dataset comparison. Validation was performed with separate samples in transforming growth factor (TGF)β+ or TGFβ- conditions by use of quantitative real-time RT-PCR. RESULTS/CONCLUSIONS Chondrogenic commitment of both cell types was observed. Interestingly, chondrocytes demonstrated an upregulated fatty acid/cholesterol metabolism which may give hints for future optimization of culture conditions. The novel microarray-based pathway analysis applied in this study seems suitable for the evaluation of whole-genome based array datasets in case when hypotheses can be backed with already existing GEO datasets. Future experiments should further explore the different metabolic behaviour of chondrocytes and MSC.
Collapse
Affiliation(s)
- P Bernstein
- Department of Orthopaedics, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Tsezou A, Iliopoulos D, Malizos KN, Simopoulou T. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes. J Orthop Res 2010; 28:1033-9. [PMID: 20108316 DOI: 10.1002/jor.21084] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered lipid metabolism has been implicated as a critical player in osteoarthritis (OA). Our study aimed to investigate the expression of genes regulating cholesterol efflux in human chondrocytes and to study the effect of an LXR agonist on cholesterol efflux and lipid accumulation in osteoarthritic chondrocytes. ATP-binding-cassette transporter A1 (ABCA1), apolipoprotein A1 (ApoA1), and liver X receptors (LXRalpha and LXRbeta) mRNA expression levels were evaluated using real-time polymerase chain reaction (PCR) and ApoA1 protein levels by Western blot analysis in normal and osteoarthritic articular cartilage samples. Cholesterol efflux was evaluated in osteoarthritic chondrocytes radiolabeled with [1,2(n)-(3)H] cholesterol after LXR treatment, while intracellular lipid accumulation was studied after Oil-red-O staining. Cholesterol efflux gene expressions were significantly lower in osteoarthritic cartilage compared to normal. Treatment of osteoarthritic chondrocytes with the LXR agonist TO-901317 significantly increased ApoA1 and ABCA1 expression levels, as well as cholesterol efflux. Additionally, osteoarthritic chondrocytes presented intracellular lipids deposits, while no deposits were found after treatment with TO-901317. Our findings suggest that impaired expression of genes regulating cholesterol efflux may be a critical player in osteoarthritis, while the ability of the LXR agonist to facilitate cholesterol efflux suggests that it may be a target for therapeutic intervention in osteoarthritis.
Collapse
Affiliation(s)
- Aspasia Tsezou
- Department of Biology, Medical School, University of Thessaly, Mezourlo Hill, 41222 Larissa, Greece.
| | | | | | | |
Collapse
|
44
|
Woods A, James CG, Wang G, Dupuis H, Beier F. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-α signalling in endochondral bone growth. J Cell Mol Med 2010. [DOI: 10.1111/j.1582-4934.2008.00684.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
45
|
Wu S, Fadoju D, Rezvani G, De Luca F. Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-kappaB p65. J Biol Chem 2008; 283:34037-44. [PMID: 18922796 DOI: 10.1074/jbc.m803754200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) is an important regulator of endochondral ossification. However, little is known about the signaling pathways activated by IGF-I in growth plate chondrocytes. We have previously shown that NF-kappaB-p65 facilitates growth plate chondrogenesis. In this study, we first cultured rat metatarsal bones with IGF-I and/or pyrrolidine dithiocarbamate (PDTC), a known NF-kappaB inhibitor. The IGF-I-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by PDTC. In rat growth plate chondrocytes, IGF-I induced NF-kappaB-p65 nuclear translocation. The inhibition of NF-kappaB-p65 expression and activity (by p65 short interfering RNA and PDTC, respectively) in chondrocytes reversed the IGF-I-mediated induction of cell proliferation and differentiation and the IGF-I-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of IGF-I on NF-kappaB activation. In conclusion, our findings indicate that IGF-I stimulates growth plate chondrogenesis by activating NF-kappaB-p65 in chondrocytes.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | | | |
