1
|
Rahimi K, Abbaszadeh M, Bakhtazad S, Ghotbeddin Z. Effects of dimethyl itaconate on expressions of NGFI-A and NGFI-B and inflammatory cytokines in the spinal cord in the formalin test. Brain Commun 2024; 6:fcae397. [PMID: 39568551 PMCID: PMC11577613 DOI: 10.1093/braincomms/fcae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Neural sensitization can cause neuroinflammation, which is a type of inflammation that occurs in both the peripheral nervous system and central nervous system. The purpose of this study was to investigate the effect of dimethyl itaconate (DMI) on the expression of NGFI-A and NGFI-B and inflammatory cytokines in the spinal cord in the formalin test. The rats were divided into five groups: control, formalin, DMI 10 mg/kg + formalin, DMI 20 mg/kg + formalin and diclofenac sodium 10 mg/kg + formalin. We evaluated the impact of DMI on the spinal cords NGFI-A and NGFI-B expressions and inflammatory and anti-inflammatory cytokines [interleukin-1 beta (IL-1β), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10)]. The findings indicate that DMI 10, DMI 20 and diclofenac sodium 10 mg/kg can relieve pain in rats during the formalin test. In addition, these substances were found to reduce the expression of NGFI-A and NGFI-B in the spinal cord. Moreover, DMI 10, DMI 20 and diclofenac sodium 10 mg/kg were observed to increase the expression of IL-10 while decreasing IL-1β, TNF-α and IL-6 in the spinal cord when compared with the formalin group. We have found that administering DMI can alleviate pain in rats during formalin test. Through our research, we have observed that DMI decreases the expression of NGFI-A and NGFI-B in the spinal cord. Furthermore, DMI has been shown to increase the levels of IL-10 while decreasing IL-1β, TNF-α and IL-6 in the spinal cord.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Abbaszadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sharareh Bakhtazad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Vaes RDW, van Bijnen AA, Damink SWMO, Rensen SS. Pancreatic Tumor Organoid-Derived Factors from Cachectic Patients Disrupt Contractile Smooth Muscle Cells. Cancers (Basel) 2024; 16:542. [PMID: 38339292 PMCID: PMC10854749 DOI: 10.3390/cancers16030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with pancreatic cancer often suffer from cachexia and experience gastrointestinal symptoms that may be related to intestinal smooth muscle cell (SMC) dysfunction. We hypothesized that pancreatic tumor organoids from cachectic patients release factors that perturb the SMC's contractile characteristics. Human visceral SMCs were exposed to conditioned medium (CM) from the pancreatic tumor organoid cultures of cachectic (n = 2) and non-cachectic (n = 2) patients. Contractile proteins and markers of inflammation, muscle atrophy, and proliferation were evaluated by qPCR and Western blot. SMC proliferation and migration were monitored by live cell imaging. The Ki-67-positive cell fraction was determined in the intestinal smooth musculature of pancreatic cancer patients. CM from the pancreatic tumor organoids of cachectic patients did not affect IL-1β, IL-6, IL-8, MCP-1, or Atrogin-1 expression. However, CM reduced the α-SMA, γ-SMA, and SM22-α levels, which was accompanied by a reduced SMC doubling time and increased expression of S100A4, a Ca2+-binding protein associated with the synthetic SMC phenotype. In line with this, Ki-67-positive nuclei were increased in the intestinal smooth musculature of patients with a low versus high L3-SMI. In conclusion, patient-derived pancreatic tumor organoids release factors that compromise the contractile SMC phenotype and increase SMC proliferation. This may contribute to the frequently observed gastrointestinal motility problems in these patients.
Collapse
Affiliation(s)
- Rianne D. W. Vaes
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Annemarie A. van Bijnen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Steven W. M. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Rahimi K, Zalaghi M, Shehnizad EG, Salari G, Baghdezfoli F, Ebrahimifar A. The effects of alpha-pinene on inflammatory responses and oxidative stress in the formalin test. Brain Res Bull 2023; 203:110774. [PMID: 37793595 DOI: 10.1016/j.brainresbull.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
Alpha-pinene (α- pinene), an essential oil that falls under the category of monoterpenes, has various advantages. This research delves into the potential benefits of α-pinene in alleviating nociception caused by the formalin test and the molecular mechanisms involved. Alpha-pinene (1, 5, or 10 mg/kg/day, i.p.) was administrated for 7 days before the formalin test. Observations of nociceptive behaviors were made during the formalin test. We examined the levels of TNF-α and IL-1β, as well as the expression of COX-1 in the spinal cord. Additionally, we evaluated the levels of TNF-α, IL-1β, SOD, GSH, CAT, and MDA in the skin of the hind paw that received a formalin injection. The peripheral injection of formalin triggered nociceptive behaviors, which was notably diminished by α-pinene 5 or 10 mg/kg. The biochemical evaluation revealed that α-pinene significantly moderated the evaluation in TNF-α and IL-1β in the spinal cord induced by formalin injection. Additionally, it was found that α-pinene had a decreasing effect on the expression of COX-1 protein in the spinal cord. Also, α-pinene 5 or 10 mg/kg caused a decrease of TNF-α, IL-1β, and MDA and an increase of SOD, GSH, and CAT at the formalin injection site. The study discovered that doses of 5 or 10 mg/ml of α-pinene can effectively relieve nociceptive response in the formalin test. Alpha-pinene pretreatment reduced the presence of pro-inflammatory cytokines. It also improved the oxidative stress condition by enhancing antioxidant factors and reducing oxidant factors.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Zalaghi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Ggazi Shehnizad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ghazal Salari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fatemeh Baghdezfoli
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Akram Ebrahimifar
- Medicine School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Asejeje FO, Akinola KD, Abiola MA. Sodium benzoate exacerbates hepatic oxidative stress and inflammation in lipopolysaccharide-induced liver injury in rats. Immunopharmacol Immunotoxicol 2023; 45:558-564. [PMID: 36927185 DOI: 10.1080/08923973.2023.2191818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver damage is a global health concern associated with a high mortality rate. Sodium benzoate (SB) is a widely used preservative in the food industry with a wide range of applications. However, there's a lack of scientific reports on its effect on lipopolysaccharide-induced hepatic dysfunction. OBJECTIVE The present study investigated the influence of SB on lipopolysaccharide (LPS)-induced liver injury. MATERIALS AND METHODS Twenty-eight rats were randomly allocated into four groups: control (received distilled water), SB (received 600 mg/kg), LPS (received 0.25 mg/kg), and LPS + SB (received LPS, 0.25 mg/kg, and SB, 600 mg/kg). SB was administered orally for 14 days while LPS was administered intraperitoneally for 7 days. RESULTS Administration of SB to rats with hepatocyte injury exacerbated liver damage with a significant increase in the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). We also observed that SB aggravated LPS-mediated hepatic oxidative stress occasioned by a marked decrease in antioxidant status with a concomitant increase in lipid peroxidation. Furthermore, LPS - mediated increase in inflammatory biomarkers as well as histological deterioration in the liver was exacerbated following the administration of SB to rats. CONCLUSION Taken together, the study provides experimental evidence that SB exacerbates hepatic oxidative stress and inflammation in LPS-mediated liver injury.
