1
|
Faber JG, Asensio JO, Caiment F, van den Beucken T. Knock-down of FOXO3, GATA2, NFE2L2 and AHR promotes doxorubicin-induced cardiotoxicity in human cardiomyocytes. Toxicology 2024; 509:153977. [PMID: 39427782 DOI: 10.1016/j.tox.2024.153977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Recent advances in cancer therapy have substantially increased survival rates among patients, yet the prolonged effect of current treatment regimens with anthracyclines (ACs) often include severe long-term complications, notably in the form of anthracycline-induced cardiotoxicity (AIC). Despite known associations between AC treatment and AIC, a comprehensive understanding of the underlying molecular pathways remains elusive. This gap is highlighted by the scarcity of reliable therapeutic interventions, with dexrazoxane being the sole FDA-approved drug to mitigate AIC risks. This study aims at elucidating the transcriptional response of human cardiomyocytes (hCMs) to AC exposure by analyzing a previously generated RNA-sequencing dataset of cardiac spheroids subjected to clinically relevant doses of ACs. The analysis revealed a robust transcriptional response identified across various time points. We aimed at identifying important transcription factors (TFs) mediating AIC by employing predictive algorithms to highlight key TFs for further experimental validation. Using shRNA constructs, we further assessed the impact of these TFs on hCM response to doxorubicin (DOX) and revealed that these TFs had a notable impact on hCM survival upon DOX exposure. TFs FOXO3, GATA2, AHR and NFE2L2 were further investigated for their role in AIC including cell viability, DOX uptake, DNA damage repair and induction of apoptosis through Cleaved-Caspase 3. Our study demonstrated that eliminating FOXO3 and GATA2 made hCMs more vulnerable to DOX and the lack of GATA2, NFE2L2 and AHR led to significantly higher intracellular levels of DOX. Additionally, FOXO3 played a role in the repair of hCM DNA damage as we observed markedly enhanced levels of CDKN1A. We also noted significant increases in DNA damage through COMET-assays when FOXO3, GATA2, NFE2L2 and AHR were absent. Furthermore, we investigated the clinical relevance by comparing our results with those from a study based on hiPSC-CMs derived from patients with doxorubicin-induced cardiotoxicity, identifying overlapping TFs and their regulatory roles in critical cellular processes like the cell cycle and DNA repair. This approach not only advances the understanding of the molecular mechanisms behind AIC but also opens possible windows for new therapeutic approaches to mitigate the negative side-effects from patient AC treatment.
Collapse
Affiliation(s)
- J G Faber
- Maastricht University, Department of Translational Genomics, Research Institute for Oncology and Reproduction, Maastricht, the Netherlands
| | - J Ochoteco Asensio
- Maastricht University, Department of Translational Genomics, Research Institute for Oncology and Reproduction, Maastricht, the Netherlands
| | - F Caiment
- Maastricht University, Department of Translational Genomics, Research Institute for Oncology and Reproduction, Maastricht, the Netherlands
| | - T van den Beucken
- Maastricht University, Department of Translational Genomics, Research Institute for Oncology and Reproduction, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
3
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
4
|
Wu X, Wang S, Lin X, Liang H, Wu Y, Tan Y, Zeng H, Chen Q, Wang J, Huang F, Guo Z, Xing P, Nie J, Yao H, Fu Y, Yang Z, Zeng Z, Xu H, Zhong X, Jing C. Association between polycyclic aromatic hydrocarbons and infertility in U.S. women: National Health and Nutrition Examination Survey 2013-2016. Reprod Toxicol 2024; 125:108577. [PMID: 38499229 DOI: 10.1016/j.reprotox.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Although there is a body of research indicating the potential impact of polycyclic aromatic hydrocarbons (PAHs) exposure on male infertility, the understanding of how PAH might affect female infertility is still limited. This study aimed to evaluate associations of PAHs, both individually and as a mixture, with female infertility using multiple logistic regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (QGC) models based on data from the National Health and Nutrition Examination Survey (NHANES) 2013-2016. The study included 729 female participants. Multiple logistic regression results indicated that there was a significant association between the third tertile of 2-hydroxy fluorene (2-OHFLU) and female infertility, and the OR was 2.84 (95% CI: 1.24-6.53, P value = 0.015) compared with the first tertile after adjusting for the potential covariates. The BKMR model revealed a positive overall trend between mixed PAH exposure and female infertility, particularly when the mixture was at or above the 55th percentile, where 2-hydroxynaphthalene (2-OHNAP) and 1-hydroxypyrene (1-OHPYR) were the primary influences of the mixture. The univariate exposure-response function indicated positive associations between individual PAH exposure, specifically 2-OHNAP, 2-OHFLU, and 1-OHPYR, and female infertility. The QGC model also indicated a positive trend between exposure to a mixture of PAHs and female infertility, although it did not reach statistical significance (OR = 1.33, 95%CI: 0.86-2.07), with 1-OHPYR having the greatest positive effect on the outcome. This study suggested that exposure to PAHs may be associated with female infertility and further research is needed to consolidate and confirm these findings.
Collapse
Affiliation(s)
- Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Suixiang Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaoxiao Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Huixian Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jie Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Feng Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziang Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Puyi Xing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiyu Nie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yingyin Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhiyu Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zurui Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongbiao Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Xingming Zhong
- Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510600, China.
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
5
|
Mosa FES, AlRawashdeh S, El-Kadi AOS, Barakat K. Investigating the Aryl Hydrocarbon Receptor Agonist/Antagonist Conformational Switch Using Well-Tempered Metadynamics Simulations. J Chem Inf Model 2024; 64:2021-2034. [PMID: 38457778 DOI: 10.1021/acs.jcim.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates biological signals to control various complicated cellular functions. It plays a crucial role in environmental sensing and xenobiotic metabolism. Dysregulation of AhR is associated with health concerns, including cancer and immune system disorders. Upon binding to AhR ligands, AhR, along with heat shock protein 90 and other partner proteins undergoes a transformation in the nucleus, heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), and mediates numerous biological functions by inducing the transcription of various AhR-responsive genes. In this manuscript, the 3-dimensional structure of the entire human AhR is obtained using an artificial intelligence tool, and molecular dynamics (MD) simulations are performed to study different structural conformations. These conformations provide insights into the protein's function and movement in response to ligand binding. Understanding the dynamic behavior of AhR will contribute to the development of targeted therapies for associated health conditions. Therefore, we employ well-tempered metadynamics (WTE-metaD) simulations to explore the conformational landscape of AhR and obtain a better understanding of its functional behavior. Our computational results are in excellent agreement with previous experimental findings, revealing the closed and open states of helix α1 in the basic helix-loop-helix (bHLH domain) in the cytoplasm at the atomic level. We also predict the inactive form of AhR and identify Arginine 42 as a key residue that regulates switching between closed and open conformations in existing AhR modulators.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sara AlRawashdeh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
6
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
7
|
Fang HH, Hsu J, Su JGJ. Etoricoxib enhances aryl hydrocarbon receptor activity. Toxicology 2023; 499:153658. [PMID: 37890551 DOI: 10.1016/j.tox.2023.153658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Etoricoxib is a nonsteroidal anti-inflammatory drug (NSAID) that possesses properties that include reducing inflammation and relieving pain and fever. Etoricoxib is an oral medication that selectively inhibits cyclooxygenase-2 with high efficacy. Controversies about its cardiovascular side effects have long existed. The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor that plays a key role in the metabolism of xenobiotics and many physiological functions. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is a tryptophan metabolite and endogenous AhR agonist. Activation of AhR by its ligand induces upregulation of AhR-targeted cytochrome P450 (CYP) 1A1 expression. We found that etoricoxib (10-60 μM) induced CYP1A1 mRNA and protein expressions and the transcriptional activity of AhR mediated by the aryl hydrocarbon response element (AHRE) in both mouse Hepa-1c1c7 and human HepG2 cells. Its induction did not appear in AhR signaling-deficient cells, and was inhibited by the AhR antagonist, CH-223191. Etoricoxib was able to induced the translocalization of AhR from cytosol into nucleus. Etoricoxib also worked synergistically with ITE to further increase the expression of CYP1A1 mRNA and protein in human cells. The synergistic effect was higher in cells with than cells without overexpression of AhR. In summary, etoricoxib is an agonist of AhR in both mouse and human cells. Etoricoxib has a synergistic effect on ITE-induced CYP1A1 expression in human cells. The effect of etoricoxib on AhR and ITE on endothelial cells and cardiomyocytes should be further elucidated to in hope to clarify the mechanism of increased cardiovascular events in COX-2 inhibitors and etoricoxib.
