1
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
2
|
Lei S, Li X, Zuo A, Ruan S, Guo Y. CTRP9 alleviates diet induced obesity through increasing lipolysis mediated by enhancing autophagy-initiation complex formation. J Nutr Biochem 2024; 131:109694. [PMID: 38906337 DOI: 10.1016/j.jnutbio.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Recently, emerging evidence has suggested that obesity become a prevalent health threat worldwide. Reportedly, CTRP9 can ameliorate HFD induced obesity. However, the molecular mechanism underlying the role of CTRP9 in obesity remains elusive. In this study, we reported its major function in the regulation of lipolysis. First, we found that the expression of CTRP9 was decreased in mature adipocytes and white adipose tissue of obese mice. Then, we showed that overexpression adipose tissue CTRP9 alleviated diet-induced obesity and adipocytes hypertrophy, improved glucose intolerance and raised energy expenditure. Moreover, CTRP9 increased the lipolysis in vitro and vivo. Additionally, we determined that CTRP9 enhanced autophagy flux in adipocytes. Intriguingly, knock down Beclin1 by SiRNA abolished the effect of CTRP9 on lipolysis. Mechanically, CTRP9 enhanced the expression of SNX26. We demonstrated that SNX26 was a component of the ATG14L-Beclin1-VPS34 complex and enhanced the assembly of the autophagy-initiation complex. Collectively, our results suggested that CTRP9 alleviated diet induced obesity through enhancing lipolysis mediated by autophagy-initiation complex formation.
Collapse
Affiliation(s)
- Shengyun Lei
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China
| | - Anju Zuo
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Shiyan Ruan
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Yuan Guo
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China.
| |
Collapse
|
3
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
4
|
Kohlmayr JM, Grabner GF, Nusser A, Höll A, Manojlović V, Halwachs B, Masser S, Jany-Luig E, Engelke H, Zimmermann R, Stelzl U. Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis. Nat Commun 2024; 15:2516. [PMID: 38514628 PMCID: PMC10958042 DOI: 10.1038/s41467-024-46937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
ATGL is a key enzyme in intracellular lipolysis and plays an important role in metabolic and cardiovascular diseases. ATGL is tightly regulated by a known set of protein-protein interaction partners with activating or inhibiting functions in the control of lipolysis. Here, we use deep mutational protein interaction perturbation scanning and generate comprehensive profiles of single amino acid variants that affect the interactions of ATGL with its regulatory partners: CGI-58, G0S2, PLIN1, PLIN5 and CIDEC. Twenty-three ATGL amino acid variants yield a specific interaction perturbation pattern when validated in co-immunoprecipitation experiments in mammalian cells. We identify and characterize eleven highly selective ATGL switch mutations which affect the interaction of one of the five partners without affecting the others. Switch mutations thus provide distinct interaction determinants for ATGL's key regulatory proteins at an amino acid resolution. When we test triglyceride hydrolase activity in vitro and lipolysis in cells, the activity patterns of the ATGL switch variants trace to their protein interaction profile. In the context of structural data, the integration of variant binding and activity profiles provides insights into the regulation of lipolysis and the impact of mutations in human disease.
Collapse
Affiliation(s)
- Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anna Nusser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Anna Höll
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Verina Manojlović
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Bettina Halwachs
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Sarah Masser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Hanna Engelke
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
5
|
Desgrouas C, Thalheim T, Cerino M, Badens C, Bonello-Palot N. Perilipin 1: a systematic review on its functions on lipid metabolism and atherosclerosis in mice and humans. Cardiovasc Res 2024; 120:237-248. [PMID: 38214891 DOI: 10.1093/cvr/cvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024] Open
Abstract
The function of perilipin 1 in human metabolism was recently highlighted by the description of PLIN1 variants associated with various pathologies. These include severe familial partial lipodystrophy and early onset acute coronary syndrome. Additionally, certain variants have been reported to have a protective effect on cardiovascular diseases. The role of this protein remains controversial in mice and variant interpretation in humans is still conflicting. This literature review has two primary objectives (i) to clarify the function of the PLIN1 gene in lipid metabolism and atherosclerosis by examining functional studies performed in cells (adipocytes) and mice and (ii) to understand the impact of PLIN1 variants identified in humans based on the variant's location within the protein and the type of variant (missense or frameshift). To achieve these objectives, we conducted an extensive analysis of the relevant literature on perilipin 1, its function in cellular models and mice, and the consequences of its mutations in humans. We also utilized bioinformatics tools and consulted the Human Genetics Cardiovascular Disease Knowledge Portal to enhance the pathogenicity assessment of PLIN1 missense variants.
Collapse
Affiliation(s)
- Camille Desgrouas
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
| | - Tabea Thalheim
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
| | - Mathieu Cerino
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- AP-HM, Service de Biochimie, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- AP-HM, Service de Biochimie, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
- Département de Génétique Médicale, APHM, Hôpital Timone Enfants, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| | - Nathalie Bonello-Palot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- Département de Génétique Médicale, APHM, Hôpital Timone Enfants, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| |
Collapse
|
6
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
8
|
Masschelin PM, Saha P, Ochsner SA, Cox AR, Kim KH, Felix JB, Sharp R, Li X, Tan L, Park JH, Wang L, Putluri V, Lorenzi PL, Nuotio-Antar AM, Sun Z, Kaipparettu BA, Putluri N, Moore DD, Summers SA, McKenna NJ, Hartig SM. Vitamin B2 enables regulation of fasting glucose availability. eLife 2023; 12:e84077. [PMID: 37417957 PMCID: PMC10328530 DOI: 10.7554/elife.84077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.
Collapse
Affiliation(s)
- Peter M Masschelin
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Pradip Saha
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Aaron R Cox
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Kang Ho Kim
- Department of Anesthesiology, University of Texas Health Sciences CenterHoustonUnited States
| | - Jessica B Felix
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Robert Sharp
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Xin Li
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Liping Wang
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Zheng Sun
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sean M Hartig
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
9
|
Mishra A, Ruano SH, Saha PK, Pennington KA. A novel model of gestational diabetes: Acute high fat high sugar diet results in insulin resistance and beta cell dysfunction during pregnancy in mice. PLoS One 2022; 17:e0279041. [PMID: 36520818 PMCID: PMC9754171 DOI: 10.1371/journal.pone.0279041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM) affects 7-18% of all pregnancies. Despite its high prevalence, there is no widely accepted animal model. To address this, we recently developed a mouse model of GDM. The goal of this work was to further characterize this animal model by assessing insulin resistance and beta cell function. Mice were randomly assigned to either control (CD) or high fat, high sugar (HFHS) diet and mated 1 week later. At day 0 (day of mating) mice were fasted and intraperitoneal insulin tolerance tests (ipITT) were performed. Mice were then euthanized and pancreata were collected for histological analysis. Euglycemic hyperinsulinemic clamp experiments were performed on day 13.5 of pregnancy to assess insulin resistance. Beta cell function was assessed by glucose stimulated insulin secretion (GSIS) assay performed on day 0, 13.5 and 17.5 of pregnancy. At day 0, insulin tolerance and beta cell numbers were not different. At day 13.5, glucose infusion and disposal rates were significantly decreased (p<0.05) in Pregnant (P) HFHS animals (p<0.05) suggesting development of insulin resistance in P HFHS dams. Placental and fetal glucose uptake was significantly increased (p<0.01) in P HFHS dams at day 13.5 of pregnancy and by day 17.5 of pregnancy fetal weights were increased (p<0.05) in P HFHS dams compared to P CD dams. Basal and secreted insulin levels were increased in HFHS fed females at day 0, however at day 13.5 and 17.5 GSIS was decreased (p<0.05) in P HFHS dams. In conclusion, this animal model results in insulin resistance and beta cell dysfunction by mid-pregnancy further validating its relevance in studying the pathophysiology GDM.
