1
|
Faulconnier Y, Pawlowski K, Chambon C, Durand D, Pires J, Leroux C. Liver transcriptome and proteome are modulated by nutrient restriction in early lactation cows challenged with intramammary lipopolysaccharide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101326. [PMID: 39303391 DOI: 10.1016/j.cbd.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The objective was to evaluate the effects of nutrient restriction on liver function 24 h after an intramammary lipopolysaccharide (LPS) challenge in early lactation cows using transcriptomic and proteomic analyses. Multiparous Holstein cows were fed a lactation diet (CONT, n = 8) throughout the study or were switched to a diet diluted with barley straw (48 % DM) for 96 h (REST, n = 8) starting at 24 (18 to 30) days in milk. At 72 h, a healthy rear mammary quarter was infused with 50 μg of LPS in all cows. Blood and liver biopsies were collected at 96 h, corresponding to 24 h after LPS challenge. Liver transcriptome was analyzed with a 44 K bovine microarray and proteome by LC MS/MS. Transcriptomic and proteomic data were analyzed using GeneSpring (moderated t-test with Westfall-Young correction) and the "between subject design", respectively. Data mining was performed using Panther and Pathway Studio software. By design, the negative energy balance was -68 and -37 MJ/d in REST and CONT, respectively. Plasma non-esterified FAs, and β-hydroxybutyrate were significantly greater in REST compared to CONT, which is consistent with 96 h of nutrient restriction in REST and ketosis induction. We detected 77 and 91 differentially expressed genes at mRNA and protein levels, respectively, between CONT and REST. Genes involved in fatty acid synthesis (e.g.: ACAT, FASN, SCD) were downregulated in REST, whereas those involved in fatty acid oxidation, detoxification, cholesterol synthesis, lipoprotein lipid secretion, and gluconeogenesis (e.g.: ACAD, CPT1A, CPT1B, CPT2) were upregulated. Differentially abundant mRNAs and proteins were consistent with negative energy balance and plasma metabolite concentrations, and reflected a state of intense lipomobilization, glucose deficit and ketogenesis in REST cows. Nutrient restriction did not change in deep liver expression of genes directly involved in immune function 24 h after an intramammary LPS challenge.
Collapse
Affiliation(s)
- Yannick Faulconnier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Karol Pawlowski
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Poland
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique PFEMcp, F-63122 Saint-Genès Champanelle, France
| | - Denys Durand
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - José Pires
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Gagnon E, Bourgault J, Gobeil É, Thériault S, Arsenault BJ. Impact of loss-of-function in angiopoietin-like 4 on the human phenome. Atherosclerosis 2024; 393:117558. [PMID: 38703417 DOI: 10.1016/j.atherosclerosis.2024.117558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Carriers of the E40K loss-of-function variant in Angiopoietin-like 4 (ANGPTL4), have lower plasma triglyceride levels as well as lower rates of coronary artery disease (CAD) and type 2 diabetes (T2D). These genetic data suggest ANGPTL4 inhibition as a potential therapeutic target for cardiometabolic diseases. However, it is unknown whether the association between E40K and human diseases is due to linkage disequilibrium confounding. The broader impact of genetic ANGPTL4 inhibition is also unknown, raising uncertainties about the safety and validity of this target. METHODS To assess the impact of ANGPLT4 inhibition, we evaluated whether E40K and other loss-of-function variants in ANGPTL4 influenced a wide range of health markers and diseases using 29 publicly available genome-wide association meta-analyses of cardiometabolic traits and diseases, as well as 1589 diseases assessed in electronic health records within FinnGen (n = 309,154). To determine whether these relationships were likely causal, and not driven by other correlated variants, we used the Bayesian fine mapping algorithm CoPheScan. RESULTS The CoPheScan posterior probability of E40K being the causal variant for triglyceride levels was 99.99 %, validating the E40K to proxy lifelong lower activity of ANGPTL4. The E40K variant was associated with lower risk of CAD (odds ratio [OR] = 0.84, 95 % CI = 0.81 to 0.87, p=3.6e-21) and T2D (OR = 0.91, 95 % CI = 0.87 to 0.95, p=2.8e-05) in GWAS meta-analyses, with results replicated in FinnGen. These significant results were also replicated using other rare loss-of-function variants identified through whole exome sequencing in 488,278 participants of the UK Biobank. Using a Mendelian randomization study design, the E40K variant effect on cardiometabolic diseases was concordant with lipoprotein lipase enhancement (r = 0.82), but not hepatic lipase enhancement (r = -0.10), suggesting that ANGPTL4 effects on cardiometabolic diseases are potentially mainly mediated through lipoprotein lipase. After correction for multiple testing, the E40K variant did not significantly increase the risk of any of the 1589 diseases tested in FinnGen. CONCLUSIONS ANGPTL4 inhibition may represent a potentially safe and effective target for cardiometabolic diseases prevention or treatment.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Jérome Bourgault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Émilie Gobeil
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Sébastien Thériault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit J Arsenault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Landfors F, Henneman P, Chorell E, Nilsson SK, Kersten S. Drug-target Mendelian randomization analysis supports lowering plasma ANGPTL3, ANGPTL4, and APOC3 levels as strategies for reducing cardiovascular disease risk. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae035. [PMID: 38895109 PMCID: PMC11182694 DOI: 10.1093/ehjopen/oeae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Aims APOC3, ANGPTL3, and ANGPTL4 are circulating proteins that are actively pursued as pharmacological targets to treat dyslipidaemia and reduce the risk of atherosclerotic cardiovascular disease. Here, we used human genetic data to compare the predicted therapeutic and adverse effects of APOC3, ANGPTL3, and ANGPTL4 inactivation. Methods and results We conducted drug-target Mendelian randomization analyses using variants in proximity to the genes associated with circulating protein levels to compare APOC3, ANGPTL3, and ANGPTL4 as drug targets. We obtained exposure and outcome data from large-scale genome-wide association studies and used generalized least squares to correct for linkage disequilibrium-related correlation. We evaluated five primary cardiometabolic endpoints and screened for potential side effects across 694 disease-related endpoints, 43 clinical laboratory tests, and 11 internal organ MRI measurements. Genetically lowering circulating ANGPTL4 levels reduced the odds of coronary artery disease (CAD) [odds ratio, 0.57 per s.d. protein (95% CI 0.47-0.70)] and Type 2 diabetes (T2D) [odds ratio, 0.73 per s.d. protein (95% CI 0.57-0.94)]. Genetically lowering circulating APOC3 levels also reduced the odds of CAD [odds ratio, 0.90 per s.d. protein (95% CI 0.82-0.99)]. Genetically lowered ANGPTL3 levels via common variants were not associated with CAD. However, meta-analysis of protein-truncating variants revealed that ANGPTL3 inactivation protected against CAD (odds ratio, 0.71 per allele [95%CI, 0.58-0.85]). Analysis of lowered ANGPTL3, ANGPTL4, and APOC3 levels did not identify important safety concerns. Conclusion Human genetic evidence suggests that therapies aimed at reducing circulating levels of ANGPTL3, ANGPTL4, and APOC3 reduce the risk of CAD. ANGPTL4 lowering may also reduce the risk of T2D.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, S-907 36 Umeå, Sweden
| | - Peter Henneman
- Department of Human Genetics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
| | - Stefan K Nilsson
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, S-907 36 Umeå, Sweden
- Department of Medical Biosciences, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Li G, Zhao H, Cheng Z, Liu J, Li G, Guo Y. Single-cell transcriptomic profiling of heart reveals ANGPTL4 linking fibroblasts and angiogenesis in heart failure with preserved ejection fraction. J Adv Res 2024:S2090-1232(24)00068-7. [PMID: 38346487 DOI: 10.1016/j.jare.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
INTRODUCTION Despite the high morbidity and mortality, the effective therapies for heart failure with preserved fraction (HFpEF) are limited as the poor understand of its pathophysiological basis. OBJECTIVE This study was aimed to characterize the cellular heterogeneity and potential mechanisms of HFpEF at single-cell resolution. METHODS An HFpEF mouse model was induced by a high-fat diet with N-nitro-L-arginine methyl ester. Cells from the hearts were subjected to single-cell sequencing. The key protein expression was measured with Immunohistochemistry and immunofluorescence staining. RESULTS In HFpEF hearts, myocardial fibroblasts exhibited higher levels of fibrosis. Furthermore, an increased number of fibroblasts differentiated into high-metabolism and high-fibrosis phenotypes. The expression levels of genes encoding certain pro-angiogenic secreted proteins were decreased in the HFpEF group, as confirmed by bulk RNA sequencing. Additionally, the proportion of the endothelial cell (EC) lineages in the HFpEF group was significantly downregulated, with low angiogenesis and high apoptosis phenotypes observed in these EC lineages. Interestingly, the fibroblasts in the HFpEF heart might cross-link with the EC lineages via over-secretion of ANGPTL4, thus displaying an anti-angiogenic function. Immunohistochemistry and immunofluorescence staining then revealed the downregulation of vascular density and upregulation of ANGPTL4 expression in HFpEF hearts. Finally, we predicted ANGPTL4as a potential druggable target using DrugnomeAI. CONCLUSION In conclusion, this study comprehensively characterized the angiogenesis impairment in HFpEF hearts at single-cell resolution and proposed that ANGPTL4 secretion by fibroblasts may be a potential mechanism underlying this angiogenic abnormality.
Collapse
Affiliation(s)
- Guoxing Li
- Institute of Life Sciences, Chongqing Medical University, 400016, China
| | - Huilin Zhao
- Institute of Life Sciences, Chongqing Medical University, 400016, China
| | - Zhe Cheng
- Department of Cardiology, Chongqing University Three Gorges Hospital, Chongqing 404199, China
| | - Junjin Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, 400016, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 400016, China.
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Chen J, Fang Z, Luo Q, Wang X, Warda M, Das A, Oldoni F, Luo F. Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. Lipids Health Dis 2024; 23:14. [PMID: 38216994 PMCID: PMC10785355 DOI: 10.1186/s12944-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.
Collapse
Affiliation(s)
- Jingfei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfei Fang
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5400, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fei Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Wheless A, Gunn KH, Neher SB. Macromolecular Interactions of Lipoprotein Lipase (LPL). Subcell Biochem 2024; 104:139-179. [PMID: 38963487 DOI: 10.1007/978-3-031-58843-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.
