1
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
2
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
3
|
Portero-Tresserra M, Galofré-López N, Pallares E, Gimenez-Montes C, Barcia C, Granero R, Rojic-Becker D, Vale-Martínez A, Martí-Nicolovius M, Guillazo-Blanch G. Effects of Caloric Restriction on Spatial Object Recognition Memory, Hippocampal Neuron Loss and Neuroinflammation in Aged Rats. Nutrients 2023; 15:nu15071572. [PMID: 37049417 PMCID: PMC10096994 DOI: 10.3390/nu15071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Age-related neurobiological changes significantly affect hippocampal structure and function, such that the main cognitive impairments associated with aging are related to the integrity of this brain structure, including the deterioration in spatial object recognition (SOR) memory. Previous studies have shown that intrinsic factors such as neuroinflammation, as well as lifestyle factors such as diet, can affect aging-associated brain functions and cognitive performance. In this regard, caloric restriction (CR) produces beneficial effects on health and life expectancy, although its ability to slow down age-dependent effects on cognitive decline and hippocampus (HPC) functioning remains unclear. Therefore, we set out to evaluate the effects of CR on SOR memory in aged male Wistar rats, as well as those on hippocampal neuron loss, neurogenesis and inflammation. The data show that CR in aged rats attenuates the decline in SOR memory, age-associated hippocampal neuron loss, and age-dependent microglial activation. Furthermore, we found a significant reduction in neurogenesis in the dentate gyrus of the old animals relative to adult rats. These findings support the positive effect of CR on SOR memory, suggesting that it dampens hippocampal neuronal loss and reduces proinflammatory activity.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Neus Galofré-López
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Elisabet Pallares
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Claudia Gimenez-Montes
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Barcia
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Roser Granero
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Divka Rojic-Becker
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Feng RC, Dong YH, Hong XL, Su Y, Wu XV. Effects of anthocyanin-rich supplementation on cognition of the cognitively healthy middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2023; 81:287-303. [PMID: 35960187 DOI: 10.1093/nutrit/nuac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT The prevalence of age-related cognitive decline has been on the rise as the global population age, putting the independence and quality of life of elderly at risk. Anthocyanin, as a subclass of dietary flavonoids, may have a beneficial impact on cognitive outcomes. OBJECTIVES To examine the effects of dietary anthocyanin supplementation on cognition of the cognitively healthy middle-aged and older adults. DATA SOURCES PubMed, ScienceDirect, CINAHL, EMBASE, ProQuest and Cochrane databases were searched. DATA EXTRACTION AND ANALYSIS Thirteen studies were included in this meta-analysis. Anthocyanin-rich supplementation was found to significantly improve the processing speed of the older adults (95%CI 0.08, 0.44; P = 0.004). No significant differences were observed between intervention and control groups on memory, attention, executive function and psychomotor performance. Current neuroimaging studies have found promising effects of anthocyanin supplementation on brain activation and cerebral perfusion. CONCLUSION Anthocyanin-rich supplementation may preserve cognitive processing speed and neuro-activities in older adults, which improves their daily functioning and quality of life. This review provides useful insights to guide direction and methodological designs for future studies to explore the underlying mechanisms of anthocyanins. SYSTEMATIC REVIEW AND META-ANALYSIS REGISTRATION PROSPERO registration No. CRD42021228007.
Collapse
Affiliation(s)
- Ruo Chen Feng
- is with the High-Dependency Unit, Tan Tock Seng Hospital, National Health Group, Singapore
| | - Yan Hong Dong
- are with the Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,is with the Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xian Li Hong
- is with the Medical Intensive Care Unit, Tan Tock Seng Hospital, National Health Group, Singapore
| | - Ya Su
- is with the Shanghai Jiao Tong University, School of Nursing, Shanghai, China.,is with the Faculty of Health Sciences, Hokkaido University, Japan
| | - Xi Vivien Wu
- are with the Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,is with the NUSMED Healthy Longevity Translational Research Programme, National University of Singapore, Singapore
| |
Collapse
|
5
|
Cahoon DS, Fisher DR, Lamon-Fava S, Wu D, Zheng T, Shukitt-Hale B. Blueberry treatment administered before and/or after lipopolysaccharide stimulation attenuates inflammation and oxidative stress in rat microglial cells. Nutr Neurosci 2023; 26:127-137. [PMID: 36692990 DOI: 10.1080/1028415x.2021.2020404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ABSTRACTMicroglia are key regulators of inflammation and oxidative stress (OS) in the CNS. Microglia activation can lead to chronic inflammation, OS, and neurodegeneration. Blueberries (BB) reduce inflammation and OS when administered to microglia before stressors such as lipopolysaccharide (LPS), but the therapeutic value of BBs administered after activation by stressors has not been examined. Therefore, this study investigated the differential effects of pre-, post-, and pre-/post-BB on inflammation and OS in LPS-activated microglia. Rat microglia were pretreated with BB (0.5 mg/mL) or control media (C) for 24 hours, incubated overnight with LPS (0 or 200 ng/mL), and post-treated with BB or C for 24 hours. Biomarkers of inflammation (e.g. nitrite [NO2-], tumor necrosis factor-ɑ [TNFɑ], inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX-2], phosphorylated IκB-α [pIκB-ɑ]) and OS (e.g. NADPH oxidase [NOX2]) were assessed. LPS increased NO2-, TNFɑ, COX-2, iNOS, pIκB-ɑ, and NOX2 compared to non-stressed conditions (P < 0.05), however BB before and/or after LPS significantly reduced these markers compared to no BB (P < 0.05). Pre-BB was more effective than post-BB at reducing LPS-induced NO2-, TNFɑ, and COX-2 (P < 0.05). Pre-BB was also more effective than pre-/post-BB at attenuating LPS-induced NO2- and TNFɑ (P < 0.05). All BB treatments were equally effective in reducing LPS-induced iNOS, pIκB-ɑ, and NOX2. Results suggest that BBs can target the downstream events of LPS-induced microglial activation and prevent stressor-induced neuroinflammation and OS. Furthermore, BBs may not need to be present prior to microglial activation for beneficial effects, suggesting that dietary interventions may be effective even after initiation of disease processes.Graphical Abstract. Cascade of inflammatory and OS-inducing events associated with self-propelling microglial activation by LPS and the effects of blueberry (0.5 mg/mL) administered before and/or after LPS on these processes (blue arrows). BB, blueberry; COX2, cyclooxygenase-2; IκB-ɑ, inhibitor kappa-B-ɑ; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; NF-κB, nuclear factor kappa-B; NO, nitric oxide; NOX2, NADPH oxidase; OS, oxidative stress; ROS, reactive oxygen species; TNFɑ, tumor necrosis factor-ɑ.