Collapse
Affiliation(s)
- Akansha Mishra
- Department of Obstetrics and Gynecology and, Baylor College of Medicine, Houston, Texas, United States of America
| | - Simone Hernandez Ruano
- Department of Obstetrics and Gynecology and, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pradip K. Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathleen A. Pennington
- Department of Obstetrics and Gynecology and, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hastuti P, Mus R, Puspasari A, Maharani C, Setyawati I. Perilipin Genetic Variation Correlated with Obesity and Lipid Profile in Metabolic Syndrome. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Perilipin is very important for the regulation of the deposition and mobilization of fats. The human perilipin gene (PLIN) is near the locus for risk of obesity and hypertriglyceridemia. The PLIN gene is thought to be involved in the occurrence of metabolic syndrome.
AIM: The aim of this research is to determine the role of variations of the PLIN gene (PLN4 11482 G>A) as a risk factor for component of metabolic syndrome.
METHODS: This study involved a total of 160 subjects consisting of 80 with metabolic syndrome and 80 controls. Genotype analysis was done with the polymerase chain reaction-restriction fragment length polymorphism method. The data were analyzed with t-tests to compare the subjects’ characteristics between metabolic syndrome groups and controls. Risk factors of PLIN genotypes were calculated with odds ratio and multivariate regression analysis was used to determine the role of the PLIN gene with each biochemical characteristic.
RESULTS: The result was significant differences between the characteristics of the metabolic syndrome subjects with controls (p < 0.05). There was no difference in genotypes between patients with metabolic syndrome and controls. The multivariate analysis of the genetic role with biochemical components showed the PLIN gene in AA carriers as a risk factor for metabolic syndrome compare GA+GG, risk of obesity, and hypercholesterolemia with p < 0.05.
CONCLUSION: It can be concluded that PLIN variation has a role in the incidence of metabolic syndrome, especially in relation to obesity and hypercholesterolemia. Further study is needed to determine the role of other gene variations as a risk factor for metabolic syndrome.
Collapse
|
11
|
Sun X, Zhang Z, Liu M, Zhang P, Nie L, Liu Y, Chen Y, Xu F, Liu Z, Zeng Y. Small-molecule albumin ligand modification to enhance the anti-diabetic ability of GLP-1 derivatives. Biomed Pharmacother 2022; 148:112722. [DOI: 10.1016/j.biopha.2022.112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
|
12
|
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store and supply lipids for energy metabolism, membrane synthesis and production of lipid-derived signaling molecules. While compositional differences in the phospholipid monolayer or neutral lipid core of LDs impact their metabolism and function, the proteome of LDs has emerged as a major influencer in all aspects of LD biology. The perilipins (PLINs) are the most studied and abundant proteins residing on the LD surface. This Cell Science at a Glance and the accompanying poster summarize our current knowledge of the common and unique features of the mammalian PLIN family of proteins, the mechanisms through which they affect cell metabolism and signaling, and their links to disease.
Collapse
Affiliation(s)
- Charles P. Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mahima Devarajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Knebel B, Müller-Wieland D, Kotzka J. Lipodystrophies-Disorders of the Fatty Tissue. Int J Mol Sci 2020; 21:ijms21228778. [PMID: 33233602 PMCID: PMC7699751 DOI: 10.3390/ijms21228778] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Lipodystrophies are a heterogeneous group of physiological changes characterized by a selective loss of fatty tissue. Here, no fat cells are present, either through lack of differentiation, loss of function or premature apoptosis. As a consequence, lipids can only be stored ectopically in non-adipocytes with the major health consequences as fatty liver and insulin resistance. This is a crucial difference to being slim where the fat cells are present and store lipids if needed. A simple clinical classification of lipodystrophies is based on congenital vs. acquired and generalized vs. partial disturbance of fat distribution. Complications in patients with lipodystrophy depend on the clinical manifestations. For example, in diabetes mellitus microangiopathic complications such as nephropathy, retinopathy and neuropathy may develop. In addition, due to ectopic lipid accumulation in the liver, fatty liver hepatitis may also develop, possibly with cirrhosis. The consequences of extreme hypertriglyceridemia are typically acute pancreatitis or eruptive xanthomas. The combination of severe hyperglycemia with dyslipidemia and signs of insulin resistance can lead to premature atherosclerosis with its associated complications of coronary heart disease, peripheral vascular disease and cerebrovascular changes. Overall, lipodystrophy is rare with an estimated incidence for congenital (<1/1.000.000) and acquired (1-9/100.000) forms. Due to the rarity of the syndrome and the phenotypic range of metabolic complications, only studies with limited patient numbers can be considered. Experimental animal models are therefore useful to understand the molecular mechanisms in lipodystrophy and to identify possible therapeutic approaches.
Collapse
Affiliation(s)
- Birgit Knebel
- German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute for Clinical Biochemistry and Pathobiochemistry, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Dirk Müller-Wieland
- Clinical Research Center, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Jorg Kotzka
- German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Correspondence: ; Tel.: +49-221-3382537
| |
Collapse
|
14
|
Sun Y, Li R, Zhai G, Zhang X, Wang Y. DNA methylation of the PLIN1 promoter downregulates expression in chicken lines. Arch Anim Breed 2019; 62:375-382. [PMID: 31807648 PMCID: PMC6852845 DOI: 10.5194/aab-62-375-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Evidence suggests that Perilipin-1 (PLIN1) is subject to functional regulation by epigenetic modifications in women with obesity. However, whether chicken PLIN1 expression is regulated by DNA methylation is unknown. Here, Sequenom MassARRAY and real-time polymerase chain reaction (PCR) were conducted to analyze the promoter methylation status and expression of the PLIN1 gene in Northeast Agricultural University broiler lines divergently selected for abdominal fat content. We found that chicken PLIN1 expression was significantly higher in adipose tissue of fat-line broilers than in lean lines at 1-7 weeks of age, and was significantly positively correlated with abdominal fat percentage (AFP) in chicken adipose development (Pearson's r = 0.627 , P < 0.001 ). The region analyzed for DNA methylation was from - 12 to - 520 bp upstream of the translation start codon ATG, and had five CpG sites, where only the DNA methylation levels of CpG5 located at position - 490 bp were significantly higher in lean compared to fat chickens at 5 and 6 weeks ( P < 0.05 ) and were significantly negatively correlated with PLIN1 mRNA levels and AFP ( P < 0.05 ). These results shed new light on the regulation of hypertrophic growth in chicken adipose development.