Collapse
Affiliation(s)
- Hsiao-Ho Fang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC
| | - Jiun Hsu
- National Taiwan University Hospital YunLin Branch, Yunlin 640203, Taiwan, ROC
| | - Jyan-Gwo Joseph Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC.
| |
Collapse
|
8
|
Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, Yuan T, Liu Q, Zhou T, Wang Q. Joint effects of phenol, chlorophenol pesticide, phthalate, and polycyclic aromatic hydrocarbon on bone mineral density: comparison of four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80001-80013. [PMID: 37289393 DOI: 10.1007/s11356-023-28065-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Exposure to phenols, phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) can harm the skeleton. However, data about the joint effects of these chemicals' mixture on bone health are limited. The final analysis involved 6766 participants aged over 20 years recruited from the National Health and Nutrition Examination Survey. Generalized linear regression, weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp) were performed to investigate the association of the urinary levels of chemicals (three phenols, two chlorophenol pesticides, nine phthalates, and six polycyclic aromatic hydrocarbon [PAH] metabolites) with bone mineral density (BMD) measurements and osteoporosis (OP) risk. Generalized linear regression identified that benzophenone-3, 2,4-dichlorophenol, mono-n-butyl phthalate, 1-napthol, 3-fluorene, 2-fluorene, and 1-phenanthrene were significantly associated with lower BMD and increased OP risk. The WQS index was negatively associated with total femur, femoral neck, and lumbar spine vertebra 1 (L1) BMD among all the participants, with corresponding β (95% confidence interval) values of -0.028 g/cm2 (-0.040, -0.017), -0.015 g/cm2 (-0.025, -0.004), and -0.018 g/cm2 (-0.033, -0.003). In the BKMR analysis, the overall effect of the mixture was significantly associated with femoral neck BMD among males and OP risk among females. The qgcomp model found a significant association between co-exposure and L1 BMD among all the participants and among males. Our study presents compelling epidemiological evidence that co-exposure to phenols, chlorophenol pesticides, phthalates, and PAHs is associated with reduced BMD and elevated OP risk. It provides epidemiologic evidence for the detrimental effects of these chemicals on bone health.
Collapse
Affiliation(s)
- Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Nori P, Haghshenas R, Aftabi Y, Akbari H. Comparison of moderate-intensity continuous training and high-intensity interval training effects on the Ido1-KYN-Ahr axis in the heart tissue of rats with occlusion of the left anterior descending artery. Sci Rep 2023; 13:3721. [PMID: 36879035 PMCID: PMC9988842 DOI: 10.1038/s41598-023-30847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Myocardial infarction (MI) affects many molecular pathways in heart cells, including the Ido1-KYN-Ahr axis. This pathway has recently been introduced as a valuable therapeutic target in infarction. We examined the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on the axis in the heart tissue of male Wistar rats with occluded left anterior descending (OLAD). Thirty rats (age 10-12 weeks, mean weight 275 ± 25 g) were divided into five groups with 6 animals: Control (Ct) group, MICT group, rats with OLAD as MI group, rats with OLAD treated with MICT (MIMCT group) and rats with OLAD treated with HIIT (MIHIIT group). Rats performed the training protocols for 8 weeks, 5 days a week. HIIT included 7 sets of 4 min running with an intensity of 85-90% VO2max and 3 min of recovery activation between sets. MICT included continuous running at the same distance as HIIT with an intensity of 50-60% VO2max for 50 min. The expressions of Ahr, Cyp1a1, and Ido1 were assayed by real-time PCR. Malondialdehyde (MDA) and Kynurenine levels, and AHR, CYP1A1, and IDO1 proteins were detected using ELISA. Data were analyzed using the ANOVA and MANOVA tests. Compared to the CT group, MI caused an increase in all studied factors, but only statistically significant (P < 0.05) for MDA and IDO1. With a greater effect of HIIT, both protocols significantly lowered the proteins expressions in the MIHIIT and MIMCT groups, compared with the MI group (P < 0.001). In healthy rats, only AHR protein significantly decreased in the MICT group compared to the Ct group (P < 0.05). HIIT and MICT protocols significantly reduced the gene and protein expression of Cyp1a1 (P < 0.05) and Ido1 (P < 0.01), and HIIT had a greater effect. In conclusion, both protocols were effective at reducing the levels of Ido1-Kyn-Ahr axis components and oxidative stress in the infarcted heart tissue and HIIT had a higher significant effect.
Collapse
Affiliation(s)
- Pouria Nori
- Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, Iran
| | - Rouhollah Haghshenas
- Associate Professor of Exercise Physiology, Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, Iran.
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hakimeh Akbari
- Assistant Professor of Exercise Physiology, Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, Iran
| |
Collapse
|
10
|
Rude CI, Tidwell LG, Tilton SC, Waters KM, Anderson KA, Tanguay RL. Coupling Environmental Whole Mixture Toxicity Screening with Unbiased RNA-Seq Reveals Site-Specific Biological Responses in Zebrafish. TOXICS 2023; 11:201. [PMID: 36976966 PMCID: PMC10053777 DOI: 10.3390/toxics11030201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Passive sampling device (PSD) extracts paired with developmental toxicity assays in Danio Rerio (zebrafish) are excellent sensors for whole mixture toxicity associated with the bioavailable non-polar organics at environmental sites. We expand this concept by incorporating RNA-Seq in 48-h post fertilization zebrafish statically exposed to PSD extracts from two Portland Harbor Superfund Site locations: river mile 6.5W (RM 6.5W) and river mile 7W (RM 7W). RM 6.5W contained higher concentrations of polycyclic aromatic hydrocarbons (PAHs), but the diagnostic ratios of both extracts indicated similar PAH sourcing and composition. Developmental screens determined RM 6.5W to be more toxic with the most sensitive endpoint being a "wavy" notochord malformation. Differential gene expression from exposure to both extracts was largely parallel, although more pronounced for RM 6.5W. When compared to the gene expression associated with individual chemical exposures, PSD extracts produced some gene signatures parallel to PAHs but were more closely matched by oxygenated-PAHs. Additionally, differential expression, reminiscent of the wavy notochord phenotype, was not accounted for by either class of chemical, indicating the potential of other contaminants driving mixture toxicity. These techniques offer a compelling method for non-targeted hazard characterization of whole mixtures in an in vivo vertebrate system without requiring complete chemical characterization.
Collapse
Affiliation(s)
- Christian I. Rude
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Lane G. Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Susan C. Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Katrina M. Waters
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99354, USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Ravi A, Ravuri M, Krishnan R, Narenkumar J, Anu K, Alsalhi MS, Devanesan S, Kamala-Kannan S, Rajasekar A. Characterization of petroleum degrading bacteria and its optimization conditions on effective utilization of petroleum hydrocarbons. Microbiol Res 2022; 265:127184. [PMID: 36115172 DOI: 10.1016/j.micres.2022.127184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Hydrocarbon contamination is continuing to be a serious environmental problem because of their toxicity. Hydrocarbon components have been known to be carcinogens and neurotoxic organic pollutants. The physical and chemical methods of petroleum removal have become ineffective and also are very costly. Therefore, bioremediation is considered the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization.The current study also concentrates on bioremediation of petroleum products by bacterium isolated from petroleum hydrocarbon contaminated soil. The current work shows that bacterial strains obtained from a petroleum hydrocarbon contaminated environment may degrade petroleum compounds. Two strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were identified as petroleum-degrading bacteria of the isolated bacterial colonies. The best growth conditions for the ARMP2 strain were determined to be pH 9, temperature 29 °C with sodium nitrate as its nitrogen source, whereas for the ARMP8 strain the optimal growth was found at pH 7, temperature 39 °C, and ammonium chloride as the nitrogen source. Both strains were shown to be effective at degrading petroleum chemicals confirmed by GCMS. Overall petroleum product degradation efficiency of the strains ARMP2 and ARMP8 was about 88 % and 73 % respectively in 48 h.The strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were shown to be effective at degrading petroleum compounds in the current study. Even greater results might be obtained if the organisms were utilised in consortia or the degradation time period was extended.