Collapse
Affiliation(s)
- Danielle S Cahoon
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Derek R Fisher
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Tong Zheng
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Barbara Shukitt-Hale
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
6
|
Banji OJ, Banji D, Makeen HA, Alqahtani SS, Alshahrani S. Neuroinflammation: The Role of Anthocyanins as Neuroprotectants. Curr Neuropharmacol 2022; 20:2156-2174. [PMID: 35043761 PMCID: PMC9886846 DOI: 10.2174/1570159x20666220119140835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation is a trigger for several neurodegenerative and neuropsychiatric disorders. Exposure to noxious external stimuli induces homeostatic disturbances resulting in morphological changes in microglia, their activation, and elaboration of pro-inflammatory mediators. This leads to neuroinflammation with the progressive loss of neurons. Nutraceuticals such as anthocyanins are a class of brightly colored bioactive compounds present in fruits and vegetables with purported health benefits. They interfere with the activation of several signaling cascades that have a prominent role in preventing neuroinflammation. More importantly, anthocyanins can cross the blood-brain barrier and are safe. Hence, the current review focuses on the bioavailability of anthocyanins, clinical and in vitro evidence on their role in impeding the activation of transcription factors, modulating the immune milieu within the central nervous system, preventing the activation of microglia, and averting neuroinflammation.
Collapse
Affiliation(s)
- Otilia J.F. Banji
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA; ,Address correspondence to this author at the Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA; Tel: 966-557942761; E-mail:
| | - David Banji
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, KSA
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA;
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA;
| | - Saeed Alshahrani
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, KSA
| |
Collapse
|
7
|
Zou H, Ye H, Zhang J, Ren L. Recent advances in nuclear receptors-mediated health benefits of blueberry. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154063. [PMID: 35344717 DOI: 10.1016/j.phymed.2022.154063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Blueberry is rich in bioactive substances and has anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, neuroprotective, and other activities. Blueberry has been shown to treat diseases by mediating the transcription of nuclear receptors. However, evidence for nuclear receptor-mediated health benefits of blueberry has not been systematically reviewed. PURPOSE This review aims to summarize the nuclear receptor-mediated health benefits of blueberry. METHODS This study reviews all relevant literature published in NCBI PubMed, Scopus, Web of Science, and Google Scholar by January 2022. The relevant literature was extracted from the databases with the following keyword combinations: "biological activities" OR "nuclear receptors" OR "phytochemicals" AND "blueberry" OR "Vaccinium corymbosum" as well as free-text words. RESULTS In vivo and in vitro experimental results and clinical evidence have demonstrated that blueberry has health-promoting effects. Supplementing blueberry is beneficial to the treatment of cancer, the alleviation of metabolic syndrome, and liver protection. Blueberry can regulate the transcription of PPARs, ERs, AR, GR, MR, LXRs, and FXR and mediate the expressions of Akt, CYP 1Al, p53, and Bcl-2. CONCLUSION Blueberry can be targeted to treat various diseases by mediating the transcription of nuclear receptors. Nevertheless, further human research is needed.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
8
|
Bonyadi N, Dolatkhah N, Salekzamani Y, Hashemian M. Effect of berry-based supplements and foods on cognitive function: a systematic review. Sci Rep 2022; 12:3239. [PMID: 35217779 PMCID: PMC8881511 DOI: 10.1038/s41598-022-07302-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
In the current decade, a growing body of evidence has proposed the correlation between diet and cognitive function or dementia in the ageing population. This study was designed to appraise discoveries from the randomized controlled trials to confirm the effects of berry-based supplements or foods on cognitive function in older adults. PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science, Scopus, EMBASE, Google Scholar, and ProQuest as well as SID, Magiran, and Iranmedex electronic databases were explored for human interventional studies up to March 2021. In total, eleven articles were identified using frozen blueberry (n = 4 studies), blueberry concentrate (n = 2), beverage (n = 3), capsule (n = 1), extract and powder (n = 1). These studies had been performed among older people with no recognized cognitive impairment or mild cognitive impairment (MCI). The primary outcomes included global cognitive function, psychomotor function, learning and memory, working memory capacity, executive functions, and brain perfusion/activity. To our knowledge, this is the first systematic review of available clinical trials on the effects of berry-based supplements and foods on cognitive performances as well as brain perfusion parameters among the elderly with normal cognition or MCI. Existing evidence concludes that berry-based supplements and foods have beneficial effects on resting brain perfusion, cognitive function, memory performance, executive functioning, processing speed, and attention indices.
Collapse
Affiliation(s)
- Negar Bonyadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yaghoub Salekzamani
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica College, Utica, USA
| |
Collapse
|
9
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
10
|
Dorman G, Flores I, Gutiérrez C, Castaño RF, Aldecoa M, Kim L. Medicinal herbs and nutritional supplements for dementia therapy: potential therapeutic targets and clinical evidence. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:26-51. [PMID: 34370647 DOI: 10.2174/1871527320666210809121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Spices and herbs have been used for medicinal purposes for centuries. Also, in the last decades, the use of different nutritional supplements has been implemented to treat all kinds of diseases, including those that present an alteration in cognitive functioning. Dementia is a clinical syndrome in which a person's mental and cognitive capacities gradually decline. As the disease progresses, the person's autonomy diminishes. As there is not an effective treatment to prevent progressive deterioration in many of these pathologies, nutritional interventions have been, and still are, one of the most widely explored therapeutic possibilities. In this review, we have discussed a great number of potentially interesting plants, nutritional derivatives and probiotics for the treatment of dementia around the world. Their action mechanisms generally involve neuroprotective effects via anti-inflammatory, antioxidant, anti-apoptotic, b-amyloid and tau anti-aggregate actions; brain blood flow improvement, and effects on synaptic cholinergic and dopaminergic neurotransmission, which may optimize cognitive performance in patients with cognitive impairment. As for their efficacy in patients with cognitive impairment and/or dementias, evidence is still scarce and/or their outcomes are controversial. We consider that many of these substances have promising therapeutic properties. Therefore, the scientific community has to continue with a more complete research focused on both identifying possible action mechanisms and carrying out clinical trials, preferably randomized double-blind ones, with a greater number of patients, a long-term follow-up, dose standardization and the use of current diagnosis criteria.
Collapse
Affiliation(s)
- Guido Dorman
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Ignacio Flores
- Neuroscience Institute, Favaloro Foundation Hospital. Argentina
| | | | | | - Mayra Aldecoa
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Leandro Kim
- Division of Neurology, Ramos Mejia Hospital. Argentina
| |
Collapse
|
11
|
Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021; 16:12. [PMID: 34353376 PMCID: PMC8340437 DOI: 10.1186/s13062-021-00297-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
12
|
Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br J Nutr 2021; 126:253-263. [PMID: 33468271 DOI: 10.1017/s0007114521000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional changes in the brain during ageing can alter learning and memory, gait and balance - in some cases leading to early cognitive decline, disability or injurious falls among older adults. Dietary interventions with strawberry (SB) have been associated with improvements in neuronal, psychomotor and cognitive functions in rodent models of ageing. We hypothesised that dietary supplementation with SB would improve mobility and cognition among older adults. In this study, twenty-two men and fifteen women, between the ages of 60 and 75 years, were recruited into a randomised, double-blind, placebo-controlled trial in which they consumed either freeze-dried SB (24 g/d, equivalent to two cups of fresh SB) or a SB placebo for 90 d. Participants completed a battery of balance, gait and cognitive tests at baseline and again at 45 and 90 d of intervention. Significant supplement group by study visit interactions were observed on tests of learning and memory. Participants in the SB group showed significantly shorter latencies in a virtual spatial navigation task (P = 0·020, ηp2 = 0·106) and increased word recognition in the California Verbal Learning test (P = 0·014, ηp2 = 0·159) across study visits relative to controls. However, no improvement in gait or balance was observed. These findings show that the addition of SB to the diets of healthy, older adults can improve some aspects of cognition, but not gait or balance, although more studies with a larger sample size and longer follow-up are needed to confirm this finding.