Collapse
Affiliation(s)
- Anna Wheless
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn H Gunn
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Stony Brook University, Stony Brook, USA
| | - Saskia B Neher
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Chen S, Jiang J, Su M, Chen P, Liu X, Lei W, Zhang S, Wu Q, Rong F, Li X, Zheng X, Xiao Q. A nomogram based on the expression level of angiopoietin-like 4 to predict the severity of community-acquired pneumonia. BMC Infect Dis 2023; 23:677. [PMID: 37821811 PMCID: PMC10568757 DOI: 10.1186/s12879-023-08648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The morbidity and mortality of community-acquired pneumonia (CAP) remain high among infectious diseases. It was reported that angiopoietin-like 4 (ANGPTL4) could be a diagnostic biomarker and a therapeutic target for pneumonia. This study aimed to develop a more objective, specific, accurate, and individualized scoring system to predict the severity of CAP. METHODS Totally, 31 non-severe community-acquired pneumonia (nsCAP) patients and 14 severe community-acquired pneumonia (sCAP) patients were enrolled in this study. The CURB-65 and pneumonia severity index (PSI) scores were calculated from the clinical data. Serum ANGPTL4 level was measured by enzyme-linked immunosorbent assay (ELISA). After screening factors by univariate analysis and receiver operating characteristic (ROC) curve analysis, multivariate logistic regression analysis of ANGPTL4 expression level and other risk factors was performed, and a nomogram was developed to predict the severity of CAP. This nomogram was further internally validated by bootstrap resampling with 1000 replications through the area under the ROC curve (AUC), the calibration curve, and the decision curve analysis (DCA). Finally, the prediction performance of the new nomogram model, CURB-65 score, and PSI score was compared by AUC, net reclassification index (NRI), and integrated discrimination improvement (IDI). RESULTS A nomogram for predicting the severity of CAP was developed using three factors (C-reactive protein (CRP), procalcitonin (PCT), and ANGPTL4). According to the internal validation, the nomogram showed a great discrimination capability with an AUC of 0.910. The Hosmer-Lemeshow test and the approximately fitting calibration curve suggested a satisfactory accuracy of prediction. The results of DCA exhibited a great net benefit. The AUC values of CURB-65 score, PSI score, and the new prediction model were 0.857, 0.912, and 0.940, respectively. NRI comparing the new model with CURB-65 score was found to be statistically significant (NRI = 0.834, P < 0.05). CONCLUSION A robust model for predicting the severity of CAP was developed based on the serum ANGPTL4 level. This may provide new insights into accurate assessment of the severity of CAP and its targeted therapy, particularly in the early-stage of the disease.
Collapse
Affiliation(s)
- Siqin Chen
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Jia Jiang
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Minhong Su
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xiang Liu
- Departments of Hematology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Wei Lei
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Shaofeng Zhang
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Qiang Wu
- Department of Cardiology, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Fu Rong
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Xi Li
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China
| | - Xiaobin Zheng
- Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 East Meihua Rd., Zhuhai, 519000, China.
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China.
| |
Collapse
|
8
|
Gomes D, Sobolewski C, Conzelmann S, Schaer T, Lefai E, Alfaiate D, Tseligka ED, Goossens N, Tapparel C, Negro F, Foti M, Clément S. ANGPTL4 is a potential driver of HCV-induced peripheral insulin resistance. Sci Rep 2023; 13:6767. [PMID: 37185283 PMCID: PMC10130097 DOI: 10.1038/s41598-023-33728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic hepatitis C (CHC) is associated with the development of metabolic disorders, including both hepatic and extra-hepatic insulin resistance (IR). Here, we aimed at identifying liver-derived factor(s) potentially inducing peripheral IR and uncovering the mechanisms whereby HCV can regulate the action of these factors. We found ANGPTL4 (Angiopoietin Like 4) mRNA expression levels to positively correlate with HCV RNA (r = 0.46, p < 0.03) and HOMA-IR score (r = 0.51, p = 0.01) in liver biopsies of lean CHC patients. Moreover, we observed an upregulation of ANGPTL4 expression in two models recapitulating HCV-induced peripheral IR, i.e. mice expressing core protein of HCV genotype 3a (HCV-3a core) in hepatocytes and hepatoma cells transduced with HCV-3a core. Treatment of differentiated myocytes with recombinant ANGPTL4 reduced insulin-induced Akt-Ser473 phosphorylation. In contrast, conditioned medium from ANGPTL4-KO hepatoma cells prevented muscle cells from HCV-3a core induced IR. Treatment of HCV-3a core expressing HepG2 cells with PPARγ antagonist resulted in a decrease of HCV-core induced ANGPTL4 upregulation. Together, our data identified ANGPTL4 as a potential driver of HCV-induced IR and may provide working hypotheses aimed at understanding the pathogenesis of IR in the setting of other chronic liver disorders.
Collapse
Affiliation(s)
- Diana Gomes
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cyril Sobolewski
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- U1286-INFINITE-Institute for Translational Research in Inflammation, CHU Lille, Inserm, University Lille, 59000, Lille, France
| | - Stéphanie Conzelmann
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tifany Schaer
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Etienne Lefai
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Dulce Alfaiate
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Infectious Diseases, Hôpital de la Croix Rousse, Lyon University Hospitals, Lyon, France
| | - Eirini D Tseligka
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Goossens
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Negro
- Gastroenterology and Hepatology Division, University Hospitals, Geneva, Switzerland
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland
| | - Michelangelo Foti
- Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Clinical Pathology Division, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
9
|
Zhen EY, Chen YQ, Russell AM, Ehsani M, Siegel RW, Qian Y, Konrad RJ. Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity. Proc Natl Acad Sci U S A 2023; 120:e2214081120. [PMID: 36763533 PMCID: PMC9963551 DOI: 10.1073/pnas.2214081120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Triglyceride (TG) metabolism is highly regulated by angiopoietin-like protein (ANGPTL) family members [Y. Q. Chen et al., J. Lipid Res. 61, 1203-1220 (2020)]. During feeding, ANGPTL8 forms complexes with the fibrinogen-like domain-containing protein ANGPTL4 in adipose tissue to decrease ANGPTL3/8- and ANGPTL4-mediated lipoprotein lipase (LPL)-inhibitory activity and promote TG hydrolysis and fatty acid (FA) uptake. The ANGPTL4/8 complex, however, tightly binds LPL and partially inhibits it in vitro. To try to reconcile the in vivo and in vitro data on ANGPTL4/8, we aimed to find novel binding partners of ANGPTL4/8. To that end, we performed pulldown experiments and found that ANGPTL4/8 bound both tissue plasminogen activator (tPA) and plasminogen, the precursor of the fibrinolytic enzyme plasmin. Remarkably, ANGPTL4/8 enhanced tPA activation of plasminogen to generate plasmin in a manner like that observed with fibrin, while minimal plasmin generation was observed with ANGPTL4 alone. The addition of tPA and plasminogen to LPL-bound ANGPTL4/8 caused rapid, complete ANGPTL4/8 cleavage and increased LPL activity. Restoration of LPL activity in the presence of ANGPTL4/8 was also achieved with plasmin but was blocked when catalytically inactive plasminogen (S760A) was added to tPA or when plasminogen activator inhibitor-1 was added to tPA + plasminogen, indicating that conversion of plasminogen to plasmin was essential. Together, these results suggest that LPL-bound ANGPTL4/8 mimics fibrin to recruit tPA and plasminogen to generate plasmin, which then cleaves ANGPTL4/8, enabling LPL activity to be increased. Our observations thus reveal a unique link between the ANGPTL4/8 complex and plasmin generation.
Collapse
Affiliation(s)
- Eugene Y. Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Yan Q. Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Anna M. Russell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| |
Collapse
|
10
|
Landfors F, Chorell E, Kersten S. Genetic Mimicry Analysis Reveals the Specific Lipases Targeted by the ANGPTL3-ANGPTL8 Complex and ANGPTL4. J Lipid Res 2023; 64:100313. [PMID: 36372100 PMCID: PMC9852701 DOI: 10.1016/j.jlr.2022.100313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations. ANGPTL4 suppression was highly concordant with LPL enhancement but not HL or EL, suggesting ANGPTL4 impacts plasma metabolic parameters exclusively via LPL. The LPL-independent effects of ANGPTL3 suppression on plasma metabolic parameters showed a striking inverse resemblance with EL suppression, suggesting ANGPTL3 not only targets LPL but also targets EL. Investigation of the impact of the ANGPTL3-ANGPTL8 complex on plasma metabolite traits via the ANGPTL8 R59W substitution as an instrumental variable showed a much higher concordance between R59W and EL activity than between R59W and LPL activity, suggesting the R59W substitution more strongly affects EL inhibition than LPL inhibition. Meanwhile, when using a rare and deleterious protein-truncating ANGPTL8 variant as an instrumental variable, the ANGPTL3-ANGPTL8 complex was very LPL specific. In conclusion, our analysis provides strong human genetic evidence that the ANGPTL3-ANGPTL8 complex regulates plasma metabolic parameters, which is achieved by impacting LPL and EL. By contrast, ANGPTL4 influences plasma metabolic parameters exclusively via LPL.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden.
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
11
|
Zhu R, Chen S. Proteomic analysis reveals semaglutide impacts lipogenic protein expression in epididymal adipose tissue of obese mice. Front Endocrinol (Lausanne) 2023; 14:1095432. [PMID: 37025414 PMCID: PMC10070826 DOI: 10.3389/fendo.2023.1095432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Obesity is a global health problem with few pharmacologic options. Semaglutide is a glucagon-like peptide-1 (GLP-1) analogue that induces weight loss. Yet, the role of semaglutide in adipose tissue has not yet been examined. The following study investigated the mechanism of semaglutide on lipid metabolism by analyzing proteomics of epididymal white adipose tissue (eWAT) in obese mice. METHODS A total of 36 C57BL/6JC mice were randomly divided into a normal-chow diet group (NCD, n = 12), high-fat diet (HFD, n = 12), and HFD+semaglutide group (Sema, n = 12). Mice in the Sema group were intraperitoneally administered semaglutide, and the HFD group and the NCD group were intraperitoneally administered an equal volume of normal saline. Serum samples were collected to detect fasting blood glucose and blood lipids. The Intraperitoneal glucose tolerance test (IPGTT) was used to measure the blood glucose value at each time point and calculate the area under the glucose curve. Tandem Mass Tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to study the expression of eWAT, while cellular processes, biological processes, corresponding molecular functions, and related network molecular mechanisms were analyzed by bioinformatics. RESULTS Compared with the model group, the semaglutide-treated mice presented 640 differentially expressed proteins (DEPs), including 292 up-regulated and 348 down-regulated proteins. Bioinformatics analysis showed a reduction of CD36, FABP5, ACSL, ACOX3, PLIN2, ANGPTL4, LPL, MGLL, AQP7, and PDK4 involved in the lipid metabolism in the Sema group accompanied by a decrease in visceral fat accumulation, blood lipids, and improvement in glucose intolerance. CONCLUSION Semaglutide can effectively reduce visceral fat and blood lipids and improve glucose metabolism in obese mice. Semaglutide treatment might have beneficial effects on adipose tissues through the regulation of lipid uptake, lipid storage, and lipolysis in white adipose tissue.