Collapse
Affiliation(s)
- Ashwini Ravi
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India.
| | - Mounesh Ravuri
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India
| | - Ramkishore Krishnan
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India
| | - Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Kasi Anu
- PG and Research Department of Zoology, Auxilium College for Women (Autonomous), Gandhinagar, Vellore, Tamilnadu 632007, India
| | - Mohamad S Alsalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Seralathan Kamala-Kannan
- Division of Biotechnology Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Science, Jeonbuk National University, Iksan 54596, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115, India.
| |
Collapse
|
12
|
Banerjee O, Singh S, Prasad SK, Ray D, Banerjee M, Pal S, Kundu S, Maji BK, Mukherjee S. Dichlorophene activates aryl hydrocarbon receptor (AhR) and indoleamine 2, 3-dioxygenase 1 (IDO1) to mediate splenotoxicity in rat. Drug Chem Toxicol 2022; 45:2311-2318. [PMID: 34107835 DOI: 10.1080/01480545.2021.1935435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dichlorophene (DCP) is a halogenated phenolic compound, widely used as fungicide, bactericide and antiprotozoan and also exhibit therapeutic application in several pathological conditions. Taking account of broad use of DCP, its possible effect on spleen (an important immune organ) was investigated in this study. Male albino rats were treated with graded doses of DCP (10%, 20% and 30% of LD50) and spleen and blood were obtained at 24, 48 and 72 hours post treatment. Oxidative stress parameters, proinflammatory cytokines and protein expression of aryl hydrocarbon receptor (AhR), indoleamine-2, 3-Dioxygenase 1 (IDO1) and nuclear factor erythroid 2-related factor 2 (Nrf2) were measured along with histopathological evaluation of spleen. In the present study, DCP perturbs redox status of splenocytes of rats as evidenced by excess ROS generation, lipid peroxidation and nitric oxide production simultaneously with reduction of antioxidant level [glutathione (GSH)] and inhibition of antioxidative enzymes [superoxide dismutase (SOD) and catalase (CAT)]. Two important proinflammatory cytokines, IL-6 and TNF-α were found to be elevated upon DCP treatment. Moreover, DCP also caused activation of AhR and IDO1 with simultaneous down regulation of Nrf2. All these effects of DCP were found to be dose and duration dependent. DCP also affects the spleen micro-architecture in the present study and these alterations were more prominent in high dose group at 72 hours post treatment. Taken together, all these results suggested that DCP induces oxidative stress and also increases proinflammatory cytokine levels to mount its toxic effect on spleen.
Collapse
Affiliation(s)
- Oly Banerjee
- Department of Physiology, Serampore College, Hooghly, India
| | | | | | - Dibyendu Ray
- Department of Physiology, Serampore College, Hooghly, India
| | | | - Swagata Pal
- Department of Physiology, Raja Peary Mohan College, Hooghly, India
| | - Sudipta Kundu
- Department of Physiology, Kalka Dental College, Meerut, India
| | | | | |
Collapse
|
13
|
Blocking the Aryl Hydrocarbon Receptor Alleviates Myocardial Ischemia/Reperfusion Injury in Rats. Curr Med Sci 2022; 42:966-973. [DOI: 10.1007/s11596-022-2601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
|
14
|
Kim BH, Jung JW, Han D, Cha MJ, Chang JH. One-Week Dynamic Changes in Cardiac Proteomes After Cardiac Radioablation in Experimental Rat Model. Front Cardiovasc Med 2022; 9:898222. [PMID: 35837601 PMCID: PMC9273889 DOI: 10.3389/fcvm.2022.898222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Background Recently, stereotactic ablative radiotherapy (SABR) has been adopted to non-invasively treat catheter ablation-refractory ventricular tachycardia (VT). VT episodes have been dramatically reduced after SABR, within weeks; however the underlying mechanisms of these clinical effects and potential mediators of early anti-arrhythmic effect remain unclear. Methods In this study, cardiac tissue was harvested from non-irradiated control (0 Gy), conventional irradiated control (2 Gy), and radioablative test (25 Gy) rat groups after 3 and 7 days of irradiation. The samples were proteomically analyzed to identify the differentially expressed proteins (DEP) between different groups. Validation experiments were performed similar to validation in profiling where Data independent acquisition and parallel reaction monitoring methods were used. Data are available via ProteomeXchange with identifier PXD030878. Results Functional enrichment analysis of 25 Gy sample showed that among the downregulated proteins, "intracellular signal transduction" and "cell to cell adhesion" proteins were significantly affected at day 3 while "Ras protein signal transduction," "GTPase regulation," and "actin filament-based process" proteins were majorly affected at day 7. GO analysis demonstrated that most of the upregulated proteins belonged to the classes "cellular stress response," "endomembranal organization," or "endoplasmic reticulum stress response" at day 3. At day 7, 42 proteins, mainly associated with response to drug, organic substance, or radiation, were specifically upregulated in 25 Gy. DEP analysis of cardiac conduction showed Ryr2 and Cav1 upregulation and Cacna2d2, Gja3, Scnb2, and Kcnn3 downregulation in the 25 Gy group compared to 0 Gy. In validation experiments, four proteins (Gsta1, Myot, Ephx1, and Capg) were repeatedly detected with 25 Gy-specific patterns at day 7. Conclusions 25 Gy single fractional irradiation induces considerable cardiac proteome changes within the first 7 days, distinct from 2 Gy. Several candidate proteins displayed 25 Gy-specific changes and were related to oxidative stress-induced innate response or cardiac remodeling processes. Future studies should explore the specific role of these proteins upon cardiac radioablation.
Collapse
Affiliation(s)
- Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, South Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Woo Jung
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Myung-Jin Cha
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Yang R, Chen Z, Hu Y. Associations of urinary polycyclic aromatic hydrocarbons with bone mineral density at specific body sites in U.S. adults, NHANES 2001-2004. Endocr Pract 2022; 28:867-874. [PMID: 35764250 DOI: 10.1016/j.eprac.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We aimed to analyze the association between certain types of urinary polycyclic aromatic hydrocarbons (PAHs) and bone mineral density (BMD) at specific sites of the body. METHODS A total of 2,978 eligible participants from the National Health and Nutrition Examination Survey (NHANES 2001-2004) were included in this study. Data of eight urinary PAHs and BMDs of three skeleton sites and the total body were analyzed. Univariate and multivariate linear regression analyses were performed to explore the association between urinary PAHs and BMDs. Subgroup analyses stratified by gender and body mass index (BMI) were also performed. RESULTS After adjustment for all confounders, elevated 3-fluorene [β=0.046; 95% confidence intervals (CI), 0.007-0.084] and 2-fluorene (β=0.054; 95%CI, 0.007-0.100) were associated with greater left arm BMD, while no statistical differences were observed in the relationship between other PAHs and BMDs (all P>0.05). Higher 3-fluorene and 2-fluorene levels were still associated with increased left arm BMD in males (P<0.05), while higher 2-phenanthrene was related to decreased left arm BMD [β=-0.062; 95%CI, -0.105-(-0.019)], right arm BMD [β=-0.059; 95%CI, -0.091-(-0.027)], and total BMD [β=-0.065; 95%CI, -0.119-(-0.012] in females. Similar results were also found in different BMI populations (all P<0.05). CONCLUSION Certain urinary PAHs are associated with BMDs at specific body sites. Future studies are needed to illustrate the mechanisms behind the association to establish a causal relationship and explain the variations in the associations.
Collapse
Affiliation(s)
- Rongyuan Yang
- Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Zonglin Chen
- Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanghua Hu
- Department of Orthopedics, Mindong Hospital, Fujian Medical University, Ningde, Fujian, China.
| |
Collapse
|
16
|
Pan Z, Liu Q, Xu J, Li W, Lin H. Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119163. [PMID: 35305345 DOI: 10.1016/j.envpol.2022.119163] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual-1, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
Collapse
Affiliation(s)
- Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Costal Zone in Zhangzhou, Zhangzhou, 363216, China; Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Qianlong Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Jing Xu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
17
|
Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, Xi H, Ahmed B, Feng F, Mirjat AA, Wang W, Jabar A, Naveed M, Li JH, Zhang Q. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. CHEMOSPHERE 2022; 296:133948. [PMID: 35151703 DOI: 10.1016/j.chemosphere.2022.133948] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals of considerable environmental significance. PAHs are chemical contaminants of fused carbon and hydrogen aromatic rings, basically white, light-yellow, or solid compounds without color. Natural sources of pollution are marginal or less significant, such as volcanic eruptions, natural forest fires, and moorland fires that trigger lightning bursts. The significant determinants of PAH pollution are anthropogenic pollution sources, classified into four groups, i.e., industrial, mobile, domestic, and agricultural pollution sources. Humans can consume PAHs via different routes, such as inhalation, dermal touch, and ingestion. The Effect of PAHs on human health is primarily based on the duration and route of exposure, the volume or concentration of PAHs to which one is exposed, and the relative toxicity of PAHs. Many PAHs are widely referred to as carcinogens, mutagens, and teratogens and thus pose a significant danger to human health and the well-being of humans. Skin, lung, pancreas, esophagus, bladder, colon, and female breast are numerous organs prone to tumor development due to long-term PAH exposure. PAH exposure may increase the risk of lung cancer as well as cardiovascular disease (CVD), including atherosclerosis, thrombosis, hypertension, and myocardial infarction (MI). Preclinical studies have found a relationship between PAH exposure, oxidative stress, and atherosclerosis. In addition, investigations have discovered a relationship between PAH exposure at work and CVD illness and mortality development. This review aims to explain PAH briefly, its transportation, its effects on human health, and a relationship between environmental exposures to PAHs and CVD risk in humans.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, 67480, Sindh, Pakistan
| | - Sobia Noreen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 6300, Pakistan
| | - Yang Liu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Saeed
- The Cholestane University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - He Xi
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Ahmed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ali Asghar Mirjat
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Abdul Jabar
- Faculty of Pharmacy, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China.