Collapse
Affiliation(s)
- Yuhang Sun
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Rui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guiying Zhai
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
15
|
Ding Y, Wang H, Geng B, Xu G. Sulfhydration of perilipin 1 is involved in the inhibitory effects of cystathionine gamma lyase/hydrogen sulfide on adipocyte lipolysis. Biochem Biophys Res Commun 2019; 521:786-790. [PMID: 31706571 DOI: 10.1016/j.bbrc.2019.10.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) is a novel adipokine mediating glucose uptake, lipid storage and mobilization, thus contributing to the genesis of obesity and associated diseases. Our previous work demonstrated that H2S inhibited isoproterenol-stimulated lipolysis by reducing the phosphorylation of perilipin 1 (plin-1), a lipid-droplet protein blocking lipase access. How H2S modulates plin-1 phosphorylation is still unclear. Our present study found that an H2S donor slightly increased adipose tissue weight and reduced lipolysis in mice; by contrast, deleting the key H2S generation enzyme cystathionine gamma lyase (CSE) in adipocytes lowered adipose accumulation and enhanced lipolysis. Intriguingly, an H2S donor induced sulfhydration of plin-1 but not hormone-sensitive lipase, and CSE deletion abolished the post-translational modification of plin-1. During isoproterenol-stimulated lipolysis, plin-1 sulfhydration was associated with reduced phosphorylation, and removing sulfhydration by dithiothreitol recovered the phosphorylation. Finally, plin-1 knockout abolished the effect of H2S on lipolysis, which indicates that plin-1 sulfhydration is a major direct target of H2S in lipolysis. We have identified a new post-translation modification, sulfhydration (direct action by H2S) of plin-1, causing reduced phosphorylation then decreased lipolysis. This finding also highlights a novel molecular regulatory mechanism of lipolysis.
Collapse
Affiliation(s)
- Yajun Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China
| | - Huamin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China.
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China.
| |
Collapse
|
16
|
Park KA, Jin Z, An HS, Lee JY, Jeong EA, Choi EB, Kim KE, Shin HJ, Lee JE, Roh GS. Effects of caloric restriction on the expression of lipocalin-2 and its receptor in the brown adipose tissue of high-fat diet-fed mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:335-344. [PMID: 31496871 PMCID: PMC6717793 DOI: 10.4196/kjpp.2019.23.5.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023]
Abstract
Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.
Collapse
Affiliation(s)
- Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
17
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
18
|
Wang S, Peng Z, Wang S, Yang L, Chen Y, Kong X, Song S, Pei P, Tian C, Yan H, Ding P, Hu W, Liu CH, Zhang X, He F, Zhang L. KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration. Cell Res 2018; 28:572-592. [PMID: 29467382 PMCID: PMC5951852 DOI: 10.1038/s41422-018-0008-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022] Open
Abstract
Few p53 regulators participate in selective control of p53-mediated cellular metabolism. How p53-mediated aerobic and glycolytic pathways are negatively regulated remains largely unclear. Here, we identified two KRAB-type zinc-finger proteins, PITA (p53 inhibitor of TIGAR activation) and PISA (p53 inhibitor of SCO2 activation), as selective regulators of p53 in metabolic control. PITA and PISA interact with p53 and specifically suppress transcription of the glycolysis regulator TIGAR and the oxidation phosphorylation regulator SCO2, respectively. Importantly, PITA transgenic mice exhibited increased 6-phosphofructokinase 1 (PFK1) activity and an elevated glycolytic rate, whereas PISA transgenic mice had decreased cytochrome c oxidase activity and reduced mitochondrial respiration. In response to glucose starvation, PITA dissociates from p53, resulting in activation of p53 and induction of TIGAR, which inhibited aerobic glycolysis. Prolonged starvation leads to PISA dissociation from p53 and induction of SCO2 and p53-promoted mitochondrial respiration. The dynamic regulation of PITA and PISA upon metabolic stress is dependent on ATM kinase-mediated phosphorylation of PITA and PISA. Furthermore, in human colorectal cancers, the elevated expression of PITA and PISA correlates with cancer progression. Depletion of PITA or PISA in colorectal cancer cells reduced the cell proliferation, migration and invasion. These results identify PITA and PISA as selective regulators of p53-mediated glycolysis and mitochondrial respiration and provide novel insights into the role of p53 network in cell metabolic control.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Siying Wang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Anhui, China
| | - Lihua Yang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Anhui, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xue Kong
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Anhui, China
| | - Shanshan Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Cell Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China. .,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.
| |
Collapse
|
19
|
Jahansouz C, Xu H, Hertzel AV, Kizy SS, Steen KA, Foncea R, Serrot FJ, Kvalheim N, Luthra G, Ewing K, Leslie DB, Ikramuddin S, Bernlohr DA. Partitioning of adipose lipid metabolism by altered expression and function of PPAR isoforms after bariatric surgery. Int J Obes (Lond) 2018; 42:139-146. [PMID: 28894292 PMCID: PMC5803459 DOI: 10.1038/ijo.2017.197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/10/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bariatric surgery remains the most effective treatment for reducing adiposity and eliminating type 2 diabetes; however, the mechanism(s) responsible have remained elusive. Peroxisome proliferator-activated receptors (PPAR) encompass a family of nuclear hormone receptors that upon activation exert control of lipid metabolism, glucose regulation and inflammation. Their role in adipose tissue following bariatric surgery remains undefined. MATERIALS AND METHODS Subcutaneous adipose tissue biopsies and serum were obtained and evaluated from time of surgery and on postoperative day 7 in patients randomized to Roux-en-Y gastric bypass (n=13) or matched caloric restriction (n=14), as well as patients undergoing vertical sleeve gastrectomy (n=33). Fat samples were evaluated for changes in gene expression, protein levels, β-oxidation, lipolysis and cysteine oxidation. RESULTS Within 7 days, bariatric surgery acutely drives a change in the activity and expression of PPARγ and PPARδ in subcutaneous adipose tissue thereby attenuating lipid storage, increasing lipolysis and potentiating lipid oxidation. This unique metabolic alteration leads to changes in downstream PPARγ/δ targets including decreased expression of fatty acid binding protein (FABP) 4 and stearoyl-CoA desaturase-1 (SCD1) with increased expression of carnitine palmitoyl transferase 1 (CPT1) and uncoupling protein 2 (UCP2). Increased expression of UCP2 not only facilitated fatty acid oxidation (increased 15-fold following surgery) but also regulated the subcutaneous adipose tissue redoxome by attenuating protein cysteine oxidation and reducing oxidative stress. The expression of UCP1, a mitochondrial protein responsible for the regulation of fatty acid oxidation and thermogenesis in beige and brown fat, was unaltered following surgery. CONCLUSIONS These results suggest that bariatric surgery initiates a novel metabolic shift in subcutaneous adipose tissue to oxidize fatty acids independently from the beiging process through regulation of PPAR isoforms. Further studies are required to understand the contribution of this shift in expression of PPAR isoforms to weight loss following bariatric surgery.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - Hongliang Xu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Scott S. Kizy
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - Kaylee A. Steen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Rocio Foncea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | | | - Nicholas Kvalheim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Girish Luthra
- Park Nicollet Bariatric Surgery Center, St. Louis Park, MN
| | | | - Daniel B. Leslie
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| |
Collapse
|
20
|
Dejgaard SY, Presley JF. New Method for Quantitation of Lipid Droplet Volume From Light Microscopic Images With an Application to Determination of PAT Protein Density on the Droplet Surface. J Histochem Cytochem 2018; 66:447-465. [PMID: 29361239 DOI: 10.1369/0022155417753573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Determination of lipid droplet (LD) volume has depended on direct measurement of the diameter of individual LDs, which is not possible when LDs are small or closely apposed. To overcome this problem, we describe a new method in which a volume-fluorescence relationship is determined from automated analysis of calibration samples containing well-resolved LDs. This relationship is then used to estimate total cellular droplet volume in experimental samples, where the LDs need not be individually resolved, or to determine the volumes of individual LDs. We describe quantitatively the effects of various factors, including image noise, LD crowding, and variation in LD composition on the accuracy of this method. We then demonstrate this method by utilizing it to address a scientifically interesting question, to determine the density of green fluorescent protein (GFP)-tagged Perilipin-Adipocyte-Tail (PAT) proteins on the LD surface. We find that PAT proteins cover only a minority of the LD surface, consistent with models in which they primarily serve as scaffolds for binding of regulatory proteins and enzymes, but inconsistent with models in which their major function is to sterically block access to the droplet surface.