Collapse
Affiliation(s)
- Folake Olubukola Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Khalid Damilare Akinola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Michael Abayomi Abiola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Tavares de Sousa H, Magro F. How to Evaluate Fibrosis in IBD? Diagnostics (Basel) 2023; 13:2188. [PMID: 37443582 DOI: 10.3390/diagnostics13132188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
In this review, we will describe the importance of fibrosis in inflammatory bowel disease (IBD) by discussing its distinct impact on Crohn's disease (CD) and ulcerative colitis (UC) through their translation to histopathology. We will address the existing knowledge on the correlation between inflammation and fibrosis and the still not fully explained inflammation-independent fibrogenesis. Finally, we will compile and discuss the recent advances in the noninvasive assessment of intestinal fibrosis, including imaging and biomarkers. Based on the available data, none of the available cross-sectional imaging (CSI) techniques has proved to be capable of measuring CD fibrosis accurately, with MRE showing the most promising performance along with elastography. Very recent research with radiomics showed encouraging results, but further validation with reliable radiomic biomarkers is warranted. Despite the interesting results with micro-RNAs, further advances on the topic of fibrosis biomarkers depend on the development of robust clinical trials based on solid and validated endpoints. We conclude that it seems very likely that radiomics and AI will participate in the future non-invasive fibrosis assessment by CSI techniques in IBD. However, as of today, surgical pathology remains the gold standard for the diagnosis and quantification of intestinal fibrosis in IBD.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center, 8500-338 Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
9
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Wang XH, Song TZ, Zheng HY, Li YH, Zheng YT. Jejunal epithelial barrier disruption triggered by reactive oxygen species in early SIV infected rhesus macaques. Free Radic Biol Med 2021; 177:143-155. [PMID: 34687865 DOI: 10.1016/j.freeradbiomed.2021.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Intestinal epithelial barrier destruction occurs earlier than mucosal immune dysfunction in the acute stage of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. At present, however, the cause of compromised gastrointestinal integrity in early SIV infection remains unknown. In the current study, we investigated the effects of SIV infection on epithelial barrier integrity and explored oxidative stress-mediated DNA damage and apoptosis in epithelial cells from early acute SIVmac239-infected Chinese rhesus macaques (Macaca mulatta). Results showed that the sensitive molecular marker of small intestinal barrier dysfunction, i.e., intestinal fatty acid-binding protein (IFABP), was significantly increased in plasma at 14 days post-SIV infection. SIV infection induced a profound decrease in the expression of tight junction proteins, including claudin-1, claudin-3, and zonula occludens (ZO)-1, as well as a significant increase in the active form of caspase-3 level in epithelial cells. RNA sequencing (RNA-seq) analysis suggested that differentially expressed genes between pre- and post-SIV-infected jejuna were enriched in pathways involved in cell redox homeostasis, oxidoreductase activity, and mitochondria. Indeed, a SIV-mediated increase in reactive oxygen species (ROS) in the epithelium and macrophages, as well as an increase in hydrogen peroxide (H2O2) and decrease in glutathione (GSH)/glutathione disulfide (GSSG) antioxidant defense, were observed in SIV-infected jejuna. In addition, the accumulation of mitochondrial dysfunction and DNA oxidative damage led to an increase in senescence-associated β-galactosidase (SA-β-gal) and early apoptosis in intestinal epithelial cells. Furthermore, HIV-1 Tat protein-induced epithelial monolayer disruption in HT-29 cells was rescued by antioxidant N-acetylcysteine (NAC). These results indicate that mitochondrial dysfunction and oxidative stress in jejunal epithelial cells are primary contributors to gut epithelial barrier disruption in early SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- Xue-Hui Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yong-Tang Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
| |
Collapse
|
11
|
Ahluwalia TS, Prins BP, Abdollahi M, Armstrong NJ, Aslibekyan S, Bain L, Jefferis B, Baumert J, Beekman M, Ben-Shlomo Y, Bis JC, Mitchell BD, de Geus E, Delgado GE, Marek D, Eriksson J, Kajantie E, Kanoni S, Kemp JP, Lu C, Marioni RE, McLachlan S, Milaneschi Y, Nolte IM, Petrelis AM, Porcu E, Sabater-Lleal M, Naderi E, Seppälä I, Shah T, Singhal G, Standl M, Teumer A, Thalamuthu A, Thiering E, Trompet S, Ballantyne CM, Benjamin EJ, Casas JP, Toben C, Dedoussis G, Deelen J, Durda P, Engmann J, Feitosa MF, Grallert H, Hammarstedt A, Harris SE, Homuth G, Hottenga JJ, Jalkanen S, Jamshidi Y, Jawahar MC, Jess T, Kivimaki M, Kleber ME, Lahti J, Liu Y, Marques-Vidal P, Mellström D, Mooijaart SP, Müller-Nurasyid M, Penninx B, Revez JA, Rossing P, Räikkönen K, Sattar N, Scharnagl H, Sennblad B, Silveira A, Pourcain BS, Timpson NJ, Trollor J, van Dongen J, Van Heemst D, Visvikis-Siest S, Vollenweider P, Völker U, Waldenberger M, Willemsen G, Zabaneh D, Morris RW, Arnett DK, Baune BT, Boomsma DI, Chang YPC, Deary IJ, Deloukas P, Eriksson JG, Evans DM, Ferreira MA, Gaunt T, Gudnason V, Hamsten A, Heinrich J, Hingorani A, Humphries SE, Jukema JW, Koenig W, Kumari M, Kutalik Z, Lawlor DA, Lehtimäki T, März W, Mather KA, Naitza S, Nauck M, Ohlsson C, Price JF, Raitakari O, Rice K, Sachdev PS, Slagboom E, Sørensen TIA, Spector T, Stacey D, Stathopoulou MG, Tanaka T, Wannamethee SG, Whincup P, Rotter JI, Dehghan A, Boerwinkle E, Psaty BM, Snieder H, Alizadeh BZ. Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Hum Mol Genet 2021; 30:393-409. [PMID: 33517400 PMCID: PMC8098112 DOI: 10.1093/hmg/ddab023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
Collapse
Affiliation(s)
- Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte DK2820, Denmark.,Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen DK2200, Denmark
| | - Bram P Prins
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Mohammadreza Abdollahi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | | | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama 35233, USA
| | - Lisa Bain
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Barbara Jefferis
- Department of Primary Care & Population Health, UCL Institute of Epidemiology & Health Care, University College London, London NW3 2PF, UK
| | - Jens Baumert
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Eco de Geus
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Diana Marek
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Joel Eriksson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Centre for Bone and Arthritis Research (CBAR), University of Gothenburg, Gothenburg 41345, Sweden
| | - Eero Kajantie
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, PO Box 30, Helsinki 00271, Finland.,Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts & the London Medical School, Queen Mary University of London, London EC1M 6BQ, UK
| | - John P Kemp
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Chen Lu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Stela McLachlan
- Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam 1081 HJ, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | | | - Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato (CA) 09042, Italy
| | - Maria Sabater-Lleal
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden.,Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona 08041, Spain
| | - Elnaz Naderi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Tina Shah
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Gaurav Singhal
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany.,Division of Metabolic Diseases and Nutritional Medicine, Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Munich 80337, Germany
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.,Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | | | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA.,Section of Cardiovascular Medicine and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Catherine Toben
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - George Dedoussis
- 44Department of Nutrition-Dietetics, Harokopio University, Athens 17671, Greece
| | - Joris Deelen
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.,Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jorgen Engmann
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany.,German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-41345, Sweden
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London SW17 0RE, UK
| | - Magdalene C Jawahar
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Tine Jess
- 55Department of Epidemiology Research, Statens Serum Institute, Copenhagen DK2300, Denmark
| | - Mika Kivimaki
- Department of Epidemiology & Public Health, UCL Institute of Epidemiology & Health Care, University College London, London WC1E 7HB, UK
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Jari Lahti
- Turku Institute for Advanced Studies, University of Turku, Turku 20014, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki 00014, Finland
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Pedro Marques-Vidal
- Department of Internal Medicine, Lausanne University Hospital (CHUV), Lausanne 1011, Switzerland.,University of Lausanne, Lausanne 1011, Switzerland
| | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Centre for Bone and Arthritis Research (CBAR), University of Gothenburg, Gothenburg 41345, Sweden
| | - Simon P Mooijaart
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Martina Müller-Nurasyid