Collapse
|
13
|
Grasso M, Caruso G, Godos J, Bonaccorso A, Carbone C, Castellano S, Currenti W, Grosso G, Musumeci T, Caraci F. Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants (Basel) 2021; 10:1075. [PMID: 34356309 PMCID: PMC8301008 DOI: 10.3390/antiox10071075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural compounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through multiple molecular mechanisms. A deficit of transforming growth factor-β1 (TGF-β1) pathway is an early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders, from depression to AD. In the present review, we provide evidence that different nutraceuticals, such as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and carnosine, can target TGF-β1 signaling and increase TGF-β1 production in the central nervous system as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism between nutraceuticals targeting the TGF-β1 pathway and current approved drugs might represent a novel pharmacological approach for reverting cognitive deficits in AD patients.
Collapse
Affiliation(s)
- Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
14
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
15
|
Zwart SR, Mulavara AP, Williams TJ, George K, Smith SM. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav Rev 2021; 127:307-331. [PMID: 33915203 DOI: 10.1016/j.neubiorev.2021.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Multi-year crewed space exploration missions are now on the horizon; therefore, it is important that we understand and mitigate the physiological effects of spaceflight. The spaceflight hazards-radiation, isolation, confinement, and altered gravity-have the potential to contribute to neuroinflammation and produce long-term cognitive and behavioral effects-while the fifth hazard, distance from earth, limits capabilities to mitigate these risks. Accumulated evidence suggests that nutrition has an important role in optimizing cognition and reducing the risk of neurodegenerative diseases caused by neuroinflammation. Here we review the nutritional perspective of how these spaceflight hazards affect the astronaut's brain, behavior, performance, and sensorimotor function. We also assess potential nutrient/nutritional countermeasures that could prevent or mitigate spaceflight risks and ensure that crewmembers remain healthy and perform well during their missions. Just as history has taught us the importance of nutrition in terrestrial exploration, we must understand the role of nutrition in the development and mitigation of spaceflight risks before humans can successfully explore beyond low-Earth orbit.
Collapse
Affiliation(s)
- Sara R Zwart
- Univerity of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | | | - Thomas J Williams
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Kerry George
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| |
Collapse
|
16
|
Meccariello R, D’Angelo S. Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants (Basel) 2021; 10:507. [PMID: 33805092 PMCID: PMC8064059 DOI: 10.3390/antiox10040507] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.
Collapse
Affiliation(s)
| | - Stefania D’Angelo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, 80133 Naples, Italy;
| |
Collapse
|
17
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
18
|
Martín MA, Goya L, de Pascual-Teresa S. Effect of Cocoa and Cocoa Products on Cognitive Performance in Young Adults. Nutrients 2020; 12:nu12123691. [PMID: 33265948 PMCID: PMC7760676 DOI: 10.3390/nu12123691] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence support a beneficial role of cocoa and cocoa products on human cognition, particularly in aging populations and patients at risk. However, thorough reviews on the efficacy of cocoa on brain processes in young adults do not exist precisely due to the limited number of studies in the matter. Thus, the aim of this study was to summarize the findings on the acute and chronic effects of cocoa administration on cognitive functions and brain health in young adults. Web of Science and PubMed databases were used to search for relevant trials. Human randomized controlled studies were selected according to PRISMA guidelines. Eleven intervention studies that involved a total of 366 participants investigating the role of cocoa on cognitive performance in children and young adults (average age ≤ 25 years old) were finally selected. Findings from individual studies confirm that acute and chronic cocoa intake have a positive effect on several cognitive outcomes. After acute consumption, these beneficial effects seem to be accompanied with an increase in cerebral blood flow or cerebral blood oxygenation. After chronic intake of cocoa flavanols in young adults, a better cognitive performance was found together with increased levels of neurotrophins. This systematic review further supports the beneficial effect of cocoa flavanols on cognitive function and neuroplasticity and indicates that such benefits are possible in early adulthood.
Collapse
|
19
|
Henriques JF, Serra D, Dinis TCP, Almeida LM. The Anti-Neuroinflammatory Role of Anthocyanins and Their Metabolites for the Prevention and Treatment of Brain Disorders. Int J Mol Sci 2020; 21:E8653. [PMID: 33212797 PMCID: PMC7696928 DOI: 10.3390/ijms21228653] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins are naturally occurring polyphenols commonly found in fruits and vegetables. Numerous studies have described that anthocyanin-rich foods may play a crucial role in the prevention and treatment of different pathological conditions, which have encouraged their consumption around the world. Anthocyanins exhibit a significant neuroprotective role, mainly due to their well-recognized antioxidant and anti-inflammatory properties. Neuroinflammation is an intricate process relevant in both homeostatic and pathological circumstances. Since the progression of several neurological disorders relies on neuroinflammatory process, targeting brain inflammation has been considered a promising strategy in those conditions. Recent data have shown the anti-neuroinflammatory abilities of many anthocyanins and of their metabolites in the onset and development of several neurological disorders. In this review, it will be discussed the importance and the applicability of these polyphenolic compounds as neuroprotective agents and it will be also scrutinized the molecular mechanisms underlying the modulation of neuroinflammation by these natural compounds in the context of several brain diseases.
Collapse
Affiliation(s)
- Joana F. Henriques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diana Serra
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa C. P. Dinis
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Leonor M. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
20
|
Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Kumar D, Chopra C, Nepovimova E, Singh R, Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020; 12:E3008. [PMID: 33007945 PMCID: PMC7601865 DOI: 10.3390/nu12103008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
21
|
Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods - the role of diet in brain performance and health. Nutr Rev 2020; 79:693-708. [PMID: 32989449 DOI: 10.1093/nutrit/nuaa091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.
Collapse
Affiliation(s)
- Bo Ekstrand
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Nathalie Scheers
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Alastair B Ross
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,AgResearch, Lincoln, New Zealand
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
22
|
Fanton S, Cardozo LFMF, Combet E, Shiels PG, Stenvinkel P, Vieira IO, Narciso HR, Schmitz J, Mafra D. The sweet side of dark chocolate for chronic kidney disease patients. Clin Nutr 2020; 40:15-26. [PMID: 32718711 DOI: 10.1016/j.clnu.2020.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Chocolate is a widely appreciated foodstuff with historical appreciation as a food from the gods. In addition to its highly palatable taste, it is a rich source of (poly)phenolics, which have several proposed salutogenic effects, including neuroprotective anti-inflammatory, anti-oxidant and cardioprotective capabilities. Despite the known benefits of this ancient foodstuff, there is a paucity of information on the effects of chocolate in the context of chronic kidney disease (CKD). This review focusses on the potential salutogenic contribution of chocolate intake, to mitigate inflammatory and oxidative burden in CKD, its potential, for cardiovascular protection and on the maintenance of diversity in gut microbiota, as well as clinical perspectives, on regular chocolate intake by CKD patients.
