1
|
Li J, Zhao L, Wu Z, Huang S, Wang J, Chang Y, Liu L, Jin H, Lu J, Huang C, Xie Q, Huang H, Su Z. SelK promotes glioblastoma cell proliferation by inhibiting β-TrCP1 mediated ubiquitin-dependent degradation of CDK4. J Exp Clin Cancer Res 2024; 43:231. [PMID: 39155374 PMCID: PMC11331741 DOI: 10.1186/s13046-024-03157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Glioblastoma (GB) is recognized as one of the most aggressive brain tumors, with a median survival of 14.6 months. However, there are still some patients whose survival time was greater than 3 years, and the biological reasons behind this clinical phenomenon arouse our research interests. By conducting proteomic analysis on tumor tissues obtained from GB patients who survived over 3 years compared to those who survived less than 1 year, we identified a significant upregulation of SelK in patients with shorter survival times. Therefore, we hypothesized that SelK may be an important indicator related to the occurrence and progression of GBM. METHODS Proteomics and immunohistochemistry from GB patients were analyzed to investigate the correlation between SelK and clinical prognosis. Cellular phenotypes were evaluated by cell cycle analysis, cell viability assays, and xenograft models. Immunoblots and co-immunoprecipitation were conducted to verify SelK-mediated ubiquitin-dependent degradation of CDK4. RESULTS SelK was found to be significantly upregulated in GB samples from short-term survivors (≤ 1 year) compared to those from long-term survivors (≥ 3 years), and its expression levels were negatively correlated with clinical prognosis. Knocking down of SelK expression reduced GB cell viability, induced G0/G1 phase arrest, and impaired the growth of transplanted glioma cells in nude mice. Down-regulation of SelK-induced ER stress leads to a reduction in the expression of SKP2 and an up-regulation of β-TrCP1 expression. Up-regulation of β-TrCP1, thereby accelerating the ubiquitin-dependent degradation of CDK4 and ultimately inhibiting the malignant proliferation of the GB cells. CONCLUSION This study discovered a significant increase in SelK expression in GB patients with poor prognosis, revealing a negative correlation between SelK expression and patient outcomes. Further mechanistic investigations revealed that SelK enhances the proliferation of GB cells by targeting the endoplasmic reticulum stress/SKP2/β-TrCP1/CDK4 axis.
Collapse
Affiliation(s)
- Jizhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Zerui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Shirui Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Junyu Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Yuanyuan Chang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Jianglong Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China.
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Turovsky EA, Plotnikov EY, Varlamova EG. Regulatory Role and Cytoprotective Effects of Exogenous Recombinant SELENOM under Ischemia-like Conditions and Glutamate Excitotoxicity in Cortical Cells In Vitro. Biomedicines 2024; 12:1756. [PMID: 39200220 PMCID: PMC11351740 DOI: 10.3390/biomedicines12081756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In the present study, we were able to obtain recombinant SELENOM, a resident of the endoplasmic reticulum that exhibits antioxidant properties in its structure and functions. The resulting SELENOM was tested in two brain injury (in vitro) models: under ischemia-like conditions (oxygen-glucose deprivation/reoxygenation, OGD/R) and glutamate excitotoxicity (GluTox). Using molecular biology methods, fluorescence microscopy, and immunocytochemistry, recombinant SELENOM was shown to dose-dependently suppress ROS production in cortical cells in toxic models, reduce the global increase in cytosolic calcium ([Ca2+]i), and suppress necrosis and late stages of apoptosis. Activation of SELENOM's cytoprotective properties occurs due to its penetration into cortical cells through actin-dependent transport and activation of the Ca2+ signaling system. The use of SELENOM resulted in increased antioxidant protection of cortical cells and suppression of the proinflammatory factors and cytokines expression.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
3
|
Bai YZ, Zhang Y, Zhang SQ. New horizons for the role of selenium on cognitive function: advances and challenges. Metab Brain Dis 2024; 39:1255-1268. [PMID: 38963634 DOI: 10.1007/s11011-024-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.
Collapse
Affiliation(s)
- Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 East Yinghua Road, Beijing, 100029, China
- National Center for Respiratory Diseases, Beijing, 100029, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
4
|
Ren B, Situ J, Huang X, Tan Q, Xiao S, Li N, Tian J, Du X, Ni J, Liu Q. Selenoprotein W modulates tau homeostasis in an Alzheimer's disease mouse model. Commun Biol 2024; 7:872. [PMID: 39020075 PMCID: PMC11255228 DOI: 10.1038/s42003-024-06572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Lower selenium levels are observed in Alzheimer's disease (AD) brains, while supplementation shows multiple benefits. Selenoprotein W (SELENOW) is sensitive to selenium changes and binds to tau, reducing tau accumulation. However, whether restoration of SELENOW has any protective effect in AD models and its underlying mechanism remain unknown. Here, we confirm the association between SELENOW downregulation and tau pathology, revealing SELENOW's role in promoting tau degradation through the ubiquitin‒proteasome system. SELENOW competes with Hsp70 to interact with tau, promoting its ubiquitination and inhibiting tau acetylation at K281. SELENOW deficiency leads to synaptic defects, tau dysregulation and impaired long-term potentiation, resulting in memory deficits in mice. Conversely, SELENOW overexpression in the triple transgenic AD mice ameliorates memory impairment and tau-related pathologies, featuring decreased 4-repeat tau isoform, phosphorylation at Ser396 and Ser404, neurofibrillary tangles and neuroinflammation. Thus, SELENOW contributes to the regulation of tau homeostasis and synaptic maintenance, implicating its potential role in AD.
Collapse
Affiliation(s)
- Bingyu Ren
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong, 510630, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xuelian Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiulong Tan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
5
|
Liu DD, Ding W, Cheng JT, Wei Q, Lin Y, Zhu TY, Tian J, Sun K, Zhang L, Lu P, Yang F, Liu C, Tang S, Yang B. Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids. Nat Commun 2024; 15:5221. [PMID: 38890329 PMCID: PMC11189575 DOI: 10.1038/s41467-024-49517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenlong Ding
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin-Tao Cheng
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiushi Wei
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yinuo Lin
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Tian-Yi Zhu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Tian
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Long Zhang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Chao Liu
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Shibing Tang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Bing Yang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
6
|
Mullegama SV, Kiernan KA, Torti E, Pavlovsky E, Tilton N, Sekula A, Gao H, Alaimo JT, Engleman K, Rush ET, Blocker K, Dipple KM, Fettig VM, Hare H, Glass I, Grange DK, Griffin M, Phornphutkul C, Massingham L, Mehta L, Miller DE, Thies J, Merritt JL, Muller E, Osmond M, Sawyer SL, Slaugh R, Hickey RE, Wolf B, Choudhary S, Simonović M, Zhang Y, Palculict TB, Telegrafi A, Carere DA, Wentzensen IM, Morrow MM, Monaghan KG, Yang J, Juusola J. De novo missense variants in exon 9 of SEPHS1 cause a neurodevelopmental condition with developmental delay, poor growth, hypotonia, and dysmorphic features. Am J Hum Genet 2024; 111:778-790. [PMID: 38531365 PMCID: PMC11023921 DOI: 10.1016/j.ajhg.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Sureni V Mullegama
- GeneDx, Gaithersburg, MD 20877, USA; Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA.
| | - Kaitlyn A Kiernan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Ethan Pavlovsky
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Nicholas Tilton
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Austin Sekula
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Hua Gao
- GeneDx, Gaithersburg, MD 20877, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA; Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Eric T Rush
- Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA; Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Karli Blocker
- Division of Clinical Genetics, Stanford Children's Health, San Francisco, CA, USA
| | - Katrina M Dipple
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Veronica M Fettig
- Center for Inherited Cardiovascular Disease, Cardiovascular Genetics Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather Hare
- Northeastern Ontario Medical Genetics Program, Health Sciences, North Sudbury, ON, Canada
| | - Ian Glass
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Griffin
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Chanika Phornphutkul
- Division of Genetics, Department of Pediatrics, Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Lauren Massingham
- Division of Genetics, Department of Pediatrics, Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Lakshmi Mehta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - J Lawrence Merritt
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Eric Muller
- Division of Clinical Genetics, Stanford Children's Health, San Francisco, CA, USA
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sarah L Sawyer
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel E Hickey
- Department of Pediatrics, Division of Genetics, Birth Defects and Metabolism, Anne & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Barry Wolf
- Department of Pediatrics, Division of Genetics, Birth Defects and Metabolism, Anne & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Sanjeev Choudhary
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
7
|
Ouyang P, Cai Z, Peng J, Lin S, Chen X, Chen C, Feng Z, Wang L, Song G, Zhang Z. SELENOK-dependent CD36 palmitoylation regulates microglial functions and Aβ phagocytosis. Redox Biol 2024; 70:103064. [PMID: 38320455 PMCID: PMC10850786 DOI: 10.1016/j.redox.2024.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
Amyloid-beta (Aβ) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aβ phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aβ phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aβ phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aβ pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.