Collapse
Affiliation(s)
- Selma Y Dejgaard
- Department of Medical Biology, Near East University, Nicosia, Cyprus
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
21
|
Wei S, Liu S, Su X, Wang W, Li F, Deng J, Lyu Y, Geng B, Xu G. Spontaneous development of hepatosteatosis in perilipin-1 null mice with adipose tissue dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:212-218. [PMID: 29191637 DOI: 10.1016/j.bbalip.2017.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 11/13/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
Fatty liver features triglyceride accumulation in hepatocytes and often occurs with obesity and lipodystrophy in humans. Here, we investigated the mechanism of maladaptive hepatosteatosis with adipose-tissue dysfunction. Perilipin 1 (Plin1) did not exist in hepatocytes but was expressed exclusively in adipocytes as a dual modulator for regulating two principal adipose-tissue functions, triglyceride storage and breakdown. Plin1-/- mice showed decreased fat storage but increased lipolysis and efflux of fatty acids from adipose tissue, and hepatosteatosis spontaneously developed without altered circulating inflammatory adipocytokine levels. Plin1-/- adipose dysfunction impaired insulin sensitivity and hepatic glucose metabolism, which might inhibit gluconeogenesis to produce more intermediates for hepatic lipid synthesis. Indeed, the livers of Plin1-/- mice exhibited upregulated mRNA and protein expression of key enzymes and transcriptional factors for the uptake and transport of fatty acids and for de novo synthesis of triglycerides, but the expression of key enzymes and transcriptional factors for fatty-acid oxidation was downregulated. Biochemical assays in Plin1-/- mice confirmed increased fatty acid synthase activity but decreased activity of mitochondrial carnitine palmitoyltransferase 1 and [3H]-palmitate oxidation in the liver. We concluded that dysregulation of two principal functions, adipose storage and hydrolysis, had deleterious consequences on the hepatic lipid metabolism and thereby caused maladaptive hepatosteatosis. This mouse model might mimic and explain the pathogenesis of hepatosteatosis occurring in two typical disorders of adipose tissue dysfunction, obesity and lipodystrophy, particularly in lipodystrophic patients with Plin1 mutation.
Collapse
Affiliation(s)
- Suning Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shangxin Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xueying Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weiyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fengjuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jingna Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ying Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Abstract
Enlarged fat cells in obese adipose tissue diminish capacity to store fat and are resistant to the anti-lipolytic effect of insulin. Insulin resistance (IR)-associated S-nitrosylation of insulin-signaling proteins increases in obesity. In accordance with the inhibition of insulin-mediated anti-lipolytic action, plasma free fatty acid (FFA) levels increase. Additionally, endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) and extracellular signal-regulated kinase ½ (ERK1/2) signaling in adipocytes. Failure of packaging of excess lipid into lipid droplets causes chronic elevation of circulating fatty acids, which can reach to toxic levels within non-adipose tissues. Deleterious effects of lipid accumulation in non-adipose tissues are known as lipotoxicity. In fact, triglycerides may also serve a storage function for long-chain non-esterified fatty acids and their products such as ceramides and diacylglycerols (DAGs). Thus, excess DAG, ceramide and saturated fatty acids in obesity can induce chronic inflammation and have harmful effect on multiple organs and systems. In this context, chronic adipose tissue inflammation, mitochondrial dysfunction and IR have been discussed within the scope of lipotoxicity.
Collapse
|
23
|
Kwan HY, Wu J, Su T, Chao XJ, Yu H, Liu B, Fu X, Tse AKW, Chan CL, Fong WF, Yu ZL. Schisandrin B regulates lipid metabolism in subcutaneous adipocytes. Sci Rep 2017; 7:10266. [PMID: 28860616 PMCID: PMC5579161 DOI: 10.1038/s41598-017-10385-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023] Open
Abstract
Subcutaneous adipocytes in obese subjects have a lower sensitivity to catecholamine-induced lipolysis and a higher sensitivity to insulin anti-lipolytic effects compared to adipocytes in other adipose depots. Therefore, increasing lipolysis in subcutaneous adipocytes coupled with enhanced fatty acid oxidation may be an anti-obesity strategy. Schisandrin B (Sch B) is one of the most abundant active dibenzocyclooctadiene derivatives found in the fruit of Schisandra chinensis which is a commonly prescribed Chinese medicinal herb. We found that Sch B reduced glycerolipid contents in 3T3-L1 adipocytes and subcutaneous adipocytes dissected from DIO mice. Sch B also activated hormone sensitive lipase (HSL) and increased lipolysis in these adipocyte in a protein kinase A-dependent manner. Interestingly, Sch B increased fatty acid oxidation gene expressions in these adipocytes, implying an increase in fatty acid oxidation after treatment. In in vivo model, we found that Sch B increased HSL phosphorylation, reduced glycerolipid levels and increased fatty acid oxidation gene expressions in the subcutaneous adipocytes in the DIO mice. More importantly, Sch B significantly reduced the subcutaneous adipocyte sizes, subcutaneous adipose tissue mass and body weight of the mice. Our study provides scientific evidence to suggest a potential therapeutic function of Sch B or Schisandra chinensis seed containing Sch B in reducing obesity.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jiahui Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Su
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Juan Chao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hua Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Chinese Medicine Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | | | - Chi Leung Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wang Fun Fong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
24
|
Bolsoni-Lopes A, Alonso-Vale MIC. Lipolysis and lipases in white adipose tissue - An update. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 59:335-42. [PMID: 26331321 DOI: 10.1590/2359-3997000000067] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022]
Abstract
Lipolysis is defined as the sequential hydrolysis of triacylglycerol (TAG) stored in cell lipid droplets. For many years, it was believed that hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) were the main enzymes catalyzing lipolysis in the white adipose tissue. Since the discovery of adipose triglyceride lipase (ATGL) in 2004, many studies were performed to investigate and characterize the actions of this lipase, as well as of other proteins and possible regulatory mechanisms involved, which reformulated the concept of lipolysis. Novel findings from these studies include the identification of lipolytic products as signaling molecules regulating important metabolic processes in many non-adipose tissues, unveiling a previously underestimated aspect of lipolysis. Thus, we present here an updated review of concepts and regulation of white adipocyte lipolysis with a special emphasis in its role in metabolism homeostasis and as a source of important signaling molecules.
