1
|
Fu M, Zhu Z, Xiang Y, Yang Q, Yuan Q, Li X, Yu G. Associations of Blood and Urinary Heavy Metals with Stress Urinary Incontinence Risk Among Adults in NHANES, 2003-2018. Biol Trace Elem Res 2025; 203:1327-1341. [PMID: 38884860 PMCID: PMC11872759 DOI: 10.1007/s12011-024-04264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
People come into contact with heavy metals in various ways in their daily lives. Accumulating evidence shows that toxic metal exposure is hazardous to human health. However, limited information is available regarding the impact of metal mixtures on stress urinary incontinence (SUI). Therefore, we used data from 10,622 adults from the 2003-2018 National Health and Nutrition Examination Survey (NHANES) to investigate the independent and comprehensive association between heavy metal co-exposure and SUI. Among them, 2455 (23.1%) had been diagnosed with SUI, while the rest had no SUI. We evaluated the independent and combined associations of 3 blood metals and 10 urinary metals with SUI risk, along with subgroup analyses according to age and gender. In the single-exposure model, blood cadmium (Cd), lead (Pb), mercury (Hg), urinary Cd, Pb, and cesium (Cs) were found to be positively connected with SUI risk. Moreover, weighted quantile sum (WQS) regression, quantile-based g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) consistently demonstrated blood and urinary metal-mixed exposure were positively associated with the risk of SUI, and emphasized that blood Pb and Cd and urinary Cd and Cs were the main positive drivers, respectively. This association was more pronounced in the young and middle-aged group (20-59 years old) and the female group. Nevertheless, further research is necessary to validate these significant findings.
Collapse
Affiliation(s)
- Maoling Fu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 13 Aviation Road, Wuhan, 430030, Hubei, China
| | - Zifan Zhu
- School of Mental Health and Psychological Science, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yechen Xiang
- Department of Urology, Hunan University of Medicine General Hospital, Hunan University of Medicine, 370 Jinxi South Road, Huaihua, 418000, Hunan, China
| | - Qiaoyue Yang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 13 Aviation Road, Wuhan, 430030, Hubei, China
| | - Quan Yuan
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 13 Aviation Road, Wuhan, 430030, Hubei, China
| | - Xinyu Li
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 13 Aviation Road, Wuhan, 430030, Hubei, China
| | - Genzhen Yu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Idrees M, Saqib N, Zaman G. Green synthesis of carbon dots (CDs) and their use for selective determination of Pb 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125303. [PMID: 39447303 DOI: 10.1016/j.saa.2024.125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Carbon dots were synthesized from fenugreek seeds through a single step hydrothermal method. The method is simple, fast, pleasant to the environment and cheaper. The CDs were characterized by Fourier Transform Infrared (FTIR), UV-visible spectrophotometer, X-ray diffraction (XRD), High Resolution Transmission electron microscopy (HR-TEM), and fluorescence. The CDs obtained were extremely fluorescent. The fluorescent carbon dots exhibited excitation-dependent behavior with the maximum excitation at 372 nm. The interaction of CDs was studied with different selected cations Al3+, Ca2+, Cd2+, Cr3+, Co2+, Cu2+, Cu+, Fe2+, Fe3+, K+, Sn4+, Na+, Ni2+, Pb2+, Mn2+, Zn2+, Sr2+, (NH4)6Mo7O24, 4H2O, Cr6+, Sb3+, Ba2+, Li+, and Mg2+. None of the ions studied showed any effect on its fluorescence intensity except Pb2+ which decreased its intensity. A direct relationship was found between Pb2+ concentrations and quenching of CDs intensity. Detection limit (DL) and quantification limits (QL) were determined as three and ten times of the standard deviation of the blank for ten number of measurements. DL and QL were found in the order 9.345 μM and 31.15 μM respectively. This linear behavior between quenching and Pb2+ concentration is useful for analytical purpose.
Collapse
Affiliation(s)
- Muhammad Idrees
- Department of Chemistry Bacha Khan University, Charsadda, Khyber Pakhtunkhwa 24420, Pakistan.
| | - Najmus Saqib
- Department of Chemistry Bacha Khan University, Charsadda, Khyber Pakhtunkhwa 24420, Pakistan
| | - Gohar Zaman
- Department of Chemistry Bacha Khan University, Charsadda, Khyber Pakhtunkhwa 24420, Pakistan
| |
Collapse
|
3
|
Huang M, Li H, Chen J, Li L, Zhan Y, Du Y, Bian J, Chen M, Lai D. Blood lead levels and bladder cancer among US participants: NHANES 1999-2018. BMC Public Health 2025; 25:416. [PMID: 39894828 PMCID: PMC11787758 DOI: 10.1186/s12889-025-21549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Pb (lead) is a heavy metal, its carcinogenicity for bladder cancer is still debated, the link between blood lead levels (BLLs) and bladder cancer was investigated in this study. METHODS This cross-sectional study, using the NHANES (1999-2018) database, explored the relationship between BLLs and bladder cancer among Americans aged 20-85. It employed weighted multivariable logistic regression for analysis. Additionally, subgroup analyses and smoothed curve fitting were also performed. RESULTS This study included a total of 40,486 participants, the body mass index (BMI) of the participants is 28.71 ± 6.68 kg/m2. The average BLL is 0.0858 μmol/L (range: 0-2.96 μmol/L). A fully adjusted model showed that the BLL was associated with bladder cancer (odds ratio [OR] = 2.946, 95% confidence interval [CI] = 1.025 to 8.465, P = 0.047) in people with BMI < 28 kg/m2. However, no difference was found in the BMI ≥ 28 kg/m2 subgroup or in the general population. According to the subgroup analysis of participants with a BMI < 28 kg/m2, blood lead was associated with bladder cancer in the male, nonhypertensive, and < 70-year-old subgroups (p < 0.05) but no significantly different is observed in other subgroups. In addition, we discovered a nonlinear association between the BLLs and bladder cancer risk using a linear regression model. CONCLUSION In this cross-sectional study, we found that the degree of correlation between BLLs and the risk of bladder cancer may vary among people with different BMIs. In people with BMI < 28 kg/m2, a higher BLL was independently associated with bladder cancer. However, more experiments are needed to confirm this finding.
Collapse
Affiliation(s)
- Mei Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China
| | - Hongxiao Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China
| | - Jiahui Chen
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China
| | - Liuqiang Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China
| | - Yifei Zhan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China
| | - Yuxuan Du
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China.
| | - Meiling Chen
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China.
| | - Dehui Lai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510700, China.
| |
Collapse
|
4
|
Naraki K, Keshavarzi M, Razavi BM, Hosseinzadeh H. The Protective Effects of Taurine, a Non-essential Amino Acid, Against Metals Toxicities: A Review Article. Biol Trace Elem Res 2025; 203:872-890. [PMID: 38735894 DOI: 10.1007/s12011-024-04191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Taurine is a non-proteinogenic amino acid derived from cysteine. It is involved in several phenomena such as the regulation of growth and differentiation, osmoregulation, neurohormonal modulation, and lipid metabolism. Taurine is important because of its high levels in several tissues such as the central nervous system (CNS), heart, skeletal muscles, retinal membranes, and platelets. In this report, we present the functional properties of taurine indicating that it has potential effects on various metal toxicities. Therefore, a comprehensive literature review was performed using the Scopus, PubMed, and Web of Science databases. According to the search keywords, 61 articles were included in the study. The results indicate that taurine protects tissues against metal toxicity through enhancement of enzymatic and non-enzymatic antioxidant capacity, modulation of oxidative stress, anti-inflammatory and anti-apoptotic effects, involvement in different molecular pathways, and interference with the activity of various enzymes. Taken together, taurine is a natural supplement that presents antitoxic effects against many types of compounds, especially metals, suggesting public consumption of this amino acid as a prophylactic agent against the incidence of metal toxicity.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Wang J, Zhang X, Zeng Y, Xu J, Zhang Y, Lu X, Wang F. Mo and Sn exposure associated with the increased of bone mineral density. Biometals 2025:10.1007/s10534-024-00662-6. [PMID: 39831951 DOI: 10.1007/s10534-024-00662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Orthopedics, The Fifth People's Hospital of Jinan, Jinan, 250000, China.