Collapse
Affiliation(s)
- Pei Ouyang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhiyu Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiaying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shujing Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaochun Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Changbin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ziqi Feng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
8
|
Ralston NVC, Raymond LJ, Gilman CL, Soon R, Seale LA, Berry MJ. Maternal seafood consumption is associated with improved selenium status: Implications for child health. Neurotoxicology 2024; 101:26-35. [PMID: 38272071 PMCID: PMC10978253 DOI: 10.1016/j.neuro.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is required for synthesis of selenocysteine (Sec), an amino acid expressed in the active sites of Se-dependent enzymes (selenoenzymes), including forms with essential functions in fetal development, brain activities, thyroid hormone metabolism, calcium regulation, and to prevent or reverse oxidative damage. Homeostatic mechanisms normally ensure the brain is preferentially supplied with Se to maintain selenoenzymes, but high methylmercury (CH3Hg) exposures irreversibly inhibit their activities and impair Sec synthesis. Due to Hg's high affinity for sulfur, CH3Hg initially binds with the cysteine (Cys) moieties of thiomolecules which are selenoenzyme substrates. These CH3Hg-Cys adducts enter selenoenzyme active sites and transfer CH3Hg to Sec, thus irreversibly inhibiting their activities. High CH3Hg exposures are uniquely able to induce a conditioned Se-deficiency that impairs synthesis of brain selenoenzymes. Since the fetal brain lacks Se reserves, it is far more vulnerable to CH3Hg exposures than adult brains. This prompted concerns that maternal exposures to CH3Hg present in seafood might impair child neurodevelopment. However, typical varieties of ocean fish contain far more Se than CH3Hg. Therefore, eating them should augment Se-status and thus prevent Hg-dependent loss of fetal selenoenzyme activities. To assess this hypothesis, umbilical cord blood and placental tissue samples were collected following delivery of a cohort of 100 babies born on Oahu, Hawaii. Dietary food frequency surveys of the mother's last month of pregnancy identified groups with no (0 g/wk), low (0-12 g/wk), or high (12 + g/wk) levels of ocean fish consumption. Maternal seafood consumption increased Hg contents in fetal tissues and resulted in ∼34% of cord blood samples exceeding the EPA Hg reference level of 5.8 ppb (0.029 µM). However, Se concentrations in these tissues were orders of magnitude higher and ocean fish consumption caused cord blood Se to increase ∼9.4 times faster than Hg. Therefore, this study supports the hypothesis that maternal consumption of typical varieties of ocean fish provides substantial amounts of Se that protect against Hg-dependent losses in Se bioavailability. Recognizing the pivotal nature of the Hg:Se relationship provides a consilient perspective of seafood benefits vs. risks and clarifies the reasons for the contrasting findings of certain early studies.
Collapse
Affiliation(s)
| | - Laura J Raymond
- Sage Green Nutrition Research Guidance, Grand Forks, ND, 58203, USA
| | - Christy L Gilman
- Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Reni Soon
- Department of Obstetrics and Gynecology, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Marla J Berry
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
9
|
De Simone R, Ajmone-Cat MA, Tartaglione AM, Calamandrei G, Minghetti L. Maternal suboptimal selenium intake and low-level lead exposure affect offspring's microglial immune profile and its reactivity to a subsequent inflammatory hit. Sci Rep 2023; 13:21448. [PMID: 38052845 PMCID: PMC10698039 DOI: 10.1038/s41598-023-45613-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2023] Open
Abstract
Micronutrients such as selenium (Se) are essentials since prenatal life to support brain and cognitive development. Se deficiency, which affects up to 1 billion people worldwide, can interact with common adverse environmental challenges including (Pb), exacerbating their toxic effects. Exploiting our recently validated rat model of maternal Se restriction and developmental low Pb exposure, our aims were to investigate: (i) the early consequences of suboptimal Se intake and low-Pb exposure on neuroinflammation in neonates' whole brains; (ii) the potential priming effect of suboptimal Se and low-Pb exposure on offspring's glial reactivity to a further inflammatory hit. To these aims female rats were fed with suboptimal (0.04 mg/kg; Subopt) and optimal (0.15 mg/kg; Opt) Se dietary levels throughout pregnancy and lactation and exposed or not to environmentally relevant Pb dose in drinking water (12.5 µg/mL) since 4 weeks pre-mating. We found an overall higher basal expression of inflammatory markers in neonatal brains, as well as in purified microglia and organotypic hippocampal slice cultures, from the Subopt Se offspring. Subopt/Pb cultures were highly activated than Subopt cultures and showed a higher susceptibility to the inflammatory challenge lipopolysaccharide than cultures from the Opt groups. We demonstrate that even a mild Se deficiency and low-Pb exposure during brain development can influence the neuroinflammatory tone of microglia, exacerbate the toxic effects of Pb and prime microglial reactivity to subsequent inflammatory stimuli. These neuroinflammatory changes may be responsible, at least in part, for adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- R De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - M A Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - A M Tartaglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - G Calamandrei
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - L Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
10
|
Nunes LGA, Cain A, Comyns C, Hoffmann PR, Krahn N. Deciphering the Role of Selenoprotein M. Antioxidants (Basel) 2023; 12:1906. [PMID: 38001759 PMCID: PMC10668967 DOI: 10.3390/antiox12111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Selenocysteine (Sec), the 21st amino acid, is structurally similar to cysteine but with a sulfur to selenium replacement. This single change retains many of the chemical properties of cysteine but often with enhanced catalytic and redox activity. Incorporation of Sec into proteins is unique, requiring additional translation factors and multiple steps to insert Sec at stop (UGA) codons. These Sec-containing proteins (selenoproteins) are found in all three domains of life where they often are involved in cellular homeostasis (e.g., reducing reactive oxygen species). The essential role of selenoproteins in humans requires us to maintain appropriate levels of selenium, the precursor for Sec, in our diet. Too much selenium is also problematic due to its toxic effects. Deciphering the role of Sec in selenoproteins is challenging for many reasons, one of which is due to their complicated biosynthesis pathway. However, clever strategies are surfacing to overcome this and facilitate production of selenoproteins. Here, we focus on one of the 25 human selenoproteins, selenoprotein M (SELENOM), which has wide-spread expression throughout our tissues. Its thioredoxin motif suggests oxidoreductase function; however, its mechanism and functional role(s) are still being uncovered. Furthermore, the connection of both high and low expression levels of SELENOM to separate diseases emphasizes the medical application for studying the role of Sec in this protein. In this review, we aim to decipher the role of SELENOM through detailing and connecting current evidence. With multiple proposed functions in diverse tissues, continued research is still necessary to fully unveil the role of SELENOM.