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Tamayo M, Martín-Nunes L, Piedras MJ, Martin-Calvo M, Martí-Morente D, Gil-Fernández M, Gómez-Hurtado N, Moro MÁ, Bosca L, Fernández-Velasco M, Delgado C. The Aryl Hydrocarbon Receptor Ligand FICZ Improves Left Ventricular Remodeling and Cardiac Function at the Onset of Pressure Overload-Induced Heart Failure in Mice. Int J Mol Sci 2022; 23:ijms23105403. [PMID: 35628213 PMCID: PMC9141655 DOI: 10.3390/ijms23105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Adverse ventricular remodeling is the heart's response to damaging stimuli and is linked to heart failure and poor prognosis. Formyl-indolo [3,2-b] carbazole (FICZ) is an endogenous ligand for the aryl hydrocarbon receptor (AhR), through which it exerts pleiotropic effects including protection against inflammation, fibrosis, and oxidative stress. We evaluated the effect of AhR activation by FICZ on the adverse ventricular remodeling that occurs in the early phase of pressure overload in the murine heart induced by transverse aortic constriction (TAC). Cardiac structure and function were evaluated by cardiac magnetic resonance imaging (CMRI) before and 3 days after Sham or TAC surgery in mice treated with FICZ or with vehicle, and cardiac tissue was used for biochemical studies. CMRI analysis revealed that FICZ improved cardiac function and attenuated cardiac hypertrophy. These beneficial effects involved the inhibition of the hypertrophic calcineurin/NFAT pathway, transcriptional reduction in pro-fibrotic genes, and antioxidant effects mediated by the NRF2/NQO1 pathway. Overall, our findings provide new insight into the role of cardiac AhR signaling in the injured heart.
Collapse
Affiliation(s)
- María Tamayo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - Laura Martín-Nunes
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - María José Piedras
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
- Facultad de Medicina, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - María Martin-Calvo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - Daniel Martí-Morente
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - Marta Gil-Fernández
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Nieves Gómez-Hurtado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
| | - Lisardo Bosca
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
| | - María Fernández-Velasco
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (M.T.); (L.M.-N.); (M.J.P.); (M.M.-C.); (D.M.-M.); (M.G.-F.); (N.G.-H.); (L.B.); (M.F.-V.)
- Correspondence:
| |
Collapse
|
19
|
Hu J, Bao Y, Huang H, Zhang Z, Chen F, Li L, Wu Q. The preliminary investigation of potential response biomarkers to PAHs exposure on childhood asthma. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:82-93. [PMID: 33972693 DOI: 10.1038/s41370-021-00334-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is a potential risk factor for asthma prevalence. This study aims to explore whether PAHs exposure is associated with childhood asthma by altering microbial diversity and metabolic profiles. METHODS Thirty children with asthma and 30 children as control in Nanjing, China were recruited. Urinary 1-hydroxypyrene (1-OHPyr) level was determined by UPLC-Orbitrap-MS as a PAHs exposure biomarker. Logistic regression was conducted to investigate the association between 1-OHPyr and childhood asthma. Microbial diversity was analyzed by 16S rRNA gene sequencing. Metabolic profiles were obtained by UPLC-Orbitrap-MS methods. Differential microbiota and metabolites were screened and selected as response biomarkers or intermediates. Mediation analysis was conducted to assess the association between PAHs and asthma mediated by intermediates. RESULTS Participating children with and without asthma aged 6.43 ± 2.23 years. The urinary 1-OHPyr level ranged from 0.10 to 1.51 μmol/mol (creatinine corrected) in the participants. The urinary 1-OHPyr level was associated with childhood asthma (OR = 7.21, 95% CI: 1.03-50.42 per 1 μmol/mol unit). Microbial diversity was decreased in the group with asthma and there was a significant shift in the abundance of Proteobacteria (at the phylum level), Veillonella and Prevotella (at the genus level). The enrichment pathway analysis showed that differentially expressed metabolites were involved in purine metabolism, amino acid metabolism, and lipid and fatty acid metabolism. The urinary 1-OHPyr level was associated with the abundance of Actinomyces sp. oral clone IO076 and 7-methylguanine that showed a mediation effect on the association between urinary 1-OHPyr levels and childhood asthma by mediation analysis. CONCLUSIONS Urinary 1-OHPyr exposure was associated with childhood asthma, microbial diversity, and metabolic profiles. Microbial diversity and metabolic profiles may be intermediates as response biomarkers to PAHs exposure in childhood asthma. Further research is needed to confirm these study results and determine the underlying mechanism.
Collapse
Affiliation(s)
- Jinye Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, Nanjing Medical University, Nanjing, China
| | - Yuling Bao
- Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Huang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhan Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Li
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, Nanjing Medical University, Nanjing, China.
| | - Qian Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
22
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
23
|
Chen YY, Kao TW, Wang CC, Chen YJ, Wu CJ, Lai CH, Chen WL. Polycyclic aromatic hydrocarbon metabolites and mortality risk in an adult population. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:37-45. [PMID: 32710234 DOI: 10.1007/s10653-020-00663-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Occupational polycyclic aromatic hydrocarbons (PAHs) exposure has been shown to increase the risk of various cancers and may be associated with carcinogenic mortality. However, no study has explored the relationship between environmental PAH exposure and mortality in general population. The aim of our study was to explore the association between PAH exposure and all-cause, cardiovascular, and cancer mortality in a general US adult population. We analyzed data from the National Health and Nutrition Examination Survey (NHANES 2001-2006) based on the information in this dataset on 692 males and 717 females. PAH exposure was detected using biomarkers from urine samples. Follow-up data on mortality were derived from initial examination of the subjects until death or 31 December 2006 in the NHANES database. We calculated hazard ratios (HRs) of PAH metabolites among all-cause, cardiovascular, and cancer mortality using the multivariate Cox proportional hazards regression model after adjusting for covariates. Among males, 3-phenanthrene was positively associated with increased risk of all-cause mortality (HR 1.043, 95%CI 1.019-1.066). Female participants with higher 2-napthol (HR 1.043, 95%CI 1.014-1.072), 3-fluorene (HR 2.159, 95%CI 1.233-3.779), and 1-phenanthrene (HR = 1.259, 95%CI 1.070-1.481) levels had increased all-cause mortality. In addition, high 3-phenanthrene (HR 1.333, 95%CI 1.008-1.763) and 1-phenanthrene (HR 1.463, 95%CI 1.126-1.900) levels increased the risk of cardiovascular mortality. However, there were no significant findings for cancer mortality in both genders. Environmental PAH exposure among the adult population is associated with non-carcinogenic but not cancer mortality. Future studies are warranted to determine the underlying mechanisms related to these findings.
Collapse
Affiliation(s)
- Yuan-Yuei Chen
- Department of Pathology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Pathology, Tri-Service General Hospital Songshan Branch, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, Taipei, 114, Taiwan, Republic of China
| | - Chung-Ching Wang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ying-Jen Chen
- Department of Ophthalmology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Jung Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, Republic of China
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, Taipei, 114, Taiwan, Republic of China.
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
24
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
25
|
AHR Signaling Interacting with Nutritional Factors Regulating the Expression of Markers in Vascular Inflammation and Atherogenesis. Int J Mol Sci 2020; 21:ijms21218287. [PMID: 33167400 PMCID: PMC7663825 DOI: 10.3390/ijms21218287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
There is strong evidence that exposure to fine particulate matter (PM2.5) and a high-fat diet (HFD) increase the risk of mortality from atherosclerotic cardiovascular diseases. Recent studies indicate that PM2.5 generated by combustion activates the Aryl Hydrocarbon Receptor (AHR) and inflammatory cytokines contributing to PM2.5-mediated atherogenesis. Here we investigate the effects of components of a HFD on PM-mediated activation of AHR in macrophages. Cells were treated with components of a HFD and AHR-activating PM and the expression of biomarkers of vascular inflammation was analyzed. The results show that glucose and triglyceride increase AHR-activity and PM2.5-mediated induction of cytochrome P450 (CYP)1A1 mRNA in macrophages. Cholesterol, fructose, and palmitic acid increased the PM- and AHR-mediated induction of proinflammatory cytokines in macrophages. Treatment with palmitic acid significantly increased the expression of inflammatory cytokines and markers of vascular injury in human aortic endothelial cells (HAEC) after treatment with PM2.5. The PM2.5-mediated activation of the atherogenic markers C-reactive protein (CRP) and S100A9, a damage-associated molecular pattern molecule, was found to be AHR-dependent and involved protein kinase A (PKA) and a CCAAT/enhancer-binding protein (C/EBP) binding element. This study identified nutritional factors interacting with AHR signaling and contributing to PM2.5-induced markers of atherogenesis and future cardiovascular risk.