| | - Xiyan Zhang
- School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yuzhuo Zeng
- School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jing Xu
- Department of Stomatology, Shandong Medical College Jinan, Jinan, 250000, China
| | - Yong Zhang
- Department of Orthopedics, The Fifth People's Hospital of Jinan, Jinan, 250000, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- School of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Kochvar A, Hao G, Dai HD. Biomarkers of metal exposure in adolescent e-cigarette users: correlations with vaping frequency and flavouring. Tob Control 2025:tc-2023-058554. [PMID: 38684372 PMCID: PMC11518873 DOI: 10.1136/tc-2023-058554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Youth vaping poses a significant public health concern as metals have been detected in e-cigarette aerosols and liquids. This study investigated factors associated with biomarkers of metal exposure. METHODS Data were drawn from Wave 5 of the Population Assessment of Tobacco and Health (PATH) Study Youth Panel, a nationally representative sample of US adolescents aged 13-17 years. Urinary biomarkers of exposure to cadmium, lead, and uranium were assessed by vaping frequency (occasional (1-5 days), intermittent (6-19 days), and frequent (20+ days)) in the past 30 days and flavour type (menthol/mint, fruit, and sweet). RESULTS Among 200 exclusive e-cigarette users (median age 15.9 years, 62.9% female), 65 reported occasional use, 45 reported intermittent use, and 81 reported frequent use. The average number of recent puffs per day increased exponentially by vaping frequency (occasional: 0.9 puffs, intermittent: 7.9 puffs, frequent: 27.0 puffs; p=0.001). Both intermittent (0.21 ng/mg creatinine) and frequent users (0.20 ng/mg creatinine) had higher urine lead levels than occasional users (0.16 ng/mg creatinine). Frequent users also had higher urine uranium levels compared with occasional users (0.009 vs 0.005 ng/mg creatinine, p=0.0004). Overall, 33.0% of users preferred using menthol/mint flavours, 49.8% fruit flavours, and 15.3% sweet flavours. Sweet flavour users had higher uranium levels compared with menthol/mint users (0.009 vs 0.005 ng/mg creatinine, p=0.02). CONCLUSIONS Vaping in early life could increase the risk of exposure to metals, potentially harming brain and organ development. Regulations on vaping should safeguard the youth population against addiction and exposure to metals.
Collapse
Affiliation(s)
- Andrew Kochvar
- University of Nebraska Medical Center, Omaha, Nebraska, USA
- Kansas City University, Kansas City, Missouri, USA
| | - Gary Hao
- Millard West High School, Omaha, Nebraska, USA
| | | |
Collapse
|
7
|
Gupta S, Mitra P, Sharma P. Unmasking Lead Exposure and Neurotoxicity: Epigenetics, Extracellular Vesicles, and the Gut-Brain Connection. Indian J Clin Biochem 2025; 40:1-3. [PMID: 39835227 PMCID: PMC11741976 DOI: 10.1007/s12291-025-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
8
|
Park J, Akbaba GE, Sharma N, Das R, Vinikoor T, Liu Y, Le DQ, Angadi K, Nguyen TD. Electrically Active Biomaterials for Stimulation and Regeneration in Tissue Engineering. J Biomed Mater Res A 2025; 113:e37871. [PMID: 39806919 PMCID: PMC11773453 DOI: 10.1002/jbm.a.37871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries. Consequently, electrically active materials with excellent biocompatibility have attracted attention for their applications in stimulation and regeneration in tissue engineering. To fully exploit the potential of these materials, biocompatibility, operating mechanisms, electrical properties, and even biodegradability should be carefully considered. In this review, we categorize various electrically active biomaterials based on their mechanisms for generating electrical cues, such as piezoelectric effect, triboelectric effect, and others. We also summarize the key material properties, including electrical characteristics and biodegradability, and describe their applications in tissue stimulation and regeneration for nerves, musculoskeletal tissues, and cardiovascular tissues. The electrically active biomaterials hold great potential for advancing the field of tissue engineering and their demonstrated success underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Gulsah Erel Akbaba
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, Connecticut, USA
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Nidhi Sharma
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, Maryland, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Yang Liu
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Duong Quang Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Research Institute of Stem Cell and Gene Technology, College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Kishan Angadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Thanh Duc Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, Connecticut, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
9
|
Ren J, Wu W, Li J, Hu Q, Zhang M, Wang J, Li X, Li Y, Huang B. Association of metalloestrogens exposure with depression in women across reproductive lifespan. Front Psychiatry 2024; 15:1486402. [PMID: 39691784 PMCID: PMC11649658 DOI: 10.3389/fpsyt.2024.1486402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Background Exposure to metal could impact women's depression risk. However, the connection and mechanisms between metalloestrogens exposure and depression are still not fully understood. We aim to explore the associations between metalloestrogens and the risk of depression in women across reproductive lifespan. Methods Using data from NHANES 2011-2018, we employed logistic regression and baknernel machine regression (BKMR) to study links between metalloestrogen exposure and depression in US women. We analyzed how contraceptive use affects this relationship. Results The study involved 3,374 adult women, with 345 of them experiencing depression. Our research revealed that certain metalloestrogens like Ba, Ca, Pb, Sb, and Sn were linked to higher depression risk in women, while Hg was associated with lower depression risk in older women. For women aged 18-44, a blend of metalloestrogens showed a significant positive correlation with depression risk, and the likelihood of depression in later years notably rose when the metal mixture concentration reached or exceeded the 60th percentile. Oral contraceptives would have an effect on the impact of metalloestrogen mixture exposure on depression in women during the reproductive stage. Conclusions Our study indicates a significant link between metalloestrogen exposure and a higher risk of depression in adult women in the United States. This finding can aid in identifying the connection and enhancing women's mental well-being.
Collapse
Affiliation(s)
- Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jia Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qifang Hu
- Shenzhen Hospital of Southern Medical University, Shenzhen Clinical Medical School, Shenzhen, China
| | - Mi Zhang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wang
- Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiaoming Li
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Yanwen Li
- Department of Clinical Laboratory, Clinical Laboratory Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Mo Y, Shen Y. Electrochemical detection of heavy metals in rice, milk and tap water using free-standing carbon felt electrodes. Food Chem 2024; 460:140450. [PMID: 39089017 DOI: 10.1016/j.foodchem.2024.140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024]
Abstract
In this work, a carbon felt (CF) was utilized to fabricate electrochemical sensors for the simultaneous detection of Cd2+, Pb2+ and Hg2+. The working conditions of CF sensors including thermal activation, electrolytes, and enrichment potentials and times were systematically investigated. Under the optimal detection conditions, the resulting sensors showed good linearity in the concentration ranges of 3-10,000, 2-10,000 and 5-10,000 μg/L for the detection of Cd2+, Pb2+ and Hg2+, corresponding to the detection limits of 1, 0.5, and 1 μg/L, respectively. Meanwhile, the resulting electrochemical sensor demonstrates excellent reproducibility and anti-interference. In addition, the CF electrodes maintain good stability even after 180 days of storage at room temperature. In real water, rice and milk samples, the CF electrodes have been successfully utilized for the detection of Cd2+, Pb2+ and Hg2+ and the results were in agreement with those obtained from the inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Yetong Mo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yi Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, People's Republic of China.