Collapse
Affiliation(s)
- Lance G. A. Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Antavius Cain
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Cody Comyns
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| |
Collapse
|
11
|
Staneviciene I, Levinas D, Sadauskiene I, Liekis A, Viezeliene D, Kursvietiene L, Naginiene R, Baranauskiene D, Simakauskiene V, Vaitkiene P, Miniotaite G, Sulinskiene J. Effect of Organic Selenium on the Homeostasis of Trace Elements, Lipid Peroxidation, and mRNA Expression of Antioxidant Proteins in Mouse Organs. Int J Mol Sci 2023; 24:ijms24119704. [PMID: 37298655 DOI: 10.3390/ijms24119704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
(1) In this study we determined the effect of long-term selenomethionine administration on the oxidative stress level and changes in antioxidant protein/enzyme activity; mRNA expression; and the levels of iron, zinc, and copper. (2) Experiments were performed on 4-6-week-old BALB/c mice, which were given selenomethionine (0.4 mg Se/kg b.w.) solution for 8 weeks. The element concentration was determined via inductively coupled plasma mass spectrometry. mRNA expression of SelenoP, Cat, and Sod1 was quantified using real-time quantitative reverse transcription. Malondialdehyde content and catalase activity were determined spectrophotometrically. (3) After long-term SeMet administration, the amount of Se increased by 12-fold in mouse blood, 15-fold in the liver, and 42-fold in the brain, as compared to that in the control. Exposure to SeMet decreased amounts of Fe and Cu in blood, but increased Fe and Zn levels in the liver and increased the levels of all examined elements in the brain. Se increased malondialdehyde content in the blood and brain but decreased it in liver. SeMet administration increased the mRNA expression of selenoprotein P, dismutase, and catalase, but decreased catalase activity in brain and liver. (4) Eight-week-long selenomethionine consumption elevated Se levels in the blood, liver, and especially in the brain and disturbed the homeostasis of Fe, Zn, and Cu. Moreover, Se induced lipid peroxidation in the blood and brain, but not in the liver. In response to SeMet exposure, significant up-regulation of the mRNA expression of catalase, superoxide dismutase 1, and selenoprotein P in the brain, and especially in the liver, was determined.
Collapse
Affiliation(s)
- Inga Staneviciene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Dovydas Levinas
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Ilona Sadauskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Viezeliene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Rima Naginiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Baranauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Vaida Simakauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Paulina Vaitkiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Giedre Miniotaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Jurgita Sulinskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| |
Collapse
|
12
|
Ke J, Zhang DG, Lei XJ, Liu GH, Luo Z. Characterization and tissue expression of twelve selenoproteins in yellow catfish Pelteobagrus fulvidraco fed diets varying in oxidized fish oil and selenium levels. J Trace Elem Med Biol 2023; 79:127204. [PMID: 37244044 DOI: 10.1016/j.jtemb.2023.127204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Selenium (Se) functions through selenoproteins and is essential to growth and metabolism of vertebrates. The present study was conducted to identify twelve selenoproteins genes (selenoe, selenof, selenoh, selneoi, selenom, selenok, selneon, selenoo, selenot, selenos, selenou and msrb1) from yellow catfish. Their mRNA expression patterns, as well as their response to dietary oxidized fish oils and Se addition were explored. METHODS We use 3'and 5' RACE PCR to clone full-length cDNA sequence of twelve selenoprotein genes from yellow catfish. Their mRNA expression patterns were assessed via quantitative real-time PCR. Yellow catfish were fed diet adequate Se+ fresh fish oil, adequate Se+ oxidized fish oil, high Se+ fresh fish oil and high Se+ oxidized fish oil, respectively, for 10 weeks. Their kidney, heart, brain and testis were used to assess the mRNA expression of twelve selenoprotein. RESULTS Twelve selenoprotein genes had similar domains with mammals and the other fish. Their mRNAs were expressed widely in eleven tissues but varied with the tissues. Dietary oxidized fish oils and Se addition influenced their mRNA abundances of twelve selenoproteins in a tissue-dependent manner. CONCLUSION Our study demonstrated the characterization and expression of twelve selenoproteins, and elucidated their responses in yellow catfish fed diets varying in oxidized fish oils and Se addition, which increased our knowledge into the biological function and regulatory mechanism of Se and selenoproteins in fish.
Collapse
Affiliation(s)
- Jiang Ke
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Xi-Jun Lei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Guang-Hui Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
13
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Lin S, Chen C, Ouyang P, Cai Z, Liu X, Abdurahman A, Peng J, Li Y, Zhang Z, Song GL. SELENOM Knockout Induces Synaptic Deficits and Cognitive Dysfunction by Influencing Brain Glucose Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1607-1619. [PMID: 36635091 DOI: 10.1021/acs.jafc.2c07491] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selenium, a trace element associated with memory impairment and glucose metabolism, mainly exerts its function through selenoproteins. SELENOM is a selenoprotein located in the endoplasmic reticulum (ER) lumen. Our study demonstrates for the first time that SELENOM knockout decreases synaptic plasticity and causes memory impairment in 10-month-old mice. In addition, SELENOM knockout causes hyperglycaemia and disturbs glucose metabolism, which is essential for synapse formation and transmission in the brain. Further research reveals that SELENOM knockout leads to inhibition of the brain insulin signaling pathway [phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR/p70 S6 kinase pathway], which may impair synaptic plasticity in mice. High-fat diet (HFD) feeding suppresses the brain insulin signaling pathway in SELENOM knockout mice and leads to earlier onset of cognitive impairment at 5 months of age. In general, our study demonstrates that SELENOM knockout induces synaptic deficits via the brain insulin signaling pathway, thus leading to cognitive dysfunction in mice. These data strongly suggest that SELENOM plays a vital role in brain glucose metabolism and contributes substantially to synaptic plasticity.
Collapse
Affiliation(s)
- Shujing Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong518000, People's Republic of China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Pei Ouyang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Zhiyu Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Xibei Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Anwar Abdurahman
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Jiaying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Yu Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong518000, People's Republic of China
| |
Collapse
|
15
|
Ralston NVC. Concomitant selenoenzyme inhibitor exposures as etiologic contributors to disease: Implications for preventative medicine. Arch Biochem Biophys 2023; 733:109469. [PMID: 36423662 DOI: 10.1016/j.abb.2022.109469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The physiological activities of selenium (Se) occur through enzymes that incorporate selenocysteine (Sec), a rare but important amino acid. The human genome includes 25 genes coding for Sec that employ it to catalyze challenging reactions. Selenoenzymes control thyroid hormones, calcium activities, immune responses, and perform other vital roles, but most are devoted to preventing and reversing oxidative damage. As the most potent intracellular nucleophile (pKa 5.2), Sec is vulnerable to binding by metallic and organic soft electrophiles (E*). These electron poor reactants initially form covalent bonds with nucleophiles such as cysteine (Cys) whose thiol (pKa 8.3) forms adducts which function as suicide substrates for selenoenzymes. These adducts orient E* to interact with Sec and since Se has a higher affinity for E* than sulfur, the E* transfers to Sec and irreversibly inhibits the enzyme's activity. Organic electrophiles have lower Se-binding affinities than metallic E*, but exposure sources are more abundant. Individuals with poor Se status are more vulnerable to the toxic effects of high E* exposures. The relative E*:Se stoichiometries remain undefined, but the aggregate effects of multiple E* exposures are predicted to be additive and possibly synergistic under certain conditions. The potential for the combined Se-binding effects of common pharmaceutical, dietary, or environmental E* require study, but even temporary loss of selenoenzyme activities would accentuate oxidative damage to tissues. As various degenerative diseases are associated with accumulating DNA damage, defining the effects of complementary E* exposures on selenoenzyme activities may enhance the ability of preventative medicine to support healthy aging.
Collapse
Affiliation(s)
- Nicholas V C Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
16
|
Behl S, Mehta S, Pandey MK. The role of selenoproteins in neurodevelopment and neurological function: Implications in autism spectrum disorder. Front Mol Neurosci 2023; 16:1130922. [PMID: 36969558 PMCID: PMC10034371 DOI: 10.3389/fnmol.2023.1130922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Selenium and selenoproteins play a role in many biological functions, particularly in brain development and function. This review outlines the role of each class of selenoprotein in human brain function. Most selenoproteins play a large antioxidant role within the brain. Autism spectrum disorder (ASD) has been shown to correlate with increased oxidative stress, and the presumption of selenoproteins as key players in ASD etiology are discussed. Further, current literature surrounding selenium in ASD and selenium supplementation studies are reviewed. Finally, perspectives are given for future directions of selenoprotein research in ASD.