Collapse
Affiliation(s)
- Susane Fanton
- Renal Vida Association, Blumenau, SC, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil
| | - Emilie Combet
- School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | | | | | | | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil; Graduate Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| |
Collapse
|
23
|
Devi SA, Chamoli A. Polyphenols as an Effective Therapeutic Intervention Against Cognitive Decline During Normal and Pathological Brain Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:159-174. [PMID: 32304034 DOI: 10.1007/978-3-030-42667-5_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Research in animals and humans has indicated that polyphenols can delay the age-related decline in learning, memory and neurodegenerative diseases. Among the polyphenols, berry phenolics have extensive beneficial effects because of their antioxidant and anti-inflammatory properties. Long-term consumption of grapes results in accumulation of polyphenols in the brain, which modulates cell-signalling pathways and neutralises the redox imbalance in the aging brain. Here we review the in vivo and in vitro evidence for considering grape-derived polyphenolics, the flavonoids- catechins, epicatechin, anthocyanidin, and quercetin, and non-flavonoids-gallic acid and resveratrol, as effective dietary sources to facilitate cognition in adults and lessen the decline in the old and pathogenic states, Alzheimer's and Parkinson's disease. Furthermore, a combined intervention of polyphenols along with regular physical exercise provides cognitive benefits for the aging brain and holds promising venues for preclinical and clinical studies in formulating neuro-nutraceuticals as functional foods for a healthy brain.
Collapse
Affiliation(s)
- S Asha Devi
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India.
| | - Anudita Chamoli
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India
| |
Collapse
|
24
|
Protective action of Grewia asiatica (phalsa) berries against scopolamine-induced deficit in learning and memory using behavior paradigms in rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00376-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Tan SJ, Ismail IS. Potency of Selected Berries, Grapes, and Citrus Fruit as Neuroprotective Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3582947. [PMID: 32565853 PMCID: PMC7277024 DOI: 10.1155/2020/3582947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
A healthy diet should nourish the brain with essential nutrients, including bioactive compounds, for normal brain functioning and to protect it from the negative effects of inflammation and oxidative stress. In this review, a concise summation of the protective effects of selected fruits, namely, berries, grapes, and citrus fruits, against neurological disorder is presented. The focus is on the neuroprotective potential of these fruits against neurodegenerative and mental disorders. The fruits selection was based on the vast reported pharmacological studies on their neuroprotection efficacies. Hence, the respective knowledge and limitations are discussed based on the biological and pharmacological evidence compiled from the previously reported laboratory, epidemiology, and intervention trials.
Collapse
Affiliation(s)
- Shih Jen Tan
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43000 Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43000 Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:molecules25061267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer’s pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
- Correspondence: or (M.S.U.); (P.J.); Tel.: +880-1710220110 (M.S.U.); +33-3-26913-341 (P.J.)
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
- Correspondence: or (M.S.U.); (P.J.); Tel.: +880-1710220110 (M.S.U.); +33-3-26913-341 (P.J.)
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
27
|
Travica N, D'Cunha NM, Naumovski N, Kent K, Mellor DD, Firth J, Georgousopoulou EN, Dean OM, Loughman A, Jacka F, Marx W. The effect of blueberry interventions on cognitive performance and mood: A systematic review of randomized controlled trials. Brain Behav Immun 2020; 85:96-105. [PMID: 30999017 DOI: 10.1016/j.bbi.2019.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/20/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022] Open
Abstract
Blueberries are rich in polyphenols that may be beneficial to cognitive performance and mood. The aim of this systematic review was to evaluate randomized controlled trials investigating the effects of blueberries and blueberry products on measures of cognition and mood. In total, eleven articles (that included 12 studies) were identified using freeze-dried blueberries (n = 9 studies), whole blueberries (n = 2) and blueberry concentrate (n = 1). These studies were conducted in children (n = 5), young adults (n = 1), and older people with either no known cognitive impairment (n = 4) or indicated cognitive impairment (n = 2). Eight studies reported blueberry consumption or supplementation at various doses and time lengths to improve measures of cognitive performance, particularly short- and long-term memory and spatial memory. For mood, one study reported significant between-group improvements in positive affect from blueberry products, whereas four studies reported no improvement. Low risk of bias were observed across all studies. Based on the current evidence, blueberries may improve some measures of cognitive performance. However, considerable differences in study design, dosages, and anthocyanin content hinder between-study comparison. The use of standardized blueberry interventions, consideration of placebo formulations, and consistently reported cognitive performance tools are recommended in future trials. PROSPERO registration no. CRD42018100888.
Collapse
Affiliation(s)
- Nikolaj Travica
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Nathan M D'Cunha
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT 2617, Australia
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT 2617, Australia
| | - Katherine Kent
- Centre for Rural Health, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia
| | - Duane D Mellor
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT 2617, Australia
| | - Joseph Firth
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW 2560, Australia; Division of Psychology and Mental Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ekavi N Georgousopoulou
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT 2617, Australia; Australian National University Medical School, Australian National University, Canberra, ACT 2605, Australia
| | - Olivia M Dean
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria 3216, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Amy Loughman
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria 3216, Australia
| | - Felice Jacka
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria 3216, Australia
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
28
|
Sharma G, Parihar A, Talaiya T, Dubey K, Porwal B, Parihar MS. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0105/jbcpp-2019-0105.xml. [PMID: 31967962 DOI: 10.1515/jbcpp-2019-0105] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Mild cognitive impairment (MCI) is a modifiable risk factor in progression of several diseases including dementia and type 2 diabetes. If cognitive impairments are not reversed at an early stage of appearance of symptoms, then the prolonged pathogenesis can lead to dementia and Alzheimer's disease (AD). Therefore, it is necessary to detect the risk factors and mechanism of prevention of cognitive dysfunction at an early stage of disease. Poor lifestyle, age, hyperglycemia, hypercholesterolemia, and inflammation are some of the major risk factors that contribute to cognitive and memory impairments in diabetic patients. Mild cognitive impairment was seen in those individuals of type 2 diabetes, who are on an unhealthy diet. Physical inactivity, frequent alcohol consumptions, and use of packed food products that provides an excess of cheap calories are found associated with cognitive impairment and depression in diabetic patients. Omega fatty acids (FAs) and polyphenol-rich foods, especially flavonoids, can reduce the bad effects of an unhealthy lifestyle; therefore, the consumption of omega FAs and flavonoids may be beneficial in maintaining normal cognitive function. These functional foods may improve cognitive functions by targeting many enzymes and molecules in cells chiefly through their anti-inflammatory, antioxidant, or signaling actions. Here, we provide the current concepts on the risk factors of cognitive impairments in type 2 diabetes and the mechanism of prevention, using omega FAs and bioactive compounds obtained from fruits and vegetables. The knowledge derived from such studies may assist physicians in managing the health care of patients with cognitive difficulties.