| |
Collapse
|
11
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA. Fucoxanthin alleviates the cytotoxic effects of cadmium and lead on a human osteoblast cell line. Toxicol Res (Camb) 2024; 13:tfae218. [PMID: 39712643 PMCID: PMC11655842 DOI: 10.1093/toxres/tfae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Cadmium (Cd) and lead (Pb) are non-biodegradable heavy metals (HMs) that persistently contaminate ecosystems and accumulate in bones, where they exert harmful effects. This study aimed to investigate the protective effect of fucoxanthin (FX) against the chemical toxicity induced by Cd and Pb in human bone osteoblasts in vitro, using various biochemical and molecular assays. METHODS The effect of metals and FX on osteoblasts viability was assayed by MTT, then the effect of Pb, Cd, and FX on the cells' mitochondrial parameters was studied via assays for ATP, mitochondrial membrane potential (MMP), mitochondrial complexes, and lactate production. Also, the effect of metals on oxidative stress was assessed by reactive oxygen species, lipid peroxidation and antioxidant enzymes assays. Also the effect of FX and metals on apoptosis caspases and related genes was assessed. RESULTS When Cd and Pb were added to human osteoblast cultures at concentrations ranging from 1-20 μM for 72 h, they significantly reduced osteoblast viability in a time and concentration-dependent manner. The cytotoxic effect of Cd on osteoblasts was greater than that of Pb, with estimated EC50 of 8 and 12 μM, respectively, after 72 h of exposure. FX (10 and 20 μM) alleviated the cytotoxicity of the metals. Bioenergetics assays, including ATP, MMP, and mitochondrial complexes I and III activities, revealed that HMs at 1 and 10 μM concentrations inhibited cellular bioenergetics after 72 h of exposure. Cd and Pb also increased lipid peroxidation and reactive oxygen species while reducing catalase and superoxide dismutase antioxidant activities and oxidative stress-related genes. This was accompanied by increased caspases -3, -8, and - 9 and Bax/bCl-2 ratio. Co-treatment with FX (10 and 20 μM) mitigated the disruption of bioenergetics, oxidative damage, and apoptosis induced by the metals, showing a concentration-dependent pattern to varying extents. CONCLUSION These findings strongly support the role of FX in managing toxicities induced by environmental pollutants in bones and in addressing bone diseases associated with molecular bases of oxidative stress, apoptosis, and bioenergetic disruption.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Li H, Li Z, Yang C, Wei R, Wei P, Yuan H, Aschner M, Ou S, Peng D, Li S. The Effects of Pb on TNF-R1-RIPK1/RIPK3 Signaling Pathway in the Hippocampus of Mice. Neurochem Res 2024; 50:36. [PMID: 39602045 PMCID: PMC11606530 DOI: 10.1007/s11064-024-04279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Lead (Pb), a dense, soft, blue-gray metal, is widely used in metallurgy, cables, storage batteries, pigments, and other industrial applications. Pb has been shown to cause degenerative changes in the nervous system. Necroptosis, a form of non-apoptotic programmed cell death modality, is closely associated with neurodegenerative diseases. Whether the TNF-R1-RIPK1/RIPK3 pathway is involved in the neurodegeneration induced by Pb has yet to be determined. Here, we explored the role of the TNF-R1-RIPK1/RIPK3 signaling pathway in the Pb-induced necroptosis by using HT-22 cells, primary mouse hippocampal neurons, and C57BL/6 mice models, demonstrating that Pb exposure elevated lead levels in murine whole blood and hippocampal tissue in a dose-response relationship. Protein expression levels of PARP, c-PARP, RIPK1, p-RIPK1, RIPK3, MLKL, and p-MLKL in the hippocampal tissues were elevated, while the protein expression of caspase-8 was decreased. Furthermore, Pb exposure reduced the survival rates in HT-22 cells and primary mouse hippocampal neurons, while increasing the protein expressions of RIPK1 and p-MLKL. Collectively, these novel findings suggest that the TNF-R1/RIPK1/RIPK3 signaling pathway is associated with Pb-induced neurotoxicity in hippocampal neurons in mice.
Collapse
Affiliation(s)
- Huishuai Li
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Zhenning Li
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Chun Yang
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, China
| | - Ruokun Wei
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Peiqi Wei
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Haiyan Yuan
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shiyan Ou
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Dongjie Peng
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Key Laboratory of Environment and Health Research, Guangxi Medical University, Shuang-Yong Road No. 22, Nanning, Guangxi, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
13
|
Hwang IC, Kim KK, Kim JH, Lee KR. General and central obesity were significantly correlated with blood lead level in non-smoking, general population aged 30-50, without hypertension. Am J Med Sci 2024:S0002-9629(24)01521-0. [PMID: 39586424 DOI: 10.1016/j.amjms.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
To investigate the association between obesity and blood lead level (BLL) in the general population after controlled for menopause, blood pressure, calcium, and smoking; we assessed the relationship between BMI, WC (Waist Circumference), and blood lead levels in the non-smoking middle-aged subjects without hypertension among 2018 KNHANES. All data were recategorized into S1 (BMI<25 kg/m2 & WC<90 cm), S2 (intermediate), and S3 (BMI>25 kg/m2 & WC>90 cm). We made the log transformation of blood lead levels to bring them closer to a normal distribution. Logarithmic transformed BLL was closely related to BMI (p=.010) and WC (p=.020) after adjusting for sociodemographic, energy, working factors, and cardiometabolic variables. The prevalence of ratios of S3, S2, and S1 was comparable according to the quarterly group of BLL. Blood lead levels might increase oxidative stress on triglycerides and low high-density lipoprotein (HDL)-cholesterol; consequently, lead exposure might form peroxynitrite, a reactive oxygen substrate (ROS) susceptible to destroying lipids. Consequently, obesity was significantly correlated with logarithmic blood lead levels irrespective of sociodemographic, energy, working, and cardiometabolic factors in the non-smoking middle-aged population without hypertension. Further controlled clinical trials would be considered.
Collapse
Affiliation(s)
- In Cheol Hwang
- Family Medicine, Gil Medical Center, Gachon University College of Medicine.
| | - Kyoung Kon Kim
- Family Medicine, Gil Medical Center, Gachon University College of Medicine.
| | - Jeong Heon Kim
- Gil Medical Center, Gachon University College of Medicine.
| | - Kyu Rae Lee
- Family Medicine, Dongincheon Gil Hospital, Gachon University College of Medicine.
| |
Collapse
|
14
|
Flores-Bazán T, Izquierdo-Vega JA, Guerrero-Solano JA, Castañeda-Ovando A, Estrada-Luna D, Jiménez-Osorio AS. Interplay Between Vitamin D Levels and Heavy Metals Exposure in Pregnancy and Childbirth: A Systematic Review. PATHOPHYSIOLOGY 2024; 31:660-679. [PMID: 39585165 PMCID: PMC11587473 DOI: 10.3390/pathophysiology31040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Vitamin D (VD) deficiency has been associated with increased risk of gestational disorders affecting the endocrine system, immune system, and neurodevelopment in offspring. Recent studies have focused on the interaction between toxic elements and micronutrients during pregnancy. This review analyzes the potential relationships between VD levels and heavy metals in pregnant women and their offspring. METHODS A systematic review was conducted according to PRISMA 2020 guidelines, using databases such as PubMed, ScienceDirect, Cochrane Library, and Google Scholar. Boolean operators 'AND' and 'OR' were applied with terms like 'pregnancy', 'vitamin D', 'heavy metals', and 'newborns'. RESULTS From 4688 articles, 14 studies were selected based on relevance and quality. These studies measured the levels of metals like lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As), in biological samples including maternal blood, umbilical cord blood, placenta tissue, and meconium during different stages of pregnancy, showing an inverse relationship between VD deficiency and heavy metal concentrations, which could be related to the incidence of preterm birth. CONCLUSIONS The review highlights the importance of maintaining adequate VD levels during pregnancy, suggesting that sufficient VD may mitigate the adverse effects of heavy metal exposure, potentially reducing pregnancy-related complications.