Collapse
Affiliation(s)
- Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sunil Mehta
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Mukesh K. Pandey,
| |
Collapse
|
17
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
Affiliation(s)
- Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alyssa M. Vetter
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- School of Human Nutrition, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
18
|
Selenium and human nervous system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Kumar N, Thorat ST, Gite A, Patole PB. Selenium nanoparticles and omega-3 fatty acid enhanced thermal tolerance in fish against arsenic and high temperature. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109447. [PMID: 36030006 DOI: 10.1016/j.cbpc.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
Abstract
The aquatic ecosystem is prone to global climate change and pollution affecting aquatic animals, including fish. In light of the above, we experimented with delineate the role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with selenium nanoparticles (Se-NPs) to enhance the thermal tolerance in Pangasianodon hypophthalmus reared under control or concurrent exposure to high temperature and arsenic (As + T) for 112 days. Se-NPs were synthesized using the green approach. Four experimental diets viz. EPA + DHA at 0.2, 0.4 and 0.6 % along with Se-NPs at 0.2 mg kg-1 diet were formulated and prepared. End of the experiment (112 days), the thermal tolerance viz. CTmin (critical thermal minima) CTmax (critical thermal maxima), LTmin (lethal thermal minima) and LTmax (lethal thermal maxima) were determined. Supplementation of EPA + DHA along with Se-NPs noticeably improved the thermal tolerance of the fish reared under stress (As + T) and control condition. Superoxide dismutase, glutathione-s-transferase, catalase, glutathione peroxides and LPO were enhanced by As + T, whereas EPA + DHA at 0.4 % and Se-NPs reduced the oxidative stress. Further, acetylcholine esterase was inhibited by arsenic alone and concurrent with temperature but dietary supplementation significantly enhanced the brain AChE activity. Exposure to arsenic and concurrent with a temperature significantly reduced the ATPase. Whereas supplementation of EPA + DHA at 0.4 % and Se-NPs enhanced the ATPase in liver and gill tissues. Arsenic bioaccumulation was also reduced with EPA + DHA at 0.4 % and Se-NPs. The present investigation concluded that EPA + DHA at 0.4 % and Se-NPs at 0.2 mg kg-1 diet protects the P. hypophthalmus against arsenic pollution and thermal stress.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| |
Collapse
|
20
|
Nunes LGA, Pitts MW, Hoffmann PR. Selenoprotein I (selenoi) as a critical enzyme in the central nervous system. Arch Biochem Biophys 2022; 729:109376. [PMID: 36007576 PMCID: PMC11166481 DOI: 10.1016/j.abb.2022.109376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane. This is not a redox reaction and does not directly involve the Sec residue, making selenoi quite distinct among selenoproteins. Selenoi is also unique among lipid phosphotransferases as the only family member containing a Sec residue near its C-terminus that serves an unknown function. The reaction catalyzed by selenoi involves the transfer of the ethanolamine phosphate group from CDP-ethanolamine to one of two lipid donors, 1,2-diacylglycerol (DAG) or 1-alkyl-2-acylglycerol (AAG), to produce PE or plasmanyl PE, respectively. Plasmanyl PE is subsequently converted to plasmenyl PE by plasmanylethanolamine desaturase. Both PE and plasmenyl PE are critical phospholipids in the central nervous system (CNS), as demonstrated through clinical studies involving SELENOI mutations as well as studies in cell lines and mice. Deletion of SELENOI in mice is embryonic lethal, while loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a form of hereditary spastic paraplegia (HSP). HSP is an upper motor disease characterized by spasticity of the lower limbs, which is often manifested with other symptoms such as impaired vision/hearing, ataxia, cognitive/intellectual impairment, and seizures. This article will summarize the current understanding of selenoi as a metabolic enzyme and discuss its role in the CNS physiology and pathophysiology.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Anatomy, Physiology and Biochemistry, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
21
|
Jehan C, Cartier D, Bucharles C, Anouar Y, Lihrmann I. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology. Redox Biol 2022; 55:102412. [PMID: 35917681 PMCID: PMC9344019 DOI: 10.1016/j.redox.2022.102412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/23/2022] Open
Abstract
The brain has a very high oxygen consumption rate and is particularly sensitive to oxidative stress. It is also the last organ to suffer from a loss of selenium (Se) in case of deficiency. Se is a crucial trace element present in the form of selenocysteine, the 21st proteinogenic amino acid present in selenoproteins, an essential protein family in the brain that participates in redox signaling. Among the most abundant selenoproteins in the brain are glutathione peroxidase 4 (GPX4), which reduces lipid peroxides and prevents ferroptosis, and selenoproteins W, I, F, K, M, O and T. Remarkably, more than half of them are proteins present in the ER and recent studies have shown their involvement in the maintenance of ER homeostasis, glycoprotein folding and quality control, redox balance, ER stress response signaling pathways and Ca2+ homeostasis. However, their molecular functions remain mostly undetermined. The ER is a highly specialized organelle in neurons that maintains the physical continuity of axons over long distances through its continuous distribution from the cell body to the nerve terminals. Alteration of this continuity can lead to degeneration of distal axons and subsequent neuronal death. Elucidation of the function of ER-resident selenoproteins in neuronal pathophysiology may therefore become a new perspective for understanding the pathophysiology of neurological diseases. Here we summarize what is currently known about each of their molecular functions and their impact on the nervous system during development and stress.
Collapse
Affiliation(s)
- Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
22
|
Schweizer U, Fabiano M. Selenoproteins in brain development and function. Free Radic Biol Med 2022; 190:105-115. [PMID: 35961466 DOI: 10.1016/j.freeradbiomed.2022.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023]
Abstract
Expression of selenoproteins is widespread in neurons of the central nervous system. There is continuous evidence presented over decades that low levels of selenium or selenoproteins are linked to seizures and epilepsy indicating a failure of the inhibitory system. Many developmental processes in the brain depend on the thyroid hormone T3. T3 levels can be locally increased by the action of iodothyronine deiodinases on the prohormone T4. Since deiodinases are selenoproteins, it is expected that selenoprotein deficiency may affect development of the central nervous system. Studies in genetically modified mice or clinical observations of patients with rare diseases point to a role of selenoproteins in brain development and degeneration. In particular selenoprotein P is central to brain function by virtue of its selenium transport function into and within the brain. We summarize which selenoproteins are essential for the brain, which processes depend on selenoproteins, and what is known about genetic deficiencies of selenoproteins in humans. This review is not intended to cover the potential influence of selenium or selenoproteins on major neurodegenerative disorders in human.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany.
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| |
Collapse
|
23
|
Barko K, Shelton M, Xue X, Afriyie-Agyemang Y, Puig S, Freyberg Z, Tseng GC, Logan RW, Seney ML. Brain region- and sex-specific transcriptional profiles of microglia. Front Psychiatry 2022; 13:945548. [PMID: 36090351 PMCID: PMC9448907 DOI: 10.3389/fpsyt.2022.945548] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.
Collapse
Affiliation(s)
- Kelly Barko
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Micah Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Yvette Afriyie-Agyemang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Tartaglione AM, Serafini MM, Ferraris F, Raggi A, Mirabello A, Di Benedetto R, Ricceri L, Midali M, Cubadda F, Minghetti L, Viviani B, Calamandrei G. Short- and Long-Term Effects of Suboptimal Selenium Intake and Developmental Lead Exposure on Behavior and Hippocampal Glutamate Receptors in a Rat Model. Nutrients 2022; 14:nu14163269. [PMID: 36014775 PMCID: PMC9416673 DOI: 10.3390/nu14163269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Selenium (Se) is an essential trace element required for normal development as well as to counteract the adverse effects of environmental stressors. Conditions of low Se intake are present in some European countries. Our aim was to investigate the short- and long-term effects of early-life low Se supply on behavior and synaptic plasticity with a focus on the hippocampus, considering both suboptimal Se intake per se and its interaction with developmental exposure to lead (Pb). We established an animal model of Se restriction and low Pb exposure; female rats fed with an optimal (0.15 mg/kg) or suboptimal (0.04 mg/kg) Se diet were exposed from one month pre-mating until the end of lactation to 12.5 µg/mL Pb via drinking water. In rat offspring, the assessment of motor, emotional, and cognitive endpoints at different life stages were complemented by the evaluation of the expression and synaptic distribution of NMDA and AMPA receptor subunits at post-natal day (PND) 23 and 70 in the hippocampus. Suboptimal Se intake delayed the achievement of developmental milestones and induced early and long-term alterations in motor and emotional abilities. Behavioral alterations were mirrored by a drop in the expression of the majority of NMDA and AMPA receptor subunits analyzed at PND 23. The suboptimal Se status co-occurring with Pb exposure induced a transient body weight increase and persistent anxiety-like behavior. From the molecular point of view, we observed hippocampal alterations in NMDA (Glun2B and GluN1) and AMPA receptor subunit trafficking to the post-synapse in male rats only. Our study provides evidence of potential Se interactions with Pb in the developing brain.