Collapse
Affiliation(s)
- Andressa Bolsoni-Lopes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, BR
| | - Maria Isabel C Alonso-Vale
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, BR
| |
Collapse
|
25
|
Kimmel AR, Sztalryd C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu Rev Nutr 2017; 36:471-509. [PMID: 27431369 DOI: 10.1146/annurev-nutr-071813-105410] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892;
| | - Carole Sztalryd
- The Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
26
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Mysore R, Liebisch G, Zhou Y, Olkkonen VM, Nidhina Haridas PA. Angiopoietin-like 8 (Angptl8) controls adipocyte lipolysis and phospholipid composition. Chem Phys Lipids 2017; 207:246-252. [PMID: 28528274 DOI: 10.1016/j.chemphyslip.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023]
Abstract
Angiopoietin-like 8 (Angptl8) inhibits lipolysis in the circulation together with Angplt3 and controls post-prandial fat storage in white adipose tissue (WAT). It is strongly induced by insulin in vivo in WAT and in vitro in adipocytes. In this study we addressed the function of Angptl8 in adipocytes by its stable lentivirus-mediated knock-down in 3T3-L1 cells, followed by analyses of triglyceride (TG) storage, lipid droplet (LD) morphology, the cellular lipidome, lipolysis, and gene expression. Depletion of Angptl8 did not drastically affect the adipocyte differentiation of 3T3-L1 cells but resulted in a moderate (18-19%) reduction of stored TGs. The lipidome analysis revealed a reduction of alkyl- phosphatidylcholines (PCs) and phosphatidylethanolamine (PE) plasmalogens, as well as saturated PCs and PEs. Importantly, the Angptl8 depleted cells displayed enhanced lipolysis as measured by release of non-esterified fatty acids (NEFAs). Consistently, mRNAs encoding Angptl4 and Leptin, which facilitate lipolysis, as well as Cpt1a, Cpt1b, and Pgc-1α involved in FA oxidation, were elevated. The Angptl8 mRNA itself was suppressed by pharmacologic treatments inducing lipolysis: stimulation with the β-adrenergic agonist isoproterenol or with the adenylate cyclase activator forskolin. To conclude, knock-down of Angptl8 in adipocytes suggests that the protein acts to inhibit intracellular lipolysis, analogous to its activity in the circulation. Depletion of Angptl8 results in an altered cellular phospholipid composition. The findings identify Angptl8 as a central insulin-regulated controller of adipocyte lipid metabolism.
Collapse
Affiliation(s)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Systems Immunity University Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | | |
Collapse
|
28
|
Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis. Int J Biochem Cell Biol 2016; 78:149-155. [PMID: 27373682 DOI: 10.1016/j.biocel.2016.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
Abstract
Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis.
Collapse
|
29
|
Luglio HF, Sulistyoningrum DC, Susilowati R. The role of genes involved in lipolysis on weight loss program in overweight and obese individuals. J Clin Biochem Nutr 2015; 57:91-7. [PMID: 26388665 PMCID: PMC4566022 DOI: 10.3164/jcbn.14-117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023] Open
Abstract
The ability of obese people to reduce weight in the same treatment varied. Genetic make up as well as the behavioral changes are important for the successfulness of the program. One of the most proposed genetic variations that have been reported in many intervention studies was genes that control lipolysis process. This review summarizes studies that were done showing the influence of genetic polymorphisms in lipolysis pathway and weight loss in a weight loss treatment program. Some studies had shown that certain enzymes involved in this process were related to successfulness of weight loss program. Single Nucleotide Polymorphism (SNP) in PLIN (11482G>A) and ADRB3 (Trp64Arg) are the most studied polymorphisms that have effect on weight loss intervention. However, those studies were not conclusive because of limited number of subjects used and controversies in the results. Thus, replication and confirmation on the role of those genes in weight loss are important due to their potential to be used as predictors of the results of the program.
Collapse
Affiliation(s)
- Harry Freitag Luglio
- Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Dian Caturini Sulistyoningrum
- Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
30
|
Georgiou DK, Dagnino-Acosta A, Lee CS, Griffin DM, Wang H, Lagor WR, Pautler RG, Dirksen RT, Hamilton SL. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism. J Biol Chem 2015; 290:23751-65. [PMID: 26245899 DOI: 10.1074/jbc.m115.643544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle.
Collapse
Affiliation(s)
- Dimitra K Georgiou
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Adan Dagnino-Acosta
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Chang Seok Lee
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Deric M Griffin
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Hui Wang
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - William R Lagor
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Robia G Pautler
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Robert T Dirksen
- the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Susan L Hamilton
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
31
|
Xiong XQ, Chen D, Sun HJ, Ding L, Wang JJ, Chen Q, Li YH, Zhou YB, Han Y, Zhang F, Gao XY, Kang YM, Zhu GQ. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1867-75. [PMID: 26111885 DOI: 10.1016/j.bbadis.2015.06.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/23/2015] [Accepted: 06/20/2015] [Indexed: 12/21/2022]
Abstract
Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5), and contributes to the beneficial effects of exercise on metabolism. Here we report the therapeutical effects of FNDC5/irisin on metabolic derangements and insulin resistance in obesity, and show the lipolysis effect of irisin and its signal molecular mechanism. In obese mice, lentivirus mediated-FNDC5 overexpression enhanced energy expenditure, lipolysis and insulin sensitivity, and reduced hyperlipidemia, hyperglycemia, hyperinsulinism, blood pressure and norepinephrine levels; it increased hormone-sensitive lipase (HSL) expression and phosphorylation, and reduced perilipin level and adipocyte diameter in adipose tissues. Subcutaneous perfusion of irisin reduced hyperlipidemia and hyperglycemia, and improved insulin resistance. Either FNDC5 overexpression or irisin perfusion only induced a tendency toward a slight decrease in body weight in obese mice. In 3T3-L1 adipocytes, irisin enhanced basal lipolysis rather than isoproterenol-induced lipolysis, which were prevented by inhibition of adenylate cyclase or PKA; irisin increased the HSL and perilipin phosphorylation; it increased PKA activity, and cAMP and HSL mRNA levels, but reduced perilipin expression. These results indicate that FNDC5/irisin ameliorates glucose/lipid metabolic derangements and insulin resistance in obese mice, and enhances lipolysis via cAMP-PKA-HSL/perilipin pathway. FNDC5 or irisin can be taken as an effective therapeutic strategy for metabolic disorders.