Collapse
Affiliation(s)
- Tania Flores-Bazán
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca P.O. Box 42160, Hidalgo, Mexico; (T.F.-B.); (D.E.-L.)
| | - Jeannett Alejandra Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex-Hacienda de la Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca P.O. Box 42160, Hidalgo, Mexico;
| | - José Antonio Guerrero-Solano
- Área Académica de Enfermería, Escuela Superior de Tlahuelilpan, Universidad Autónoma del Estado de Hidalgo, Av. Universidad s/n Centro, Tlahuelilpan P.O. Box 42780, Hidalgo, Mexico;
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma P.O. Box 42184, Hidalgo, Mexico;
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca P.O. Box 42160, Hidalgo, Mexico; (T.F.-B.); (D.E.-L.)
| | - Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca P.O. Box 42160, Hidalgo, Mexico; (T.F.-B.); (D.E.-L.)
| |
Collapse
|
15
|
Wang J, Wang X, Zhang C, Zhang A. The relationships between blood lead levels and nocturia prevalence in adults: A retrospective study. Neurourol Urodyn 2024; 43:2214-2221. [PMID: 38973545 DOI: 10.1002/nau.25543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE The purpose of this study was to examine the association between blood lead levels and the prevalence of nocturia in American adults. METHODS We analyzed data from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2020, focusing on individuals aged 20 years or older (n = 11,919). Blood lead levels were categorized into two groups (<2 µg/dL and ≥2 µg/dL), and the presence of nocturia was assessed based on questionnaire responses. We used multivariable logistic regression models to explore the association between blood lead levels and nocturia while adjusting for various covariates, including sex, ratio of family income to poverty (RIP), lipid profile, age, body mass index (BMI), race, citizenship, sleep trouble, diabetes, and hypertension. To verify whether certain covariates influence blood lead levels and the risk of nocturia, we conducted subgroup analyses. RESULTS Of the study participants, 31.70% reported experiencing nocturia. Individuals with higher blood lead levels (≥2 µg/dL) exhibited a higher likelihood of experiencing nocturia compared to those with lower levels (<2 µg/dL) in all three models (Model 1: OR 1.46, 95% CI 1.29-1.66, p < 0.0001; Model 2: OR 1.25, 95% CI 1.09-1.44, p = 0.002; Model 3: OR 1.22, 95%CI 1.06-1.41, p = 0.01). Subgroup analyses revealed that factors such as age, sex, sleep trouble, diabetes, hypertension, BMI, RIP, and race did not affect the association between blood lead levels and the risk of nocturia (P for interaction >0.05). CONCLUSIONS This study reported the correlation between blood lead levels and nocturia. We found that compared to blood lead levels below 2 µg/dL, when lead levels reached or exceeded 2 µg/dL, the risk of nocturia occurrence increased by 22%. CLINICAL TRIAL REGISTRATION This study is based on existing data from a public database and not from a specific clinical trial; hence, clinical registration information is not provided.
Collapse
Affiliation(s)
- Junwei Wang
- Department of Urology, Wenling Hospital Affiliated to Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, China
| | - Xin Wang
- Department of Surgical Operating Room, Wenling Hospital Affiliated to Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, China
| | - Cunming Zhang
- Department of Urology, Wenling Hospital Affiliated to Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, China
| | - Aiwei Zhang
- Department of Ultrasound, Wenling Hospital Affiliated to Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, China
| |
Collapse
|
16
|
Davtalab S, Karimi E, Moghaddam MN, Shokryazdan P, Jahromi MF, Oskoueian E. Biosorption and Bioprotective Potential of Levilactobacillus brevis in Mice Challenged by Lead-Induced Oxidative Stress. Biol Trace Elem Res 2024; 202:5157-5165. [PMID: 38285321 DOI: 10.1007/s12011-024-04080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Lead (Pb) poisoning is a widespread issue in both developed and developing countries that poses a significant public health challenge. Our study aimed to explore the impact of Levilactobacillus brevis strains on inflammatory and antioxidant gene expression in the liver and brain of mice exposed to oxidative stress caused by Pb. We began by evaluating Pb absorption by Levilactobacillus brevis strains (ARKA-CH-1 (A1) and ARKA-CH-6 (A6)) using the inductively coupled plasma mass spectrometry (ICP-MS) in vitro to identify the most effective strain. We then divided four groups of BALB/c mice into control and experimental groups and treated them for 30 days. The control group received a normal diet, while the experimental groups consumed lead-containing water (0.6 g/L) with or without Levilactobacillus brevis strains. Following the experiments, we collected blood samples to test liver markers, antioxidant enzymes, and immunoglobulins. We also used real-time PCR to examine the expression of superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) genes. The results showed that the A1 strain was the most effective in absorbing Pb. The Pb exposure led to an increase in liver enzyme values and a decrease in antioxidant enzyme activity and immunoglobulin factors. However, the combination of A1 and A6 strains had a greater effect in reducing inflammatory enzymes and increasing antioxidant enzymes. Furthermore, we observed a significant increase in iNOS gene expression and a notable decrease in SOD gene expression with Pb consumption. However, the combination of A1 and A6 strains had a synergistic effect in reducing iNOS and increasing SOD gene expression. In conclusion, Levilactobacillus brevis A1 strain alone or in combination with the A6 strain could be a promising strategy to mitigate the oxidative stress symptoms in mice challenged by lead-induced toxicity.
Collapse
Affiliation(s)
- Samaneh Davtalab
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | - Parisa Shokryazdan
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| | | | - Ehsan Oskoueian
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
17
|
Guo K, Ni W, Du L, Zhou Y, Cheng L, Zhou H. Environmental chemical exposures and a machine learning-based model for predicting hypertension in NHANES 2003-2016. BMC Cardiovasc Disord 2024; 24:544. [PMID: 39385080 PMCID: PMC11462799 DOI: 10.1186/s12872-024-04216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Hypertension is a common disease, often overlooked in its early stages due to mild symptoms. And persistent elevated blood pressure can lead to adverse outcomes such as coronary heart disease, stroke, and kidney disease. There are many risk factors that lead to hypertension, including various environmental chemicals that humans are exposed to, which are believed to be modifiable risk factors for hypertension. OBJECTIVE To investigate the role of environmental chemical exposures in predicting hypertension. METHODS A total of 11,039 eligible participants were obtained from NHANES 2003-2016, and multiple imputation was used to process the missing data, resulting in 5 imputed datasets. 8 Machine learning algorithms were applied to the 5 imputed datasets to establish hypertension prediction models, and the average accuracy score, precision score, recall score, and F1 score were calculated. A generalized linear model was also built to predict the systolic and diastolic blood pressure levels. RESULTS All 8 algorithms had good predictions for hypertension, with Support Vector Machine (SVM) being the best, with accuracy, precision, recall, F1 scores and area under the curve (AUC) of 0.751, 0.699, 0.717, 0.708 and 0.822, respectively. The R2 of the linear model on the training and test sets was 0.28, 0.25 for systolic and 0.06, 0.05 for diastolic blood pressure. CONCLUSIONS In this study, relatively accurate prediction of hypertension was achieved using environmental chemicals with machine learning algorithms, demonstrating the predictive value of environmental chemicals for hypertension.
Collapse
Affiliation(s)
- Kun Guo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Weicheng Ni
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Leilei Du
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Yimin Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Ling Cheng
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
18
|
Mohsenipour R, Aflatoonian M, Alimadadi H, Rahmani P, Esmaeili N, Yazdi M, Abbasi F, Solgi F, Sharifi F, Vafaii N, Mohebbi A, Khazdouz M. Lead poisoning as a differential diagnosis in pediatric patients with chronic abdominal pain: a case-control study in Tehran-Iran. BMC Gastroenterol 2024; 24:344. [PMID: 39358734 PMCID: PMC11446077 DOI: 10.1186/s12876-024-03337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Chronic abdominal pain is a potential symptom of lead poisoning, which is often challenging to diagnose. This case-control study aimed to evaluate blood lead levels in pediatric patients with chronic abdominal pain. METHODS The case-control study was conducted on 190 pediatrics who presented to the Children's Medical Center Hospital clinics, Tehran between April 2021- 2023. The children were divided into two groups: the case group, consisting of 81 patients with chronic abdominal pain, and the matched control group; 109 children without any gastrointestinal symptoms. The statistical analysis of the data was performed using STATA 16. A multiple logistic regression model was used to assess the association of different independent variables with chronic abdominal pain. RESULTS There was no significant difference between mean (± standard deviation [SD]) of age (8.80(2.7) years vs. control group: 9.23(3.9) years), sex, and BMI (16.55(4.6) vs. 17.32(4.7)) of the patients with chronic abdominal pain (case group) and the control group, whereas the mean weight was remarkably low in patients with chronic abdominal pain: 27.25(± 12.1) kg vs. 31.70(± 14.7) kg (P value = 0.028). Fifty-nine percent of children with chronic abdominal pain had serum lead levels ≥ 10 µg/dL. The mean (SD) of blood lead levels was statistically high in the case group: 11.09 (± 5.35) µg/dL vs. control group: 8.26 (± 5.01) µg/dL) (P value ≤ 0.05). The appetite level was significantly low in the case group: 3.8 (± 2.5) vs. control group 5.4 (± 1.3). CONCLUSIONS Lead poisoning could be a possible cause of children's chronic abdominal pain. Regarding the high rate of lead poisoning in children exerting appropriate measures to reduce their exposure to lead is necessary.