- IBE, Faculty of Medicine, Ludwig Maximilians University (LMU) Munich, Munich 81377, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johhanes Gutenberg University, Mainz 55101, Germany
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam 1081 HJ, The Netherlands
| | - Joana A Revez
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte DK2820, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen DK2200, Denmark
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki 00014, Finland
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow G12 8TA, UK
| | - Hubert Scharnagl
- 66Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria
| | - Bengt Sennblad
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala 75124, Sweden
| | - Angela Silveira
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK.,Max Planck Institute for Psycholinguistics, Nijmegen XD 6525, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia.,Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney 2031, Australia
| | | | - Jenny van Dongen
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | | | | | - Peter Vollenweider
- Department of Internal Medicine, Lausanne University Hospital (CHUV), Lausanne 1011, Switzerland.,University of Lausanne, Lausanne 1011, Switzerland
| | - Uwe Völker
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Delilah Zabaneh
- Department of Genetics, Environment and Evolution, University College London Genetics Institute, London WC1E 6BT, UK
| | - Richard W Morris
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Donna K Arnett
- Dean's Office, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville 3000, Australia.,Department of Psychiatry and Psychotherapy, University of Muenster, Muenster 48149, Germany.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville 3000, Australia
| | - Dorret I Boomsma
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Yen-Pei C Chang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts & the London Medical School, Queen Mary University of London, London EC1M 6BQ, UK.,77Centre for Genomic Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Johan G Eriksson
- National Institute for Health and Welfare, University of Helsinki, Helsinki 00014, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki 00014, Finland
| | - David M Evans
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | | | - Tom Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS6 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur 201, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Anders Hamsten
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany.,Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich 81377, Germany.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, Australia
| | - Aroon Hingorani
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - J Wouter Jukema
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.,Durrer Center for Cardiogenetic Research, Amsterdam 1105 AZ, The Netherlands
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich 80636, Germany.,88DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm 89081, Germany
| | - Meena Kumari
- Department of Epidemiology & Public Health, UCL Institute of Epidemiology & Health Care, University College London, London WC1E 7HB, UK.,Institute for Social and Economic Research, University of Essex, Colchester CO4 3SQ, Germany
| | - Zoltan Kutalik
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS6 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany.,66Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria.,SYNLAB Academy, SYNALB Holding Deutschland GmbH, Mannheim 68163, Germany
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia.,Neuroscience Research Australia, Sydney 2031, Australia
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato (CA) 09042, Italy
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany.,DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald 17475, Germany
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Centre for Bone and Arthritis Research (CBAR), University of Gothenburg, Gothenburg 41345, Sweden
| | - Jackie F Price
- Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku 20520, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20014, Finland
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney 2031, Australia
| | - Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.,Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center For Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK2200, Denmark.,Department of Public Health, Section on Epidemiology, University of Copenhagen, Copenhagen DK1014, Denmark
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - David Stacey
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | | | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - S Goya Wannamethee
- Department of Primary Care & Population Health, UCL Institute of Epidemiology & Health Care, University College London, London NW3 2PF, UK
| | - Peter Whincup
- Population Health Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, Rotterdam 3000 CA, The Netherlands
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA.,Departments of Epidemiology and Health Services, University of Washington, Seattle, WA 98101, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
12
|
McDade TW, Aronoff JE, Leigh AKK, Finegood ED, Weissman-Tsukamoto RM, Brody GH, Miller GE. Out of the Laboratory and Into the Field: Validation of Portable Cell Culture Protocols. Psychosom Med 2021; 83:283-290. [PMID: 33657081 PMCID: PMC8016709 DOI: 10.1097/psy.0000000000000923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Field-based research on inflammation and health is typically limited to baseline measures of circulating cytokines or acute-phase proteins, whereas laboratory-based studies can pursue a more dynamic approach with ex vivo cell culture methods. The laboratory infrastructure required for culturing leukocytes limits application in community-based settings, which in turn limits scientific understandings of how psychosocial, behavioral, and contextual factors influence the regulation of inflammation. We aim to address this gap by validating two "field-friendly" cell culture protocols, one using a small volume of venous whole blood and another using finger-stick capillary whole blood. METHODS We evaluated the performance of both protocols against a standard laboratory-based protocol using matched venous and capillary blood samples collected from young adults (n = 24). Samples were incubated with lipopolysaccharide and hydrocortisone, and the production of proinflammatory cytokines interleukin 1β, interleukin 6, and tumor necrosis factor α was measured in response. RESULTS Comparisons indicate a high level of agreement in responses across the protocols and culture conditions. The overall correlation in results was 0.88 between the standard and small-volume protocols and 0.86 between the standard and capillary blood protocols. Repeatability for the small-volume and capillary blood protocols was high, with mean coefficients of variation across five replicates of 6.2% and 5.4%, respectively. CONCLUSIONS These results demonstrate the feasibility of culturing cells and quantifying the inflammatory response to challenge outside the laboratory, with a wide range of potential applications in biobehavioral research in community-based and remote field settings.
Collapse
Affiliation(s)
- Thomas W McDade
- From the Departments of Anthropology (McDade, Aronoff) and Psychology (Miller), Institute for Policy Research (McDade, Leigh, Finegood, Weissman-Tsukamoto, Miller), Northwestern University, Evanston, Illinois; and Center for Family Research (Brody), Owens Institute for Behavioral Research, University of Georgia, Athens, Georgia
| | | | | | | | | | | | | |
Collapse
|
13
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
14
|
Gao X, Yang Q, Huang X, Yan Z, Zhang S, Luo R, Wang P, Wang W, Xie K, Jiang T, Gun S. Effects of Clostridium perfringens beta2 toxin on apoptosis, inflammation, and barrier function of intestinal porcine epithelial cells. Microb Pathog 2020; 147:104379. [DOI: 10.1016/j.micpath.2020.104379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
|
15
|
Albarrak AA, Romana BS, Uraz S, Yousef MH, Juboori AA, Tahan V. Clostridium Difficile Infection in Inflammatory Bowel Disease Patients. Endocr Metab Immune Disord Drug Targets 2020; 19:929-935. [PMID: 30827274 DOI: 10.2174/1871530319666190301120558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The rising incidence of Clostridium difficile infection (CDI) in the general population has been recognized by health care organizations worldwide. The emergence of hypervirulent strains has made CDI more challenging to understand and treat. Inflammatory bowel disease (IBD) patients are at higher risk of infection, including CDI. OBJECTIVE A diagnostic approach for recurrent CDI has yet to be validated, particularly for IBD patients. Enzyme immunoassay (EIA) for toxins A and B, as well as glutamate dehydrogenase EIA, are both rapid testing options for the identification of CDI. Without a high index of suspicion, it is challenging to initially differentiate CDI from an IBD flare based on clinical evaluation alone. METHODS Here, we provide an up-to-date review on CDI in IBD patients. When caring for an IBD patient with suspected CDI, it is appropriate to empirically treat the presumed infection while awaiting further test results. RESULTS Treatment with vancomycin or fidaxomicin, but not oral metronidazole, has been advocated by an expert review from the clinical practice update committee of the American Gastroenterology Association. Recurrent CDI is more common in IBD patients compared to non-IBD patients (32% versus 24%), thus more aggressive treatment is recommended for IBD patients along with early consideration of fecal microbiota transplant. CONCLUSION Although the use of infliximab during CDI has been debated, clinical experience exists supporting its use in an IBD flare, even with active CDI when needed.