Collapse
Affiliation(s)
- Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dan Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jue-Jin Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
32
|
Li JJ, Ferry RJ, Diao S, Xue B, Bahouth SW, Liao FF. Nedd4 haploinsufficient mice display moderate insulin resistance, enhanced lipolysis, and protection against high-fat diet-induced obesity. Endocrinology 2015; 156:1283-91. [PMID: 25607895 PMCID: PMC4399314 DOI: 10.1210/en.2014-1909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) is the prototypical protein in the Nedd4 ubiquitin ligase (E3) family, which governs ubiquitin-dependent endocytosis and/or degradation of plasma membrane proteins. Loss of Nedd4 results in embryonic or neonatal lethality in mice and reduced insulin/IGF-1 signaling in embryonic fibroblasts. To delineate the roles of Nedd4 in vivo, we examined the phenotypes of heterozygous knockout mice using a high-fat diet-induced obesity (HFDIO) model. We observed that Nedd4+/- mice are moderately insulin resistant but paradoxically protected against HFDIO. After high-fat diet feeding, Nedd4+/- mice showed less body weight gain, less fat mass, and smaller adipocytes vs the wild type. Despite ameliorated HFDIO, Nedd4+/- mice did not manifest improvement in glucose tolerance vs the wild type in both genders. Nedd4+/- male, but not female, mice displayed significantly lower fasting blood glucose levels and serum insulin levels. Under obesogenic conditions, Nedd4+/- mice displayed elevated stimulated lipolytic activity, primarily through a β2-adrenergic receptor. Combined, these data support novel complex roles for Nedd4 in metabolic regulation involving altered insulin and β-adrenergic signaling pathways.
Collapse
Affiliation(s)
- Jing Jing Li
- Departments of Pharmacology (J.J.L., S.D., S.W.B., F.-F.L.) and Pediatrics (R.J.F.), University of Tennessee Health Science Center, Memphis, Tennessee 38163; Department of Psychology (R.J.F), University of Memphis, Memphis, Tennessee 38152; and Department of Biology (B.X.), Georgia State University, Atlanta, Georgia 30302
| | | | | | | | | | | |
Collapse
|
33
|
Gol S, Ros-Freixedes R, Zambonelli P, Tor M, Pena R, Braglia S, Zappaterra M, Estany J, Davoli R. Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. J Anim Breed Genet 2015; 133:24-30. [DOI: 10.1111/jbg.12159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Affiliation(s)
- S. Gol
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - R. Ros-Freixedes
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - P. Zambonelli
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| | - M. Tor
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - R.N. Pena
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - S. Braglia
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| | - M. Zappaterra
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| | - J. Estany
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - R. Davoli
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| |
Collapse
|
34
|
Mason RR, Watt MJ. Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol Metab 2015; 26:144-52. [PMID: 25682370 DOI: 10.1016/j.tem.2015.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/07/2023]
Abstract
The discovery of perilipin (PLIN) 1 provided a major conceptual shift in the understanding of adipose tissue lipolysis and generated intense interest in lipid droplet biology research. The subsequent discovery of other PLIN proteins revealed unique tissue distribution profiles, subcellular locations, and lipid-binding properties and divergent cellular functions. PLIN5 is highly expressed in oxidative tissues such as skeletal muscle, liver, and heart and is central to lipid homeostasis in these tissues. Studies in cell systems have ascribed several metabolic roles to PLIN5 and demonstrated interactions with other proteins that are requisite for these functions. We examine recent in vivo studies and ask whether the evidence from the cell biology approaches is consistent with the physiological roles of PLIN5.
Collapse
Affiliation(s)
- Rachael R Mason
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
35
|
Wang C, Zhao Y, Gao X, Li L, Yuan Y, Liu F, Zhang L, Wu J, Hu P, Zhang X, Gu Y, Xu Y, Wang Z, Li Z, Zhang H, Ye J. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 2015; 61:870-82. [PMID: 25179419 DOI: 10.1002/hep.27409] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/28/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Abnormal metabolism of nonesterified fatty acids (NEFAs) and their derivatives has been reported to be the main cause of intracellular lipotoxic injury. Normally, NEFAs are stored in lipid droplets (LDs) in the form of triglyceride (TG), which could reduce the lipotoxicity of cytosolic NEFAs. Previous studies have implicated that Perilipin 5 (Plin5), an LD-binding protein, regulates the storage and hydrolysis of TG in LD. However, its roles and underlying mechanisms in the liver remain unknown. Here we found that Plin5 expression was increased in steatotic livers. Using Plin5 knockout mice, we found that Plin5 deficiency resulted in reduced hepatic lipid content and smaller-sized LDs, which was due to the elevated lipolysis rate and fatty acid utilization. Plin5-deficient hepatocytes showed increased mitochondria proliferation, which could be explained by the increased expression and activity of PPARα stimulated by the increased NEFA levels. Meanwhile, Plin5-deficient livers also exhibited enhanced mitochondrial oxidative capacity. We also found that Plin5 deficiency induces lipotoxic injury in hepatocytes, attributed to lipid peroxidation. Mechanistically, we found that Plin5 blocks adipose triglyceride lipase (ATGL)-mediated lipolysis by competitively binding to comparative gene identification-58 (CGI-58) and disrupting the interaction between CGI-58 and ATGL. CONCLUSION Plin5 is an important protective factor against hepatic lipotoxicity induced by NEFAs generated from lipolysis. This provides an important new insight into the regulation of hepatic lipid storage and relation between lipid storage and lipotoxicity.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu S, Geng B, Zou L, Wei S, Wang W, Deng J, Xu C, Zhao X, Lyu Y, Su X, Xu G. Development of hypertrophic cardiomyopathy in perilipin-1 null mice with adipose tissue dysfunction. Cardiovasc Res 2014; 105:20-30. [DOI: 10.1093/cvr/cvu214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
37
|
Chen W, Zhou H, Saha P, Li L, Chan L. Molecular mechanisms underlying fasting modulated liver insulin sensitivity and metabolism in male lipodystrophic Bscl2/Seipin-deficient mice. Endocrinology 2014; 155:4215-25. [PMID: 25093462 PMCID: PMC4197977 DOI: 10.1210/en.2014-1292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bscl2(-/-) mice recapitulate many of the major metabolic manifestations in Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) individuals, including lipodystrophy, hepatomegly, hepatic steatosis, and insulin resistance. The mechanisms that underlie hepatic steatosis and insulin resistance in Bscl2(-/-) mice are poorly understood. To address this issue, we performed hyperinsulinemic-euglycemic clamp on Bscl2(-/-) and wild-type mice after an overnight (16-h) fast, and found that Bscl2(-/-) actually displayed increased hepatic insulin sensitivity. Interestingly, liver in Bscl2(-/-) mice after a short term (4-h) fast had impaired acute insulin signaling, a defect that disappeared after a 16-hour fast. Notably, fasting-dependent hepatic insulin signaling in Bscl2(-/-) mice was not associated with liver diacylglyceride and ceramide contents, but could be attributable in part to the expression of hepatic insulin signaling receptor and substrates. Meanwhile, increased de novo lipogenesis and decreased β-oxidation led to severe hepatic steatosis in fed or short-fasted Bscl2(-/-) mice whereas liver lipid accumulation and metabolism in Bscl2(-/-) mice was markedly affected by prolonged fasting. Furthermore, mice with liver-specific inactivation of Bscl2 manifested no hepatic steatosis even under high-fat diet, suggesting Bscl2 does not play a cell autonomous role in regulating liver lipid homeostasis. Overall, our results offered new insights into the metabolic adaptations of liver in response to fasting and uncovered a novel fasting-dependent regulation of hepatic insulin signaling in a mouse model of human BSCL2.