Collapse
Affiliation(s)
- Ruiyi Zhu
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
- *Correspondence: Shuchun Chen,
| |
Collapse
|
12
|
Bai X, Bai A, Tomasicchio M, Hagman JR, Buckle AM, Gupta A, Kadiyala V, Bevers S, Serban KA, Kim K, Feng Z, Spendier K, Hagen G, Fornis L, Griffith DE, Dzieciatkowska M, Sandhaus RA, Gerber AN, Chan ED. α1-Antitrypsin Binds to the Glucocorticoid Receptor with Anti-Inflammatory and Antimycobacterial Significance in Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1746-1759. [PMID: 36162872 PMCID: PMC10829398 DOI: 10.4049/jimmunol.2200227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2024]
Abstract
α1-Antitrypsin (AAT), a serine protease inhibitor, is the third most abundant protein in plasma. Although the best-known function of AAT is irreversible inhibition of elastase, AAT is an acute-phase reactant and is increasingly recognized to have a panoply of other functions, including as an anti-inflammatory mediator and a host-protective molecule against various pathogens. Although a canonical receptor for AAT has not been identified, AAT can be internalized into the cytoplasm and is known to affect gene regulation. Because AAT has anti-inflammatory properties, we examined whether AAT binds the cytoplasmic glucocorticoid receptor (GR) in human macrophages. We report the finding that AAT binds to GR using several approaches, including coimmunoprecipitation, mass spectrometry, and microscale thermophoresis. We also performed in silico molecular modeling and found that binding between AAT and GR has a plausible stereochemical basis. The significance of this interaction in macrophages is evinced by AAT inhibition of LPS-induced NF-κB activation and IL-8 production as well as AAT induction of angiopoietin-like 4 protein, which are, in part, dependent on GR. Furthermore, this AAT-GR interaction contributes to a host-protective role against mycobacteria in macrophages. In summary, this study identifies a new mechanism for the gene regulation, anti-inflammatory, and host-defense properties of AAT.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO;
- Department of Academic Affairs, National Jewish Health, Denver, CO
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO
| | - An Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, UCT Lung Institute and the MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Victoria, Australia
| | - Arnav Gupta
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO
- Department of Medicine, National Jewish Health, Denver, CO
| | | | - Shaun Bevers
- Biophysics Core Facility, University of Colorado School of Medicine, Aurora, CO
| | | | - Kevin Kim
- Department of Academic Affairs, National Jewish Health, Denver, CO
| | - Zhihong Feng
- Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kathrin Spendier
- Department of Physics & Energy Science, University of Colorado, Colorado Springs, CO
- BioFrontiers Center, University of Colorado, Colorado Springs, CO; and
| | - Guy Hagen
- Department of Physics & Energy Science, University of Colorado, Colorado Springs, CO
- BioFrontiers Center, University of Colorado, Colorado Springs, CO; and
| | | | | | - Monika Dzieciatkowska
- Proteomic Mass Spectrometry Facility, University of Colorado School of Medicine, Aurora, CO
| | | | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
- Department of Medicine, National Jewish Health, Denver, CO
| | - Edward D Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO;
- Department of Academic Affairs, National Jewish Health, Denver, CO
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
13
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
14
|
Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh) 2022; 6:e2200093. [PMID: 35676229 DOI: 10.1002/adbi.202200093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Indexed: 01/28/2023]
Abstract
Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
15
|
Obesity and cancer-extracellular matrix, angiogenesis, and adrenergic signaling as unusual suspects linking the two diseases. Cancer Metastasis Rev 2022; 41:517-547. [PMID: 36074318 PMCID: PMC9470659 DOI: 10.1007/s10555-022-10058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Obesity is an established risk factor for several human cancers. Given the association between excess body weight and cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated in cancer initiation, progression, and response to therapy. These factors include circulating nutritional factors, hormones, and cytokines, causing hyperinsulinemia, inflammation, and adipose tissue dysfunction. The impact of these conditions on cancer development and progression has been the focus of extensive literature. In this review, we concentrate on processes that can link obesity and cancer, and which provide a novel perspective: extracellular matrix remodeling, angiogenesis, and adrenergic signaling. We describe molecular mechanisms involved in these processes, which represent putative targets for intervention. Liver, pancreas, and breast cancers were chosen as exemplary disease models. In view of the expanding epidemic of obesity, a better understanding of the tumorigenic process in obese individuals might lead to more effective treatments and preventive measures.
Collapse
|
16
|
Son Y, Paton CM. A Review of free fatty acid-induced cell signaling, angiopoietin-like protein 4, and skeletal muscle differentiation. Front Physiol 2022; 13:987977. [PMID: 36148297 PMCID: PMC9485487 DOI: 10.3389/fphys.2022.987977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal skeletal muscle differentiation from quiescent satellite cells is a highly regulated process, although our understanding of the contribution of nutritional factors in myogenesis is limited. Free fatty acids (FFAs) are known to cause detrimental effects to differentiated skeletal muscle cells by increasing oxidative stress which leads to muscle wasting and insulin resistance in skeletal muscle. In addition, FFAs are thought to act as inhibitors of skeletal muscle differentiation. However, the precise molecular mechanisms underlying the effects of FFAs on skeletal muscle differentiation remains to be elucidated. There is a clear relationship between dietary FFAs and their ability to suppress myogenesis and we propose the hypothesis that the FFA-mediated increase in angiopoietin-like protein 4 (ANGPTL4) may play a role in the inhibition of differentiation. This review discusses the role of FFAs in skeletal muscle differentiation to-date and proposes potential mechanisms of FFA-induced ANGPTL4 mediated inhibition of skeletal muscle differentiation.
Collapse
Affiliation(s)
- Yura Son
- Department Nutritional Sciences, Athens, GA, United States
| | - Chad M. Paton
- Department Nutritional Sciences, Athens, GA, United States
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- *Correspondence: Chad M. Paton,
| |
Collapse
|
17
|
Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. J Lipid Res 2021; 62:100150. [PMID: 34801488 PMCID: PMC8666355 DOI: 10.1016/j.jlr.2021.100150] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Triglycerides are carried in the bloodstream as the components of very low-density lipoproteins and chylomicrons. These circulating triglycerides are primarily hydrolyzed in muscle and adipose tissue by the enzyme lipoprotein lipase (LPL). The activity of LPL is regulated by numerous mechanisms, including by three members of the angiopoietin-like protein family: ANGPTL3, ANGPTL4, and ANGPTL8. In this review, we discuss the recent literature concerning the role and mechanism of action of ANGPTL4 in lipid metabolism. ANGPTL4 is a fasting- and lipid-induced factor secreted by numerous cells, including adipocytes, hepatocytes, (cardio)myocytes, and macrophages. In adipocytes, ANGPTL4 mediates the fasting-induced repression of LPL activity by promoting the unfolding of LPL, leading to the cleavage and subsequent degradation of LPL. The inhibition of LPL by ANGPTL4 is opposed by ANGPTL8, which keeps the LPL active after feeding. In macrophages and (cardio)myocytes, ANGPTL4 functions as a lipid-inducible feedback regulator of LPL-mediated lipid uptake. In comparison, in hepatocytes, ANGPTL4 functions as a local inhibitor of hepatic lipase and possibly as an endocrine inhibitor of LPL in extra-hepatic tissues. At the genetic level, loss-of-function mutations in ANGPTL4 are associated with lower plasma triglycerides and higher plasma HDL-C levels, and a reduced risk of coronary artery disease, suggesting that ANGPTL4 is a viable pharmacological target for reducing cardiovascular risk. Whole-body targeting of ANGPTL4 is contraindicated because of severe pathological complications, whereas liver-specific inactivation of ANGPTL4, either as monotherapy or coupled to anti-ANGPTL3 therapies might be a suitable strategy for lowering plasma triglycerides in selected patient groups. In conclusion, the tissue-specific targeting of ANGPTL4 appears to be a viable pharmacological approach to reduce circulating triglycerides.