Collapse
Affiliation(s)
- Reihaneh Mohsenipour
- Department of Pediatrics, School of Medicine, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Aflatoonian
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Alimadadi
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rahmani
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Esmaeili
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yazdi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abbasi
- Department of Pediatrics, School of Medicine, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Solgi
- Department of Pediatrics, School of Medicine, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Vafaii
- Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, tehran, Iran
| | - Ali Mohebbi
- Stem Cell & Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Khazdouz
- Ali Asghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Ahmad R, Haq MA, Sinha S, Mehta M, Kumar S, Haque M, Akhter QS. Impact of Occupational Cement Dust Exposure on Hematological Health Parameters: A Cross-Sectional Study. Cureus 2024; 16:e72673. [PMID: 39493081 PMCID: PMC11528039 DOI: 10.7759/cureus.72673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Contact with the dust of cement consisting of toxic components brings about inflammatory damage (often irreversible) to the body of a human being. The circulatory system exhibits sensitivity to inflammatory changes in the body, and one of the earliest changes may be observed in the blood parameters like mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC). MCHC and MCH are possibly easily accessible and affordable parameters that can detect harmful changes in the body before any irreversible damage occurs. Objectives This research aimed to seek the changes in MCHC and MCH upon occupational contact with the toxic dust of cement. Methods The execution of this research was done in the Department of Physiology, Dhaka Medical College, Bangladesh, and a cement plant in Munshiganj, Bangladesh. This research was carried out between September 2017 and August 2018. Individuals (20 to 50 years old, 92 male adults) participated and were grouped into the group with occupational cement dust impact (46 subjects) and the group without occupational dust of cement impact (46 subjects). Data was collected in a pre-designed questionnaire. An independent sample t-test was conducted to analyze statistical and demographic data like body mass index and blood pressure. A multivariate regression model was applied to note the impact of cement dust on the group working in this dusty environment. Again, a multivariate regression model was employed to observe whether the duration of exposure to this dust affected MCHC and MCH. The significance level was demarcated at p < 0.05 Stata-15 (StataCorp LLC, College Station, TX, US) for statistical analysis, and GraphPad Prism v8.3.2 (Insight Venture Management, LLC, New York, NY, US) was employed to present the data graphically when required. Results There was a reduction in MCHC by 0.58 g/dL and MCH levels by 0.68 pg in the cement dust-exposed subjects when compared to controls, but not significant (95% CI: -0.93, 2.10; p = 0.448 and 95% CI: -0.37, 1.73; p = 0.203, respectively). However, MCHC was reduced significantly by 0.51 g/dL (p = 0.011) with the duration of exposure to the dust. Conclusion The study showed that MCHC was significantly reduced with the duration of exposure to cement dust in cement plant workers. Such alterations may hamper heme synthesis, hemolysis, and inflammatory changes in the body.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Md Ahsanul Haq
- Bio-Statistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, BGD
| | - Susmita Sinha
- Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Miral Mehta
- Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | | |
Collapse
|
20
|
Yadav A, Mukhopadhayay A, Chakrabarti A, Saha A, Bhattacharjee P. Estimation of Urinary Lead and Urinary δ-Aminolevulinic Acid as an Index of Lead Exposure in Urban and Rural Residents of West Bengal, India. Indian J Occup Environ Med 2024; 28:304-312. [PMID: 39877273 PMCID: PMC11771285 DOI: 10.4103/ijoem.ijoem_46_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 01/31/2025] Open
Abstract
Background Chronic exposure to low-level environmental lead (Pb) causes several health effects in humans. Its biomonitoring by non-invasive biomarkers is imperative to identify Pb exposure in the occupationally unexposed general public. Objective To quantify urinary lead (U-Pb) and urinary δ-Aminolevulinic acid (ALA) in the general population of West Bengal, India, and identify the impact of routine life activities (smoking habit, traveling, and cooking activities) and sociodemographic factors on U-Pb and U-ALA levels. Method Urine samples (N = 258) were obtained from urban and rural area residents from November 2021 to February 2022. U-Pb and U-ALA were quantified by atomic absorption (283 nm) and UV-spectrometer (553 nm). A structured questionnaire was used for data collection. Results About 8% of rural residents, 15% of urban residential area residents, and 35% of urban commercial area residents had U-ALA levels > 5 mg/L permissible limit. Low-income-group (LIG) individuals had two times higher ALA than the middle-income group. ALA was significantly (P < 0.05) higher in smoker traveler males, traveler females, and females who had passive exposure to tobacco smoke. U-Pb was within permissible limits in total study individuals. Conclusion Pb exposure was higher in urban than rural residents; furthermore, urban commercial residents had Pb exposure higher than urban residential residents. Results are evident that vehicular emissions and tobacco smoke were potential contributors to environmental Pb exposure among study participants. The present work provides data on Pb body burden among the residents of West Bengal that might be useful for policymakers and in pollution abatement strategies too.
Collapse
Affiliation(s)
- Anupa Yadav
- ICMR - Centre for Ageing and Mental Health (I-CAM), Division of Non-Communicable Diseases (NCD), Indian Council of Medical Research (ICMR), Kolkata, West Bengal, India
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, India
| | | | - Amit Chakrabarti
- ICMR - Centre for Ageing and Mental Health (I-CAM), Division of Non-Communicable Diseases (NCD), Indian Council of Medical Research (ICMR), Kolkata, West Bengal, India
| | - Asim Saha
- ICMR - Centre for Ageing and Mental Health (I-CAM), Division of Non-Communicable Diseases (NCD), Indian Council of Medical Research (ICMR), Kolkata, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
21
|
Mitra P, Gupta S, Sharma P. Double Trouble: Unravelling the Health Hazards of Microplastics and Heavy Metals. Indian J Clin Biochem 2024; 39:447-449. [PMID: 39346719 PMCID: PMC11436535 DOI: 10.1007/s12291-024-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shruti Gupta
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | |
Collapse
|
22
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA, Alrowaili MG, Khired ZA, Toraih EA, Fawzy MS, Shehata SA. Vitamin D Alleviates Heavy Metal-Induced Cytotoxic Effects on Human Bone Osteoblasts Via the Induction of Bioenergetic Disruption, Oxidative Stress, and Apoptosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04337-8. [PMID: 39235540 DOI: 10.1007/s12011-024-04337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
Cadmium (Cd) and lead (Pb) are heavy metals (HMs) that persistently contaminate the ecosystem, and bioaccumulation in bones is a health concern. We used biochemical and molecular assays to assess the cytoprotective effect of vitamin D (VD) on Cd- and Pd-induced chemical toxicity of human bone osteoblasts in vitro. Exposing Cd and Pb to human osteoblast cultures at concentrations of 0.1-1000 µM for 24-72 h significantly reduced osteoblast viability in an exposure time- and concentration-dependent manner. The cytotoxic effect of Cd on osteoblasts was more severe than Pb's, with 72-h exposure estimated half maximal effective concentration (EC50) of 8 and 12 µM, respectively, and VD (1 and 10 nM) alleviated cytotoxicity. Bioenergetics assays of ATP, mitochondrial membrane potential, and mitochondrial complex I and III activity showed that both Cd and Pb (1 and 10 µM) inhibited cellular bioenergetics after 72-h exposure. Cd and Pb increased lipid peroxidation and reactive oxygen species with reduced catalase/superoxide dismutase antioxidant activities and increased activity of caspases -3, -8, and -9. Co-treatment with VD (1 and 10 nM) counteracted bioenergetic disruption, oxidative damage, and apoptosis in a concentration-dependent manner. These findings suggest that VD is effective in managing the toxic effects of environmental pollutants and in treating bone diseases characterized by oxidative stress, apoptosis, and bioenergetic disruption.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, 91431, Arar, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Majed Gorayan Alrowaili
- Department of Surgery (Orthopedic Division), Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Zenat Ahmed Khired
- Department of Surgery, College of Medicine, Jazan University, 45142, Jazan, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia, 41522, Egypt.