Collapse
Affiliation(s)
- Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20126 Milan, ML, Italy
| | - Francesca Ferraris
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Andrea Raggi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Annalisa Mirabello
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Rita Di Benedetto
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Laura Ricceri
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Miriam Midali
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20126 Milan, ML, Italy
| | - Francesco Cubadda
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20126 Milan, ML, Italy
- Correspondence:
| | - Gemma Calamandrei
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, RM, Italy
| |
Collapse
|
25
|
Situ J, Huang X, Zuo M, Huang Y, Ren B, Liu Q. Comparative Proteomic Analysis Reveals the Effect of Selenoprotein W Deficiency on Oligodendrogenesis in Fear Memory. Antioxidants (Basel) 2022; 11:antiox11050999. [PMID: 35624863 PMCID: PMC9138053 DOI: 10.3390/antiox11050999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
The essential trace element selenium plays an important role in maintaining brain function. Selenoprotein W (SELENOW), the smallest selenoprotein that has been identified in mammals, is sensitive to selenium levels and abundantly expressed in the brain. However, its biological role in the brain remains to be clarified. Here, we studied the morphological and functional changes in the brain caused by SELENOW deficiency using its gene knockout (KO) mouse models. Histomorphological alterations of the amygdala and hippocampus, specifically in the female SELENOW KO mice, were observed, ultimately resulting in less anxiety-like behavior and impaired contextual fear memory. Fear conditioning (FC) provokes rapidly intricate responses involving neuroplasticity and oligodendrogenesis. During this process, the females generally show stronger contextual FC than males. To characterize the effect of SELENOW deletion on FC, specifically in the female mice, a Tandem mass tag (TMT)-based comparative proteomic approach was applied. Notably, compared to the wildtype (WT) no shock (NS) mice, the female SELENOW KO NS mice shared lots of common differentially expressed proteins (DEPs) with the WT FC mice in the hippocampus, enriched in the biological process of ensheathment and oligodendrocyte differentiation. Immunostaining and Western blotting analyses further confirmed the proteomic results. Our work may provide a holistic perspective of gender-specific SELENOW function in the brain and highlighted its role in oligodendrogenesis during fear memory.
Collapse
Affiliation(s)
- Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Xuelian Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Mingyang Zuo
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Yingying Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| |
Collapse
|
26
|
Rahimmi A, Tozandehjani S, Daraei M, Khademerfan M. The neuroprotective roles of Dietary Micronutrients on Parkinson’s disease: a review. Mol Biol Rep 2022; 49:8051-8060. [DOI: 10.1007/s11033-022-07345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
|
27
|
The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines 2022; 10:biomedicines10040891. [PMID: 35453641 PMCID: PMC9027222 DOI: 10.3390/biomedicines10040891] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
The selenoprotein glutathione peroxidase 4 (GPX4) is one of the main antioxidant mediators in the human body. Its central function involves the reduction of complex hydroperoxides into their respective alcohols often using reduced Glutathione (GSH) as a reducing agent. GPX4 has become a hotspot therapeutic target in biomedical research following its characterization as a chief regulator of ferroptosis, and its subsequent recognition as a specific pharmacological target for the treatment of an extensive variety of human diseases including cancers and neurodegenerative disorders. Several recent studies have provided insights into how GPX4 is distinguished from the rest of the glutathione peroxidase family, the unique biochemical properties of GPX4, how GPX4 is related to lipid peroxidation and ferroptosis, and how the enzyme may be modulated as a potential therapeutic target. This current report aims to review the literature underlying all these insights and present an up-to-date perspective on the current understanding of GPX4 as a potential therapeutic target.
Collapse
|
28
|
Yang Y, Li D, Wu W, Huang D, Zheng H, Aihaiti Y. A Pan-Cancer Analysis of the Role of Selenoprotein P mRNA in Tumorigenesis. Int J Gen Med 2021; 14:7471-7485. [PMID: 34754222 PMCID: PMC8568700 DOI: 10.2147/ijgm.s332031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background Selenium (Se) exhibits its anti-carcinogenic properties by regulating the redox system. However, the relationship between selenoprotein P (SeP), mRNA (SELENOP mRNA) and tumorigenesis remains unclear. Plasma SeP transports Se to various target tissues and has antioxidant characteristics. The present study aimed to explore the multifaceted pan-cancer properties of SELENOP in terms of its tissue-specific expression, prognostic value, immune function, and signaling pathway enrichment. Patients and Methods The expression profile of SELENOP was determined in 33 tumor types and survival, pathway enrichment, and correlation analyses were conducted based on TCGA database. The relationship between SELENOP expression and immune infiltration and macrophage subtype gene markers was investigated using the TIMER and GEPIA. Results SELENOP gene expression was decreased in many cancer tissues, but was upregulated in brain lower grade glioma (LGG). Furthermore, SELENOP expression was associated with a better prognosis in most cancers, but a poorer prognosis in LGG and uterine corpus endometrioid carcinoma (UCEC). Our results showed that SELENOP was correlated with infiltration level of six immune cell types, where SELENOP also showed a strong correlation with macrophages in some cancer types. However, we failed to determine macrophage polarization in 33 tumor types. SELENOP negatively regulated vascular endothelial cell proliferation in LGG and UCEC and epidermal cell differentiation in six tumor types. In contrast, upregulation was related to immune function, including T cell activation, B cell-mediated immunity, adaptive immune response and immune response regulation cell surface receptor signaling pathways in another six tumor types. Conclusion These findings highlighted the tissue-specific expression, prognostic value and immune characteristics of SELENOP in pan-cancer, and provided insights for illustrating the role of SELENOP in tumorigenesis.
Collapse
Affiliation(s)
- Yanni Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, People's Republic of China.,Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Daning Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wentao Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dingxing Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
29
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
30
|
Jia SZ, Xu XW, Zhang ZH, Chen C, Chen YB, Huang SL, Liu Q, Hoffmann PR, Song GL. Selenoprotein K deficiency-induced apoptosis: A role for calpain and the ERS pathway. Redox Biol 2021; 47:102154. [PMID: 34601426 PMCID: PMC8495175 DOI: 10.1016/j.redox.2021.102154] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident protein, is regulated by dietary selenium and expressed at a relatively high level in neurons. SELENOK has been shown to participate in oxidation resistance, calcium (Ca2+) flux regulation, and the ER-associated degradation (ERAD) pathway in immune cells. However, its role in neurons has not been elucidated. Here, we demonstrated that SELENOK gene knockout markedly enhanced ER stress (ERS) and increased apoptosis in neurons. SELENOK gene knockout elicited intracellular Ca2+ flux and activated the m-calpain/caspase-12 cascade, thus inducing neuronal apoptosis both in vivo and in vitro. In addition, SELENOK knockout significantly reduced cognitive ability and increased anxiety in 7-month-old mice. Our findings reveal an unexpected role of SELENOK in regulating ERS-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xin-Wen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu-Bin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shao-Ling Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
31
|
Torres DJ, Pitts MW, Seale LA, Hashimoto AC, An KJ, Hanato AN, Hui KW, Remigio SMA, Carlson BA, Hatfield DL, Berry MJ. Female Mice with Selenocysteine tRNA Deletion in Agrp Neurons Maintain Leptin Sensitivity and Resist Weight Gain While on a High-Fat Diet. Int J Mol Sci 2021; 22:ijms222011010. [PMID: 34681674 PMCID: PMC8539086 DOI: 10.3390/ijms222011010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
The role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis. There is also evidence that selenium supports leptin signaling in the hypothalamus by maintaining proper redox balance. In this study, we generated mice with conditional knockout of the selenocysteine tRNA[Ser]Sec gene (Trsp) in an orexigenic cell population called agouti-related peptide (Agrp)-positive neurons. We found that female TrspAgrpKO mice gain less weight while on a high-fat diet, which occurs due to changes in adipose tissue activity. Female TrspAgrpKO mice also retained hypothalamic sensitivity to leptin administration. Male mice were unaffected, however, highlighting the sexually dimorphic influence of selenium on neurobiology and energy homeostasis. These findings provide novel insight into the role of selenoproteins within a small yet heavily influential population of hypothalamic neurons.