Collapse
|
18
|
Cheng JC, Fang L, Li Y, Thakur A, Hoodless PA, Guo Y, Wang Z, Wu Z, Yan Y, Jia Q, Gao Y, Han X, Yu Y, Sun YP. G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression. Commun Biol 2021; 4:1285. [PMID: 34773076 PMCID: PMC8589964 DOI: 10.1038/s42003-021-02816-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insufficient invasion of trophoblast cells into the uterine decidua is associated with preeclampsia (PE). G protein-coupled estrogen receptor (GPER) is a membrane estrogen receptor involved in non-genomic estrogen signaling. GPER is expressed in human trophoblast cells and downregulated GPER levels are noted in PE. However, to date, the role of GPER in trophoblast cells remains largely unknown. Here, we applied RNA sequencing (RNA-seq) to HTR-8/SVneo human trophoblast cells in response to G1, an agonist of GPER, and identified angiopoietin-like 4 (ANGPTL4) as a target gene of GPER. Treatment of trophoblast cells with G1 or 17β-estradiol (E2) activated Yes-associated protein (YAP), the major downstream effector of the Hippo pathway, via GPER but in a mammalian STE20-like protein kinase 1 (MST1)-independent manner. Using pharmacological inhibitors as well as loss- and gain-of-function approaches, our results revealed that YAP activation was required for GPER-stimulated ANGPTL4 expression. Transwell invasion assays demonstrated that activation of GPER-induced ANGPTL4 promoted cell invasion. In addition, the expression levels of GPER, YAP, and ANGPTL4 were downregulated in the placenta of patients with PE. Our findings reveal a mechanism by which GPER exerts its stimulatory effect on human trophoblast cell invasion by upregulating YAP-mediated ANGPTL4 expression. Cheng, Fan, Li et al. identified ANGPTL4 as a G1-induced target gene of GPER/YAP in HRT8 cells using RNA-seq and highlighted its importance in regulating trophoblast cell invasion. The authors also reported GPER downregulation in the placenta and lower estradiol levels in patients who developed preeclampsia.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhen Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yibo Gao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
19
|
Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab 2021; 321:E493-E508. [PMID: 34338039 PMCID: PMC8560382 DOI: 10.1152/ajpendo.00195.2021] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/28/2023]
Abstract
Triglyceride-rich lipoproteins deliver fatty acids to tissues for oxidation and for storage. Release of fatty acids from circulating lipoprotein triglycerides is carried out by lipoprotein lipase (LPL), thus LPL serves as a critical gatekeeper of fatty acid uptake into tissues. LPL activity is regulated by a number of extracellular proteins including three members of the angiopoietin-like family of proteins. In this review, we discuss our current understanding of how, where, and when ANGPTL3, ANGPTL4, and ANGPTL8 regulate lipoprotein lipase activity, with a particular emphasis on how these proteins interact with each other to coordinate triglyceride metabolism and fat partitioning.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| |
Collapse
|
20
|
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Konrad RJ. Angiopoietin-like protein 4 (ANGPTL4) is an inhibitor of endothelial lipase (EL) while the ANGPTL4/8 complex has reduced EL-inhibitory activity. Heliyon 2021; 7:e07898. [PMID: 34504977 PMCID: PMC8417300 DOI: 10.1016/j.heliyon.2021.e07898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
We previously demonstrated that angiopoietin-like protein 8 (ANGPTL8) forms ANGPTL3/8 and ANGPTL4/8 complexes that increase with feeding to direct fatty acids (FA) toward adipose tissue through differential modulation of lipoprotein lipase (LPL) activity. Each complex correlated inversely with high density lipoprotein cholesterol (HDL) in control subjects. We thus investigated ANGPTL3/8 and ANGPTL4/8 levels in type 2 diabetes patients, who can present with decreased HDL. While ANGPTL3/8 levels in type 2 diabetes patients were similar to those previously observed in normal controls, ANGPTL4/8 levels were roughly twice as high as those in control subjects. Concentrations of ANGPTL3/8 and ANGPTL4/8 in type 2 diabetes patients were inversely correlated with HDL, with the correlation being significant for ANGPTL4/8. We therefore measured the ability of the various ANGPTL proteins and complexes to inhibit endothelial lipase (EL), the enzyme which hydrolyzes phospholipids (PL) in HDL. While confirming ANGPTL3 as an EL inhibitor, we found that ANGPTL4 was a more potent EL inhibitor than ANGPTL3. Interestingly, we observed that while ANGPTL3/8 had increased EL-inhibitory activity compared to ANGPTL3 alone, ANGPTL4/8 exhibited decreased potency in inhibiting EL compared to ANGPTL4 alone. Together, these results show for the first time that ANGPTL4 is a more potent EL inhibitor than ANGPTL3 and suggest a possible reason for why ANGPTL4/8 levels are correlated inversely with HDL. ANGPTL4/8 levels are increased in patients with type 2 diabetes. ANGPTL4/8 levels are inversely correlated with HDL in type 2 diabetes patients. ANGPTL4 is an inhibitor of endothelial lipase (EL). ANGPTL4 inhibits EL more potently than ANGPTL3 inhibits EL. ANGPTL4/8 inhibits EL less potently than ANGPTL4 inhibits EL.
Collapse
Affiliation(s)
- Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Thomas G Pottanat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.,Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
21
|
Sylvers-Davie KL, Segura-Roman A, Salvi AM, Schache KJ, Davies BSJ. Angiopoietin-like 3 inhibition of endothelial lipase is not modulated by angiopoietin-like 8. J Lipid Res 2021; 62:100112. [PMID: 34461133 PMCID: PMC8456055 DOI: 10.1016/j.jlr.2021.100112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
High plasma triglyceride (TG) levels and low HDL-C levels are risk factors for atherosclerosis and cardiovascular disease. Both plasma TG and HDL-C levels are regulated in part by the circulating inhibitor, angiopoietin-like 3 (ANGPTL3). ANGPTL3 inhibits the phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL, thus decreasing plasma HDL levels. ANGPTL3 also inhibits LPL, the lipase primarily responsible for the clearance of TGs from the circulation. Previous studies have shown that ANGPTL3 requires complex formation with the related ANGPTL protein, angiopoietin-like 8 (ANGPTL8), to efficiently inhibit LPL, but the role of ANGPTL8 in EL inhibition is not known. In this study, we characterized inhibition and binding of EL by ANGPTL3 and investigated the role of ANGPTL8 in EL inhibition. We found that inhibition of EL by ANGPTL3 was dose dependent and temperature dependent. Interestingly, this inhibition was diminished when EL was bound to endothelial cells or in the presence of heparin. Unlike previous findings with LPL, we found that ANGPTL8 did not significantly alter the binding or the inhibition of EL by ANGPTL3. In addition, we found that a common ANGPTL8 variant, which encodes an R59W mutation, altered the ability of ANGPTL3 to bind and inhibit LPL but not EL. Together, our data indicate that ANGPTL8 is not necessary for EL inhibition. We conclude that ANGPTL8 is specific for the regulation of TG-rich lipoproteins through the LPL pathway and that therapeutically targeting ANGPTL8 for the treatment of hypertriglyceridemia or cardiovascular disease may have different outcomes than targeting ANGPTL3.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Ashley Segura-Roman
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Alicia M Salvi
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Kylie J Schache
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA
| | - Brandon S J Davies
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Kristensen KK, Leth-Espensen KZ, Kumari A, Grønnemose AL, Lund-Winther AM, Young SG, Ploug M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front Cell Dev Biol 2021; 9:702508. [PMID: 34336854 PMCID: PMC8319833 DOI: 10.3389/fcell.2021.702508] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Intravascular processing of triglyceride-rich lipoproteins (TRLs) is crucial for delivery of dietary lipids fueling energy metabolism in heart and skeletal muscle and for storage in white adipose tissue. During the last decade, mechanisms underlying focal lipolytic processing of TRLs along the luminal surface of capillaries have been clarified by fresh insights into the functions of lipoprotein lipase (LPL); LPL's dedicated transporter protein, glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1); and its endogenous inhibitors, angiopoietin-like (ANGPTL) proteins 3, 4, and 8. Key discoveries in LPL biology include solving the crystal structure of LPL, showing LPL is catalytically active as a monomer rather than as a homodimer, and that the borderline stability of LPL's hydrolase domain is crucial for the regulation of LPL activity. Another key discovery was understanding how ANGPTL4 regulates LPL activity. The binding of ANGPTL4 to LPL sequences adjacent to the catalytic cavity triggers cooperative and sequential unfolding of LPL's hydrolase domain resulting in irreversible collapse of the catalytic cavity and loss of LPL activity. Recent studies have highlighted the importance of the ANGPTL3-ANGPTL8 complex for endocrine regulation of LPL activity in oxidative organs (e.g., heart, skeletal muscle, brown adipose tissue), but the molecular mechanisms have not been fully defined. New insights have also been gained into LPL-GPIHBP1 interactions and how GPIHBP1 moves LPL to its site of action in the capillary lumen. GPIHBP1 is an atypical member of the LU (Ly6/uPAR) domain protein superfamily, containing an intrinsically disordered and highly acidic N-terminal extension and a disulfide bond-rich three-fingered LU domain. Both the disordered acidic domain and the folded LU domain are crucial for the stability and transport of LPL, and for modulating its susceptibility to ANGPTL4-mediated unfolding. This review focuses on recent advances in the biology and biochemistry of crucial proteins for intravascular lipolysis.
Collapse
Affiliation(s)
- Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lund-Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
24
|
The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021; 9:biomedicines9070782. [PMID: 34356847 PMCID: PMC8301479 DOI: 10.3390/biomedicines9070782] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoprotein lipase (LPL) plays a major role in the lipid homeostasis mainly by mediating the intravascular lipolysis of triglyceride rich lipoproteins. Impaired LPL activity leads to the accumulation of chylomicrons and very low-density lipoproteins (VLDL) in plasma, resulting in hypertriglyceridemia. While low-density lipoprotein cholesterol (LDL-C) is recognized as a primary risk factor for atherosclerosis, hypertriglyceridemia has been shown to be an independent risk factor for cardiovascular disease (CVD) and a residual risk factor in atherosclerosis development. In this review, we focus on the lipolysis machinery and discuss the potential role of triglycerides, remnant particles, and lipolysis mediators in the onset and progression of atherosclerotic cardiovascular disease (ASCVD). This review details a number of important factors involved in the maturation and transportation of LPL to the capillaries, where the triglycerides are hydrolyzed, generating remnant lipoproteins. Moreover, LPL and other factors involved in intravascular lipolysis are also reported to impact the clearance of remnant lipoproteins from plasma and promote lipoprotein retention in capillaries. Apolipoproteins (Apo) and angiopoietin-like proteins (ANGPTLs) play a crucial role in regulating LPL activity and recent insights into LPL regulation may elucidate new pharmacological means to address the challenge of hypertriglyceridemia in atherosclerosis development.
Collapse
|
25
|
Gunn KH, Gutgsell AR, Xu Y, Johnson CV, Liu J, Neher SB. Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities. J Biol Chem 2021; 296:100312. [PMID: 33482195 PMCID: PMC7949051 DOI: 10.1016/j.jbc.2021.100312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Elevated plasma triglycerides are a risk factor for coronary artery disease, which is the leading cause of death worldwide. Lipoprotein lipase (LPL) reduces triglycerides in the blood by hydrolyzing them from triglyceride-rich lipoproteins to release free fatty acids. LPL activity is regulated in a nutritionally responsive manner by macromolecular inhibitors including angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4). However, the mechanism by which ANGPTL3 inhibits LPL is unclear, in part due to challenges in obtaining pure protein for study. We used a new purification protocol for the N-terminal domain of ANGPTL3, removing a DNA contaminant, and found DNA-free ANGPTL3 showed enhanced inhibition of LPL. Structural analysis showed that ANGPTL3 formed elongated, flexible trimers and hexamers that did not interconvert. ANGPTL4 formed only elongated flexible trimers. We compared the inhibition of ANGPTL3 and ANGPTL4 using human very-low-density lipoproteins as a substrate and found both were noncompetitive inhibitors. The inhibition constants for the trimeric ANGPTL3 (7.5 ± 0.7 nM) and ANGPTL4 (3.6 ± 1.0 nM) were only 2-fold different. Heparin has previously been reported to interfere with ANGPTL3 binding to LPL, so we questioned if the negatively charged heparin was acting in a similar fashion to the DNA contaminant. We found that ANGPTL3 inhibition is abolished by binding to low-molecular-weight heparin, whereas ANGPTL4 inhibition is not. Our data show new similarities and differences in how ANGPTL3 and ANGPTL4 regulate LPL and opens new avenues of investigating the effect of heparin on LPL inhibition by ANGPTL3.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aspen R Gutgsell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caitlin V Johnson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
26
|
Bini S, D’Erasmo L, Di Costanzo A, Minicocci I, Pecce V, Arca M. The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases? Int J Mol Sci 2021; 22:ijms22020742. [PMID: 33451033 PMCID: PMC7828552 DOI: 10.3390/ijms22020742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders.