| | - Manal S Fawzy
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Northern Border University, 73213, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Shaimaa A Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
23
|
Kwon YK, Kim MJ, Choi YJ, Yoon SH, Oh KS, Shin YM. Lead exposure estimation through a physiologically based toxicokinetic model using human biomonitoring data and comparison with scenario-based exposure assessment: A case study in Korean adults. Food Chem Toxicol 2024; 191:114829. [PMID: 38955257 DOI: 10.1016/j.fct.2024.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Pb toxicity is linked to cardiovascular and nephrotoxicity issues. Exposure to this heavy metal can occur through food and drinking water. Therefore, this study aimed to evaluate Pb exposure and assess health risks in Korean adults using a physiologically based toxicokinetic (PBTK) model. Human blood Pb concentrations were monitored using the Korean National Environmental Health Survey (KoNEHS) Cycle 4. The average Pb exposure in Korean adults was 0.520 μg/kg bw/day. The PBTK results were compared with scenario-based results from the 2021 risk assessment report of five heavy metals, including Pb, conducted by the MFDS. Exposure determined through reverse dosimetry was approximately two times higher than scenario-based exposure (0.264 μg/kg bw/day). The higher exposure levels obtained during PBTK analysis may be attributed to sustained exposure within historically more contaminated living environments and the long half-life of Pb. These findings suggest that the PBTK-based method can quantify aggregated exposure levels in the body over time, potentially serving as a complementary tool to address the constraints of scenario-based assessment methods for integrated risk assessment. Moreover, this model is convenient and cost-effective compared with scenario-based exposure estimation. These findings can facilitate the application of model for tracking continuous national changes in hazardous substance levels.
Collapse
Affiliation(s)
- Yong-Kook Kwon
- Food Safety Risk Assessment Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdoek-gu, Cheongju-si, Chungcheongbuk-do, 25159, Republic of Korea
| | - Min-Ju Kim
- Food Safety Risk Assessment Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdoek-gu, Cheongju-si, Chungcheongbuk-do, 25159, Republic of Korea
| | - Yun Ju Choi
- Food Safety Risk Assessment Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdoek-gu, Cheongju-si, Chungcheongbuk-do, 25159, Republic of Korea
| | - Sang Hyeon Yoon
- Food Safety Risk Assessment Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdoek-gu, Cheongju-si, Chungcheongbuk-do, 25159, Republic of Korea
| | - Keum-Soon Oh
- Food Safety Risk Assessment Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdoek-gu, Cheongju-si, Chungcheongbuk-do, 25159, Republic of Korea
| | - Yeong Min Shin
- Food Safety Risk Assessment Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdoek-gu, Cheongju-si, Chungcheongbuk-do, 25159, Republic of Korea.
| |
Collapse
|
24
|
Memon MS, Ujjan IU, Shaikh M, Arain SQ, Naz A, Abbasi H. Analysis of serum lead, copper, iron, and zinc and hematological parameters in battery smelting workers: assessing lead toxicity. Biometals 2024:10.1007/s10534-024-00623-z. [PMID: 39177896 DOI: 10.1007/s10534-024-00623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
The present study is conducted to know the serum lead, copper, iron, and zinc levels, in parallel to hematological parameters, in battery smelting workers to assess lead toxicity. Battery smelting is known to expose workers to high levels of lead, which can have significant negative health effects. Blood samples from 150 participants, including 75 battery smelting workers and 75 controls, were analyzed for metal concentrations and hematological indices. The results revealed significantly elevated levels of lead in the serum of battery smelting workers as compared to control group. Elevated lead levels were also correlated with significantly decreased hemoglobin levels and hematocrit values, manifesting potential anemia in these workers. In addition, disarrangements in serum copper, iron, and zinc levels were also observed, proposing a possible interaction between lead exposure and the metabolism of these essential metals. These findings highlight the need for regular monitoring of battery smelting facilities and environment and to take improved protective measures to prevent lead toxicity and its associated hematological disturbances. This study aims to analyze the effect of occupational lead exposure on blood levels of lead, zinc, iron, and copper in battery workers compared to normal subjects and evaluate their blood counts.
Collapse
Affiliation(s)
- Maleeha Sikandar Memon
- Department of Biochemistry, The University of Modern Sciences, Indus Medical College, Tando Mohammad Khan, Sindh, Pakistan
| | - Ikram Udiin Ujjan
- Department of Pathology, Liaquat University of Health Sciences Jamshoro, Sindh, Pakistan
| | - Marvi Shaikh
- Department of Biochemistry, The University of Modern Sciences, Indus Medical College, Tando Mohammad Khan, Sindh, Pakistan.
| | | | - Arshi Naz
- Department of Pathology, Liaquat University of Health Sciences Jamshoro, Sindh, Pakistan
| | - Huma Abbasi
- Department of Biochemistry, The University of Modern Sciences, Indus Medical College, Tando Mohammad Khan, Sindh, Pakistan
| |
Collapse
|
25
|
Naz M, Ahmed M, Aftab F, Ali MA, Sanaullah M, Ahmad W, Alshammari AH, Khalid K, Wani TA, Zargar S. Contamination of trace, non-essential/heavy metals in nutraceuticals/dietary supplements: A chemometric modelling approach and evaluation of human health risk upon dietary exposure. Food Chem Toxicol 2024; 190:114806. [PMID: 38852757 DOI: 10.1016/j.fct.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Across the world, nutraceuticals/dietary supplements are commonly consumed without medical supervision, and believing these products are harmless to health. However, these products may contain trace (TMs) and non-essential/heavy metals (nHMs) as contaminants at levels higher than the recommended daily allowance (RDA), which can be hazardous to human health. Consequently, it is crucial to assess the levels of these metals to ensure the safety of these products. This study aimed to analyze the concentration of TMs (Mn, Cu and Zn) and nHMs (Al, Cr, Ni, Cd and Pb) in nutraceuticals/dietary supplements. Metal analysis was conducted using inductively coupled plasma-optical emission spectrometry (ICP-OES). Multivariate and bivariate analysis including principle component analysis (PCA), hierarchical cluster analysis (HCA) and Pearson correlation coefficient (PCC) were applied to understand inter-metal association and sources of these metals. Concentration ranges for TMs were found as, Mn (0.2-4.3 mg/kg), Cu (0.11-2.54 mg/kg), and Zn (0.1-22.66 mg/kg) while the nHMs concentration ranges were: Al (0.046-3.336 mg/kg), Cr (0.11-1.63 mg/kg), Ni (0.18-0.72 mg/kg), Cd (0.04-0.92 mg/kg), and Pb (0.18-1.08 mg/kg). The levels of tolerable dietary intake (TDI) for Cr and Ni, and the provisional tolerable monthly intake (PTMI) limit for Cd, exceeded the values set by the World Health Organization (WHO) and the European Food Safety Authority (EFSA). The estimation of the target hazard quotient (THQ <1), hazard index (HI < 1) and cumulative cancer risk (CCR <1 ✕ 10-3) indicated no significant non-carcinogenic and carcinogenic health risks associated with consuming these products. Therefore, the primary recommendation from this study is to use the nutraceuticals/dietary supplements should be under the supervision of dietitian.