Collapse
Affiliation(s)
- Abdulmajeed A Albarrak
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, United States
| | - Bhupinder S Romana
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, United States
| | - Suleyman Uraz
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, United States
| | - Mohamad H Yousef
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, United States
| | - Alhareth A Juboori
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, United States
| | - Veysel Tahan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
16
|
Sung SSJ, Fu SM. Interactions among glomerulus infiltrating macrophages and intrinsic cells via cytokines in chronic lupus glomerulonephritis. J Autoimmun 2019; 106:102331. [PMID: 31495649 DOI: 10.1016/j.jaut.2019.102331] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Inflammation plays a key role in the pathogenesis of lupus nephritis (LN) and inflammatory cytokines within the glomeruli are critical in this process. However, little information is available for the identities of the cell types that are primarily responsible for the production and function of the various cytokines. We have devised a novel method to visualize cytokine signals in the kidney by confocal microscopy and found that cytokine production within the glomerulus is cell type-specific and under translational control. In the lupus-prone NZM2328 mice with chronic glomerulonephritis, IL-6, IL-1β, and TNF-α in the glomerulus were produced predominantly by mesangial cells, podocytes, and glomerulus-infiltrating blood-derived macrophages, respectively. Microarray and RNASeq analyses showed that these cells expressed the receptors for these cytokines. Together the 3 cell types form a cytokine circuit in amplifying cytokine responses in LN. The intrinsic cells and infiltrating macrophages also produced other cytokines including M-CSF, SCF, and IL-34 that constituted within the enclosed glomerular space the soluble effector milieu which may mediate cellular damage and proliferation, and cytokine transcriptional and translation regulation. IL-10 and IL-1β were translationally regulated in the glomeruli in the intact kidney in a cell type-specific manner. The production of these 2 cytokines by infiltrating macrophages was undetectable in a visualization system for in situ protein accumulation despite high mRNA expression levels. However, these macrophages in isolated glomeruli which are released from Bowman's capsules produced large amounts of IL-10 and IL-1β. These data reveal the complexity of cytokine regulation, production, and function in the glomerulus and provide a model in which cytokine blocking may be beneficial in LN treatment.
Collapse
Affiliation(s)
- Sun-Sang J Sung
- Center for Immunity, Inflammation, and Regenerative Medicine, Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Shu Man Fu
- Center for Immunity, Inflammation, and Regenerative Medicine, Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
17
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
18
|
IgA Responses to Microbiota. Immunity 2019; 49:211-224. [PMID: 30134201 DOI: 10.1016/j.immuni.2018.08.011] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Various immune mechanisms are deployed in the mucosa to confront the immense diversity of resident bacteria. A substantial fraction of the commensal microbiota is coated with immunoglobulin A (IgA) antibodies, and recent findings have established the identities of these bacteria under homeostatic and disease conditions. Here we review the current understanding of IgA biology, and present a framework wherein two distinct types of humoral immunity coexist in the gastrointestinal mucosa. Homeostatic IgA responses employ a polyreactive repertoire to bind a broad but taxonomically distinct subset of microbiota. In contrast, mucosal pathogens and vaccines elicit high-affinity, T cell-dependent antibody responses. This model raises fundamental questions including how polyreactive IgA specificities are generated, how these antibodies exert effector functions, and how they exist together with other immune responses during homeostasis and disease.
Collapse
|
19
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017. [PMID: 25306501 DOI: 10.1016/j.crohns.2014.09.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia.,University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
20
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017; 11:1491-1503. [PMID: 25306501 PMCID: PMC5885809 DOI: 10.1016/j.crohns.2014.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia
- University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
21
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Spencer J, Sollid LM. The human intestinal B-cell response. Mucosal Immunol 2016; 9:1113-24. [PMID: 27461177 DOI: 10.1038/mi.2016.59] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/10/2016] [Indexed: 02/04/2023]
Abstract
The intestinal immune system is chronically challenged by a huge plethora of antigens derived from the lumen. B-cell responses in organized gut-associated lymphoid tissues and regional lymph nodes that are driven chronically by gut antigens generate the largest population of antibody-producing cells in the body: the gut lamina propria plasma cells. Although animal studies have provided insights into mechanisms that underpin this dynamic process, some very fundamental differences in this system appear to exist between species. Importantly, this prevents extrapolation from mice to humans to inform translational research questions. Therefore, in this review we will describe the structures and mechanisms involved in the propagation, dissemination, and regulation of this immense plasma cell population in man. Uniquely, we will seek our evidence exclusively from studies of human cells and tissues.
Collapse
Affiliation(s)
- J Spencer
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - L M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
23
|
Choi YM, Kang S, Hong J. Modulation of the inflammatory process and interaction of THP-1 monocytes with intestinal epithelial cells by glasswort (Salicornia herbacea L.) extracts. ACTA ACUST UNITED AC 2016. [DOI: 10.9721/kjfst.2016.48.4.378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Intestinal fibrosis in Crohn's disease: role of microRNAs as fibrogenic modulators, serum biomarkers, and therapeutic targets. Inflamm Bowel Dis 2015; 21:1141-50. [PMID: 25636122 DOI: 10.1097/mib.0000000000000298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation often precedes fibrosis and stricture formation in patients with Crohn's disease. Established medical therapies reduce inflammation, but there are currently no specific therapies to prevent fibrosis or treat established fibrosis. Our understanding of the pathogenic processes underpinning fibrogenesis is limited compared with our knowledge of the events initiating and propagating inflammation. There are several biomarkers for intestinal inflammation, but there are none that reflect the development of fibrosis. MicroRNAs (miRNAs) are regulators of cellular activities including inflammation and fibrosis and may serve as biomarkers of disease processes. Differential serum and mucosal miRNA expression profiles have been identified between patients with inflammatory bowel disease with active and inactive inflammatory disease. In contrast, studies in patients with fibrotic phenotypes are comparatively few, although specific miRNAs have defined roles in the development of fibrosis in other organ systems. Here, we discuss the most recent research on miRNA and fibrogenesis with a particular emphasis on Crohn's disease. We also anticipate the potential of miRNAs in fulfilling current unmet translational needs in this patient group by focusing on the role of miRNAs as modulators of fibrogenesis and on their potential value as serum biomarkers and therapeutic targets in the management of fibrosis.
Collapse
|
25
|
Huang T, Perez-Cordon G, Shi L, Li G, Sun X, Wang X, Wang J, Feng H. Clostridium difficile toxin B intoxicated mouse colonic epithelial CT26 cells stimulate the activation of dendritic cells. Pathog Dis 2015; 73:ftv008. [PMID: 25743476 DOI: 10.1093/femspd/ftv008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis mainly through two exotoxins TcdA and TcdB that target intestinal epithelial cells. Dendritic cells (DCs) play an important role in regulating intestinal inflammatory responses. In the current study, we explored the interaction of TcdB-intoxicated epithelial cells with mouse bone marrow-derived DCs. TcdB induced cell death and heat shock protein translocation in mouse intestinal epithelial CT26 cells. The intoxicated epithelial cells promoted the phagocytosis and the TNF-α secretion by DCs. Incubation with TcdB-intoxicated CT26 cells stimulated DC maturation. Moreover, TcdB-treated CT26 cells induced DC immigration when they were injected into mice subcutaneously. Taken together, these data demonstrate that TcdB-intoxicated intestinal epithelial cells are able to stimulate DC activation in vitro and attract DCs in vivo, indicating that epithelial cells may be able to regulate DC activation under the exposure of TcdB during C. difficile infection.
Collapse
Affiliation(s)
- Tuxiong Huang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 51006, China Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| | - Gregorio Perez-Cordon
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| | - Lianfa Shi
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| | - Guangchao Li
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 51006, China
| | - Xingmin Sun
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Xiaoning Wang
- Institute of Life Science, General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 51006, China
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD 21021, USA
| |
Collapse
|
26
|
Huang T, Li S, Li G, Tian Y, Wang H, Shi L, Perez-Cordon G, Mao L, Wang X, Wang J, Feng H. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity. PLoS One 2014; 9:e110826. [PMID: 25340750 PMCID: PMC4207755 DOI: 10.1371/journal.pone.0110826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/01/2014] [Indexed: 12/22/2022] Open
Abstract
Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.