Collapse
|
27
|
Kluge S, Schubert M, Börmel L, Lorkowski S. The vitamin E long-chain metabolite α-13'-COOH affects macrophage foam cell formation via modulation of the lipoprotein lipase system. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158875. [PMID: 33421592 DOI: 10.1016/j.bbalip.2021.158875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022]
Abstract
The α-tocopherol-derived long-chain metabolite (α-LCM) α-13'-carboxychromanol (α-13'-COOH) is formed via enzymatic degradation of α-tocopherol (α-TOH) in the liver. In the last decade, α-13'-COOH has emerged as a new regulatory metabolite revealing more potent or even different effects compared with its vitamin precursor α-TOH. The detection of α-13'-COOH in human serum has further strengthened the concept of its physiological relevance as a potential regulatory molecule. Here, we present a new facet on the interaction of α-13'-COOH with macrophage foam cell formation. We found that α-13'-COOH (5 μM) increases angiopoietin-like 4 (ANGPTL4) mRNA expression in human THP-1 macrophages in a time- and dose-dependent manner, while α-TOH (100 μM) showed no effects. Interestingly, the mRNA level of lipoprotein lipase (LPL) was not influenced by α-13'-COOH, but α-TOH treatment led to a reduction of LPL mRNA expression. Both compounds also revealed different effects on protein level: while α-13'-COOH reduced the secreted amount of LPL protein via induction of ANGPTL4 cleavage, i.e. activation, the secreted amount of LPL in the α-TOH-treated samples was diminished due to the inhibition of mRNA expression. In line with this, both compounds reduced the catalytic activity of LPL. However, α-13'-COOH but not α-TOH attenuated VLDL-induced lipid accumulation by 35%. In conclusion, only α-13'-COOH revealed possible antiatherogenic effects due to the reduction of VLDL-induced foam cell formation in THP-1 macrophages. Our results provide further evidence for the role of α-13'-COOH as a functional metabolite of its vitamin E precursor.
Collapse
Affiliation(s)
- Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
28
|
Intestinal Population in Host with Metabolic Syndrome during Administration of Chitosan and Its Derivatives. Molecules 2020; 25:molecules25245857. [PMID: 33322383 PMCID: PMC7764266 DOI: 10.3390/molecules25245857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan and its derivatives can alleviate metabolic syndrome by different regulation mechanisms, phosphorylation of AMPK (AMP-activated kinase) and Akt (also known as protein kinase B), suppression of PPAR-γ (peroxisome proliferator-activated receptor-γ) and SREBP-1c (sterol regulatory element–binding proteins), and translocation of GLUT4 (glucose transporter-4), and also the downregulation of fatty-acid-transport proteins, fatty-acid-binding proteins, fatty acid synthetase (FAS), acetyl-CoA carboxylase (acetyl coenzyme A carboxylase), and HMG-CoA reductase (hydroxy methylglutaryl coenzyme A reductase). The improved microbial profiles in the gastrointestinal tract were positively correlated with the improved glucose and lipid profiles in hosts with metabolic syndrome. Hence, this review will summarize the current literature illustrating positive correlations between the alleviated conditions in metabolic syndrome hosts and the normalized gut microbiota in hosts with metabolic syndrome after treatment with chitosan and its derivatives, implying that the possibility of chitosan and its derivatives to serve as therapeutic application will be consolidated. Chitosan has been shown to modulate cardiometabolic symptoms (e.g., lipid and glycemic levels, blood pressure) as well as gut microbiota. However, the literature that summarizes the relationship between such metabolic modulation of chitosan and prebiotic-like effects is limited. This review will discuss the connection among their structures, biological properties, and prebiotic effects for the treatment of metabolic syndrome. Our hope is that future researchers will consider the prebiotic effects as significant contributors to the mitigation of metabolic syndrome.
Collapse
|
29
|
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Roell WC, Konrad RJ. Angiopoietin-like protein 4(E40K) and ANGPTL4/8 complex have reduced, temperature-dependent LPL-inhibitory activity compared to ANGPTL4. Biochem Biophys Res Commun 2020; 534:498-503. [PMID: 33239171 DOI: 10.1016/j.bbrc.2020.11.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
We previously demonstrated that angiopoietin-like 8 (ANGPTL8) forms a localized complex with ANGPTL4 to reduce its lipoprotein lipase (LPL)-inhibitory activity and enable increased postprandial uptake of fatty acids (FA) into adipose tissue. Because prolonged cold exposure may increase adipose tissue FA uptake and decrease circulating triglycerides (TG) by reducing ANGPTL4 expression and inducing ANGPTL8 expression (and thus ANGPTL4/8 expression), we investigated the effect of temperature on ANGPTL4 and ANGPTL4/8 LPL-inhibitory activities in vitro. As the ANGPTL4(E40K) mutation results in decreased TG, we also characterized ANGPTL4(E40K) and ANGPTL4(E40K)/8 complex LPL-inhibitory activities. Interestingly, while ANGPTL3, ANGPTL3/8, and ANGPTL4 showed similar LPL inhibition at 37 °C and 22 °C, the already reduced LPL-inhibitory activity of ANGPTL4/8 at 37 °C was even more decreased at 22 °C. At 37 °C, ANGPTL4(E40K) manifested decreased LPL-inhibitory activity compared to ANGPTL4/8, while ANGPTL4(E40K)/8 had even further reduced potency. Remarkably, ANGPTL4/8, ANGPTL4(E40K), and ANGPTL4(E40K)/8 were each actually capable of stimulating LPL activity at 22 °C. Together, these results indicate that ANGPTL4/8 stimulation of LPL activity at low temperatures may represent an additional mechanism for further increasing adipose tissue FA uptake during cold exposure, beyond that already occurring due to decreased ANGPTL4 expression and increased ANGPTL8 expression. In addition, because ANGPTL4(E40K) has decreased LPL-inhibitory activity compared to ANGPTL4/8, our findings also suggest why ANGPTL4(E40K) carriers have decreased circulating TG levels.
Collapse
Affiliation(s)
- Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Thomas G Pottanat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA; Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - William C Roell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Oldoni F, Cheng H, Banfi S, Gusarova V, Cohen JC, Hobbs HH. ANGPTL8 has both endocrine and autocrine effects on substrate utilization. JCI Insight 2020; 5:138777. [PMID: 32730227 PMCID: PMC7526440 DOI: 10.1172/jci.insight.138777] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
The angiopoietin-like protein ANGPTL8 (A8) is one of 3 ANGPTLs (A8, A3, A4) that coordinate changes in triglyceride (TG) delivery to tissues by inhibiting lipoprotein lipase (LPL), an enzyme that hydrolyzes TG. Previously we showed that A8, which is expressed in liver and adipose tissue, is required to redirect dietary TG from oxidative to storage tissues following food intake. Here we show that A8 from liver and adipose tissue have different roles in this process. Mice lacking hepatic A8 have no circulating A8, high intravascular LPL activity, low plasma TG levels, and evidence of decreased delivery of dietary lipids to adipose tissue. In contrast, mice lacking A8 in adipose tissue have higher postprandial TG levels and similar intravascular LPL activity and plasma A8 levels and higher levels of plasma TG. Expression of A8, together with A4, in cultured cells reduced A4 secretion and A4-mediated LPL inhibition. Thus, hepatic A8 (with A3) acts in an endocrine fashion to inhibit intravascular LPL in oxidative tissues, whereas A8 in adipose tissue enhances LPL activity by autocrine/paracrine inhibition of A4. These combined actions of A8 ensure that TG stores are rapidly replenished and sufficient energy is available until the next meal. Angiopoietin-like protein ANGPTL8 expressed in liver and adipose tissue partner with ANGPTL3 and ANGPTL4 respectively, and replenish adipose tissue triglyceride stores by distinct endocrine and autocrine/paracrine mechanisms.
Collapse
Affiliation(s)
- Federico Oldoni
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haili Cheng
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Serena Banfi
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Helen H Hobbs
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Osada Y, Suzuki T, Mizuta H, Mori K, Miura K, Dohmae N, Simizu S. The fibrinogen C-terminal domain is seldom C-mannosylated but its C-mannosylation is important for the secretion of microfibril-associated glycoprotein 4. Biochim Biophys Acta Gen Subj 2020; 1864:129637. [DOI: 10.1016/j.bbagen.2020.129637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
|
32
|
Qiao L, Shetty SK, Spitler KM, Wattez JS, Davies BSJ, Shao J. Obesity Reduces Maternal Blood Triglyceride Concentrations by Reducing Angiopoietin-Like Protein 4 Expression in Mice. Diabetes 2020; 69:1100-1109. [PMID: 32051149 PMCID: PMC7243287 DOI: 10.2337/db19-1181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/25/2022]
Abstract
To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF (ppHF) feeding, which avoided the dietary effect during pregnancy. We found not only that maternal blood TG concentrations in ppHF dams were remarkably lower than in control dams but also that the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in interscapular brown adipose tissue (iBAT) of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4 -/- dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gonadal white adipose tissue, and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Shwetha K Shetty
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kathryn M Spitler
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jianhua Shao
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| |
Collapse
|
33
|
Alteration of Angiopoietin-Like Protein 4 Levels in Serum or Urine Correlate with Different Biochemical Markers in Hyperlipidemia-Related Proteinuria. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5281251. [PMID: 32280690 PMCID: PMC7125447 DOI: 10.1155/2020/5281251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/26/2020] [Accepted: 02/29/2020] [Indexed: 01/28/2023]
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is widely known as a key regulator of lipid metabolism. We investigated the relationship between ANGPTL4 expression in serum or urine and blood lipid or urine protein levels of patients with hyperlipidemia- (HL-) related proteinuria. Sixty-eight patients with HL-related proteinuria (HL-Pro group), 68 patients with HL without proteinuria (HL-NPro group), 46 patients with non-HL-related proteinuria (NHL-Pro group), and 50 healthy control (Con) subjects were selected. There were no significant differences in serum ANGPTL4 levels between the Con group (36.82 ± 17.03 ng/ml) and the HL-Pro group (27.94 (18.90, 53.72) ng/ml). Additionally, the serum ANGPTL4 levels in the HL-Pro group were significantly lower than those in the HL-NPro group (53.32 ± 24.01 ng/ml) (P < 0.001). The urine ANGPTL4/Cr levels in the HL-Pro group (52.01 (45.25, 79.79) μg/g) were significantly higher than those in the HL-NPro group (9.96 (8.35, 12.43) ng/ml) (P < 0.05). A significant alteration in urine ANGPTL4/Cr levels was observed in the NHL-Pro group (69.41 ± 55.36 μg/g) and the Con group (10.08 ± 2.38 μg/g) as well. There was no correlation between serum and urine ANGPTL4 levels of the four groups (P > 0.05). Serum ANGPTL4 levels (HL-Pro/HL-NPro group) were positively correlated with total cholesterol (TC) and triglyceride (TG) levels in hyperlipidemia patients. However, there was no correlation between urinary ANGPTL4 levels and TC or TG (P > 0.05). Urine ANGPTL4 levels were positively correlated with 24hUPro in patients with renal impairment (HL-Pro/NHL-Pro group). To summarize, ANGPTL4 may be considered an accurate predictor of proteinuria with HL. Notably, serum or urine ANGPTL4 levels indicated the degree of proteinuria or hyperlipidemia, respectively, in HL patients.