Collapse
Affiliation(s)
- Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (L.A.S.); (M.J.B.)
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
- Correspondence:
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Lucia A. Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (L.A.S.); (M.J.B.)
| | - Ann C. Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Katlyn J. An
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Ashley N. Hanato
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Katherine W. Hui
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Stella Maris A. Remigio
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (L.A.S.); (M.J.B.)
| |
Collapse
|
32
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
33
|
Schweizer U, Bohleber S, Zhao W, Fradejas-Villar N. The Neurobiology of Selenium: Looking Back and to the Future. Front Neurosci 2021; 15:652099. [PMID: 33732108 PMCID: PMC7959785 DOI: 10.3389/fnins.2021.652099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Eighteen years ago, unexpected epileptic seizures in Selenop-knockout mice pointed to a potentially novel, possibly underestimated, and previously difficult to study role of selenium (Se) in the mammalian brain. This mouse model was the key to open the field of molecular mechanisms, i.e., to delineate the roles of selenium and individual selenoproteins in the brain, and answer specific questions like: how does Se enter the brain; which processes and which cell types are dependent on selenoproteins; and, what are the individual roles of selenoproteins in the brain? Many of these questions have been answered and much progress is being made to fill remaining gaps. Mouse and human genetics have together boosted the field tremendously, in addition to traditional biochemistry and cell biology. As always, new questions have become apparent or more pressing with solving older questions. We will briefly summarize what we know about selenoproteins in the human brain, glance over to the mouse as a useful model, and then discuss new questions and directions the field might take in the next 18 years.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
34
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
35
|
Rong T, Yao R, Deng Y, Lin Q, Wang G, Wang J, Jiang F, Jiang Y. Case Report: A Relatively Mild Phenotype Produced by Novel Mutations in the SEPSECS Gene. Front Pediatr 2021; 9:805575. [PMID: 35155316 PMCID: PMC8826681 DOI: 10.3389/fped.2021.805575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/20/2021] [Indexed: 12/05/2022] Open
Abstract
Mutations in the human O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase gene (SEPSECS) are associated with progressive cerebello-cerebral atrophy (PCCA), also known as pontocerebellar hypoplasia type 2D (PCH2D). Early-onset profound developmental delay, progressive microcephaly, and hypotonia that develops toward severe spasticity have been previously reported with SEPSECS mutations. Herein we report a case with severe global developmental delay, myogenic changes in the lower limbs, and insomnia, but without progressive microcephaly and brain atrophy during infancy and toddlerhood in a child harboring the SEPSECS missense variant c.194A>G (p. Asn65Ser) and a novel splicing mutation c.701+1G>A. With these findings we communicate the first Chinese SEPSECS mutant case, and our report indicates that SEPSECS mutations can give rise to a milder phenotype.
Collapse
Affiliation(s)
- Tingyu Rong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujiao Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Qingmin Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Yanrui Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| |
Collapse
|
36
|
Selenoprotein S attenuates endothelial dysfunction in a diabetic vascular chip. Exp Gerontol 2020; 137:110963. [DOI: 10.1016/j.exger.2020.110963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
|
37
|
Lee LKC, Leong LI, Liu Y, Luo M, Chan HYE, Choi CHJ. Preclinical Nanomedicines for Polyglutamine-Based Neurodegenerative Diseases. Mol Pharm 2020; 18:610-626. [PMID: 32584043 DOI: 10.1021/acs.molpharmaceut.0c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.
Collapse
Affiliation(s)
| | | | | | - Meihua Luo
- Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
38
|
Jin Y, Chung YW, Jung MK, Lee JH, Ko KY, Jang JK, Ham M, Kang H, Pack CG, Mihara H, Kim IY. Apolipoprotein E-mediated regulation of selenoprotein P transportation via exosomes. Cell Mol Life Sci 2020; 77:2367-2386. [PMID: 31471680 PMCID: PMC11104972 DOI: 10.1007/s00018-019-03287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
Selenoprotein P (SELENOP), secreted from the liver, functions as a selenium (Se) supplier to other tissues. In the brain, Se homeostasis is critical for physiological function. Previous studies have reported that SELENOP co-localizes with the apolipoprotein E receptor 2 (ApoER2) along the blood-brain barrier (BBB). However, the mechanism underlying SELENOP transportation from hepatocytes to neuronal cells remains unclear. Here, we found that SELENOP was secreted from hepatocytes as an exosomal component protected from plasma kallikrein-mediated cleavage. SELENOP was interacted with apolipoprotein E (ApoE) through heparin-binding sites of SELENOP, and the interaction regulated the secretion of exosomal SELENOP. Using in vitro BBB model of transwell cell culture, exosomal SELENOP was found to supply Se to brain endothelial cells and neuronal cells, which synthesized selenoproteins by a process regulated by ApoE and ApoER2. The regulatory role of ApoE in SELENOP transport was also observed in vivo using ApoE-/- mice. Exosomal SELENOP transport protected neuronal cells from amyloid β (Aβ)-induced cell death. Taken together, our results suggest a new delivery mechanism for Se to neuronal cells by exosomal SELENOP.
Collapse
Affiliation(s)
- Yunjung Jin
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Kyo Jung
- Asan Institute for Life Sciences, Asan Medical Center & Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, 41068, South Korea
| | - Jea Hwang Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts General Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kwan Young Ko
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Ki Jang
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minju Ham
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunwoo Kang
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Chan Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center & Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ick Young Kim
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
39
|
Chi Q, Luan Y, Zhang Y, Hu X, Li S. The regulatory effects of miR-138-5p on selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM. Metallomics 2020; 11:845-857. [PMID: 30869711 DOI: 10.1039/c9mt00006b] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis is a common paradigm of cell death and plays a key role in cartilage damage and selenium (Se) deficiency. Selenoproteins play major roles in determining the biological effects of Se, and are potentially involved in the pathophysiological processes in bone tissue. MicroRNAs (miRNAs) play important roles in cell proliferation, differentiation, apoptosis and tumorigenesis. Based on the preliminary results, the expression of selenoprotein M (SelM) was significantly decreased (69%) in chicken cartilage tissues with Se deficiency, and we subsequently screened and verified that SelM is one of the target genes of miR-138-5p in chicken cartilage using a dual luciferase reporter assay and real-time quantitative PCR (qRT-PCR). The expression of miR-138-5p was increased in response to Se deficiency, and the overexpression of miR-138-5p increased caspase-3, caspase-9, BAX and BAK levels, while the BCL-2 level was decreased, suggesting that miR-138-5p induced apoptosis via the mitochondrial pathway in vivo and in vitro. We explored whether oxidative stress, mitochondrial fission and fusion, and energy metabolism might trigger apoptosis to obtain an understanding of the mechanisms underlying the effects of miR-138-5p on Se deficiency-induced apoptosis in cartilage. The levels of indicators of oxidative stress, mitochondrial dynamics and energy metabolism were changed as well. This study confirmed that SelM is one of the target genes of miR-138-5p, and the overexpression of miR-138-5p induced by Se deficiency triggered oxidative stress, an imbalance in mitochondrial fission and fusion, and energy metabolism dysfunction. Therefore, miR-138-5p is involved in the mitochondrial apoptosis pathway via targeting SelM in chicken chondrocytes.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | |
Collapse
|
40
|
Conrad M, Proneth B. Selenium: Tracing Another Essential Element of Ferroptotic Cell Death. Cell Chem Biol 2020; 27:409-419. [DOI: 10.1016/j.chembiol.2020.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
|
41
|
Solovyev N. Selenoprotein P and its potential role in Alzheimer's disease. Hormones (Athens) 2020; 19:73-79. [PMID: 31250406 DOI: 10.1007/s42000-019-00112-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with cognitive decline, loss of memory, and progressive cerebral atrophy. The trace element selenium (Se) is known to be involved in brain pathology. Selenoprotein P (SELENOP), as the main Se transport protein, is, to a great extent, responsible for maintaining Se homeostasis and the hierarchy of selenoprotein expression in the body. Adequate Se supply through SELENOP is vital for proper brain development and function. Additionally, SELENOP may be implicated in pathological processes in the central nervous system, including those in AD. The current review summarizes recent findings on the possible role of SELENOP in AD, with a focus on probable mechanisms: Se delivery to neurons, antioxidant activity, cytoskeleton assembly, interaction with redox-active metals (e.g., copper and iron), and misfolded proteins (amyloid beta and tau protein). The use of SELENOP as a biomarker of Se status is also briefly discussed. Epidemiological studies on Se supplementation are beyond the scope of the current review.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russian Federation, 199034.