Collapse
Affiliation(s)
- Weiqin Chen
- Department of Physiology (W.C., H.Z.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Diabetes and Endocrinology Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine (P.S., L.L., L.C.), Molecular and Cellular Biology (L.C.), and Biochemistry, Baylor College of Medicine (L.C.), and St. Luke's Medical Center (L.C.), Houston, Texas 77030
| | | | | | | | | |
Collapse
|
38
|
Rochford JJ. Mouse Models of Lipodystrophy and Their Significance in Understanding Fat Regulation. Curr Top Dev Biol 2014; 109:53-96. [DOI: 10.1016/b978-0-12-397920-9.00005-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Carmean CM, Bobe AM, Yu JC, Volden PA, Brady MJ. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines. PLoS One 2013; 8:e67807. [PMID: 23861810 PMCID: PMC3701606 DOI: 10.1371/journal.pone.0067807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/22/2013] [Indexed: 12/23/2022] Open
Abstract
Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4-12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology.
Collapse
Affiliation(s)
- Christopher M. Carmean
- From the Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois, United States of America
| | - Alexandria M. Bobe
- From the Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois, United States of America
| | - Justin C. Yu
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois, United States of America
| | - Paul A. Volden
- From the Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew J. Brady
- From the Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
40
|
Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 2013; 4:1594. [PMID: 23481402 PMCID: PMC3615468 DOI: 10.1038/ncomms2581] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/06/2013] [Indexed: 12/25/2022] Open
Abstract
Mature white adipocytes contain a characteristic unilocular lipid droplet. However, the molecular mechanisms underlying unilocular lipid droplet formation are poorly understood. We previously showed that Fsp27, an adipocyte-specific lipid droplet-associated protein, promotes lipid droplet growth by initiating lipid exchange and transfer. Here, we identify Perilipin1 (Plin1), another adipocyte-specific lipid droplet-associated protein, as an Fsp27 activator. Plin1 interacts with the CIDE-N domain of Fsp27 and markedly increases Fsp27-mediated lipid exchange, lipid transfer and lipid droplet growth. Functional cooperation between Plin1 and Fsp27 is required for efficient lipid droplet growth in adipocytes, as depletion of either protein impairs lipid droplet growth. The CIDE-N domain of Fsp27 forms homodimers and disruption of CIDE-N homodimerization abolishes Fsp27-mediated lipid exchange and transfer. Interestingly, Plin1 can restore the activity of CIDE-N homodimerization-defective mutants of Fsp27. We thus uncover a novel mechanism underlying lipid droplet growth and unilocular lipid droplet formation that involves the cooperative action of Fsp27 and Plin1 in adipocytes. Adipocytes store lipid in spherical droplets whose size is determined by lipid exchange and transfer proteins. Sun et al. show that Perilipin1 promotes the growth of lipid droplets by activating the lipid transfer protein Fsp27.
Collapse
|
41
|
Konige M, Wang H, Sztalryd C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:393-401. [PMID: 23688782 DOI: 10.1016/j.bbadis.2013.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/10/2013] [Accepted: 05/03/2013] [Indexed: 12/15/2022]
Abstract
Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Manige Konige
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hong Wang
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carole Sztalryd
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Health Care Center, Baltimore, MD 21201, USA.
| |
Collapse
|
42
|
Kaihara KA, Dickson LM, Jacobson DA, Tamarina N, Roe MW, Philipson LH, Wicksteed B. β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes 2013; 62:1527-36. [PMID: 23349500 PMCID: PMC3636652 DOI: 10.2337/db12-1013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose.
Collapse
Affiliation(s)
- Kelly A. Kaihara
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Lorna M. Dickson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Natalia Tamarina
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Michael W. Roe
- Department of Medicine, Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - Louis H. Philipson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Barton Wicksteed
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois
- Corresponding author: Barton Wicksteed,
| |
Collapse
|
43
|
Abstract
Lipid droplets (LDs) are highly dynamic cellular organelles found in most eukaryotic cell types. In white adipocytes, LDs grow into a characteristic unilocular morphology that is well suited for its specialized role as an efficient energy storage organelle. Overexpansion of LDs in white adipocytes results in the development of obesity and insulin resistance. Besides its central role in lipid storage and mobilization, LDs play crucial roles in various cellular processes including virus packaging, host defense, protein storage, and degradation. CIDE proteins, in particular Fsp27, initiates a unique LD fusion process in adipocytes by clustering and enriching at LD contact site and promoting neutral lipid exchange and transfer between contacted LDs. Here, we summarize our approaches to quantitatively measure intracellular LD size and neutral lipid exchange between LDs. Utilization of these methods has greatly facilitated our understanding of molecular pathways governing LD growth in adipocytes.
Collapse
Affiliation(s)
- Zhiqi Sun
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
44
|
Abstract
Cellular energy homeostasis is a crucial function of oxidative tissues but becomes altered with obesity, a major health problem that is rising unabated and demands attention. Maintaining cardiac lipid homeostasis relies on complex processes and pathways that require concerted actions between lipid droplets (LDs) and mitochondria to prevent intracellular accumulation of bioactive or toxic lipids while providing an efficient supply of lipid for conversion into ATP. While cardiac mitochondria have been extensively studied, cardiac LDs and their role in heart function have not been fully characterized. The cardiac LD compartment is highly dynamic and individual LD is small, making their study challenging. Here, we describe a simple procedure to isolate cardiac LDs that provide sufficient amounts of highly enriched material to allow subsequent protein and lipid biochemical characterization. We also present a detailed protocol to image cardiac LDs by conventional transmission electronic microscopy to provide two-dimensional (2D) analyses of cardiac LDs and mitochondria. Finally, we discuss the potential advantages of dual ion beam and electron beam platform (FIB-SEM) technology to study the cardiac LDs and mitochondria by allowing 3D imaging analysis.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
45
|
Lee JH, Moon MH, Jeong JK, Park YG, Lee YJ, Seol JW, Park SY. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. Biochem Biophys Res Commun 2012; 426:492-7. [PMID: 22982310 DOI: 10.1016/j.bbrc.2012.08.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561 756, South Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Champagne CD, Houser DS, Costa DP, Crocker DE. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in northern elephant seals. PLoS One 2012; 7:e38442. [PMID: 22693622 PMCID: PMC3365037 DOI: 10.1371/journal.pone.0038442] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 05/08/2012] [Indexed: 02/01/2023] Open
Abstract
Free-ranging animals often cope with fluctuating environmental conditions such as weather, food availability, predation risk, the requirements of breeding, and the influence of anthropogenic factors. Consequently, researchers are increasingly measuring stress markers, especially glucocorticoids, to understand stress, disturbance, and population health. Studying free-ranging animals, however, comes with numerous difficulties posed by environmental conditions and the particular characteristics of study species. Performing measurements under either physical restraint or chemical sedation may affect the physiological variable under investigation and lead to values that may not reflect the standard functional state of the animal. This study measured the stress response resulting from different handling conditions in northern elephant seals and any ensuing influences on carbohydrate metabolism. Endogenous glucose production (EGP) was measured using [6-(3)H]glucose and plasma cortisol concentration was measured from blood samples drawn during three-hour measurement intervals. These measurements were conducted in weanlings and yearlings with and without the use of chemical sedatives--under chemical sedation, physical restraint, or unrestrained. We compared these findings with measurements in adult seals sedated in the field. The method of handling had a significant influence on the stress response and carbohydrate metabolism. Physically restrained weanlings and yearlings transported to the lab had increased concentrations of circulating cortisol (F(11, 46) = 25.2, p<0.01) and epinephrine (F(3, 12) = 5.8, p = 0.01). Physical restraint led to increased EGP (t = 3.1, p = 0.04) and elevated plasma glucose levels (t = 8.2, p<0.01). Animals chemically sedated in the field typically did not exhibit a cortisol stress response. The combination of anesthetic agents (Telazol, ketamine, and diazepam) used in this study appeared to alleviate a cortisol stress response due to handling in the field without altering carbohydrate metabolism. Measures of hormone concentrations and metabolism made under these conditions are more likely to reflect basal values.