Collapse
|
34
|
Ruscica M, Zimetti F, Adorni MP, Sirtori CR, Lupo MG, Ferri N. Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: New therapeutic approaches for the treatment of atherogenic dyslipidemia. Pharmacol Res 2020; 153:104653. [PMID: 31931117 DOI: 10.1016/j.phrs.2020.104653] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Among the determinants of atherosclerotic cardiovascular disease (ASCVD), genetic and experimental evidence has provided data on a major role of angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4) in regulating the activity of lipoprotein lipase (LPL), antagonizing the hydrolysis of triglycerides (TG). Indeed, beyond low-density lipoprotein cholesterol (LDL-C), ASCVD risk is also dependent on a cluster of metabolic abnormalities characterized by elevated fasting and post-prandial levels of TG-rich lipoproteins and their remnants. In a head-to-head comparison between murine models for ANGPTL3 and ANGPTL4, the former was found to be a better pharmacological target for the treatment of hypertriglyceridemia. In humans, loss-of-function mutations of ANGPTL3 are associated with a marked reduction of plasma levels of VLDL, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Carriers of loss-of-function mutations of ANGPTL4 show instead lower TG-rich lipoproteins and a modest but significant increase of HDL. The relevance of ANGPTL3 and ANGPTL4 as new therapeutic targets is proven by the development of monoclonal antibodies or antisense oligonucleotides. Studies in animal models, including non-human primates, have demonstrated that short-term treatment with monoclonal antibodies against ANGPTL3 and ANGPTL4 induces activation of LPL and a marked reduction of plasma TG-rich-lipoproteins, apparently without any major side effects. Inhibition of both targets also partially reduces LDL-C, independent of the LDL receptor. Similar evidence has been observed with the antisense oligonucleotide ANGPTL3-LRX. The genetic studies have paved the way for the development of new ANGPTL3 and 4 antagonists for the treatment of atherogenic dyslipidemias. Conclusive data of phase 2 and 3 clinical trials are still needed in order to define their safety and efficacy profile.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Francesca Zimetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Maria Pia Adorni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Cesare R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
35
|
Li J, Li L, Guo D, Li S, Zeng Y, Liu C, Fu R, Huang M, Xie W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta 2020; 503:19-34. [PMID: 31923423 DOI: 10.1016/j.cca.2019.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Hypertriglyceridemia is a risk factor for a series of diseases, such as cardiovascular disease (CVD), diabetes and nonalcoholic fatty liver disease (NAFLD). Angiopoietin-like proteins (ANGPTLs) family, especially ANGPTL3, ANGPTL4 and ANGPTL8, which regulate lipoprotein lipase (LPL) activity, play pivotal roles in triglyceride (TG) metabolism and related diseases/complications. There are many transcriptional and post-transcriptional factors that participate in physiological and pathological regulation of ANGPTLs to affect triglyceride metabolism. This review is intended to focus on the similarity and difference in the expression, structural features, regulation profile of the three ANGPTLs and inhibitory models for LPL. Description of the regulatory factors of ANGPTLs and the properties in regulating the lipid metabolism involved in the underlying mechanisms in pathological effects on diseases will provide potential therapeutic approaches for the treatment of dyslipidemia related diseases.
Collapse
Affiliation(s)
- Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - DongMing Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - SuYun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - YuXin Zeng
- 2018 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - ChuHao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ru Fu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - MengQian Huang
- 2015 Class of Clinical Medicine, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
36
|
Sodhi A, Ma T, Menon D, Deshpande M, Jee K, Dinabandhu A, Vancel J, Lu D, Montaner S. Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. J Clin Invest 2019; 129:4593-4608. [PMID: 31545295 PMCID: PMC6819094 DOI: 10.1172/jci120879] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
The majority of patients with diabetic macular edema (DME), the most common cause of vision loss in working-age Americans, do not respond adequately to current therapies targeting VEGFA. Here, we show that expression of angiopoietin-like 4 (ANGPTL4), a HIF-1-regulated gene product, is increased in the eyes of diabetic mice and patients with DME. We observed that ANGPTL4 and VEGF act synergistically to destabilize the retinal vascular barrier. Interestingly, while ANGPTL4 modestly enhanced tyrosine phosphorylation of VEGF receptor 2, promotion of vascular permeability by ANGPTL4 was independent of this receptor. Instead, we found that ANGPTL4 binds directly to neuropilin 1 (NRP1) and NRP2 on endothelial cells (ECs), leading to rapid activation of the RhoA/ROCK signaling pathway and breakdown of EC-EC junctions. Treatment with a soluble fragment of NRP1 (sNRP1) prevented ANGPTL4 from binding to NRP1 and blocked ANGPTL4-induced activation of RhoA as well as EC permeability in vitro and retinal vascular leakage in diabetic animals in vivo. In addition, sNRP1 reduced the stimulation of EC permeability by aqueous fluid from patients with DME. Collectively, these data identify the ANGPTL4/NRP/RhoA pathway as a therapeutic target for the treatment of DME.
Collapse
Affiliation(s)
- Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and
| | - Monika Deshpande
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jordan Vancel
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daoyuan Lu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and,Greenebaum Cancer Center, University of Maryland, Baltimore (UMB), Maryland, USA
| |
Collapse
|
37
|
Wang X, Musunuru K. Angiopoietin-Like 3: From Discovery to Therapeutic Gene Editing. JACC Basic Transl Sci 2019; 4:755-762. [PMID: 31709322 PMCID: PMC6834959 DOI: 10.1016/j.jacbts.2019.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 01/24/2023]
Abstract
Individuals with ANGPTL3 loss-of-function mutations have reduced cholesterol levels, triglyceride levels, and risk of coronary heart disease, making ANGPTL3 a potential therapeutic target. An antisense oligonucleotide inhibitor of ANGPTL3 and a monoclonal antibody against ANGPTL3 have been advanced into clinical trials, with encouraging results to date. A distinct approach to targeting ANGPTL3 would be therapeutic gene editing in patients to induce permanent loss of function mutations mimicking those in individuals with naturally occurring cardioprotective mutations.
Hyperlipidemia is a major causal risk factor for atherosclerosis and coronary heart disease (CHD). Angiopoietin-like 3 (ANGPTL3) has emerged as a promising molecular target to reduce CHD risk due to its regulation of all 3 major lipid traits: low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides. Here, the authors review the discovery of ANGPTL3, the role of ANGPTL3 in lipoprotein metabolism, and the genetic association between naturally occurring ANGPTL3 loss-of-function mutations and CHD. In light of the favorable consequences of ANGPTL3 deficiency, various therapeutic strategies to target ANGPTL3 are currently in development, including a monoclonal antibody, an antisense oligonucleotide, and gene editing.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Medicine and Department of Genetics, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kiran Musunuru
- Department of Medicine and Department of Genetics, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Cho DI, Kang HJ, Jeon JH, Eom GH, Cho HH, Kim MR, Cho M, Jeong HY, Cho HC, Hong MH, Kim YS, Ahn Y. Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair. JCI Insight 2019; 4:125437. [PMID: 31434807 DOI: 10.1172/jci.insight.125437] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can suppress pathological inflammation. However, the mechanisms underlying the association between MSCs and inflammation remain unclear. Under coculture conditions with macrophages, MSCs highly expressed angiopoietin-like 4 (ANGPTL4) to blunt the polarization of macrophages toward the proinflammatory phenotype. ANGPTL4-deficient MSCs failed to inhibit the inflammatory macrophage phenotype. In inflammation-related animal models, the injection of coculture medium or ANGPTL4 protein increased the antiinflammatory macrophages in both peritonitis and myocardial infarction. In particular, cardiac function and pathology were markedly improved by ANGPTL4 treatment. We found that retinoic acid-related orphan receptor α (RORα) was increased by inflammatory mediators, such as IL-1β, and bound to ANGPTL4 promoter in MSCs. Collectively, RORα-mediated ANGPTL4 induction was shown to contribute to the antiinflammatory activity of MSCs against macrophages under pathological conditions. This study suggests that the capability of ANGPTL4 to induce tissue repair is a promising opportunity for safe stem cell-free regeneration therapy from a translational perspective.