Collapse
|
26
|
Seo SH, Kwon HO, Park MK, Lee IS, Choi SD. Contamination characteristics of polycyclic aromatic hydrocarbons in river and coastal sediments collected from the multi-industrial city of Ulsan, South Korea. MARINE POLLUTION BULLETIN 2020; 160:111666. [PMID: 33181941 DOI: 10.1016/j.marpolbul.2020.111666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
River and coastal sediments were collected at 17 stations in Ulsan, the largest industrial city in South Korea, to evaluate the levels, profiles, emission sources, and spatial distribution of polycyclic aromatic hydrocarbons (PAHs). The mean concentration of Σ16 PAHs was 722 ng/g, and fluoranthene was a predominant compound. PAHs with 4-6 rings showed higher proportions than PAHs with 2-3 rings. The stations located near industrial complexes showed elevated levels of indicator compounds for petroleum, coal, coke, and fuel combustion. Therefore, petrochemical industries, coal pier, non-ferrous industries, and vehicles were identified as the emission sources. As industrialization and urbanization progressed, an increase in PAH levels and profile changes were observed as a result of the increasing industrial fuel consumption and the increasing number of vehicles. This is the first study that confirmed the change of PAHs in sediment caused by the change of emission sources over time in Ulsan.
Collapse
Affiliation(s)
- Sung-Hee Seo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hye-Ok Kwon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Seok Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Tongyeong 53085, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
27
|
Cunha V, Vogs C, Le Bihanic F, Dreij K. Mixture effects of oxygenated PAHs and benzo[a]pyrene on cardiovascular development and function in zebrafish embryos. ENVIRONMENT INTERNATIONAL 2020; 143:105913. [PMID: 32615350 DOI: 10.1016/j.envint.2020.105913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (oxy-PAHs), are common environmental pollutants known to cause health effects in humans and wild-life. In particular, vertebrate cardiovascular development and function are sensitive to PACs. However, the interactive effects of PAHs and oxy-PAHs on cardiovascular endpoints have not been well studied. In this study, we used zebrafish embryos (ZFEs) as a model to examine developmental and cardiovascular toxicities induced by the three environmental oxy-PAHs benzo[a]fluorenone (BFLO), 4H-cyclopenta[def]phenanthren-4-one (4H-CPO) and, 6H-benzo[cd]pyren-6-one (6H-BPO), and the PAH benzo[a]pyrene (BaP) either as single exposures or binary oxy-PAH + PAH mixtures. 6H-BPO induced developmental and cardiovascular toxicity, including reduced heartbeat rate and blood flow, at lower doses compared to the other compounds. Exposure to binary mixtures generally caused enhanced toxicity and induction of aryl hydrocarbon receptor (AhR)-regulated gene expression (ahr2 and cyp1a) compared to single compound exposure. This was associated with differential expression of genes involved in cardiovascular development and function including atp2a2, myh6, tbx5 and zerg. AhR-knock-down significantly reduced the cardiovascular toxicity of 6H-BPO and its binary mixture with BaP indicating a significant AhR-dependence of the effects. Measurements of internal concentrations showed that the toxicokinetics of BaP and 6H-BPO were altered in the binary mixture compared to the single compound exposure, and most likely due to CYP1 inhibition by 6H-BPO. Altogether, these data support that similar to interactions between PAHs, mixtures of PAHs and oxy-PAHs may cause increased developmental and cardiovascular toxicity in ZFEs through an AhR-dependent mechanism.
Collapse
Affiliation(s)
- Virgínia Cunha
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Carolina Vogs
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; Pharmacology and Toxicology Unit, Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden
| | - Florane Le Bihanic
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden.
| |
Collapse
|
28
|
First evidence of aryl hydrocarbon receptor as a druggable target in hypertension induced by chronic intermittent hypoxia. Pharmacol Res 2020; 159:104869. [DOI: 10.1016/j.phrs.2020.104869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
|
29
|
Akhtar S, Hourani S, Therachiyil L, Al-Dhfyan A, Agouni A, Zeidan A, Uddin S, Korashy HM. Epigenetic Regulation of Cancer Stem Cells by the Aryl Hydrocarbon Receptor Pathway. Semin Cancer Biol 2020; 83:177-196. [PMID: 32877761 DOI: 10.1016/j.semcancer.2020.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/β-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Biomedical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
30
|
Wang Q, Xu X, Zeng Z, Zheng X, Ye K, Huo X. Antioxidant alterations link polycyclic aromatic hydrocarbons to blood pressure in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138944. [PMID: 32434106 DOI: 10.1016/j.scitotenv.2020.138944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with changes in blood pressure. However, the association is controversial in different studies, and antioxidants' roles involved in it remain unclear. To investigate the associations among PAH exposure, blood pressure, and antioxidant concentrations, we recruited 403 children (2-7 years old), of which 203 were from Guiyu, an e-waste-recycling area (exposed group), and 200 were from Haojiang, a nearby non-e-waste area (reference group). Levels of blood pressure, plasma vitamin E, serum superoxide dismutase (SOD), serum glutathione peroxidase (GPx), and eight urinary hydroxylated PAHs (OH-PAHs) were measured. Compared with Haojiang children, Guiyu children had higher urinary OH-PAH concentrations but lower systolic pressure, pulse pressure, serum SOD concentration, and serum GPx concentration (all P < 0.05). PAH exposure was associated with lower systolic pressure, pulse pressure, SOD (adjusted β = -0.091, -0.104 and -0.154, respectively, all P < 0.05, in all children), GPx (adjusted β∑7LMW-OH-PAHs-T3 = -0.332, only in Haojiang children) and vitamin E (adjusted OR∑7LMW-OH-PAHs = 0.838, 95% CI: 0.706, 0.995, only in Guiyu children). Serum SOD and GPx were associated with higher blood pressure (βSOD-T2 for diastolic pressure = 0.215 in all children, βSOD-T3 for systolic pressure = 0.193 in all children, βSOD-T3 for pulse pressure = 0.281 in high-∑8OH-PAHs children, βGPx-T2 = 0.283 and βGPx-T3 = 0.289 for diastolic pressure in Haojiang children, all P < 0.05). Interactions between PAHs and vitamin E were associated with lower systolic pressure and pulse pressure; simple effects of vitamin E to raise systolic pressure and pulse pressure were only significant in low-∑8OH-PAHs children. Our results indicate that PAH exposure, especially at high levels, and further antioxidant-decrease are potential risk factors for blood-pressure decrease in children; vascular function of PAH-exposed children may be impaired, manifesting as disordered blood pressure.
Collapse
Affiliation(s)
- Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Kai Ye
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
31
|
Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin on T Cell Differentiation in Primary Biliary Cholangitis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1754975. [PMID: 32908870 PMCID: PMC7468604 DOI: 10.1155/2020/1754975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Exposure to dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is reported to affect the autoimmune system and increase the risk of autoimmune disease. Generally, dioxin exerts its toxicity via aryl hydrocarbon receptor (AhR). Primary biliary cholangitis (PBC) is a chronic autoimmune disease, and its pathogenesis involves the interplay between immune and environmental factors. This study showed the effect of dendritic cells (DCs) activated by TCDD on naïve CD4+ T cell differentiation in patients with PBC. CD14+ mononuclear cells were isolated from peripheral blood mononuclear cells (PBMCs) of patients with PBC and healthy people by magnetic cell separation and introduced into DCs. Two days after stimulation by TCDD, DCs were cocultured with naïve CD4+ T cells in a ratio of 1 : 2 for 3 days. Then, differentiation-related factors for naïve CD4+ T cells were detected by real-time fluorescence quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and flow cytometry. The results showed that TCDD-activated DCs could promote Th1 and Th17 differentiation in patients with PBC. Therefore, this study demonstrated TCDD as an AhR agonist in regulating naïve CD4+ T cell differentiation in patients with PBC.