Collapse
Affiliation(s)
- Garima Sharma
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Arti Parihar
- Department of Science, Bellingham Technical College, Bellingham, WA, USA
| | - Tanay Talaiya
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Kirti Dubey
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Bhagyesh Porwal
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Mordhwaj S Parihar
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India, Phone: +91-734-2511317
| |
Collapse
|
29
|
Cognitive Function and Consumption of Fruit and Vegetable Polyphenols in a Young Population: Is There a Relationship? Foods 2019; 8:foods8100507. [PMID: 31627296 PMCID: PMC6836211 DOI: 10.3390/foods8100507] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Scientific evidence has shown the relationship between consumption of fruits and vegetables and their polyphenols with the prevention or treatment of diseases. The aim of this review was to find out whether the same relationship exists between fruits and vegetables and cognitive function, especially memory, in a young population. The mechanisms by which polyphenols of fruits and vegetables can exert cognitive benefits were also evaluated. These compounds act to improve neuronal plasticity through the protein CREB (Camp Response Element Binding) in the hippocampus, modulating pathways of signaling and transcription factors (ERK/Akt). In the same way, brain-derived neurotrophic factor (BDNF) is implicated in the maintenance, survival, growth, and differentiation of neurons. All these effects are produced by an increase of cerebral blood flow and an increase of the blood’s nitric oxide levels and oxygenation.
Collapse
|
30
|
Krishna G, Ying Z, Gomez-Pinilla F. Blueberry Supplementation Mitigates Altered Brain Plasticity and Behavior after Traumatic Brain Injury in Rats. Mol Nutr Food Res 2019; 63:e1801055. [PMID: 31115168 PMCID: PMC6684386 DOI: 10.1002/mnfr.201801055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/29/2019] [Indexed: 01/04/2023]
Abstract
SCOPE Traumatic brain injury (TBI) compromises neuronal function required for hippocampal synaptic plasticity and cognitive function. Despite the high consumption of blueberries, information about its effects on brain plasticity and function under conditions of brain trauma is limited. The efficacy of dietary blueberry (BB) supplementation to mitigate the effects of TBI on plasticity markers and associated behavioral function in a rodent model of concussive injury are assessed. METHODS AND RESULTS Rats were maintained on a diet supplemented with blueberry (BB, 5% w/w) for 2 weeks after TBI. It is found that BB supplementation mitigated a loss of spatial learning and memory performance after TBI, and reduced the effects of TBI on anxiety-like behavior. BB supplementation prevents a reduction of molecules associated with the brain-derived neurotrophic factor (BDNF) system action on learning and memory such as cyclic-AMP response element binding factor (CREB), calcium/calmodulin-dependent protein kinase II (CaMKII). In addition, BB supplementation reverses an increase of the lipid peroxidation byproduct 4-hydroxy-nonenal (4-HNE) after TBI. Importantly, synaptic and neuronal signaling regulators change in proportion with the memory performance, suggesting an association between plasticity markers and behavior. CONCLUSION Data herein indicate that BB supplementation has a beneficial effect in mitigating the acute aspects of the TBI pathology.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Flanagan E, Müller M, Hornberger M, Vauzour D. Impact of Flavonoids on Cellular and Molecular Mechanisms Underlying Age-Related Cognitive Decline and Neurodegeneration. Curr Nutr Rep 2019; 7:49-57. [PMID: 29892788 PMCID: PMC5960493 DOI: 10.1007/s13668-018-0226-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review summarises the most recent evidence regarding the effects of dietary flavonoids on age-related cognitive decline and neurodegenerative diseases. Recent Findings Recent evidence indicates that plant-derived flavonoids may exert powerful actions on mammalian cognition and protect against the development of age-related cognitive decline and pathological neurodegeneration. The neuroprotective effects of flavonoids have been suggested to be due to interactions with the cellular and molecular architecture of brain regions responsible for memory. Summary Mechanisms for the beneficial effects of flavonoids on age-related cognitive decline and dementia are discussed, including modulating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation, promoting vascular effects capable of stimulating new nerve cell growth in the hippocampus, bidirectional interactions with gut microbiota and attenuating the extracellular accumulation of pathological proteins. These processes are known to be important in maintaining optimal neuronal function and preventing age-related cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Emma Flanagan
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK
| | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK
| | - Michael Hornberger
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK.
| |
Collapse
|
32
|
Shukitt-Hale B, Thangthaeng N, Miller MG, Poulose SM, Carey AN, Fisher DR. Blueberries Improve Neuroinflammation and Cognition differentially Depending on Individual Cognitive baseline Status. J Gerontol A Biol Sci Med Sci 2019; 74:977-983. [PMID: 30772901 PMCID: PMC6580694 DOI: 10.1093/gerona/glz048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Daily supplementation of blueberries (BBs) reverses age-related deficits in behavior in aged rats. However, it is unknown whether BB is more beneficial to one subset of the population dependent on baseline cognitive performance and inflammatory status. To examine the effect of individual differences on the efficacy of BB, aged rats (17 months old) were assessed for cognition in the radial arm water maze (RAWM) and divided into good, average, and poor performers based on navigation errors. Half of the rats in each cognitive group were then fed a control or a 2% BB diet for 8 weeks before retesting. Serum samples were collected, pre-diet and post-diet, to assess inflammation. Latency in the radial arm water maze was significantly reduced in the BB-fed poor performers (p < .05) and preserved in the BB-fed good performers. The control-fed good performers committed more working and reference memory errors in the post-test than pretest (p < .05), whereas the BB-fed good performers showed no change. An in vitro study using the serum showed that BB supplementation attenuated lipopolysaccharide (LPS)-induced nitrite and tumor necrosis factor-alpha, and cognitive performance was associated with innate anti-inflammatory capability. Therefore, consumption of BB may reverse some age-related deficits in cognition, as well as preserve function among those with intact cognitive ability.
Collapse
Affiliation(s)
- Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Nopporn Thangthaeng
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Marshall G Miller
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Shibu M Poulose
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Amanda N Carey
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Derek R Fisher
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
33
|
Sandoval-Salazar C, Oviedo-Solís CI, Lozoya-Gloria E, Aguilar-Zavala H, Solís-Ortiz MS, Pérez-Vázquez V, Balcón-Pacheco CD, Ramírez-Emiliano J. Strawberry Intake Ameliorates Oxidative Stress and Decreases GABA Levels Induced by High-Fat Diet in Frontal Cortex of Rats. Antioxidants (Basel) 2019; 8:E70. [PMID: 30897746 PMCID: PMC6466532 DOI: 10.3390/antiox8030070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.