Collapse
Affiliation(s)
- Dong Im Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hye-Jin Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Hee Jeon
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyang Hee Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - Mi Ra Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Meeyoung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hye-Yun Jeong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyen Chung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - Moon Hwa Hong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
39
|
Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol Med 2019; 25:723-734. [PMID: 31235370 DOI: 10.1016/j.molmed.2019.05.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Alterations in circulating lipids and ectopic lipid deposition impact on the risk of developing cardiovascular and metabolic diseases. Lipoprotein lipase (LPL) hydrolyzes fatty acids (FAs) from triglyceride (TAG)-rich lipoproteins including very low density lipoproteins (VLDLs) and chylomicrons, and regulates their distribution to peripheral tissues. Angiopoietin-like 4 (ANGPTL4) mediates the inhibition of LPL activity under different circumstances. Accumulating evidence associates ANGPTL4 directly with the risk of atherosclerosis and type 2 diabetes (T2D). This review focuses on recent findings on the role of ANGPTL4 in metabolic and cardiovascular diseases. We highlight human and murine studies that explore ANGPTL4 functions in different tissues and how these effect disease development through possible autocrine and paracrine forms of regulation.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suarez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Bailetti D, Bertoccini L, Mancina RM, Barchetta I, Capoccia D, Cossu E, Pujia A, Lenzi A, Leonetti F, Cavallo MG, Romeo S, Baroni MG. ANGPTL4 gene E40K variation protects against obesity-associated dyslipidemia in participants with obesity. Obes Sci Pract 2019; 5:83-90. [PMID: 30820332 PMCID: PMC6381304 DOI: 10.1002/osp4.311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE ANGPTL4 inhibits lipoprotein lipase in adipose tissue, regulating plasma triglycerides levels. In persons with obesity plasma ANGPTL4 levels have been positively correlated with body fat mass, TG levels and low HDL. A loss-of-function E40K mutation in ANGPTL4 prevents LPL inhibition, resulting in lower TGs and higher HDLc in the general population. Since obesity determines metabolic alterations and consequently is a major risk factor for cardiovascular disease, the aim was to explore if obesity-related metabolic abnormalities are modified by the ANGPTL4-E40K mutation. METHODS ANGPTL4-E40K was screened in 1206 Italian participants, of which 863 (71.5%) with obesity. All subjects without diabetes underwent OGTT with calculation of indices of insulin-sensitivity. RESULTS Participants with obesity carrying the E40K variant had significantly lower TG (p = 0.001) and higher HDLc levels (p = 0.024). Also in the whole population low TGs and high HDLc were confirmed in E40K carriers. In the obese subpopulation it was observed that almost all E40K carriers were within the lowest quartile of TGs (p = 1.1 × 10-9). E40K had no substantial effect of on glucose metabolism. Finally, none of the obese E40K carriers had T2D, and together with the favourable lipid profile, they resemble a metabolically healthy obese (MHO) phenotype, compared to 38% of E40E wild-type obese that had diabetes and/or dyslipidaemia (p = 0.0106). CONCLUSIONS In participants with obesity the ANGPTL4-E40K variant protects against dyslipidemia. The phenotype of obese E40K carriers is that of a patient with obesity without metabolic alterations, similar to the phenotype described as metabolic healthy obesity.
Collapse
Affiliation(s)
- D. Bailetti
- Department of Experimental MedicineSapienza University of RomeItaly
| | - L. Bertoccini
- Department of Experimental MedicineSapienza University of RomeItaly
| | - R. M. Mancina
- Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
| | - I. Barchetta
- Department of Experimental MedicineSapienza University of RomeItaly
| | - D. Capoccia
- Department of Experimental MedicineSapienza University of RomeItaly
| | - E. Cossu
- Department of Medical Sciences and Public HealthUniversity of CagliariItaly
| | - A. Pujia
- Department of Medical and Surgical Science, Nutrition UnitUniversity Magna Graecia of CatanzaroItaly
| | - A. Lenzi
- Department of Experimental MedicineSapienza University of RomeItaly
| | - F. Leonetti
- Department of Experimental MedicineSapienza University of RomeItaly
| | - M. G. Cavallo
- Department of Experimental MedicineSapienza University of RomeItaly
| | - S. Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
- Department of Medical and Surgical Science, Nutrition UnitUniversity Magna Graecia of CatanzaroItaly
| | - M. G. Baroni
- Department of Experimental MedicineSapienza University of RomeItaly
| |
Collapse
|
41
|
Gutgsell AR, Ghodge SV, Bowers AA, Neher SB. Mapping the sites of the lipoprotein lipase (LPL)-angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition. J Biol Chem 2018; 294:2678-2689. [PMID: 30591589 DOI: 10.1074/jbc.ra118.005932] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease has been the leading cause of death throughout the world for nearly 2 decades. Hypertriglyceridemia affects more than one-third of the population in the United States and is an independent risk factor for cardiovascular disease. Despite the frequency of hypertriglyceridemia, treatment options are primarily limited to diet and exercise. Lipoprotein lipase (LPL) is an enzyme responsible for clearing triglycerides from circulation, and its activity alone can directly control plasma triglyceride concentrations. Therefore, LPL is a good target for triglyceride-lowering therapeutics. One approach for treating hypertriglyceridemia may be to increase the amount of enzymatically active LPL by preventing its inhibition by angiopoietin-like protein 4 (ANGPTL4). However, little is known about how these two proteins interact. Therefore, we used hydrogen-deuterium exchange MS to identify potential binding sites between LPL and ANGPTL4. We validated sites predicted to be located at the protein-protein interface by using chimeric variants of LPL and an LPL peptide mimetic. We found that ANGPTL4 binds LPL near the active site at the lid domain and a nearby α-helix. Lipase lid domains cover the active site to control both enzyme activation and substrate specificity. Our findings suggest that ANGPTL4 specifically inhibits LPL by binding the lid domain, which could prevent substrate catalysis at the active site. The structural details of the LPL-ANGPTL4 interaction uncovered here may inform the development of therapeutics targeted to disrupt this interaction for the management of hypertriglyceridemia.
Collapse
Affiliation(s)
- Aspen R Gutgsell
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Swapnil V Ghodge
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Albert A Bowers
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Saskia B Neher
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
42
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
43
|
Lotta LA, Stewart ID, Sharp SJ, Day FR, Burgess S, Luan J, Bowker N, Cai L, Li C, Wittemans LBL, Kerrison ND, Khaw KT, McCarthy MI, O'Rahilly S, Scott RA, Savage DB, Perry JRB, Langenberg C, Wareham NJ. Association of Genetically Enhanced Lipoprotein Lipase-Mediated Lipolysis and Low-Density Lipoprotein Cholesterol-Lowering Alleles With Risk of Coronary Disease and Type 2 Diabetes. JAMA Cardiol 2018; 3:957-966. [PMID: 30326043 PMCID: PMC6217943 DOI: 10.1001/jamacardio.2018.2866] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Pharmacological enhancers of lipoprotein lipase (LPL) are in preclinical or early clinical development for cardiovascular prevention. Studying whether these agents will reduce cardiovascular events or diabetes risk when added to existing lipid-lowering drugs would require large outcome trials. Human genetics studies can help prioritize or deprioritize these resource-demanding endeavors. Objective To investigate the independent and combined associations of genetically determined differences in LPL-mediated lipolysis and low-density lipoprotein cholesterol (LDL-C) metabolism with risk of coronary disease and diabetes. Design, Setting, and Participants In this genetic association study, individual-level genetic data from 392 220 participants from 2 population-based cohort studies and 1 case-cohort study conducted in Europe were included. Data were collected from January 1991 to July 2018, and data were analyzed from July 2014 to July 2018. Exposures Six conditionally independent triglyceride-lowering alleles in LPL, the p.Glu40Lys variant in ANGPTL4, rare loss-of-function variants in ANGPTL3, and LDL-C-lowering polymorphisms at 58 independent genomic regions, including HMGCR, NPC1L1, and PCSK9. Main Outcomes and Measures Odds ratio for coronary artery disease and type 2 diabetes. Results Of the 392 220 participants included, 211 915 (54.0%) were female, and the mean (SD) age was 57 (8) years. Triglyceride-lowering alleles in LPL were associated with protection from coronary disease (approximately 40% lower odds per SD of genetically lower triglycerides) and type 2 diabetes (approximately 30% lower odds) in people above or below the median of the population distribution of LDL-C-lowering alleles at 58 independent genomic regions, HMGCR, NPC1L1, or PCSK9. Associations with lower risk were consistent in quintiles of the distribution of LDL-C-lowering alleles and 2 × 2 factorial genetic analyses. The 40Lys variant in ANGPTL4 was associated with protection from coronary disease and type 2 diabetes in groups with genetically higher or lower LDL-C. For a genetic difference of 0.23 SDs in LDL-C, ANGPTL3 loss-of-function variants, which also have beneficial associations with LPL lipolysis, were associated with greater protection against coronary disease than other LDL-C-lowering genetic mechanisms (ANGPTL3 loss-of-function variants: odds ratio, 0.66; 95% CI, 0.52-0.83; 58 LDL-C-lowering variants: odds ratio, 0.90; 95% CI, 0.89-0.91; P for heterogeneity = .009). Conclusions and Relevance Triglyceride-lowering alleles in the LPL pathway are associated with lower risk of coronary disease and type 2 diabetes independently of LDL-C-lowering genetic mechanisms. These findings provide human genetics evidence to support the development of agents that enhance LPL-mediated lipolysis for further clinical benefit in addition to LDL-C-lowering therapy.
Collapse
Affiliation(s)
- Luca A Lotta
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Isobel D Stewart
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Sharp
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Bowker
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Lina Cai
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Chen Li
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Laura B L Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Nicola D Kerrison
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Stephen O'Rahilly
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David B Savage
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
van der Kolk BW, Vink RG, Jocken JWE, Roumans NJT, Goossens GH, Mariman ECM, van Baak MA, Blaak EE. Effect of diet-induced weight loss on angiopoietin-like protein 4 and adipose tissue lipid metabolism in overweight and obese humans. Physiol Rep 2018; 6:e13735. [PMID: 29998530 PMCID: PMC6041698 DOI: 10.14814/phy2.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) plays a role in lipid partitioning by inhibiting lipoprotein lipase (LPL)-dependent plasma clearance of triacylglycerol in adipose tissue. We investigated the effects of diet-induced weight loss on plasma ANGPTL4 concentrations in relation to in vivo adipose tissue LPL activity and lipolysis and adipose tissue ANGPTL4 release in overweight/obese participants. Sixteen individuals (BMI: 28-35 kg/m2 ; 10 women) were randomized to a dietary intervention composed of either a low-calorie diet (1250 kcal/day) for 12 weeks (n = 9) or a very low-calorie diet (500 kcal/day) for 5 weeks, followed by a 4-week weight stable period. Before and after the intervention, we measured arteriovenous concentration differences in combination with adipose tissue blood flow before and after intake of a high-fat mixed meal with [U-13 C]-palmitate to assess in vivo adipose tissue LPL activity and lipolysis. The intervention significantly reduced body weight (-8.6 ± 0.6 kg, P < 0.001). Plasma ANGPTL4 concentrations were unaffected. Significant postprandial adipose tissue ANGPTL4 release into the circulation was observed (P < 0.01). No association was observed between plasma ANGPTL4 and in vivo LPL activity. After intervention, fasting and postprandial plasma ANGPTL4 concentrations were positively associated with adipose tissue nonesterified FA (NEFA) and glycerol release, reflecting in vivo adipose tissue lipolysis (fasting NEFA: P = 0.039 and postprandial NEFA: P = 0.003). In conclusion, plasma ANGPTL4 is unaffected by weight loss and is secreted from human adipose tissue after a high-fat meal in overweight/obese participants. Plasma ANGPTL4 concentrations were not related to in vivo adipose tissue LPL activity, but were positively associated with in vivo adipose tissue lipolysis after weight loss.