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan, 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
42
|
Silvestrini A, Mordente A, Martino G, Bruno C, Vergani E, Meucci E, Mancini A. The Role of Selenium in Oxidative Stress and in Nonthyroidal Illness Syndrome (NTIS): An Overview. Curr Med Chem 2020; 27:423-449. [PMID: 29421998 DOI: 10.2174/0929867325666180201111159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/28/2022]
Abstract
Selenium is a trace element, nutritionally classified as an essential micronutrient, involved in maintaining the correct function of several enzymes incorporating the selenocysteine residue, namely the selenoproteins. The human selenoproteome including 25 proteins is extensively described here. The most relevant selenoproteins, including glutathione peroxidases, thioredoxin reductases and iodothyronine deiodinases are required for the proper cellular redox homeostasis as well as for the correct thyroid function, thus preventing oxidative stress and related diseases. This review summarizes the main advances on oxidative stress with a focus on selenium metabolism and transport. Moreover, thyroid-related disorders are discussed, considering that the thyroid gland contains the highest selenium amount per gram of tissue, also for future possible therapeutic implication.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Giuseppe Martino
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Antonio Mancini
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| |
Collapse
|
43
|
Kumar N, Brahmchari RK, Bhushan S, Thorat ST, Kumar P, Chandan NK, Kumar M, Singh NP. Synergistic effect of dietary selenium nanoparticles and riboflavin on the enhanced thermal efficiency of fish against multiple stress factors. J Therm Biol 2019; 85:102417. [PMID: 31657758 DOI: 10.1016/j.jtherbio.2019.102417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023]
Abstract
An experiment was designed to delineate the efficacy of a dietary mixture of selenium nanoparticles (Se-NPs) and riboflavin (RF) on the thermal efficiency/tolerance of Pangasianodon hypophthalmus reared under arsenic (2.8 mg/L) and high-temperature (34 °C) stress. A green synthesis method was employed for the synthesis of Se-NPs using fish gills, which are normally discarded as by-products. Four isocaloric and iso-nitrogenous experimental diets were used, namely, a control diet (Se-NPs and RF @ 0 mg/kg diet) and diets containing RF @ 5, 10 or 15 mg/kg diet and Se-NPs @ 0.5 mg/kg diet, and feeding was performed for 95 days. At the end of the feeding trial, the thermal tolerance was evaluated by determination of the following parameters: critical thermal minimum (CTMin), lethal thermal minimum (LTMin), critical thermal maximum (CTMax), and lethal thermal maximum (LTMax). The anti-oxidative status in the form of catalase (CAT), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) activities was significantly (p < 0.01) enhanced upon concurrent exposure to arsenic and high temperature at LTMin and LTMax, whereas a non-significant (p > 0.05) change in superoxide dismutase (SOD) activity was observed in the brain at LTMin and brain, gill and kidney at LTMax. Supplementation with Se-NPs @ 0.5 mg/kg diet and RF @ 5, 10 or 15 mg/kg diet significantly (p < 0.01) improved the anti-oxidative status with or without stressors. AChE activity in the brain was significantly (p < 0.01) inhibited upon concurrent exposure to arsenic and high temperature and improved in the treatment group supplemented with Se-NPs and RF. The arsenic concentration in muscle and experimental water and Se concentration in muscle and experimental feed were analysed. Overall, the results indicated that supplementation with RF @ 5 mg/kg diet and Se-NPs @ 0.5 mg/kg diet could confer protection to the fish against arsenic and thermal stress and led to enhanced thermal efficiency/tolerance of P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | | | - Shashi Bhushan
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | | | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | - Nitish Kumar Chandan
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | - Mukesh Kumar
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | | |
Collapse
|
44
|
Zhao W, Bohleber S, Schmidt H, Seeher S, Howard MT, Braun D, Arndt S, Reuter U, Wende H, Birchmeier C, Fradejas-Villar N, Schweizer U. Ribosome profiling of selenoproteins in vivo reveals consequences of pathogenic Secisbp2 missense mutations. J Biol Chem 2019; 294:14185-14200. [PMID: 31350336 DOI: 10.1074/jbc.ra119.009369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Indexed: 01/31/2023] Open
Abstract
Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in SECISBP2 reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in Secisbp2 previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete Secisbp2 null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable in vitro and completely degraded in the mouse liver in vivo, while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.
Collapse
Affiliation(s)
- Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Henrik Schmidt
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Sandra Seeher
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Michael T Howard
- Department of Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Simone Arndt
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Hagen Wende
- Max Delbrück Center of Molecular Medicine, 13125 Berlin, Germany
| | | | - Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| |
Collapse
|
45
|
Cell-Type Specific Analysis of Selenium-Related Genes in Brain. Antioxidants (Basel) 2019; 8:antiox8050120. [PMID: 31060314 PMCID: PMC6562762 DOI: 10.3390/antiox8050120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
Selenoproteins are a unique class of proteins that play key roles in redox signaling in the brain. This unique organ is comprised of a wide variety of cell types that includes excitatory neurons, inhibitory neurons, astrocytes, microglia, and oligodendrocytes. Whereas selenoproteins are known to be required for neural development and function, the cell-type specific expression of selenoproteins and selenium-related machinery has yet to be systematically investigated. Due to advances in sequencing technology and investment from the National Institutes of Health (NIH)-sponsored BRAIN initiative, RNA sequencing (RNAseq) data from thousands of cortical neurons can now be freely accessed and searched using the online RNAseq data navigator at the Allen Brain Atlas. Hence, we utilized this newly developed tool to perform a comprehensive analysis of the cell-type specific expression of selenium-related genes in brain. Select proteins of interest were further verified by means of multi-label immunofluorescent labeling of mouse brain sections. Of potential significance to neural selenium homeostasis, we report co-expression of selenoprotein P (SELENOP) and selenium binding protein 1 (SELENBP1) within astrocytes. These findings raise the intriguing possibility that SELENBP1 may negatively regulate astrocytic SELENOP synthesis and thereby limit downstream Se supply to neurons.