Collapse
Affiliation(s)
- Cuauhtémoc Sandoval-Salazar
- Departamento de Enfermería y Obstetricia, División de Ciencias de Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico.
| | | | - Edmundo Lozoya-Gloria
- Laboratorio de Bioquímica y Biología Molecular de Productos Naturales de Plantas, CINVESTAV, Irapuato 36821, Mexico.
| | - Herlinda Aguilar-Zavala
- Departamento de Enfermería y Obstetricia, División de Ciencias de Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico.
| | - Martha S Solís-Ortiz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Victoriano Pérez-Vázquez
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Cristina D Balcón-Pacheco
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| |
Collapse
|
34
|
Wang H, Liu J, Li T, Liu RH. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food Funct 2019; 9:5273-5282. [PMID: 30238944 DOI: 10.1039/c8fo01680a] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Blueberry is rich in bioactive phytochemicals with a wide of range of biological activities and health benefits. However, little is known about their effects on aging. The objectives of this study were to evaluate the effects of supplementation with a blueberry extract (BE) on lifespan and stress resistance using Caenorhabditis elegans (C. elegans) as a model. The mechanisms of these effects were explored using RNAi technology. The mean lifespan of C. elegans treated with BE at 50, 100, and 200 mg mL-1 was significantly increased by 22.2%, 36.5%, and 44.4%, respectively, in a dose-dependent manner. In addition, supplementation with BE improved motility and decreased lipofuscin accumulation. C. elegans pretreated with BE were more resistant than untreated C. elegans to stresses (heat, ultraviolet-B radiation, and paraquat). Treatment with BE resulted in up-regulation of genes related to antioxidant systems, including sod-3, cat-1, mev-1, skn-1, mek-1, nhr-8, and daf-16. Suppression of daf-16 by RNAi shortened the lifespan of C. elegans and inhibited the expression of sod-3, suggesting that BE may regulate sod-3 downstream of daf-16 to extend lifespan and stress resistance. Our findings revealed that, in C. elegans, BE can prolong the lifespan, improve health indexes, and enhance stress resistance.
Collapse
Affiliation(s)
- Huailing Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | | | | | | |
Collapse
|
35
|
Maulik M, Mitra S, Sweeney M, Lu B, Taylor BE, Bult-Ito A. Complex interaction of dietary fat and Alaskan bog blueberry supplementation influences manganese mediated neurotoxicity and behavioral impairments. J Funct Foods 2019; 53:306-317. [PMID: 31558914 DOI: 10.1016/j.jff.2018.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dietary fat modulates neuronal health and contributes to age-related nervous system disorders. However, the complex interaction between dietary fat and supplementation and its consequences on neurotoxic pathophysiology has been sparsely explored. The indigenous Alaskan bog blueberry (BB), Vaccinum uliginosum, is known to have anti-inflammatory properties, mostly attributed to its rich polyphenolic content. Here, we evaluate the interplay between dietary fat and BB supplementation on sub-chronic manganese (Mn) exposure that inflicts neurotoxicity and behavioral impairments. In both low-fat and normal-fat diets, BB supplementation attenuated the behavioral and the molecular hallmarks of Mn-induced neurotoxicity. On the contrary, a high-fat diet was found to exacerbate these Mn-induced pathological features. Furthermore, BB supplementation failed to recover the behavioral deficits in mice subjected to a high fat diet in Mn-treated mice. Overall, our results demonstrate the importance of including a dietary regimen comprised of polyphenolic rich supplements with low-fat content in combating age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA.,Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Swarup Mitra
- IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Pharmacology and Toxicology, The Research Institution on Addiction, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - McKenzie Sweeney
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Brianna Lu
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Barbara E Taylor
- Department of Biological Sciences, College of Natural Science and Mathematics, California State University Long Beach, Long Beach, CA, USA
| | - Abel Bult-Ito
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
36
|
Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP, Ahmed T, Ishaq N, Hashim R, Sobarzo-Sánchez E, Daglia M, Braidy N, Volpicella M, Vacca RA, Nabavi SM. Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnol Adv 2018; 36:1768-1778. [DOI: 10.1016/j.biotechadv.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
|
37
|
Maulik M, Mitra S, Hunter S, Hunstiger M, Oliver SR, Bult-Ito A, Taylor BE. Sir-2.1 mediated attenuation of α-synuclein expression by Alaskan bog blueberry polyphenols in a transgenic model of Caenorhabditis elegans. Sci Rep 2018; 8:10216. [PMID: 29976995 PMCID: PMC6033853 DOI: 10.1038/s41598-018-26905-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/22/2023] Open
Abstract
Misfolding and accumulation of cellular protein aggregates are pathological hallmarks of aging and neurodegeneration. One such protein is α-synuclein, which when misfolded, forms aggregates and disrupts normal cellular functions of the neurons causing Parkinson's disease. Nutritional interventions abundant in pharmacologically potent polyphenols have demonstrated a therapeutic role for combating protein aggregation associated with neurodegeneration. The current study hypothesized that Alaskan bog blueberry (Vaccinum uliginosum), which is high in polyphenolic content, will reduce α-synuclein expression in a model of Caenorhabditis elegans (C. elegans). We observed that blueberry extracts attenuated α-synuclein protein expression, improved healthspan in the form of motility and restored lipid content in the transgenic strain of C. elegans expressing human α-synuclein. We also found reduced gene expression levels of sir-2.1 (ortholog of mammalian Sirtuin 1) in blueberry treated transgenic animals indicating that the beneficial effects of blueberries could be mediated through partial reduction of sirtuin activity. This therapeutic effect of the blueberries was attributed to its xenohormetic properties. The current results highlight the role of Alaskan blueberries in mediating inhibition of sir-2.1 as a novel therapeutic approach to improving pathologies of protein misfolding diseases. Finally, our study warrants further investigation of the structure, and specificity of such small molecules from indigenous natural compounds and its role as sirtuin regulators.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Skyler Hunter
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Moriah Hunstiger
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - S Ryan Oliver
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Barbara E Taylor
- Department of Biological Sciences and College of Natural Sciences and Mathematics, California State University, Long Beach, Long Beach, CA, USA.
| |
Collapse
|
38
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
39
|
Shukitt-Hale B, Thangthaeng N, Kelly ME, Smith DE, Miller MG. Raspberry differentially improves age-related declines in psychomotor function dependent on baseline motor ability. Food Funct 2018; 8:4752-4759. [PMID: 29168860 DOI: 10.1039/c7fo00894e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among older adults, falls are a leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demonstrated that berry supplementation improves the age-related declines in balance, muscle strength, and coordination that often lead to falls, even when initiated later in life. The purpose of this study was to explore the interaction between baseline motor performance and the daily intake of raspberry required to improve/preserve motor function. Aged male F344 (17 mo) rats were tested for baseline (pre-test) balance, muscle strength, and coordination, and divided into good, average, and poor performers based on their motor composite score. Rats in each category were fed with either a control, 1%, or 2% raspberry-supplemented diet for 8 weeks and then retested (post-test). Poor performers fed with 1% or 2% raspberry had higher post-test composite scores (p < 0.05), while 2% raspberry lowered post-test composite scores in the good performers (p < 0.05), compared to control-fed rats. 1% and 2% raspberry appeared to preserve the performance of good performers and improve the performance of poor performers on plank walking (p < 0.05), while 2% raspberry improved post-test grip strength of the poor performers (p < 0.05). Additionally, rats with lower post-diet composite scores had higher levels of serum IL-1β levels (r = -0.347, p < 0.05). These findings identified poor performers as being the most likely to benefit from daily consumption of ½-2 cups of raspberry to improve/preserve motor function. Therefore, increased raspberry consumption may reduce fall risk, extend independence, and improve quality of life in the aging population.