Collapse
Affiliation(s)
- Tuxiong Huang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou, China
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou, China
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Guangchao Li
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yuan Tian
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou, China
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou, China
| | - Lianfa Shi
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Gregorio Perez-Cordon
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Li Mao
- Department of Oncology and Diagnostics, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Xiaoning Wang
- Institute of Life Science, General Hospital of the People’s Liberation Army, Beijing, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou, China
- * E-mail: (JW); (HF)
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
- * E-mail: (JW); (HF)
| |
Collapse
|
27
|
Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol 2014; 63:193-202. [PMID: 25242213 DOI: 10.1016/j.molimm.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of C. difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts University Cummings School of Veterinary Medicine, Department of Infectious Diseases and Global Health, North Grafton, MA 01536, USA; Tufts University, Clinical and Translational Science Institute, Boston, MA 02111, USA.
| | - Simon A Hirota
- University of Calgary, Snyder Institute for Chronic Diseases, Departments of Physiology & Pharmacology and Microbiology, Immunology & Infectious Diseases, Calgary, AB T2N4N1, Canada
| |
Collapse
|
28
|
Abstract
The intestinal mucosa contains the largest population of antibody-secreting plasma cells in the body, and in humans several grams of secretory immunoglobulin A (SIgA) are released into the intestine each day. In the gut lumen, SIgA serves as a first-line barrier that protects the epithelium from pathogens and toxins. Recently, next-generation sequencing has revolutionized our understanding of the nature of the intestinal microbiota and has also shed new light on the important roles of SIgA in the regulation of host-commensal homeostasis. Here, I discuss pathways of IgA induction in the context of SIgA specificity and function.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Strae 1, 30625 Hannover, Germany.
| |
Collapse
|
29
|
Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure. Infect Immun 2012; 80:4474-84. [PMID: 23045481 DOI: 10.1128/iai.00933-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile, a major cause of hospital-acquired diarrhea, triggers disease through the release of two toxins, toxin A (TcdA) and toxin B (TcdB). These toxins disrupt the cytoskeleton of the intestinal epithelial cell, increasing intestinal permeability and triggering the release of inflammatory mediators resulting in intestinal injury and inflammation. The most prevalent animal model to study TcdA/TcdB-induced intestinal injury involves injecting toxin into the lumen of a surgically generated "ileal loop." This model is time-consuming and exhibits variability depending on the expertise of the surgeon. Furthermore, the target organ of C. difficile infection (CDI) in humans is the colon, not the ileum. In the current study, we describe a new model of CDI that involves intrarectal instillation of TcdA/TcdB into the mouse colon. The administration of TcdA/TcdB triggered colonic inflammation and neutrophil and macrophage infiltration as well as increased epithelial barrier permeability and intestinal epithelial cell death. The damage and inflammation triggered by TcdA/TcdB isolates from the VPI and 630 strains correlated with the concentration of TcdA and TcdB produced. TcdA/TcdB exposure increased the expression of a number of inflammatory mediators associated with human CDI, including interleukin-6 (IL-6), gamma interferon (IFN-γ), and IL-1β. Finally, we were able to demonstrate that TcdA was much more potent at inducing colonic injury than was TcdB but TcdB could act synergistically with TcdA to exacerbate injury. Taken together, our data indicate that the intrarectal murine model provides a robust and efficient system to examine the effects of TcdA/TcdB on the induction of inflammation and colonic tissue damage in the context of human CDI.
Collapse
|
30
|
Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol 2012; 18:3635-61. [PMID: 22851857 PMCID: PMC3406417 DOI: 10.3748/wjg.v18.i28.3635] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a chronic and progressive process characterized by an excessive accumulation of extracellular matrix (ECM) leading to stiffening and/or scarring of the involved tissue. Intestinal fibrosis may develop in several different enteropathies, including inflammatory bowel disease. It develops through complex cell, extracellular matrix, cytokine and growth factor interactions. Distinct cell types are involved in intestinal fibrosis, such as resident mesenchymal cells (fibroblasts, myofibroblasts and smooth muscle cells) but also ECM-producing cells derived from epithelial and endothelial cells (through a process termed epithelial- and endothelial-mesenchymal transition), stellate cells, pericytes, local or bone marrow-derived stem cells. The most important soluble factors that regulate the activation of these cells include cytokines, chemokines, growth factors, components of the renin-angiotensin system, angiogenic factors, peroxisome proliferator-activated receptors, mammalian target of rapamycin, and products of oxidative stress. It soon becomes clear that although inflammation is responsible for triggering the onset of the fibrotic process, it only plays a minor role in the progression of this condition, as fibrosis may advance in a self-perpetuating fashion. Definition of the cellular and molecular mechanisms involved in intestinal fibrosis may provide the key to developing new therapeutic approaches.
Collapse
|
31
|
Ndiaye F, Vuong T, Duarte J, Aluko RE, Matar C. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur J Nutr 2012; 51:29-37. [PMID: 21442413 DOI: 10.1007/s00394-011-0186-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 03/14/2011] [Indexed: 01/02/2023]
Abstract
PURPOSE Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. METHODS The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. RESULTS Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. CONCLUSIONS Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.
Collapse
Affiliation(s)
- Fatou Ndiaye
- Department of Nutrition, Faculty of Health Sciences, University of Ottawa, R2057 Roger Guindon Hall, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
32
|
Steele J, Chen K, Sun X, Zhang Y, Wang H, Tzipori S, Feng H. Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models. J Infect Dis 2011; 205:384-91. [PMID: 22147798 DOI: 10.1093/infdis/jir748] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Clostridium difficile infection (CDI) can cause a wide range of disease, from mild diarrhea to fulminant systemic disease. The incidence of systemic CDI with fatal consequence has increased rapidly in recent years. METHODS Using an ultrasensitive cytotoxicity assay, we measured C. difficile toxin A (TcdA) and C. difficile toxin B (TcdB) in sera and body fluids of piglets and mice exposed to C. difficile to investigate the relationship between the presence of toxins in body fluids and systemic manifestations of CDI. RESULTS We found that both TcdA and TcdB disseminate systemically, with toxins present in the sera and body fluids of infected animals, and toxemia is significantly correlated with the development of systemic CDI. The systemic administration of neutralizing antibodies against both toxins blocked the development of systemic disease in mice. We measured cytokine concentrations in the sera of mice and piglets with systemic and nonsystemic CDI and found that proinflammatory mediators were considerably elevated in animals with systemic CDI. CONCLUSION Our study demonstrates the existence of a strong correlation between toxemia and the occurrence of systemic disease, supporting the hypothesis that systemic CDI is most likely due to the toxicity of TcdA and TcdB and the induction of proinflammatory cytokines by the toxins.
Collapse
Affiliation(s)
- Jennifer Steele
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Loppnow H, Zhang L, Buerke M, Lautenschläger M, Chen L, Frister A, Schlitt A, Luther T, Song N, Hofmann B, Rose-John S, Silber RE, Müller-Werdan U, Werdan K. Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures. J Cell Mol Med 2011; 15:994-1004. [PMID: 20158569 PMCID: PMC3922683 DOI: 10.1111/j.1582-4934.2010.01036.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inflammatory pathways are involved in the development of atherosclerosis. Interaction of vessel wall cells and invading monocytes by cytokines may trigger local inflammatory processes. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are standard medications used in cardiovascular diseases. They are thought to have anti-inflammatory capacities, in addition to their lipid-lowering effects. We investigated the anti-inflammatory effect of statins in the cytokine-mediated-interaction-model of human vascular smooth muscle cells (SMC) and human mononuclear cells (MNC). In this atherosclerosis-related inflammatory model LPS (lipopolysaccharide, endotoxin), as well as high mobility group box 1 stimulation resulted in synergistic (i.e. over-additive) IL-6 (interleukin-6) production as measured in ELISA. Recombinant IL-1, tumour necrosis factor-α and IL-6 mediated the synergistic IL-6 production. The standard anti-inflammatory drugs aspirin and indomethacin (Indo) reduced the synergistic IL-6 production by 60%. Simvastatin, atorvastatin, fluvastatin or pravastatin reduced the IL-6 production by 53%, 50%, 64% and 60%, respectively. The inhibition by the statins was dose dependent. Combination of statins with aspirin and/or Indo resulted in complete inhibition of the synergistic IL-6 production. The same inhibitors blocked STAT3 phosphorylation, providing evidence for an autocrine role of IL-6 in the synergism. MNC from volunteers after 5 day aspirin or simvastatin administration showed no decreased IL-6 production, probably due to drug removal during MNC isolation. Taken together, the data show that anti-inflammatory functions (here shown for statins) can be sensitively and reproducibly determined in this novel SMC/MNC coculture model. These data implicate that statins have the capacity to affect atherosclerosis by regulating cytokine-mediated innate inflammatory pathways in the vessel wall.