Collapse
|
32
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
33
|
Chu PH, Chen G, Kuo D, Braisted J, Huang R, Wang Y, Simeonov A, Boehm M, Gerhold DL. Stem Cell-Derived Endothelial Cell Model that Responds to Tobacco Smoke Like Primary Endothelial Cells. Chem Res Toxicol 2020; 33:751-763. [PMID: 32119531 DOI: 10.1021/acs.chemrestox.9b00363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To clarify how smoking leads to heart attack and stroke, we developed an endothelial cell model (iECs) generated from human induced Pluripotent Stem Cells (iPSC) and evaluated its responses to tobacco smoke. These iECs exhibited a uniform endothelial morphology, and expressed markers PECAM1/CD31, VWF/ von Willebrand Factor, and CDH5/VE-Cadherin. The iECs also exhibited tube formation and acetyl-LDL uptake comparable to primary endothelial cells (EC). RNA sequencing (RNA-Seq) revealed a robust correlation coefficient between iECs and EC (R = 0.76), whereas gene responses to smoke were qualitatively nearly identical between iECs and primary ECs (R = 0.86). Further analysis of transcriptional responses implicated 18 transcription factors in regulating responses to smoke treatment, and identified gene sets regulated by each transcription factor, including pathways for oxidative stress, DNA damage/repair, ER stress, apoptosis, and cell cycle arrest. Assays for 42 cytokines in HUVEC cells and iECs identified 23 cytokines that responded dynamically to cigarette smoke. These cytokines and cellular stress response pathways describe endothelial responses for lymphocyte attachment, activation of coagulation and complement, lymphocyte growth factors, and inflammation and fibrosis; EC-initiated events that collectively lead to atherosclerosis. Thus, these studies validate the iEC model and identify transcriptional response networks by which ECs respond to tobacco smoke. Our results systematically trace how ECs use these response networks to regulate genes and pathways, and finally cytokine signals to other cells, to initiate the diverse processes that lead to atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guibin Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David Kuo
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John Braisted
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Wang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David L Gerhold
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
34
|
Holme JA, Brinchmann BC, Le Ferrec E, Lagadic-Gossmann D, Øvrevik J. Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease? Cardiovasc Toxicol 2020; 19:198-209. [PMID: 30955163 DOI: 10.1007/s12012-019-09518-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [βAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
35
|
Marris CR, Kompella SN, Miller MR, Incardona JP, Brette F, Hancox JC, Sørhus E, Shiels HA. Polyaromatic hydrocarbons in pollution: a heart-breaking matter. J Physiol 2020; 598:227-247. [PMID: 31840250 PMCID: PMC7003748 DOI: 10.1113/jp278885] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 01/17/2023] Open
Abstract
Air pollution is associated with detrimental effects on human health, including decreased cardiovascular function. However, the causative mechanisms behind these effects have yet to be fully elucidated. Here we review the current epidemiological, clinical and experimental evidence linking pollution with cardiovascular dysfunction. Our focus is on particulate matter (PM) and the associated low molecular weight polycyclic aromatic hydrocarbons (PAHs) as key mediators of cardiotoxicity. We begin by reviewing the growing epidemiological evidence linking air pollution to cardiovascular dysfunction in humans. We next address the pollution-based cardiotoxic mechanisms first identified in fish following the release of large quantities of PAHs into the marine environment from point oil spills (e.g. Deepwater Horizon). We finish by discussing the current state of mechanistic knowledge linking PM and PAH exposure to mammalian cardiovascular patho-physiologies such as atherosclerosis, cardiac hypertrophy, arrhythmias, contractile dysfunction and the underlying alterations in gene regulation. Our aim is to show conservation of toxicant pathways and cellular targets across vertebrate hearts to allow a broad framework of the global problem of cardiotoxic pollution to be established. AhR; Aryl hydrocarbon receptor. Dark lines indicate topics discussed in this review. Grey lines indicate topics reviewed elsewhere.
Collapse
Affiliation(s)
- C. R. Marris
- Division of Cardiovascular SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - S. N. Kompella
- Division of Cardiovascular SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. R. Miller
- BHF Centre for Cardiovascular ScienceQueens Medical Research InstituteThe University of EdinburghEdinburghUK
| | - J. P. Incardona
- Environmental and Fisheries Sciences DivisionNorthwest Fisheries Science CenterNational Oceanic and Atmospheric AdministrationSeattleWA98112USA
| | - F. Brette
- INSERMCentre de Recherche Cardio‐Thoracique de BordeauxU1045BordeauxFrance
- Université de BordeauxCentre de Recherche Cardio‐ThoraciqueU1045BordeauxFrance
- IHU LirycElectrophysiology and Heart Modeling InstituteFondation Bordeaux UniversitéPessac‐BordeauxFrance
| | - J. C. Hancox
- School of PhysiologyPharmacology and NeuroscienceBristol Heart InstituteUniversity of BristolBristolBS2 8HWUK
| | - E. Sørhus
- Institute of Marine ResearchPO Box 1870 Nordes NO‐5871BergenNorway
| | - H. A. Shiels
- Division of Cardiovascular SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
36
|
Zhang Y, Wang S, Huang Y, Yang K, Liu Y, Bi X, Liu C, Xiong J, Zhang B, Zhao J, Nie L. Inhibition of CYP1B1 ameliorates cardiac hypertrophy induced by uremic toxin. Mol Med Rep 2019; 21:393-404. [PMID: 31746392 DOI: 10.3892/mmr.2019.10810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/07/2019] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular disease is the predominant complication and leading cause of mortality in patients with chronic kidney disease (CKD). Previous studies have revealed that uremic toxins, including indoxyl sulfate (IS), participate in cardiac hypertrophy. As a heme‑thiolate monooxygenase, cytochrome P450 family 1 subfamily B member 1 (CYP1B1) is able to metabolize arachidonic acid into hydroxyeicosatetraenoic acids, which are thought to serve a central function in the pathophysiology of the cardiovascular system. However, whether CYP1B1 is involved in cardiac hypertrophy induced by uremic toxins remains unknown. The present study revealed that the expression of the CYP1B1 gene was significantly (P<0.05, CKD or IS vs. control) upregulated by CKD serum or IS at the transcriptional and translational level. Furthermore, IS treatment resulted in the nuclear translocation of aryl hydrocarbon receptor (AhR), an endogenous ligand of IS. Binding of AhR in the promoter region of CYP1B1 was confirmed using a chromatin immunoprecipitation assay in the cardiomyoblast H9c2 cell line. In addition, knockdown of AhR or CYP1B1 reversed the production of cardiac hypertrophy markers. The in vivo injection of a CYP1B1 inhibitor significantly (P<0.05, Inhibitor vs. control) attenuated cardiac hypertrophy in mice. The data from the present study clearly demonstrated that CYP1B1 was involved in cardiac hypertrophy induced by uremic toxins.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Shaobo Wang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianjin Bi
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ling Nie
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
37
|
Chen J, Ma X, Yu Z, Deng T, Chen X, Chen L, Dai M. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. BIORESOURCE TECHNOLOGY 2019; 289:121585. [PMID: 31207410 DOI: 10.1016/j.biortech.2019.121585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 05/28/2023]
Abstract
Co-pyrolysis characteristics of kitchen waste (KW) with tire waste (TW) were studied by TGA-FTIR and Py-GC/MS. The kinetic parameters were calculated by Ozawa-Flynn-Wall (OFW) and the Kissinger-Akahira-Sunose (KAS) methods. TGA-FTIR results indicated that CO2, CO, NO, NH3, SO2, CH and CC groups were the main gases released from the pyrolysis process, finding that a certain coupling synergistic interaction occurred between KW and TW. Co-pyrolysis of KW and TW displayed positive synergy in pyrolysis kinetics, especially at the ratio of 5:5 whose apparent activation energy declined 16.78% (by FWO) and 17.54% (by KAS). The Py-GC/MS results found that co-pyrolysis could increase the total peak area of volatile matters (10.92-15.34%). Moreover, co-pyrolysis could increase hydrocarbons (especially for olefins (13.25-37.42%)) and inhibit non-hydrocarbon compounds (about 63%) of volatile products. In brief, co-pyrolysis of KW and TW could be a potential way for improving quality of pyrolysis oil.
Collapse
Affiliation(s)
- Jiawei Chen
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoqian Ma
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Zhaosheng Yu
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Tonghui Deng
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xinfei Chen
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Lin Chen
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Minquan Dai
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
38
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
39
|
Jeon HD, Oh SY. Distribution, toxicity, and origins of polycyclic aromatic hydrocarbons in soils in Ulsan, South Korea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:409. [PMID: 31165273 DOI: 10.1007/s10661-019-7558-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
This study was conducted to investigate the concentrations, distributions, toxicities, and sources of polycyclic aromatic hydrocarbons (PAHs) in the soils from different areas in Ulsan, South Korea. Samples were collected from 41 sites, including a waste treatment facilities area (WA), traffic facilities area (TA), child playground area (CA), industrial area (IA), railroad facilities area (RA), ore and iron scraps fields area (OA), and residential area (ReA). Ulsan was chosen for research area because it used to be an environmental hot spot in South Korea, and 16 PAHs in the US EPA priority pollutant list were selected. The concentration of total PAHs (t-PAHs) ranged from 61.7 to 12,421 μg/kg, and the average concentration of t-PAHs was 706.9 μg/kg. The distribution of PAHs by ring number indicated that the portion followed the order of 4 rings > 5 rings > 3 rings > 6 rings > 2 rings. According to PAH origin indices, LMW/HMW (low molecular weight 2-3 ring PAHs over high molecular weight 4-6-ring PAHs), phenanthrene/anthracene ratio and fluoranthene/pyrene ratio, benzo(g,h,i)perylene/indeno (1,2,3-c,d)pyrene ratio, vehicular emissions, and the combustion of fossil fuel were the sources of PAHs. The strong correlation (R2 = 0.995) between t-PAHs and total carcinogenic PAHs (t-PAHcarc) indicated that the concentration of t-PAHcarc increased in proportion with that of t-PAHs. The toxic equivalent concentrations (TEQs) of PAHs in the soils ranged from 44.0 to 1929.9 μg TEQ/kg. It is imperative to set regulatory levels for PAHs for periodic monitoring and rapid remediation action of contaminated soils, because there are no national standards in South Korea for 15 PAHs with the exception of benzo(a)pyrene.