Collapse
Affiliation(s)
- Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
40
|
Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev 2018. [PMID: 29526449 DOI: 10.1016/j.mad.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Past investigations have shown that various plant extracts are capable of promoting longevity in lower model organisms like Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, Bombyx mori etc. Longevity studies on such organisms provide a foundation to explore anti-aging efficacies of such plant extracts in higher organisms. Plant extracts of acai palm, apple, asparagus, blueberry, cinnamon, cocoa, Damnacanthus, maize, milk thistle, mistletoe, peach, pomegranate, Rhodiola, rose, Sasa, turmeric, and Withania have extended lifespan in lower model organisms via diverse mechanisms like insulin like growth factor (IGF) signaling pathway, and antioxidant defense mechanisms. Knowledge of pathways altered by the extracts can be investigated as potential drug-targets for natural anti-aging interventions. Thus, the aim of the review is to scrutinize longevity promoting efficacies of various plant extracts in lower model organisms.
Collapse
Affiliation(s)
- Debarati Chattopadhyay
- 206, Structural Biology Lab, Centre for Biomedical Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Lab, Centre for Biomedical Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
41
|
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of Resveratrol and other Polyphenols on Sirt1: Relevance to Brain Function During Aging. Curr Neuropharmacol 2018; 16:126-136. [PMID: 28676015 PMCID: PMC5883375 DOI: 10.2174/1570159x15666170703113212] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/15/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Classically the oxidative stress and more recently inflammatory processes have been identified as the major causes of brain aging. Oxidative stress and inflammation affect each other, but there is more information about the effects of oxidative stress on aging than regarding the contribution of inflammation on it. METHODS In the intense research for methods to delay or mitigate the effects of aging, are interesting polyphenols, natural molecules synthesized by plants (e.g. resveratrol). Their antioxidant and anti-inflammatory properties make them useful molecules in the prevention of aging. RESULTS The antiaging effects of polyphenols could be due to several related mechanisms, among which are the prevention of oxidative stress, SIRT1 activation and inflammaging modulation, via regulation of some signaling pathways, such as NF-κB. CONCLUSION In this review, we describe the positive effects of polyphenols on the prevention of the changes that occur during aging in the brain and their consequences on cognition, emphasizing the possible modulation of inflammaging by polyphenols through a SIRT1-mediated mechanism.
Collapse
Affiliation(s)
- F. Sarubbo
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - S. Esteban
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - A. Miralles
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - D. Moranta
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| |
Collapse
|
42
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
43
|
Yu J, Zhu H, Perry S, Taheri S, Kindy MS. Daily supplementation with GrandFusion ® improves memory and learning in aged rats. Aging (Albany NY) 2017; 9:1041-1054. [PMID: 28351996 PMCID: PMC5391217 DOI: 10.18632/aging.101209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/17/2017] [Indexed: 01/10/2023]
Abstract
Studies have shown that supplementation with extracts from various sources, including fruits and vegetables reverse the age-related changes in movement and cognition. We hypothesized that these beneficial effects result from the presence of anti-oxidants and anti-inflammatory compounds in the fruits and vegetables that contribute to reduced oxidative stress, inflammation and cell death while potentially enhancing neurogenesis. The present study was performed to determine the impact of supplementation with GrandFusion®(GF) to aged Fisher 344 rats for 4 months to determine the impact on attenuation or reversal of the age-related deficits. When the aged rats consumed a diet enriched with the extracts the results showed an improved motor performance, and enhanced cognitive functions. In addition, the rats showed reduced oxidative stress and inflammation, and enhanced neurogenesis, Nrf2 and anti-oxidant expression. The effect of GF extracts on the augmentation of memory and learning is significant and may function through the modulation of antioxidant enzymes, signaling pathways and additional mechanisms to improve the aging process. These studies further support the recommendation of USDA for the consumption of fruits and vegetables to improve healthy aging.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA.,James A. Haley VA Medical Center, Tampa, FL, USA.,Shriners Hospital for Children, Tampa, FL, USA
| |
Collapse
|
44
|
Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 2017; 61:50-62. [PMID: 29117513 DOI: 10.1016/j.mam.2017.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022]
Abstract
Flavonoids are a class of plant-derived dietary polyphenols that have attracted attention for their pro-cognitive and anti-inflammatory effects. The diversity of flavonoids and their extensive in vivo metabolism suggest that a variety of cellular targets in the brain are likely to be impacted by flavonoid consumption. Initially characterized as antioxidants, flavonoids are now believed to act directly on neurons and glia via the interaction with major signal transduction cascades, as well as indirectly via interaction with the blood-brain barrier and cerebral vasculature. This review discusses potential mechanisms of flavonoid action in the brain, with a focus on two critical transcription factors: cAMP response element-binding protein (CREB) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). To advance beyond current understanding of cellular targets, critical bioavailability studies need to be performed to verify the identity and concentration of flavonoid metabolites reaching the brain after ingestion and to validate that these metabolites are produced not just in rodent models but also in humans. Recent advances in human induced pluripotent stem cell (iPSC) differentiation protocols to generate human neuronal and glial cell types could also provide a unique tool for clinically relevant in vitro investigation of the mechanisms of action of bioavailable flavonoid metabolites in humans.
Collapse
|
45
|
Carey AN, Gildawie KR, Rovnak A, Thangthaeng N, Fisher DR, Shukitt-Hale B. Blueberry supplementation attenuates microglia activation and increases neuroplasticity in mice consuming a high-fat diet. Nutr Neurosci 2017; 22:253-263. [PMID: 28931353 DOI: 10.1080/1028415x.2017.1376472] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Consuming a high-fat diet (HFD) may result in behavioral deficits similar to those observed in aging animals. Blueberries may prevent and even reverse age-related alterations in neurochemistry and behavior. It was previously demonstrated that middle-aged mice fed HFD had impaired memory; however, supplementation of HFD with blueberry reduced these memory deficits. As a follow-up to that study, the brain tissue from HFD-fed mice with and without blueberry supplementation was assessed to determine the neuroprotective mechanism(s) by which blueberry allayed cognitive dysfunction associated with HFD. METHODS Mice were fed HFDs (60% calories from fat) or low-fat diets (LFD) with and without 4% blueberry (freeze-dried, U.S. Highbush Blueberry Council). Microglia activation was assessed ex vivo and in vitro. The hippocampus was assessed for brain-derived neurotrophic factor (BDNF) and neurogenesis by measuring doublecortin (DCX). RESULTS There was significantly less microglia ionized calcium binding adaptor molecule 1 staining and fewer microglia in the brains of mice fed HFD + blueberry compared to mice fed LFD and HFD. BV-2 microglial cells treated with serum collected from the mice fed the diets supplemented with blueberry produced less nitric oxide compared to cells treated with serum from mice fed HFD. BDNF levels were higher and the number of DCX-positive cells was greater in the hippocampus of mice fed HFD + blueberry compared to mice fed HFD. DISCUSSION This study demonstrated that supplementation of a HFD with blueberry reduced indices of microglia activation and increased neuroplasticity, and these changes may underlie the protection against memory deficits in HFD-fed mice supplemented with blueberry.