Collapse
Affiliation(s)
- Cory D Champagne
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America.
| | | | | | | |
Collapse
|
47
|
Williams TA, Monticone S, Urbanet R, Bertello C, Giraudo G, Vettor R, Fallo F, Veglio F, Mulatero P. Genes implicated in insulin resistance are down-regulated in primary aldosteronism patients. Mol Cell Endocrinol 2012; 355:162-8. [PMID: 22366095 DOI: 10.1016/j.mce.2012.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/27/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
Primary aldosteronism (PA) patients display an increased incidence of insulin resistance. Herein we demonstrate the decreased gene expression of lipid metabolism genes PCK1, PLIN, ADIPOQ and PPARG in the visceral adipose tissue (VAT) of PA patients compared to age-, sex- and BMI-matched controls. In VAT, the expression of PCK1, PLIN, ADIPOQ and PPARG was inversely correlated with aldosterone levels; furthermore, PLIN and ADIPOQ gene expression was correlated with potassium levels. Therefore, raised aldosterone and low potassium may contribute to the reduced expression of these genes in PA patients. Finally, incubation of primary cultures of human adipocytes with aldosterone resulted in a decrease in the expression of PCK1, PLIN and ADIPOQ and this effect was blocked by eplerenone. Therefore, the characteristic aldosterone excess of PA patients may mediate the down-regulation of PCK1, PLIN and ADIPOQ in VAT that in turn may contribute to the insulin resistance observed in PA patients.
Collapse
Affiliation(s)
- Tracy Ann Williams
- Division of Internal Medicine and Hypertension, Department of Medicine and Experimental Oncology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
York B, Reineke EL, Sagen JV, Nikolai BC, Zhou S, Louet JF, Chopra AR, Chen X, Reed G, Noebels J, Adesina AM, Yu H, Wong LJC, Tsimelzon A, Hilsenbeck S, Stevens RD, Wenner BR, Ilkayeva O, Xu J, Newgard CB, O'Malley BW. Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy. Cell Metab 2012; 15:752-63. [PMID: 22560224 PMCID: PMC3349072 DOI: 10.1016/j.cmet.2012.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/18/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of β-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic.
Collapse
Affiliation(s)
- Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wohlers LM, Jackson KC, Spangenburg EE. Lipolytic signaling in response to acute exercise is altered in female mice following ovariectomy. J Cell Biochem 2012; 112:3675-84. [PMID: 21815195 DOI: 10.1002/jcb.23302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Impaired ovarian function alters lipid metabolism, ultimately resulting in increased visceral fat mass. Currently, we have a poor understanding of alterations in signaling events regulating lipolysis after ovarian function declines. The purpose of this study was to determine if cellular mechanisms regulating lipolysis are altered in mice after ovariectomy (OVX) and if OVX mice exhibit impaired lipolytic signaling when stimulated by acute exercise. SHAM and OVX mice were divided into two groups: control (SHAM cont; OVX cont) or acute treadmill exercise (SHAM ex; OVX ex). The omental/mesenteric (O/M) fat mass of all OVX mice was significantly greater than the SHAM mice. Serum glycerol and blood glucose levels were significantly elevated in OVX cont compared to SHAM cont. Treadmill exercise increased serum glycerol levels only in SHAM mice, with no exercise-induced change detected in OVX mice. NEFA levels were significantly elevated by acute exercise in the SHAM and OVX groups. In O/M fat from both OVX groups there were significant increases in cytosolic ATGL and PLIN2 in the fat cake fraction with concurrent reductions in PLIN1 in the fat cake compared to SHAM. Further, exercise induced significant increases in HSL Ser660 phosphorylation in SHAM mice, but not OVX mice. This suggests that reduced ovarian function has significant effects on critical lipolytic cell signaling mechanisms in O/M adipose tissue.
Collapse
Affiliation(s)
- Lindsay M Wohlers
- Department of Kinesiology, University of Maryland, School of Public Health, College Park, Maryland 21045, USA
| | | | | |
Collapse
|
50
|
Beylot M, Neggazi S, Hamlat N, Langlois D, Forcheron F. Perilipin 1 ablation in mice enhances lipid oxidation during exercise and does not impair exercise performance. Metabolism 2012; 61:415-23. [PMID: 21944269 DOI: 10.1016/j.metabol.2011.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/16/2011] [Accepted: 07/31/2011] [Indexed: 11/26/2022]
Abstract
Perilipin 1 is involved in the control of adipose tissue triacylglycerol hydrolysis. Its ablation in mice decreases fat mass and induces a partial resistance to diet-induced and genetic obesity. However, the consequences of perilipin 1 invalidation on energy balance are not fully defined. Moreover, the impact of perilipin 1 ablation on exercise performance and on fatty acids mobilization and utilization during exercise has not been studied. We compared energy balance (food intake, energy expenditure, spontaneous physical activity) and response to exercise of Plin1(-/-) and wild-type mice receiving a chow diet. The Plin1(-/-) mice had less fat, comparable food intake, comparable or slightly decreased energy expenditure, and no change in spontaneous physical activity. Mean 24-hour respiratory quotient was slightly lower, suggesting enhanced fatty acid oxidation. Exercise performance (both acute and endurance) was not impaired. Changes in nonesterified fatty acid levels during exercise were comparable, showing that triacylglycerol mobilization was unimpaired. Oxygen consumption increased faster (both tests) and to higher values (acute exercise) in Plin1(-/-) mice. Respiratory quotient increased during both types of exercise in Plin1(-/-) and control mice, but less in Plin1(-/-) mice. These lower respiratory quotient values show that Plin1(-/-) mice rely more on fatty acid oxidation during exercise. This is probably related to an overexpression in liver and muscle of genes for fatty acids oxidation. Perilipin 1 ablation has limited consequences on energy balance. It does not impair exercise performance; fatty acids mobilization during exercise is not impaired, whereas their oxidation is enhanced.
Collapse
Affiliation(s)
- Michel Beylot
- ANIPHY, Faculté Rockefeller, Université C Bernard Lyon1, 69008 Lyon, France.
| | | | | | | | | |
Collapse
|