Collapse
Affiliation(s)
- Misbah Naz
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan.
| | - Fatima Aftab
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Maryam Ahmad Ali
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Mudassar Sanaullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Waqar Ahmad
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Atekah Hazzaa Alshammari
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 222452, Riyadh, 11451, Saudi Arabia
| | - Khuram Khalid
- Faculty of Applied Science and Technology, Sheridan College, 7899 McLaughlin Road Brampton, Ontario, L6Y 5H9, Canada
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 222452, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
26
|
Sadhu P, Tambolkar S, Jadhav D, Daru A. Chronic Lead Toxicity in a Family: A Case Report. Cureus 2024; 16:e66574. [PMID: 39258054 PMCID: PMC11385717 DOI: 10.7759/cureus.66574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024] Open
Abstract
Lead poisoning, also known as plumbism, is a significant global health concern, occurring more commonly in the pediatric age group. The widespread use of lead in developing and developed countries due to industrialization has led to the contamination of the environment and lead toxicity. With the increasing number of cases, it is very important to identify and treat lead toxicity at the earliest to prevent detrimental side effects like neurocognitive impairment, developmental regression, coma, and death. This case report depicts a family whose parents are employed in the battery recycling sector, putting them and their children at risk for lead poisoning.
Collapse
Affiliation(s)
- Pooja Sadhu
- Department of Pediatrics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Sampada Tambolkar
- Department of Pediatrics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Devika Jadhav
- Department of Pediatrics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Avinash Daru
- Department of Pediatrics, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
27
|
Dermitzakis I, Theotokis P, Axarloglou E, Delilampou E, Manthou ME, Meditskou S. Effects of hazardous chemicals on secondary sex ratio: A comprehensive review. CHEMOSPHERE 2024; 361:142467. [PMID: 38810798 DOI: 10.1016/j.chemosphere.2024.142467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/15/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The secondary sex ratio (SSR), defined as the ratio of male to female offspring at birth, has garnered significant scientific interest due to its potential impact on population dynamics and evolution. In recent years, there has been a growing concern regarding the potential consequences of environmental chemicals on the SSR, given their widespread exposure and potential enduring ramifications on the reproductive system. While SSR serves as an indicator of health, ongoing research and scientific inquiry are being conducted to explore the potential relationship between chemicals and offspring ratio. Although some studies have suggested a possible correlation, others have yielded inconclusive results, indicating that the topic is intricate and still needs to be elucidated. The precise mechanism by which chemical agents exert their influence on the SSR remains ambiguous, with disruption of the endocrine system being a prominent justification. In light of the complex interplay between chemical exposure and SSR, the present review aims to comprehensively examine and synthesize existing scientific literature to gain a deeper understanding of how specific chemical exposures may impact SSR. Insights into chemical hazards that shift SSR patterns or trends could guide prevention strategies, including legislative bans of certain chemicals, to minimize environmental and public health risks.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evangelos Axarloglou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efthymia Delilampou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
28
|
Huo X, Xu X, Wang Q, Zhang J, Hylkema MN, Zeng Z. Associations of co-exposure to polycyclic aromatic hydrocarbons and lead (Pb) with IGF1 methylation in peripheral blood of preschool children from an e-waste recycling area. ENVIRONMENT INTERNATIONAL 2024; 190:108833. [PMID: 38908275 DOI: 10.1016/j.envint.2024.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Childhood exposure to polycyclic aromatic hydrocarbons (PAHs) or lead (Pb) is associated with epigenetic modifications. However, the effects of their co-exposures on IGF1 (Insulin-like growth factor 1) methylation and the potential role in child physical growth are unclear. METHODS From our previous children study (N = 238, ages of 3-6), 75 children with higher total concentrations of urinary ten hydroxyl PAH metabolites (∑10OH-PAHs) from an e-waste recycling area, Guiyu, and 75 with lower ∑10OH-PAHs from Haojiang (reference area) were included. Pb and IGF1 P2 promoter methylation in peripheral blood were also measured. Multivariable linear regression analyses were performed to estimate individual associations, overall effects and interactions of co-exposure to OH-PAHs and Pb on IGF1 methylation were further explored using Bayesian kernel machine regression. RESULTS Methylation of IGF1 (CG-232) was lower (38.00 vs. 39.74 %, P < 0.001), but of CG-207 and CG-137 were higher (59.94 vs. 58.41 %; 57.60 vs. 56.28 %, both P < 0.05) in exposed children than the reference. The elevated urinary 2-OHPhe was associated with reduced methylation of CG-232 (B = -0.051, 95 % CI: -0.096, -0.005, P < 0.05), whereas blood Pb was positively associated with methylation of CG-108 (B = 0.106, 95 %CI: 0.013, 0.199, P < 0.05), even after full adjustment. Methylations of CG-224 and 218 significantly decreased when all OH-PAHs and Pb mixtures were set at 35th - 40th and 45th - 55th percentile compared to when all fixed at 50th percentile. There were bivariate interactions of co-exposure to the mixtures on methylations of CG-232, 224, 218, and 108. Methylations correlated with height, weight, were observed in the exposed children. CONCLUSIONS Childhood co-exposure to high PAHs and Pb from the e-waste may be associated with IGF1 promoter methylation alterations in peripheral blood. This, in turn, may interrupt the physical growth of preschool children.
Collapse
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China.
| |
Collapse
|
29
|
Qi M, Zhang H, He JQ. Higher blood manganese level associated with increased risk of adult latent tuberculosis infection in the US population. Front Public Health 2024; 12:1440287. [PMID: 39114509 PMCID: PMC11304084 DOI: 10.3389/fpubh.2024.1440287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Background The associations between blood heavy metal levels and latent tuberculosis infection (LTBI) have not been fully elucidated. The aim of this study was to investigate the potential association between blood heavy metal levels and LTBI in adults using National Health and Nutrition Examination Survey data from 2011 to 2012. Methods We enrolled 1710 participants in this study, and compared the baseline characteristics of participants involved. Multivariate logistic regression analysis, restricted cubic splines (RCS) analysis, along with subgroup analysis and interaction tests were utilized to explore the association between blood manganese (Mn) level and LTBI risk. Results Participants with LTBI had higher blood Mn level compared to non-LTBI individuals (p < 0.05), while the levels of lead, cadmium, total mercury, selenium, copper, and zinc did not differ significantly between the two groups (p > 0.05). In the fully adjusted model, a slight increase in LTBI risk was observed with each 1-unit increase in blood Mn level (OR = 1.00, 95% CI: 1.00-1.01, p = 0.02). Participants in the highest quartile of blood Mn level had a threefold increase in LTBI risk compared to those in the lowest quartile (OR = 4.01, 95% CI: 1.22-11.33, p = 0.02). RCS analysis did not show a non-linear relationship between blood Mn level and LTBI (non-linear p-value = 0.0826). Subgroup analyses and interaction tests indicated that age, alcohol consumption, and income-to-poverty ratio significantly influenced LTBI risk (interaction p-values<0.05). Conclusion Individuals with LTBI had higher blood Mn level compared to non-LTBI individuals, and higher blood Mn level associated with increased LTBI risk.