Collapse
Affiliation(s)
- Birgitta W. van der Kolk
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Roel G. Vink
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Johan W. E. Jocken
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Nadia J. T. Roumans
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Gijs H. Goossens
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Edwin C. M. Mariman
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Marleen A. van Baak
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Ellen E. Blaak
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| |
Collapse
|
45
|
Gusarova V, O'Dushlaine C, Teslovich TM, Benotti PN, Mirshahi T, Gottesman O, Van Hout CV, Murray MF, Mahajan A, Nielsen JB, Fritsche L, Wulff AB, Gudbjartsson DF, Sjögren M, Emdin CA, Scott RA, Lee WJ, Small A, Kwee LC, Dwivedi OP, Prasad RB, Bruse S, Lopez AE, Penn J, Marcketta A, Leader JB, Still CD, Kirchner HL, Mirshahi UL, Wardeh AH, Hartle CM, Habegger L, Fetterolf SN, Tusie-Luna T, Morris AP, Holm H, Steinthorsdottir V, Sulem P, Thorsteinsdottir U, Rotter JI, Chuang LM, Damrauer S, Birtwell D, Brummett CM, Khera AV, Natarajan P, Orho-Melander M, Flannick J, Lotta LA, Willer CJ, Holmen OL, Ritchie MD, Ledbetter DH, Murphy AJ, Borecki IB, Reid JG, Overton JD, Hansson O, Groop L, Shah SH, Kraus WE, Rader DJ, Chen YDI, Hveem K, Wareham NJ, Kathiresan S, Melander O, Stefansson K, Nordestgaard BG, Tybjærg-Hansen A, Abecasis GR, Altshuler D, Florez JC, Boehnke M, McCarthy MI, Yancopoulos GD, Carey DJ, Shuldiner AR, Baras A, Dewey FE, Gromada J. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat Commun 2018; 9:2252. [PMID: 29899519 PMCID: PMC5997992 DOI: 10.1038/s41467-018-04611-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85–0.92, p = 6.3 × 10−10), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49–0.99, p = 0.041). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D. Genetic variation in ANGPTL4 is associated with lipid traits. Here, the authors find that predicted loss-of-function variants in ANGPTL4 are associated with glucose homeostasis and reduced risk of type 2 diabetes and that Angptl4−/− mice on a high-fat diet show improved insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, University of Michigan, Ann Arbor, 48109, MI, USA.,Department of Human Genetics, University of Michigan, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Lars Fritsche
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Anders Berg Wulff
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, 2100, Denmark
| | | | - Marketa Sjögren
- Department of Clinical Sciences, Malmö, Lund University, Malmö, 221, Sweden
| | - Connor A Emdin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, 02142, MA, USA
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.,Department of Social Work, Tunghai University, Taichung, 40704, Taiwan
| | - Aeron Small
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lydia C Kwee
- Division of Cardiology, Department of Medicine; Molecular Physiology Institute, School of Medicine, Duke University, Durham, 27710, NC, USA
| | - Om Prakash Dwivedi
- Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, 00170, Finland
| | - Rashmi B Prasad
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, 221, Sweden
| | - Shannon Bruse
- Regeneron Genetics Center, Tarrytown, 10591, NY, USA
| | | | - John Penn
- Regeneron Genetics Center, Tarrytown, 10591, NY, USA
| | | | | | | | | | | | | | | | | | | | - Teresa Tusie-Luna
- Instituto de Investigaciones Biomédicas, UNAM, Coyoacán, 04510, Mexico City, Mexico.,Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Department of Biostatistics, University of Liverpool, Liverpool, L69 7ZX, UK.,Estonian Genome Center, University of Tartu, Tartu, 50090, Estonia
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | | | - Patrick Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, 90502, CA, USA
| | - Lee-Ming Chuang
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 10617, Taiwan.,Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei, 10617, Taiwan
| | - Scott Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA.,Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, 19104, PA, USA
| | - David Birtwell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute, Cambridge, 02142, MA, USA.,Center for Human Genetic Research, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute, Cambridge, 02142, MA, USA.,Center for Human Genetic Research, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | | | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, 02142, MA, USA.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Luca A Lotta
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, University of Michigan, Ann Arbor, 48109, MI, USA.,Department of Human Genetics, University of Michigan, University of Michigan, Ann Arbor, 48109, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Oddgeir L Holmen
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, 7601, Norway
| | | | | | | | | | | | | | - Ola Hansson
- Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, 00170, Finland.,Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, 221, Sweden
| | - Leif Groop
- Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, 00170, Finland.,Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, 221, Sweden
| | - Svati H Shah
- Division of Cardiology, Department of Medicine; Molecular Physiology Institute, School of Medicine, Duke University, Durham, 27710, NC, USA
| | - William E Kraus
- Division of Cardiology, Department of Medicine; Molecular Physiology Institute, School of Medicine, Duke University, Durham, 27710, NC, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, 90502, CA, USA
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, 7601, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Medicine, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, 7601, Norway
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Sekar Kathiresan
- Center for Human Genetic Research, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund University, Malmö, 221, Sweden
| | | | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, 2400, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, 2100, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, 2400, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute, Cambridge, 02142, MA, USA.,Department of Molecular Biology, Diabetes Unit, and Center for Human Genetic Research, Massachusetts General Hospital, Boston, 02114, MA, USA.,Departments of Genetics and Medicine, Harvard Medical School, Boston, 02115, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Jose C Florez
- Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, 02115, MA, USA.,Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, 02142, MA, USA.,Department of Medicine, Harvard Medical School, Boston, 02115, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX4 2PG, UK
| | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, 10591, NY, USA.
| | | | | |
Collapse
|
46
|
Olshan DS, Rader DJ. Angiopoietin-like protein 4: A therapeutic target for triglycerides and coronary disease? J Clin Lipidol 2018; 12:583-587. [DOI: 10.1016/j.jacl.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
|
47
|
Erkinova SA, Sokolova EA, Orlov KY, Kiselev VS, Strelnikov NV, Dubovoy AV, Voronina EN, Filipenko ML. Angiopoietin-Like Proteins 4 ( ANGPTL4 ) Gene Polymorphisms and Risk of Brain Arteriovenous Malformation. J Stroke Cerebrovasc Dis 2018; 27:908-913. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
|
48
|
ANGPTL4 T266M variant is associated with reduced cancer invasiveness. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28641978 DOI: 10.1016/j.bbamcr.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secretory protein that can be cleaved to form an N-terminal and a C-terminal protein. Studies performed thus far have linked ANGPTL4 to several cancer-related and metabolic processes. Notably, several point mutations in the C-terminal ANGPTL4 (cANGPTL4) have been reported, although no studies have been performed that ascribed these mutations to cancer-related and metabolic processes. In this study, we compared the characteristics of tumors with and without wild-type (wt) cANGPTL4 and tumors with cANGPTL4 bearing the T266M mutation (T266M cANGPTL4). We found that T266M cANGPTL4 bound to integrin α5β1 with a reduced affinity compared to wt, leading to weaker activation of downstream signaling molecules. The mutant tumors exhibited impaired proliferation, anoikis resistance, and migratory capability and had reduced adenylate energy charge. Further investigations also revealed that cANGPTL4 regulated the expression of Glut2. These findings may explain the differences in the tumor characteristics and energy metabolism observed with the cANGPTL4 T266M mutation compared to tumors without the mutation.
Collapse
|
49
|
La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway. PPAR Res 2017; 2017:8187235. [PMID: 28182091 PMCID: PMC5274667 DOI: 10.1155/2017/8187235] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
The angiopoietin-like 4 (ANGPTL4) protein belongs to a superfamily of secreted proteins structurally related to factors modulating angiogenesis known as angiopoietins. At first, ANGPTL4 has been identified as an adipokine exclusively involved in lipid metabolism, because of its prevalent expression in liver and adipose tissue. This protein regulates lipid metabolism by inhibiting lipoprotein lipase (LPL) activity and stimulating lipolysis of white adipose tissue (WAT), resulting in increased levels of plasma triglycerides (TG) and fatty acids. Subsequently, ANGPTL4 has been shown to be involved in several nonmetabolic and metabolic conditions, both physiological and pathological, including angiogenesis and vascular permeability, cell differentiation, tumorigenesis, glucose homoeostasis, lipid metabolism, energy homeostasis, wound healing, inflammation, and redox regulation. The transcriptional regulation of ANGPTL4 can be modulated by several transcription factors, including PPARα, PPARβ/δ, PPARγ, and HIF-1α, and nutritional and hormonal conditions. Several studies showed that high levels of ANGPTL4 are associated with poor prognosis in patients with various solid tumors, suggesting an important role in cancer onset and progression, metastasis, and anoikis resistance. Here, we have discussed the potential role of ANGPTL4 in mediating the cross talk between metabolic syndromes, such as diabetes and obesity, and cancer through regulation of its expression by PPARs.
Collapse
Affiliation(s)
- Laura La Paglia
- ICAR-CNR, National Research Council of Italy, 90146 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Stefano Caruso
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR 1162, 75010 Paris, France
| | - Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Francesco Passiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
50
|
Knowles HJ. Multiple Roles of Angiopoietin-Like 4 in Osteolytic Disease. Front Endocrinol (Lausanne) 2017; 8:80. [PMID: 28458654 PMCID: PMC5394121 DOI: 10.3389/fendo.2017.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/30/2017] [Indexed: 12/17/2022] Open
Abstract
Hypoxia and the hypoxia-inducible factor (HIF) transcription factor drive pathological bone loss in conditions including rheumatoid arthritis (RA), osteoarthritis, osteoporosis, primary bone tumours, and bone metastatic cancer. There is therefore considerable interest in determining the function(s) of HIF-induced genes in these pathologies. Angiopoietin-like 4 (ANGPTL4) is an adipose-derived, HIF-1α- and PPARγ-induced gene that was originally discovered as an endocrine and autocrine/paracrine regulator of lipid metabolism. Given the inverse relationship between bone adiposity and fracture risk, ANGPTL4 might be considered a good candidate for mediating the downstream effects of HIF-1α relevant to osteolytic disease. This review will consider the possible roles of ANGPTL4 in regulation of osteoclast-mediated bone resorption, cartilage degradation, angiogenesis, and inflammation, focusing on results obtained in the study of RA. Possible roles in other musculoskeletal pathologies will also be discussed. This will highlight ANGPTL4 as a regulator of multiple disease processes, which could represent a novel therapeutic target in osteolytic musculoskeletal disease.
Collapse
Affiliation(s)
- Helen J. Knowles
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- *Correspondence: Helen J. Knowles,
| |
Collapse
|