Collapse
|
46
|
Phornphutkul C, Wu KY, Auyeung V, Chen Q, Gruppuso PA. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn 2008; 237:702-12. [PMID: 18265001 DOI: 10.1002/dvdy.21464] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian Target Of Rapamycin (mTOR) is a nutrient-sensing protein kinase that regulates numerous cellular processes. Fetal rat metatarsal explants were used as a physiological model to study the effect of mTOR inhibition on chondrogenesis. Insulin significantly enhanced their growth. Rapamycin significantly diminished this response to insulin through a selective effect on the hypertrophic zone. Cell proliferation (bromodeoxyuridine incorporation) was unaffected by rapamycin. Similar observations were made when rapamycin was injected to embryonic day (E) 19 fetal rats in situ. In the ATDC5 chondrogenic cell line, rapamycin inhibited proteoglycan accumulation and collagen X expression. Rapamycin decreased content of Indian Hedgehog (Ihh), a regulator of chondrocyte differentiation. Addition of Ihh to culture medium reversed the effect of rapamycin. We conclude that modulation of mTOR signaling contributes to chondrocyte differentiation, perhaps through its ability to regulate Ihh. Our findings support the hypothesis that nutrients, acting through mTOR, directly influence chondrocyte differentiation and long bone growth.
Collapse
Affiliation(s)
- Chanika Phornphutkul
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital and Brown University, Providence, Rhode Island 02903, USA.
| | | | | | | | | |
Collapse
|
47
|
Wu S, Flint JK, Rezvani G, De Luca F. Nuclear Factor-κB p65 Facilitates Longitudinal Bone Growth by Inducing Growth Plate Chondrocyte Proliferation and Differentiation and by Preventing Apoptosis. J Biol Chem 2007; 282:33698-33706. [PMID: 17884819 DOI: 10.1074/jbc.m702991200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappaB is a group of transcription factors involved in cell proliferation, differentiation, and apoptosis. Mice deficient in the NF-kappaB subunits p50 and p52 have retarded growth, suggesting that NF-kappaB is involved in bone growth. Yet, it is not clear whether the reduced bone growth of these mice depends on the lack of NF-kappaB activity in growth plate chondrocytes. Using cultured rat metatarsal bones and isolated growth plate chondrocytes, we studied the effects of two NF-kappaB inhibitors (pyrrolidine dithiocarbamate (PDTC) or BAY11-7082 (BAY)), p65 short interference RNA (siRNA), and of the overexpression of p65 on chondrocyte proliferation, differentiation, and apoptosis. To further define the underlying mechanisms, we studied the functional interaction between NF-kappaB p65 and BMP-2 in chondrocytes. PDTC and BAY suppressed metatarsal linear growth. Such growth inhibition resulted from decreased chondrocyte proliferation and differentiation and from increased chondrocyte apoptosis. In cultured chondrocytes, the inhibition of NF-kappaB p65 activation (by PDTC and BAY) and expression (by p65 siRNA) led to the same findings observed in cultured metatarsal bones. In contrast, overexpression of p65 in cultured chondrocytes induced chondrocyte proliferation and differentiation and prevented apoptosis. Although PDTC, BAY, and p65 siRNA reduced the expression of BMP-2 in cultured growth plate chondrocytes, the overexpression of p65 increased it. The addition of Noggin, a BMP-2 antagonist, neutralized the stimulatory effects of p65 on chondrocyte proliferation and differentiation, as well as its anti-apoptotic effect. In conclusion, our findings indicate that NF-kappaB p65 expressed in growth plate chondrocytes facilitates growth plate chondrogenesis and longitudinal bone growth by inducing BMP-2 expression and activity.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopherʼns Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134
| | - Janna K Flint
- Section of Endocrinology and Diabetes, St. Christopherʼns Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134
| | - Geoffrey Rezvani
- Section of Endocrinology and Diabetes, St. Christopherʼns Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134
| | - Francesco De Luca
- Section of Endocrinology and Diabetes, St. Christopherʼns Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134.