Collapse
Affiliation(s)
- Harald Loppnow
- Universitätsklinik und Poliklinik für Innere Medizin III, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mesin L, Di Niro R, Thompson KM, Lundin KEA, Sollid LM. Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. THE JOURNAL OF IMMUNOLOGY 2011; 187:2867-74. [PMID: 21841131 DOI: 10.4049/jimmunol.1003181] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand the biology of Ab-secreting cells in the human small intestine, we examined Ab production of intestinal biopsies kept in culture. We found sustained IgA and IgM secretion as well as viable IgA- or IgM-secreting cells after >4 wk of culture. The Ab-secreting cells were nonproliferating and expressing CD27 and CD138, thus having a typical plasma cell phenotype. Culturing of biopsies without tissue disruption gave the highest Ab production and plasma cell survival suggesting that the environment regulates plasma cell longevity. Cytokine profiling of the biopsy cultures demonstrated a sustained presence of IL-6 and APRIL. Blocking of the activity of endogenous APRIL and IL-6 with BCMA-Fc and anti-human IL-6 Ab demonstrated that both these factors were essential for plasma cell survival and Ab secretion in the biopsy cultures. This study demonstrates that the human small intestine harbors a population of nonproliferating plasma cells that are instructed by the microenvironment for prolonged survival and Ab secretion.
Collapse
Affiliation(s)
- Luka Mesin
- Center for Immune Regulation, University of Oslo, Q3 N-0027 Oslo, Norway.
| | | | | | | | | |
Collapse
|
35
|
Dai TY, Wang CH, Chen KN, Huang IN, Hong WS, Wang SY, Chen YP, Kuo CY, Chen MJ. The Antiinfective Effects of Velvet Antler of Formosan Sambar Deer (Cervus unicolor swinhoei) on Staphylococcus aureus-Infected Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:534069. [PMID: 21584242 PMCID: PMC3092581 DOI: 10.1155/2011/534069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/02/2011] [Indexed: 11/17/2022]
Abstract
We assayed the effects of velvet antler (VA) of Formosan sambar deer (Cervus unicolor swinhoei) and its extracts on the anti-infective activity against pathogenic Staphylococcus aureus in vitro and in vivo in this study. In vitro data indicated that the VA extracts stimulated the proliferation of resting splenocytes and macrophages in a dose-dependent manner up to the highest concentration used (150 μg mL(-1)). The production of proinflammatory cytokines (TNF-α, IL-6, IL-12) by lipoteichoic acid was significantly suppressed after being cocultured with the VA extracts in a dose-dependent manner. Animal test in S. aureus-infected mice demonstrated that the numbers of bacteria determined in the kidneys and peritoneal lavage fluid of S. aureus-infected mice were significantly higher than those found in the same organs of mice pretreated with the VA samples. Moreover, the highly enhanced phagocytic activity of macrophages was further verified after in vitro treatment with the VA samples. The protective mechanisms of the VA samples might include an immune enhancer and an inflammatory cytokine suppressor.
Collapse
Affiliation(s)
- Ting-Yeu Dai
- Department of Animal Science and Technology, National Taiwan University, No. 50 Lane 155 Sec. 3 Keelung Road, Taipei 106, Taiwan
| | - Chih-Hua Wang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Kaohsiung, Taiwan
| | - Kun-Nan Chen
- Department of Mechanical Engineering, Tungnan University, Taipei 222, Taiwan
| | - I-Nung Huang
- Department of Animal Science and Technology, National Taiwan University, No. 50 Lane 155 Sec. 3 Keelung Road, Taipei 106, Taiwan
| | - Wei-Sheng Hong
- Department of Animal Science and Technology, National Taiwan University, No. 50 Lane 155 Sec. 3 Keelung Road, Taipei 106, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, No. 50 Lane 155 Sec. 3 Keelung Road, Taipei 106, Taiwan
| | - Yen-Po Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50 Lane 155 Sec. 3 Keelung Road, Taipei 106, Taiwan
| | - Ching-Yun Kuo
- Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50 Lane 155 Sec. 3 Keelung Road, Taipei 106, Taiwan
- Center for Biotechnology, National Taiwan University, No. 81, Changxing, Taipei 106, Taiwan
| |
Collapse
|
36
|
Sun X, Savidge T, Feng H. The enterotoxicity of Clostridium difficile toxins. Toxins (Basel) 2010; 2:1848-80. [PMID: 22069662 PMCID: PMC3153265 DOI: 10.3390/toxins2071848] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 06/23/2010] [Accepted: 07/09/2010] [Indexed: 02/06/2023] Open
Abstract
The major virulence factors of Clostridium difficile infection (CDI) are two large exotoxins A (TcdA) and B (TcdB). However, our understanding of the specific roles of these toxins in CDI is still evolving. It is now accepted that both toxins are enterotoxic and proinflammatory in the human intestine. Both purified TcdA and TcdB are capable of inducing the pathophysiology of CDI, although most studies have focused on TcdA. C. difficile toxins exert a wide array of biological activities by acting directly on intestinal epithelial cells. Alternatively, the toxins may target immune cells and neurons once the intestinal epithelial barrier is disrupted. The toxins may also act indirectly by stimulating cells to produce chemokines, proinflammatory cytokines, neuropeptides and other neuroimmune signals. This review considers the mechanisms of TcdA- and TcdB-induced enterotoxicity, and recent developments in this field.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
| | - Tor Savidge
- The University of Texas Medical Branch, Galveston, TX, 77555, USA;
| | - Hanping Feng
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
- Author to whom correspondence should be addressed; ; Tel.: +1-508-887-4252; Fax: +1-508-839-7911
| |
Collapse
|
37
|
Hong WS, Chen HC, Chen YP, Chen MJ. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2008.10.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Sun X, He X, Tzipori S, Gerhard R, Feng H. Essential role of the glucosyltransferase activity in Clostridium difficile toxin-induced secretion of TNF-alpha by macrophages. Microb Pathog 2009; 46:298-305. [PMID: 19324080 DOI: 10.1016/j.micpath.2009.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 01/30/2023]
Abstract
Clostridium difficile causes serious and potentially fatal inflammatory diseases of the colon. Two large protein toxins, TcdA and TcdB, have been clearly implicated in pathogenesis. The goal of this study was to determine whether the glucosyltransferase activity of the toxins is critical for the induction of tumor necrosis factor-alpha (TNF-alpha), an important cytokine mediating both local and systematic inflammatory response. A dose-dependent TNF-alpha secretion was demonstrated in murine macrophage cell line RAW 264.7 after exposure to TcdA or TcdB. TNF-alpha production was blocked by anti-toxin antibodies, indicating that the cytokine-driven response is mediated by the toxins. Both toxins disrupted the cytoskeleton of host cells, while cytoskeleton disruptions using Cytochalasin-D and latrunculin B did not affect TNF-alpha production. The TNF-alpha synthesis was inhibited by reagents that target clathrin-dependent endocytosis or prevent endosomal acidification, suggesting that the endocytosis pathway is necessary for the induction of TNF-alpha. Furthermore, knockout of the enzymatic activity by mutating two key amino acids in the catalytic domain of TcdA abolished its cytokine-inducing activity. Our studies demonstrated a crucial role of the glucosyltransferase activity of C. difficile toxins in the induction of TNF-alpha in macrophages.