Collapse
|
46
|
Vinceti M, Michalke B, Malagoli C, Eichmüller M, Filippini T, Tondelli M, Bargellini A, Vinceti G, Zamboni G, Chiari A. Selenium and selenium species in the etiology of Alzheimer's dementia: The potential for bias of the case-control study design. J Trace Elem Med Biol 2019; 53:154-162. [PMID: 30910200 DOI: 10.1016/j.jtemb.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Several human studies imply that the trace element selenium and its species may influence the onset of neurological disease, including Alzheimer's dementia (AD). Nevertheless, the literature is conflicting, with reported associations between exposure and risk in opposite direction, possibly due to biases in exposure assessment. After conducting a cohort study that detected an excess AD risk associated with higher levels of inorganic-hexavalent selenium in subjects with mild cognitive impairment (MCI), we investigated the relation between selenium and AD using a case-control study design. We determined cerebrospinal fluid levels of selenium species in 56 MCI participants already included in the cohort study, considered as referents, and in 33 patients with established AD. AD risk was inversely correlated with inorganic selenium species and with the organic form bound to selenoprotein P. Selenium bound to other organo-selenium species was positively correlated with AD risk, suggesting compensatory selenoprotein upregulation following increased oxidative stress. The finding of an increased AD risk associated with inorganic-hexavalent selenium from the cohort study was not replicated. This case-control study yielded entirely different results than those generated by a cohort study with a partially overlapping participant population, suggesting that case-control design does not allow to reliably assess the role of selenium exposure in AD etiology. This inability appears to be due to exposure misclassification, falsely indicating an etiologic role of selenium deficiency likely due to reverse causation, and involving most selenium species. The case-control design may instead lend insights into the pathologic process underlying disease progression.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA.
| | - Bernhard Michalke
- Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg 85764, Germany
| | - Carlotta Malagoli
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Marcel Eichmüller
- Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg 85764, Germany
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Annalisa Bargellini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Giulia Vinceti
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Annalisa Chiari
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| |
Collapse
|
47
|
Zhang X, Liu RP, Cheng WH, Zhu JH. Prioritized brain selenium retention and selenoprotein expression: Nutritional insights into Parkinson's disease. Mech Ageing Dev 2019; 180:89-96. [PMID: 30998939 DOI: 10.1016/j.mad.2019.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/27/2019] [Accepted: 04/14/2019] [Indexed: 01/12/2023]
Abstract
Selenium (Se), an essential trace mineral, confers its physiological functions mainly through selenoproteins, most of which are oxidoreductases. Results from animal, epidemiological, and human genetic studies link Parkinson's disease to Se and certain selenoproteins. Parkinson's disease is characterized by multiple motor and non-motor symptoms that are difficult to diagnose at early stages of the pathogenesis. While irreversible, degenerative and age-related, the onset of Parkinson's disease may be delayed through proper dietary and environmental controls. One particular attribute of Se biology is that brain has the highest priority to receive and retain this nutrient even in Se deficiency. Thus, brain Se deficiency is rare; however, a strong body of recent evidence implicates selenoprotein dysfunction in Parkinson's disease. Direct and indirect evidence from mouse models implicate selenoprotein T, glutathione peroxidase 1, selenoprotein P and glutathione peroxidase 4 in counteracting Parkinson's disease through Se transportation to the brain and reduced oxidative stress. It is of future interest to further characterize the full selenoproteomes in various types of brain cells and elucidate the mechanism of their actions in Parkinson's disease.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong-Pei Liu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA.
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
48
|
Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:1450-1499. [PMID: 29634350 PMCID: PMC6393771 DOI: 10.1089/ars.2017.7321] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress. Very often small disturbances in redox signaling processes, which are reversible, precede damage in neurodegeneration. Recent Advances: The identification of redox-regulated processes, such as regulation of biochemical pathways involved in the maintenance of redox homeostasis in the brain has provided deeper insights into mechanisms of neuroprotection and neurodegeneration. Recent studies have also identified several post-translational modifications involving reactive cysteine residues, such as nitrosylation and sulfhydration, which fine-tune redox regulation. Thus, the study of mechanisms via which cell death occurs in several neurodegenerative disorders, reveal several similarities and dissimilarities. Here, we review redox regulated events that are disrupted in neurodegenerative disorders and whose modulation affords therapeutic opportunities. CRITICAL ISSUES Although accumulating evidence suggests that redox imbalance plays a significant role in progression of several neurodegenerative diseases, precise understanding of redox regulated events is lacking. Probes and methodologies that can precisely detect and quantify in vivo levels of reactive oxygen, nitrogen and sulfur species are not available. FUTURE DIRECTIONS Due to the importance of redox control in physiologic processes, organisms have evolved multiple pathways to counteract redox imbalance and maintain homeostasis. Cells and tissues address stress by harnessing an array of both endogenous and exogenous redox active substances. Targeting these pathways can help mitigate symptoms associated with neurodegeneration and may provide avenues for novel therapeutics. Antioxid. Redox Signal. 30, 1450-1499.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Meng XL, Chen CL, Liu YY, Su SJ, Gou JM, Huan FN, Wang D, Liu HS, Ben SB, Lu J. Selenoprotein SELENOK Enhances the Migration and Phagocytosis of Microglial Cells by Increasing the Cytosolic Free Ca 2+ Level Resulted from the Up-Regulation of IP 3R. Neuroscience 2019; 406:38-49. [PMID: 30849448 DOI: 10.1016/j.neuroscience.2019.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/14/2023]
Abstract
Enhancing the migration and phagocytosis of microglial cells is of great significance for the reducing of the risk of the neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The effect of mouse selenoprotein K (mSELENOK) on the migration and phagocytosis of BV2 microglial cells and its mechanism were studied. The results showed that the over-expression of mSELENOK can increase the migratory and phagocytic abilities of the microglial cells, while the knockdown of mSELENOK can decrease the migratory and phagocytic abilities of the cells. The cytosolic free Ca2+ level and inositol trisphosphate receptor (IP3R) mRNA transcript and protein expression were also increased significantly as the consequence of the over-expression of mSELENOK in the microglial cells. On the contrary, the level of cytosolic free Ca2+ and the mRNA transcript and protein expression of IP3R in mSELENOK knockdown cells were decreased significantly. 2-aminoethoxydiphenyl borate (2-APB), an antagonist of IP3R, could prevent the increased migration, phagocytosis, and cytosolic free Ca2+ level of mSELENOK over-expressed microglial cells, and knockdown of IP3R3 could reduce the increased cytosolic Ca2+ level in mSELENOK over-expressed microglial cells. Further studies revealed that selenium supplement (Na2SeO3) can increase the expression of mSELENOK in microglial cells significantly. In summary, these data suggest that mSELENOK can increase cytosolic free Ca2+ level of microglial cells by up-regulating the expression of IP3R, thus enhancing the migration and phagocytosis of microglial cells. Our results indicated that mSELENOK is an important selenoprotein, which plays a role in trace element selenium's functions and can enhance the migration and phagocytosis of microglial cells.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China.
| | - Ying-Ying Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Shu-Jie Su
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jiang-Min Gou
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Feng-Ning Huan
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Dan Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China
| | - Hong-Sheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, China
| | - Song-Bin Ben
- School of Life Science, Liaoning University, Shenyang, China
| | - Jing Lu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China.
| |
Collapse
|
50
|
Kumar N, Singh NP. Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors. FISH & SHELLFISH IMMUNOLOGY 2019; 84:38-47. [PMID: 30261297 DOI: 10.1016/j.fsi.2018.09.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
The present investigation aims to study role of dietary selenium (Se) on growth performance, oxidative stress markers (catalase, superoxide dismutase and glutathione-s-transferase), stress biomarkers [blood glucose, cortisol and heat shock protein (HSP 70) and immunological status, Nitro blue tetrazolium (NBT), total protein, albumin, globulin, A/G ratio, total immunoglobulin and vitamin C] and survival of fish after Aeromonas veronii biovar sobria challenged. Pangasianodon hypophthalmus was treated with lead (Pb, 4 ppm), and high temperature (34 °C) for 60 days. The growth performance was reduced with declined in feed intake, growth rate and feed efficiency in case of group exposed with Pb alone and concurrent exposure to Pb high temperature (34 °C). The Se has immunomodulatory properties however, supplementation of the dietary Se @ 1 and 2 mg/kg diet has been realistically improved growth performance up to 240%, elevated antioxidative status in different tissues, and immunological status were also improved significantly in the P. hypophthalmus. The bacterial challenged with A. veronii biovar sobria in the P. hypophthalmus resulting in less cumulative mortality (%) and high relative (%) survival has been observed with supplementation of dietary Se @ 1 and 2 mg/kg diet. The bioaccumulation of Pb in muscle tissue has been also drastically reduced with supplementation of dietary Se in feed. Hence, overall results indicated that, dietary Se @ 1 and 2 mg/kg have ability to enhanced overall performance and alleviated multiple stresses in P hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, Pune, 413115, India.
| | - Narendra Pratap Singh
- ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, Pune, 413115, India
| |
Collapse
|