| |
Collapse
|
48
|
Phornphutkul C, Wu KY, Gruppuso PA. The role of insulin in chondrogenesis. Mol Cell Endocrinol 2006; 249:107-15. [PMID: 16530934 DOI: 10.1016/j.mce.2006.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 12/21/2005] [Accepted: 02/06/2006] [Indexed: 11/19/2022]
Abstract
The ATDC5 chondrogenic cell line is typically induced to differentiate by exposure to insulin at high concentration (10 microg/ml, approximately 1600 nM). Differentiation can also be induced by physiological concentrations of insulin-like growth factor-I (IGF-I). Unlike previous reports, we observed a stimulation of differentiation, as measured by collagen X expression and Alcian Blue staining for proteoglycan synthesis, upon exposure to insulin at concentrations (10-50 nM) consistent with signaling via the insulin receptor. Analysis of lysates from proliferating and hypertrophic ATDC5 cells demonstrated that exposure to 50 nM insulin induced tyrosine phosphorylation of insulin receptors but not IGF-I receptors or hybrid receptors. In contrast to the potent effects of IGF-I to stimulate both ATDC5 proliferation and differentiation, insulin was not as potent as IGF-I as a proliferating agent but more selectively a differentiating agent. Consistent with this result, insulin was less potent than IGF-I in inducing activation of the Erk1/Erk2 mitogenic signaling pathway. Furthermore, Erk pathway inhibition did not enhance the differentiating effects of insulin as it does in the case of IGF-I exposure. Extending our observations to fetal rat metatarsal explants, we observed significant stimulation of bone growth by 50 nM insulin. This could be accounted for by a disproportionate stimulatory effect on growth of the hypertrophic zone. The proliferative zone was not significantly affected. Based on our results in both ATDC5 cells and metatarsal explants, we conclude that the insulin functioning through insulin receptor has a dominant effect as an inducer of chondrocyte differentiation. These results support assignment of a physiological role for this hormone in linear bone growth.
Collapse
Affiliation(s)
- Chanika Phornphutkul
- Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | |
Collapse
|
49
|
Wu S, Yoshiko Y, De Luca F. Stanniocalcin 1 acts as a paracrine regulator of growth plate chondrogenesis. J Biol Chem 2005; 281:5120-7. [PMID: 16377640 DOI: 10.1074/jbc.m506667200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | |
Collapse
|
50
|
Gentili C, Tutolo G, Pianezzi A, Cancedda R, Descalzi Cancedda F. Cholesterol secretion and homeostasis in chondrocytes: a liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression. Matrix Biol 2005; 24:35-44. [PMID: 15749000 DOI: 10.1016/j.matbio.2004.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 12/14/2004] [Accepted: 12/14/2004] [Indexed: 11/17/2022]
Abstract
Cholesterol is required for chondrocyte differentiation and bone formation. Apolipoprotein A1 (apoA-1) plays a major role in lipoprotein clearance and cholesterol redistribution. We report here that apoA-1 is expressed during chondrocyte differentiation in vitro and in vivo. In differentiating chondrocytes, the expression of the liver X receptor (LXR) is modulated and its expression correlates to the expression of apoA-1. The expression of other LXR target genes related to cholesterol homeostasis such as ABCA1 cholesterol transporter and sterol regulatory element-binding protein 1 (SREBP1) is similarly regulated. Small molecule ligands activating either LXR or retinoid X receptor (RXR) lead to a dramatic increase in apoA-1 mRNA and protein expression in cultured chondrocytes. These ligands strongly induce ABCA1 cholesterol transporter expression and effectively mediate cholesterol efflux from hypertrophic chondrocytes. In addition, we report that, in the same cells, the ligands down modulate Serum Amyloid A expression induced by bacterial lipopolysaccharide. Our studies provide evidence that LXR/RXR mediate a fine regulation of cholesterol homeostasis in differentiating chondrocytes.
Collapse
Affiliation(s)
- C Gentili
- Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | |
Collapse
|