Collapse
Affiliation(s)
- Amanda N Carey
- a Simmons College , Department of Psychology , Boston , MA , USA
| | | | - Abigail Rovnak
- a Simmons College , Department of Psychology , Boston , MA , USA
| | - Nopporn Thangthaeng
- b USDA Human Nutrition Research Center on Aging, Neuroscience and Aging Laboratory , Boston , MA , USA
| | - Derek R Fisher
- b USDA Human Nutrition Research Center on Aging, Neuroscience and Aging Laboratory , Boston , MA , USA
| | - Barbara Shukitt-Hale
- b USDA Human Nutrition Research Center on Aging, Neuroscience and Aging Laboratory , Boston , MA , USA
| |
Collapse
|
46
|
Khan P, Rahman S, Queen A, Manzoor S, Naz F, Hasan GM, Luqman S, Kim J, Islam A, Ahmad F, Hassan MI. Elucidation of Dietary Polyphenolics as Potential Inhibitor of Microtubule Affinity Regulating Kinase 4: In silico and In vitro Studies. Sci Rep 2017; 7:9470. [PMID: 28842631 PMCID: PMC5573368 DOI: 10.1038/s41598-017-09941-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/01/2017] [Indexed: 02/08/2023] Open
Abstract
Microtubule affinity regulating kinase 4 (MARK4) is a Ser/Thr kinase belonging to AMPK-like family, has recently become an important drug target against cancer and neurodegenerative disorders. In this study, we have evaluated different natural dietary polyphenolics including rutin, quercetin, ferulic acid, hesperidin, gallic acid and vanillin as MARK4 inhibitors. All compounds are primarily binds to the active site cavity of MARK4. In silico observations were further complemented by the fluorescence-binding studies and isothermal titration calorimetry (ITC) measurements. We found that rutin and vanillin bind to MARK4 with a reasonably high affinity. ATPase and tau-phosphorylation assay further suggesting that rutin and vanillin inhibit the enzyme activity of MARK4 to a great extent. Cell proliferation, ROS quantification and Annexin-V staining studies are clearly providing sufficient evidences for the apoptotic potential of rutin and vanillin. In conclusion, rutin and vanillin may be considered as potential inhibitors for MARK4 and further exploited to design novel therapeutic molecules against MARK4 associated diseases.
Collapse
Affiliation(s)
- Parvez Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Shafikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Aarfa Queen
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Saaliqa Manzoor
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farha Naz
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
47
|
Sarubbo F, Ramis MR, Kienzer C, Aparicio S, Esteban S, Miralles A, Moranta D. Chronic Silymarin, Quercetin and Naringenin Treatments Increase Monoamines Synthesis and Hippocampal Sirt1 Levels Improving Cognition in Aged Rats. J Neuroimmune Pharmacol 2017; 13:24-38. [DOI: 10.1007/s11481-017-9759-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022]
|
48
|
Abstract
It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy.,Fondazione San Raffaele, Ceglie Messapica, Italy
| |
Collapse
|
49
|
Thangthaeng N, Poulose SM, Gomes SM, Miller MG, Bielinski DF, Shukitt-Hale B. Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats. AGE (DORDRECHT, NETHERLANDS) 2016; 38:393-404. [PMID: 27578256 PMCID: PMC5266225 DOI: 10.1007/s11357-016-9945-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
High consumption of fruits and vegetables has been associated with reduced risk of debilitating diseases and improved cognition in aged populations. These beneficial effects have been attributed to the phytochemicals found in fruits and vegetables, which have previously been shown to be anti-inflammatory and modulate autophagy. Tart cherries contain a variety of potentially beneficial phytochemicals; however, little research has been done to investigate the effects of tart cherry on the aging brain. Therefore, the purpose of this study was to determine if tart cherry supplementation can improve cognitive and motor function of aged rats via modulation of inflammation and autophagy in the brain. Thirty 19-month-old male Fischer 344 rats were weight-matched and assigned to receive either a control diet or a diet supplemented with 2 % Montmorency tart cherry. After 6 weeks on the diet, rats were given a battery of behavioral tests to assess for strength, stamina, balance, and coordination, as well as learning and working memory. Although no significant effects were observed on tests of motor performance, tart cherry improved working memory of aged rats. Following behavioral testing, the hippocampus was collected for western/densitometric analysis of inflammatory (GFAP, NOX-2, and COX-2) and autophagy (phosphorylated mTOR, Beclin 1, and p62/SQSTM) markers. Tart cherry supplementation significantly reduced inflammatory markers and improved autophagy function. Daily consumption of tart cherry reduced age-associated inflammation and promoted protein/cellular homeostasis in the hippocampus, along with improvements in working memory. Therefore, addition of tart cherry to the diet may promote healthy aging and/or delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nopporn Thangthaeng
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Shibu M Poulose
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Stacey M Gomes
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Marshall G Miller
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Donna F Bielinski
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Barbara Shukitt-Hale
- USDA-ARS, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
50
|
Kent K, Charlton KE, Netzel M, Fanning K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: a systematic review. J Hum Nutr Diet 2016; 30:260-274. [PMID: 27730693 DOI: 10.1111/jhn.12431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Preclinical evidence suggests that the anthocyanins, which comprise a subclass of dietary flavonoids providing the purple and red pigmentation in plant-based foods, may have a beneficial impact on cognitive outcomes. METHODS A systematic review was conducted to identify the published literature on food-based anthocyanin consumption and cognitive outcomes in human intervention trials. The literature search followed PRISMA guidelines and included six databases, as well as additional hand searching. RESULTS Seven studies were included in this review, comprising acute trials (n = 4) and longer-term (n = 3) interventions that assessed multiple cognitive outcomes in children, adults and older adults with cognitive impairment. Six of seven studies reported improvements in either a single, or multiple, cognitive outcomes, including verbal learning and memory, after anthocyanin-rich food consumption. As a result of methodological limitations and the large clinical and methodological diversity of the studies, the pooling of data for quantitative analysis was not feasible. CONCLUSIONS The impact of food-based anthocyanin consumption on both acute and long-term cognition appears promising. However, adequately powered studies that include sensitive cognitive tasks are needed to confirm these findings and allow the translation of research into dietary messages.
Collapse
Affiliation(s)
- K Kent
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - K E Charlton
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - M Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - K Fanning
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| |
Collapse
|