Collapse
Affiliation(s)
- Hyun-Deok Jeon
- Ulsan Institute of Health and Environment, Ulsan, 44642, South Korea
| | - Seok-Young Oh
- Department of Civil and Environmental Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea.
| |
Collapse
|
40
|
The Potential Environmental Impact of PAHs on Soil and Water Resources in Air Deposited Coal Refuse Sites in Niangziguan Karst Catchment, Northern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081368. [PMID: 30995758 PMCID: PMC6518011 DOI: 10.3390/ijerph16081368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022]
Abstract
Long-term deposition of coal spoil piles may lead to serious pollution of soil and water resources in the dumping sites and surrounding areas. Karst aquifers are highly sensitive to environmental pollution. In this study, the occurrence and release/mobilization of polycyclic aromatic hydrocarbons (PAHs) in coal waste and coal spoils fire gas mineral (CSFGM) were evaluated by field and indoor investigations at Yangquan city, one of the major coal mining districts in the karst areas of northern China. Field investigations showed that dumping of coal waste over decades has resulted in soil and water pollution via spontaneous combustion and leaching of coal spoil piles. Indoor analysis revealed that the 2-ring and 3-ring PAHs contribute to 65-80% of the total PAHs in coal spoils, with naphthalene (Nap), Chrysene (Chr), and Phenanthrene (Phe) as the dominant compounds. Based on a heating/burning simulation experiment, the production of PAHs is temperature-dependent and mainly consists of low-ring PAHs: 2-ring, 3-ring, and part of the 4-ring PAHs. The PAHs in the leachate are light-PAHs (Nap, 20.06 ng/L; Phe, 4.76 ng/L) with few heavy-PAHs. The distribution modes of PAHs in two soil profiles suggest that the precipitation caused downward movement of PAHs and higher mobility of light-PAHs.
Collapse
|
41
|
Chen L, Luo K, Etzel R, Zhang X, Tian Y, Zhang J. Co-exposure to environmental endocrine disruptors in the US population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7665-7676. [PMID: 30666576 DOI: 10.1007/s11356-018-04105-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Exposure to environmental endocrine disruptors (EEDs) has been linked to adverse health outcomes. The vast majority of studies examined one class of EEDs at a time but humans often are exposed to multiple EEDs at the same time. It is, therefore, important to know the co-exposure status of multiple EEDs in an individual, to preclude and control for potential confounding effects posed by co-exposed EEDs. This study examined the concentrations of seven classes of EEDs in the US population utilizing the data from the National Health and Nutrition Examination Survey (NHANES), 2009-2014 survey cycles. We applied linear correlation and cluster analysis to characterize the correlation profile and cluster patterns of these EEDs. We found that EEDs with a similar structure are often highly correlated. Among between-class correlations, mercury and perfluoroalkyl substances (PFAS) and cadmium and polycyclic aromatic hydrocarbons (PAHs) were two significantly correlated EEDs. In epidemiologic studies, measurement and control for co-exposure to pollutants, especially those with similar biological effects, are critical when attempting to make causal inferences. Appropriate statistical methods to handle within- and between-class correlations are needed.
Collapse
Affiliation(s)
- Lin Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Luo
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Etzel
- Milkin Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Xiaoyu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
42
|
Omidi M, Niknahad H, Noorafshan A, Fardid R, Nadimi E, Naderi S, Bakhtari A, Mohammadi-Bardbori A. Co-exposure to an Aryl Hydrocarbon Receptor Endogenous Ligand, 6-Formylindolo[3,2-b]carbazole (FICZ), and Cadmium Induces Cardiovascular Developmental Abnormalities in Mice. Biol Trace Elem Res 2019; 187:442-451. [PMID: 29808276 DOI: 10.1007/s12011-018-1391-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023]
Abstract
6-Formylindolo[3,2-b]carbazole (FICZ) is a signal substance and an endogenous activator of aryl hydrocarbon receptor (AHR). Cadmium (Cd) is an environmental pollutant that can activate both AHR and Wnt/β-catenin signaling pathways. We aimed to determine how dysregulated signaling through AHR-Wnt/β-catenin cross-talk can influence mice heart development. Mice fetuses were exposed to Cd alone or in combination with FICZ in gestation day (GD) 0. In GD18, fetuses were harvested and randomly divided into two parts for stereological and molecular studies. Stereological and tessellation results revealed that when fetuses were co-exposed with FICZ and Cd, abnormalities were synergistically raised. In the presence of FICZ, mRNA expression levels of Wnt/β-catenin target genes significantly enhanced, especially when animals co-treated with FICZ and Cd. Based on these findings, we propose that chemical pollutants can interfere with the normal function of AHR that has a physiological role in regulating Wnt/β-catenin during cardiogenesis.
Collapse
Affiliation(s)
- Mahmoud Omidi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Departments of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Naderi
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
43
|
Matsumura N, Takahara S, Maayah ZH, Parajuli N, Byrne NJ, Shoieb SM, Soltys CLM, Beker DL, Masson G, El-Kadi AO, Dyck JR. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J Mol Cell Cardiol 2018; 125:162-173. [DOI: 10.1016/j.yjmcc.2018.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
|
44
|
Huang Y, Guo J, Lv N, Li S, Wu Y, Bai R, Shen J, Chen G, Zhang D. Associations of urinary polycyclic aromatic hydrocarbons with age at natural menopause in U.S. women aged 35-65, NHANES 2003-2012. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1878-1886. [PMID: 30408876 DOI: 10.1016/j.envpol.2018.09.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) mediated ovarian toxicity has been demonstrated in animal experiments. However, this issue has not been assessed in humans. Based on the National Health and Nutrition Examination Survey (NHANES) 2003-2012, data analysis was restricted to 1221 general U.S. women aged 35-65 years with complete data of interest. Levels of nine PAH metabolites in spot urine specimens were measured by isotope dilution gas chromatography/tandem mass spectrometry (GC-MS/MS). Self-reported information on the menopause status and age at menopause were obtained during interview. Cox proportional hazards regression was employed to assess the associations between PAH levels and natural menopause. Compared with women in the first quartile, subjects in the highest quartile of 1-Hydroxynapthalene [hazard ratio (HR) = 1.46, 95% confidence interval (CI) = 1.06 to 2.01], 2-Hydroxynapthalene (HR = 1.51, 95% CI = 1.12 to 2.05) and 3-Hydroxyfluorene (HR = 1.51, 95% CI = 1.06 to 2.16), or in the second quartile of 9-Hydroxyfluorene (HR = 1.53, 95% CI = 1.05 to 2.22), had elevated risks of earlier onset of natural menopause. Our findings suggested positive associations between urinary PAH levels and earlier age at natural menopause in the general U.S. women. Prospective studies are warranted to confirm the causality in the future.
Collapse
Affiliation(s)
- Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lv
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Li
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongpan Bai
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guangdi Chen
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
45
|
Ooi BK, Chan KG, Goh BH, Yap WH. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2018; 9:1308. [PMID: 30498447 PMCID: PMC6249275 DOI: 10.3389/fphar.2018.01308] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/25/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are closely linked to cellular oxidative stress and inflammation. This may be resulted from the imbalance generation of reactive oxygen species and its role in promoting inflammation, thereby contributing to endothelial dysfunction and cardiovascular complications. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a significant role in regulating expression of antioxidant and cytoprotective enzymes in response to oxidative stress. Natural products have emerged as a potential source of bioactive compounds which have shown to protect against atherogenesis development by activating Nrf2 signaling. This review aims to provide a comprehensive summary of the published data on the function, regulation and activation of Nrf2 as well as the molecular mechanisms of natural products in regulating Nrf2 signaling. The beneficial effects of using natural bioactive compounds as a promising therapeutic approach for the prevention and treatment of CVDs are reviewed.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
46
|
Ding K, He A, Zhong D, Fan L, Liu S, Wang Y, Liu Y, Chen P, Lei H, Ruan R. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis. BIORESOURCE TECHNOLOGY 2018; 268:1-8. [PMID: 30064033 DOI: 10.1016/j.biortech.2018.07.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
The excessive oxygen content in biomass obstructs the production of high-quality bio-oils. In this work, we developed a tandem catalytic bed (TCB) of CeO2 and HZSM-5 in an analytical pyrolyzer to enhance the hydrocarbon production from co-pyrolysis of corn stover (CS) and LDPE. Results indicated that CeO2 could remove oxygen from acids, aldehydes and methoxy phenols, producing a maximum yield of hydrocarbons of 85% and highest selectivity of monocyclic aromatics of 73% in the TCB. The addition of LDPE exhibited a near-complete elimination of oxygenates, leaving hydrocarbons as the overwhelming products. With increasing LDPE proportion, the yield of aliphatics and the selectivity of BTX kept increasing. An optimum H/Ceff of 0.7 was superior to that reported in literature. Mechanisms consisting of deoxygenation, Diels-Alder reactions, hydrocarbon pool and hydrogen transfer reactions were discussed extensively. Our findings provide an efficient method to produce high-quality biofuels from renewable biomass resources.