Collapse
Affiliation(s)
- Xingmin Sun
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | | | | | | | | |
Collapse
|
39
|
Faith M, Sukumaran A, Pulimood AB, Jacob M. How reliable an indicator of inflammation is myeloperoxidase activity? Clin Chim Acta 2008; 396:23-5. [PMID: 18619953 DOI: 10.1016/j.cca.2008.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Myeloperoxidase (MPO) and interleukin-6 (IL-6) are often used as markers of inflammation. The aim of this study was to ascertain whether MPO activity is as reliable as IL-6 as an indicator of inflammation. METHODS Inflammation was induced in mice, using either turpentine or indomethacin. Duodenal tissue was removed from these animals at various time periods ranging from 6 h to 7 days later. Concentrations of IL-6 and MPO activity were estimated in the tissue. Histopathological examination was also carried out at some of the time periods to determine the presence of neutrophil infiltration in turpentine-treated mice. RESULTS Concentrations of IL-6 and MPO activity were significantly higher in tissue that had been treated with the agents used, at all the time periods studied, when compared with corresponding control tissue. Fold-increases in MPO activity were higher than fold-increases in IL-6. Concentrations of the 2 parameters showed significant positive correlation. Histopathological examination did not show significantly higher numbers of neutrophils infiltrating the tissue in response to turpentine, at the time periods studied. CONCLUSIONS Estimation of MPO activity is a reliable indicator of inflammation, being more sensitive than histopathological examination of tissue and as good as measurement of IL-6 concentrations.
Collapse
Affiliation(s)
- Minnie Faith
- Department of Biochemistry, Christian Medical College, and Department of Gastrointestinal Sciences, The Wellcome Trust Research Laboratory, Christian Medical College Hospital, Vellore-632002, Tamil Nadu, India
| | | | | | | |
Collapse
|
40
|
Giesemann T, Guttenberg G, Aktories K. Human alpha-defensins inhibit Clostridium difficile toxin B. Gastroenterology 2008; 134:2049-58. [PMID: 18435932 DOI: 10.1053/j.gastro.2008.03.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 02/27/2008] [Accepted: 03/06/2008] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Clostridium difficile toxins A and B are major virulence factors implicated in pseudomembranous colitis and antibiotic-associated diarrhea. The toxins are glucosyltransferases, which inactivate Rho proteins involved in cellular signaling. Human alpha-defensins as part of the innate immune system inactivate various microbial pathogens as well as specific bacterial exotoxins. Here, we studied the effects of alpha-defensins human neutrophil protein (HNP)-1, HNP-3, and enteric human defensin (HD)-5 on the activity of C difficile toxins A and B. METHODS Inactivation of C difficile toxins by alpha-defensins in vivo was monitored by microscopy, determination of the transepithelial resistance of CaCo-2 cell monolayers, and analysis of the glucosylation of Rac1 in toxin-treated cells. In vitro glucosylation was used to determine K(m) and median inhibitory concentration (IC(50)) values. Formation of defensin-toxin complexes was analyzed by precipitation and turbidity studies. RESULTS Treatment of cells with human alpha-defensins caused loss of cytotoxicity of toxin B, but not of toxin A. Only alpha-defensins, but not beta-defensin-1 or cathelicidin LL-37, inhibited toxin B-catalyzed in vitro glucosylation of Rho guanosine triphosphatases in a competitive manner, increasing K(m) values for uridine 5'-diphosphate-glucose up to 10-fold. The IC(50) values for inhibition of toxin B-catalyzed glucosylation by the alpha-defensins were 0.6-1.5 micromol/L. At high concentrations, defensins (HNP-1 > or = 2 micromol/L) caused high-molecular-mass aggregates, comparable to Bacillus anthracis protective antigen and lethal factor. CONCLUSION Our data indicate that toxin B interacts with high affinity with alpha-defensins and suggest that defensins may provide a defense mechanism against some types of clostridial glucosylating cytotoxins.
Collapse
Affiliation(s)
- Torsten Giesemann
- Institut für Experimentelle and Klinische Pharmakologie und Toxikologie, Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
41
|
Ott LW, Resing KA, Sizemore AW, Heyen JW, Cocklin RR, Pedrick NM, Woods HC, Chen JY, Goebl MG, Witzmann FA, Harrington MA. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information. J Proteome Res 2007; 6:2176-85. [PMID: 17503796 PMCID: PMC2877378 DOI: 10.1021/pr060665l] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFalpha) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFalpha- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFalpha and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFalpha and IL-1 regulate different processes. A large-scale proteomic analysis of TNFalpha- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFalpha and IL-1. When combined with genomic studies, our results indicate that TNFalpha, but not IL-1, mediates cell cycle arrest.
Collapse
Affiliation(s)
- Lee W Ott
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, MS 4053, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ivec M, Botić T, Koren S, Jakobsen M, Weingartl H, Cencic A. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus. Antiviral Res 2007; 75:266-74. [PMID: 17512614 DOI: 10.1016/j.antiviral.2007.03.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 03/19/2007] [Accepted: 03/30/2007] [Indexed: 01/18/2023]
Abstract
Macrophages are an important cellular component of the innate immune system and are normally rapidly recruited and/or activated at the site of virus infection. They can participate in the antiviral response by killing infected cells, by producing antiviral cytokines such as nitric oxide and by producing chemokines and immunoregulatory cytokines that enable the adaptive immune response to recognize infected cells and perform antiviral effector functions. Probiotics, as a part of the normal gut intestinal flora, are important in supporting a functional yet balanced immune system. Improving our understanding of their role in the activation of macrophages and their stimulation of proinflammatory cytokine production in early viral infection was the main goal of this study. Our in vitro model study showed that probiotic bacteria, either from the species Lactobacillus or Bifidobacteria have the ability to decrease viral infection by establishing the antiviral state in macrophages, by production of NO and inflammatory cytokines such as interleukin 6 and interferon-gamma. These effects correlated with the mitochondrial activity of infected macrophages, therefore, the measurements of mitochondrial dehydrogenases activity could be implied as the first indicator of potential inhibitory effects of the probiotics on virus replication. The interactions between probiotic bacteria, macrophages and vesicular stomatitis virus (VSV), markedly depended on the bacterial strain studied.
Collapse
Affiliation(s)
- Martin Ivec
- University of Maribor, Faculty of Agriculture, Vrbanska c.30, 2000 Maribor, Slovenia
| | | | | | | | | | | |
Collapse
|
43
|
Bouchelouche K, Andresen L, Alvarez S, Nordling J, Nielsen OH, Bouchelouche P. Interleukin-4 and 13 Induce the Expression and Release of Monocyte Chemoattractant Protein 1, Interleukin-6 and Stem Cell Factor From Human Detrusor Smooth Muscle Cells: Synergy With Interleukin-1β and Tumor Necrosis Factor-α. J Urol 2006; 175:760-5. [PMID: 16407046 DOI: 10.1016/s0022-5347(05)00167-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Interstitial cystitis is characterized by an increased number of activated MCs in the detrusor muscle. However, to our knowledge the factors that influence the anatomical relationship between MCs and HDSMCs are unknown. MCP-1, IL-6 and SCF have a critical role in the regulation of MC development, signaling and function. We investigated whether HDSMCs are capable of expressing and releasing MCP-1, IL-6 and SCF in response to IL-4, IL-13, IL-1beta and tumor necrosis factor-alpha. MATERIALS AND METHODS HDSMCs were isolated and cultured using an explant technique. Protein expression, and the secretion of MCP-1, IL-6 and SCF were assayed by semiquantitative reverse transcriptase-polymerase chain reaction and specific enzyme-linked immunosorbent assay. RESULTS Unstimulated cells released low amounts of MCP-1, IL-6 and SCF. In cells stimulated by IL-4 MCP-1 mRNA was up-regulated by a mean factor +/- SD of 3.5 +/- 1.3, IL-6 mRNA was up-regulated by 3.8 +/- 1.3, the soluble form of SCF was up-regulated by 3.2 +/- 0.6 and the membrane bound form of SCF was up-regulated by 7.9 +/- 5.6. For IL-13 stimulated cells the values were 2.6 +/- 1.5, 3.6 +/- 2.1, 2.9 +/- 1.6 and 5.7 +/- 3.7, respectively. Soluble SCF mRNA expression was 5 times higher than the expression of mSCF mRNA. IL-4 and IL-13 given separately stimulated MCP-1, IL-6 and SCF secretion in a concentration (0.01 to 100 ng/ml) and time (0 to 24 hours) dependent manner. Furthermore, IL-1beta and tumor necrosis factor-alpha alone induced significant release of MCP-1, IL-6 and SCF but in combination with IL-4 or IL-13 it induced greater secretion of MCP-1, IL-6 and SCF. CONCLUSIONS To our knowledge these findings demonstrate for the first time that HDSMCs express and release MCP-1 and IL-6, and show relatively high expression of soluble SCF. This supports our hypothesis that HDSMCs may have an active role by orchestrating the local inflammatory response in the bladder wall with possible implications for the pathophysiology of detrusor mastocytosis.