Collapse
Affiliation(s)
- Kuan Ding
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55108, United States
| | - Aoxi He
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55108, United States; Key Laboratory of Resource Clean Conversion in Ethnic Regions of Education Department of Yunnan, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, Yunnan Minzu University, Kunming 650500, PR China
| | - Daoxu Zhong
- Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, China
| | - Liangliang Fan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55108, United States; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Shiyu Liu
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55108, United States
| | - Yunpu Wang
- Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55108, United States
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354-1671, United States
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55108, United States; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
47
|
Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene. Biochem Pharmacol 2018; 158:1-12. [PMID: 30248327 DOI: 10.1016/j.bcp.2018.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022]
Abstract
In its classical genomic mode of action, the aryl hydrocarbon receptor (AhR) acts as a ligand activated transcription factor regulating expression of target genes such as CYP1A1 and CYP1B1. Some ligands may also trigger more rapid nongenomic responses through AhR, including calcium signaling (Ca2+). In the present study we observed that pyrene induced a relatively rapid increase in intracellular Ca2+-concentrations ([Ca2+]i) in human microvascular endothelial cells (HMEC-1) and human embryonic kidney cells (HEK293) that was attenuated by AhR-inhibitor treatment and/or transient AhR knockdown by RNAi. In silico molecular docking based on homology models, suggested that pyrene is not able to bind to the human AhR in the agonist conformation. Instead, pyrene docked in the antagonist conformation of the AhR PAS-B binding pocket, although the interaction differed from antagonists such as GNF-351 and CH223191. Accordingly, pyrene did not induce CYP1A1 or CYP1B1, but suppressed CYP1-expression by benzo[a]pyrene (B[a]P) in HMEC-1 cells, confirming that pyrene act as an antagonist of AhR-induced gene expression. Use of pharmacological inhibitors and Ca2+-free medium indicated that the pyrene-induced AhR nongenomic [Ca2+]i increase was initiated by Ca2+-release from intracellular stores followed by a later phase of extracellular Ca2+-influx, consistent with store operated calcium entry (SOCE). These effects was accompanied by an AhR-dependent reduction in ordered membrane lipid domains, as determined by di-4-ANEPPDHQ staining. Addition of cholesterol inhibited both the pyrene-induced [Ca2+]i-increase and alterations in membrane lipid order. In conclusion, we propose that pyrene binds to AhR, act as an antagonist of the canonical genomic AhR/Arnt/CYP1-pathway, reduces ordered membrane lipid domains, and activates AhR nongenomic Ca2+-signaling from intracellular stores.
Collapse
|
48
|
Alsaad AMS. Dasatinib induces gene expression of CYP1A1, CYP1B1, and cardiac hypertrophy markers (BNP, β-MHC) in rat cardiomyocyte H9c2 cells. Toxicol Mech Methods 2018; 28:678-684. [DOI: 10.1080/15376516.2018.1497746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Abdulaziz M. S. Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Guo J, Huang Y, Bian S, Zhao C, Jin Y, Yu D, Wu X, Zhang D, Cao W, Jing F, Chen G. Associations of urinary polycyclic aromatic hydrocarbons with bone mass density and osteoporosis in U.S. adults, NHANES 2005-2010. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:209-218. [PMID: 29738949 DOI: 10.1016/j.envpol.2018.04.108] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 05/20/2023]
Abstract
UNLABELLED Polycyclic aromatic hydrocarbons (PAHs) are environmental endocrine disruptors, which may modify the bone mineralization. However, epidemiological evidences on this issue were scant. We aimed to investigate the associations of PAHs with bone mass density (BMD) and osteoporosis based on a nationally-representative sample from general U.S. POPULATION Data utilized were extracted from the 2005-2010 National Health and Nutrition Examination Survey (NHANES). Nine urinary PAHs (U-PAHs) metabolites were measured as exposure biomarkers. Associations of specific U-PAHs with BMD and osteoporosis were estimated by multivariable adjusted linear regression models and logistic regression models, respectively. Compared with women at the first tertiles, those at the third tertiles of 1-Hydroxynapthalene, 2-Hydroxyfluorene, 3-Hydroxyphenanthrene, 2-Hydroxyphenanthrene and 9-Hydroxyfluorene had significantly decreased BMD levels [coefficient (β) = -0.023 to -0.014, p < 0.05] or increased likelihoods of osteoporosis [odds ratios (ORs) = 1.86 to 3.36, p < 0.05] at different bone sites. Whereas, elevated BMD levels (β = 0.021, p < 0.05) at trochanter and decreased likelihoods of osteoporosis (OR = 0.33, p < 0.05) at intertrochanter were observed among women at the second tertiles of 1-Hydroxypyrene and 2-Hydroxynapthalene, respectively. Similar results were found for all the population, i.e., combination of men and women. Most of the significant associations disappeared among adult men only. Furthermore, Associations between U-PAHs and BMD were stronger for postmenopausal women when compared with premenopausal group. In conclusion, associations of U-PAHs with BMD and osteoporosis varied by specific U-PAHs and bone sites, as well as menopausal status and genders in U.S. adults.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suchen Bian
- Department of Clinical Medicine, Undergraduate School, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuning Zhao
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yumin Jin
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Yu
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinkai Wu
- Department of Clinical Medicine, Undergraduate School, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiming Cao
- School of Humanities and Social Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangyuan Jing
- Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Guangdi Chen
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
50
|
Zheng J, Zheng W, Zhou Y, Jiang S, Spencer P, Ye W, Zheng Y, He G, Qu W. Heavy Exposure of Waste Collectors to Polycyclic Aromatic Hydrocarbons in a Poor Rural Area of Middle China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8866-8875. [PMID: 29963854 DOI: 10.1021/acs.est.8b02024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Manual collection and open-air incineration of waste materials is a common practice in rural regions of China and beyond. Low-temperature combustion of rubber and plastic waste generates high levels of airborne polycyclic aromatic hydrocarbons (PAHs). We investigated ten urinary hydroxylated PAH metabolites (OH-PAHs), the oxidative damage biomarker (8-hydroxy-deoxyguanosine, 8-OHdG), and four serum biomarkers including gamma-glutamyl transferase (GGT) and alanine aminotransferase (ALT) in 41 waste collectors and 122 control subjects residing in the same or a distant rural village in Henan Province. The level of PAH metabolites in urine (median: 17.24 μg/g Cre) was twice that of controls living in the same area without an occupational history involving waste collection (median: 8.16 μg/g Cre) and thrice that of controls living 30 km away (median: 6.07 μg/g Cre). The concentrations of OH-PAHs were positively associated with urinary 8-OHdG levels (β = 0.283, p < 0.05). Serum GGT and ALT were slightly increased in waste collectors. Urinary 8-OHdG levels were similar in one-year and longer-term workers, suggesting that rubber and plastic waste collection/incineration carries a high PAH exposure risk. These data provide solid baseline information, emphasizing the importance of monitoring the long-term health outcomes of waste collectors and changes in exposure patterns associated with rural development and regulation of waste disposal.
Collapse
Affiliation(s)
- Jianheng Zheng
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of the Public Health Safety, Department of Nutrition and Food Hygiene, Ministry of Education, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of State General Administration of Sport , Shanghai Research Institute of Sports Science , Shanghai , 200030 , China
| | - Weiwei Zheng
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Ying Zhou
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of the Public Health Safety, Department of Nutrition and Food Hygiene, Ministry of Education, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Songhui Jiang
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Peter Spencer
- Oregon Institute of Occupational Health Sciences, and Department of Neurology, School of Medicine , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , 171 77 , Sweden
| | - Yuxin Zheng
- School of Public Health , Qingdao University , 38 Dengzhou Road , Qingdao , 266021 , China
| | - Gengsheng He
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of the Public Health Safety, Department of Nutrition and Food Hygiene, Ministry of Education, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Weidong Qu
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
| |
Collapse
|