Collapse
|
44
|
Vinderola G, Matar C, Perdigon G. Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of toll-like receptors. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1075-84. [PMID: 16148174 PMCID: PMC1235795 DOI: 10.1128/cdli.12.9.1075-1084.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms by which probiotic bacteria exert their effects on the immune system are not completely understood, but the epithelium may be a crucial player in the orchestration of the effects induced. In a previous work, we observed that some orally administered strains of lactic acid bacteria (LAB) increased the number of immunoglobulin A (IgA)-producing cells in the small intestine without a concomitant increase in the CD4(+) T-cell population, indicating that some LAB strains induce clonal expansion only of B cells triggered to produce IgA. The present work aimed to study the cytokines induced by the interaction of probiotic LAB with murine intestinal epithelial cells (IEC) in healthy animals. We focused our investigation mainly on the secretion of interleukin 6 (IL-6) necessary for the clonal expansion of B cells previously observed with probiotic bacteria. The role of Toll-like receptors (TLRs) in such interaction was also addressed. The cytokines released by primary cultures of IEC in animals fed with Lactobacillus casei CRL 431 or Lactobacillus helveticus R389 were determined. Cytokines were also determined in the supernatants of primary cultures of IEC of unfed animals challenged with different concentrations of viable or nonviable lactobacilli and Escherichia coli, previously blocked or not with anti-TLR2 and anti-TLR4. We concluded that the small intestine is the place where a major distinction would occur between probiotic LAB and pathogens. This distinction comprises the type of cytokines released and the magnitude of the response, cutting across the line that separates IL-6 necessary for B-cell differentiation, which was the case with probiotic lactobacilli, from inflammatory levels of IL-6 for pathogens.
Collapse
Affiliation(s)
- Gabriel Vinderola
- Départment de Chimie et Biochemie, Université de Moncton (NB) E1A 3E9, Canada
| | | | | |
Collapse
|
45
|
Cao W, Cheng L, Behar J, Fiocchi C, Biancani P, Harnett KM. Proinflammatory cytokines alter/reduce esophageal circular muscle contraction in experimental cat esophagitis. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1131-9. [PMID: 15271650 DOI: 10.1152/ajpgi.00216.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholinergic mechanisms are largely responsible for esophageal contraction in response to swallowing or to in vitro electrical field stimulation (EFS). After induction of experimental esophagitis by repeated acid perfusion, the responses to swallowing and to EFS were significantly reduced but contraction in response to ACh was not affected, suggesting that cholinergic mechanisms are damaged by acid perfusion but that myogenic mechanisms are not. Measurements of ACh release in response to EFS confirmed that release of ACh was reduced in esophagitis compared with normal controls. To examine factors contributing to this neuropathy, normal esophageal strips were incubated for 1-2 h with the proinflammatory cytokines IL-1beta (100 U/ml), IL-6 (1 ng/ml), or TNF-alpha (1 ng/ml). IL-1beta and IL-6 levels, measured by Western blot analysis, increased in esophagitis compared with normal circular muscle. IL-1beta and IL-6 reduced contraction in response to EFS (2-10 Hz, 0.2 ms) but did not affect ACh-induced contraction, suggesting that these cytokines inhibit ACh release without affecting myogenic contractile mechanisms. EFS-induced ACh release was significantly reduced in normal esophageal strips by incubation in IL-1beta or IL-6, suggesting that they may contribute to the contractility changes. TNF-alpha at 1 ng/ml, however, did not affect the response to ACh or to electrical stimulation but inhibited both at higher concentrations. TNF-alpha levels were low in normal muscle and did not increase with esophagitis. The data suggest that the proinflammatory cytokines IL-1beta and IL-6 contribute to reduced esophageal contraction by inhibiting release of ACh from myenteric neurons.
Collapse
Affiliation(s)
- Weibiao Cao
- Department of Medicine, Rhode Island Hospital and Brown University, 593 Eddy St., Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
46
|
Castagliuolo I, Sardina M, Brun P, DeRos C, Mastrotto C, Lovato L, Palù G. Clostridium difficile toxin A carboxyl-terminus peptide lacking ADP-ribosyltransferase activity acts as a mucosal adjuvant. Infect Immun 2004; 72:2827-36. [PMID: 15102793 PMCID: PMC387895 DOI: 10.1128/iai.72.5.2827-2836.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The receptor binding domains of the most potent mucosal adjuvants, bacterial toxins and plant lectins, are organized in repeat units to recognize specific sugar residues. The lectin-like structure of the C-terminal region of Clostridium difficile toxin A prompted us to investigate the mucosal adjuvant properties of a nontoxigenic peptide corresponding to amino acids 2394 to 2706 (TxA(C314)). We compared TxA(C314) adjuvant activity to those of cholera toxin (CT) and Escherichia coli heat-labile enterotoxin subunit B (EtxB) coadministered orally or nasotracheally with poor peptide antigens (keyhole limpet hemocyanin [KLH] and hen egg lysozyme [HEL]). Levels of anti-KLH-specific serum immunoglobulin G (IgG) and IgA as well as that of mucosal IgA were significantly higher in animals immunized orally with TxA(C314) plus KLH than with KLH alone, CT plus KLH, or EtxB plus KLH. Following intranasal immunization with TxA(C314) plus HEL, levels of serum- and mucosa-specific antibodies were comparable to those induced by coadministering HEL with CT or EtxB. The TxA(C314) adjuvant effect following oral, but not intranasal, immunization was dose dependent. The analysis of the subclasses of anti-KLH-specific IgG isotypes and the cytokines released from splenocytes of immunized mice challenged in vitro with KLH indicates the induction of a mixed Th1/Th2-type immune response, with prevalence of the Th1 branch. We conclude that TxA(C314) enhances immune responses against mucosa-coadministered foreign antigens and represents a promising mucosal adjuvant, especially because its ability to stimulate mixed Th1/Th2 responses with a strong a Th1 component is extremely worthwhile against intracellular pathogens.
Collapse
Affiliation(s)
- Ignazio Castagliuolo
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Lo D. Exploiting immune surveillance mechanisms in mucosal vaccine development. Expert Opin Biol Ther 2004; 4:397-406. [PMID: 15006733 DOI: 10.1517/14712598.4.3.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Historically, immune responsiveness was regarded by many as an ability to discriminate self from non-self, but this definition has recently been revised to be a distinction between threatening infectious organisms versus innocuous molecules from autologous tissues. Such distinctions can be made in the context of adjuvant effects from triggering of 'pattern recognition receptors' by pathogen-associated molecules. Mucosal sites such as airway and intestinal passages present a particularly interesting challenge to this system, as distinctions must be effectively made between innocuous non-self molecules associated with food and commensal bacteria versus pathogenic viruses and bacteria. Given the simultaneous presence of all these molecular types at mucosal lymphoid sites, immunological discrimination mechanisms must be especially precise, as immune responses must be directed only at pathogen-associated targets. Ongoing research is identifying genes that may be critical to triggering mucosal immunity; an understanding of their role in discrimination may lead to the development of new vaccines.
Collapse
Affiliation(s)
- David Lo
- Digital Gene Technologies, Inc., 11149 North Torrey Pines Road, Suite 2302, La Jolla, CA 92037, USA.
| |
Collapse
|