Collapse
Affiliation(s)
- Min Qi
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Zhang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Qing He
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Godebo TR, Stoner H, Kodsup P, Bases B, Marzoni S, Weil J, Frey M, Daley P, Earnhart A, Ellias G, Friedman T, Rajan S, Murphy N, Miller S. Occurrence of heavy metals coupled with elevated levels of essential elements in chocolates: Health risk assessment. Food Res Int 2024; 187:114360. [PMID: 38763644 DOI: 10.1016/j.foodres.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
The presence of contaminants in cacao-derived products, especially in chocolates, has raised concerns regarding food safety and human health. The study assessed the concentration variation of 16 elements in 155 chocolate samples from the US market by cacao content and country of geographic origin. The study further examined the potential health risks posed by toxic metals and determined the contribution of essential elements to the Daily Recommended Intake (DRI), estimated based on an ounce (∼28.4 g) of daily chocolate consumption. Dark chocolates with ≥50 % cacao exhibited consecutively increasing mean levels from 1.2 to 391 µg/kg for U, Tl, Th, As, Pb, Se, Cd, and Co. Similarly, Ni, Sr, Cu, Mn, Zn, Fe, Ca, and Mg had mean concentrations from 4.0 to 1890 mg/kg. Dark chocolates sourced from Central and South America exhibited the highest mean levels of Cd, and South America samples also contained elevated Pb, whereas those from West Africa and Asia had low Cd and Pb, respectively. Cacao contents showed increasingly strong association with Cd, Co, Mn, Sr, Ni, Cu, Zn, and Mg (r = 0.60-0.84), and moderately with Se, Fe, As, and Tl (r = 0.35-0.49), indicating these elements are primarily derived from cacao beans. Weak association of cacao contents with Pb, Th, and U levels (r < 0.25), indicates post-harvest contaminations. Hazard Quotient (HQ) > 1 was found only for Cd in 4 dark chocolates, and Hazard Index (HI) > 1 for cumulative risk of Cd, Pb, Ni, As, and U was found in 33 dark chocolates, indicating potential non-carcinogenic risks for 15 kg children but none for 70 kg adults. Dark chocolate also substantially contributed to 47-95 % of the DRI of Cu for children and 50 % for adults. Dark chocolates also provided notable Fe, Mn, Mg, and Zn contributions to the DRI. These essential elements are recognized to reduce the bioavailability of toxic metals such as Cd, Pb, or Ni, thereby potentially lowering associated health risks. This study informs consumers, food industries, and regulatory agencies to target cacao origins or chocolate brands with lower toxic metal contents for food safety and minimizing adverse health effects.
Collapse
Affiliation(s)
- Tewodros Rango Godebo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Hannah Stoner
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Pornpimol Kodsup
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Benjamin Bases
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sophia Marzoni
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jenna Weil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Matt Frey
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Preston Daley
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Alexa Earnhart
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Gabe Ellias
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Talia Friedman
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Satwik Rajan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Ned Murphy
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sydney Miller
- Department Environmental Studies, School of Liberal Arts, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
31
|
Xie YH, Song HX, Peng JC, Li SJ, Ou SY, Aschner M, Jiang YM. Treatment of manganese and lead poisoning with sodium para-aminosalicylic acid: A contemporary update. Toxicol Lett 2024; 398:69-81. [PMID: 38909920 DOI: 10.1016/j.toxlet.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Sodium para-aminosalicylic acid (PAS-Na) treatment for manganese (Mn) intoxication has shown efficacy in experimental and clinical studies, giving rise to additional studies on its efficacy for lead (Pb) neurotoxicity and its associated mechanisms of neuroprotection. The difference between PAS-Na and other metal complexing agents, such as edetate calcium sodium (CaNa2-EDTA), is firstly that PAS-Na can readily pass through the blood-brain barrier (BBB), and complex and facilitate the excretion of manganese and lead. Secondly, PAS-Na has anti-inflammatory effects. Recent studies have broadened the understanding on the mechanisms associated with efficacy of PAS-Na. The latter has been shown to modulate multifarious manganese- and lead- induced neurotoxicity, via its anti-apoptotic and anti-inflammatory effects, as well as its ability to inhibit pyroptosis, and regulate abnormal autophagic processes. These observations provide novel scientific bases and new concepts for the treatment of lead, mercury, copper, thallium, as well as other toxic encephalopathies, and implicate PAS-Na as a compound with greater prospects for clinical medical application.
Collapse
Affiliation(s)
- Yu-Han Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
32
|
Guo F, Zeng P, Liu J, Hu H, Zhu W, Wang Y, Cheng H. Simultaneous quantification of tin and lead species in Antarctic krill and fish by interfacing high-performance liquid chromatography with inductively coupled plasma mass spectrometry based on strong cation-exchange and Amphion columns. Food Chem 2024; 443:138552. [PMID: 38295562 DOI: 10.1016/j.foodchem.2024.138552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Tin and lead are a global concern considering their species-dependent toxicity, bioavailability and transformation. Simultaneous speciation analysis of tin and lead is challenging for a large food capacity containing unstable species. Herein, we developed two sensitive methods for rapid quantification of tin and lead species in Antarctic seafood by high-performance liquid chromatography and inductively coupled plasma mass spectrometry based on strong cation-exchange and Amphion columns. Inorganic tin and lead, four organotin and two organolead compounds can be analysed in 16 min on a 10-cm Amphion II column (mobile phase: 4 mM sodium dodecyl benzene sulfonate at pH 2.0) with 0.02-0.24 μg L-1 detection limits. The method was applied to Antarctic krill and fish, demonstrating the presence of any tin and lead species down to μg kg-1 level. Overall, the proposed methods are sensitive, efficient and environment-friendly for routine speciation analysis of tin and lead in food samples.
Collapse
Affiliation(s)
- Feng Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Pingxiu Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
| | - Wenbin Zhu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yuanchao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| |
Collapse
|
33
|
Moyebi OD, Lebbie T, Carpenter DO. Standards for levels of lead in soil and dust around the world. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0030. [PMID: 38856075 DOI: 10.1515/reveh-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
Lead poisoning is a serious environmental health problem in every country in the world. Exposure to lead results in neurocognitive and behavioral changes, has adverse effects on the immune system, causes anemia, hypertension and perturbs other organ systems. The effects of lead poisoning are most critical for children because their bodies are growing and developing, and particularly because agents that reduce cognitive function and attention span as well as promote disruptive behavior will have life-long consequences. Lead exposure, especially to children, is a major health disparity issue. If the next generation starts with reduced cognitive ability, there will be significant barriers for development of skills and country-wide development. While there are many sources of exposure to lead, the commonest source is lead in soil and dust. Since lead is an element, it does not go away and past releases of lead into the environment remain as soil and dust contamination. This is an especially important route of exposure to children because children regularly play in soil and are exposed via hand-to-mouth activity. In addition to indoor sources of lead, contaminated soil is tracked on shoes or feet and blown by air currents into homes, accumulating in household dust which is a major source of exposure for both children and adults. The purpose of this review is to determine standards presumed to be health protective for lead and dust in different countries. We find that many countries have no standards for lead in soil and dust and rely on standards set by the World Health Organization or the US Environmental Protection Agency, and these standards may or may not be enforced. There is considerable variation in standards set by other countries.
Collapse
Affiliation(s)
- Omosehin D Moyebi
- Department of Environmental Health Sciences, School of Public Health, 1084 University at Albany , Rensselaer, NY, USA
- Nursing Program, School of Science, Navajo Technical University, Crownpoint, NM, USA
| | - Tamba Lebbie
- Department of Environmental Health Sciences, School of Public Health, 1084 University at Albany , Rensselaer, NY, USA
| | - David O Carpenter
- Department of Environmental Health Sciences, School of Public Health, 1084 University at Albany , Rensselaer, NY, USA
- A World Health Organization Collaborating Center on Environmental Health, 1084 Institute for Health and the Environment, University at Albany , Rensselaer, NY, USA
| |
Collapse
|
34
|
Alegría-Torres JA, Rocha-Amador DO, Pérez-Rodríguez RY, Rodríguez-Felipe VM, Cauich-Díaz M, Ponce-Noyola P, Carrizales-Yáñez L. Pilot Monitoring of Lead in Umbilical Cord Blood of Newborns Associated With the Use of Glazed Ceramics from Guanajuato, Mexico. Biol Trace Elem Res 2024; 202:2403-2409. [PMID: 37702961 DOI: 10.1007/s12011-023-03843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
The use of lead-glazed pottery for cooking and storing food, a widespread practice in Mexico, represents a risk of exposure to lead from the human intrauterine stage. Therefore, a pilot study was carried out by means of the measurement of lead in umbilical cord blood by inductively coupled plasma mass spectrometry (ICP-MS) including 69 newborns from the Mexican state capital of Guanajuato, Guanajuato City, where the use of glazed clay is still widespread. Lifestyle and sociodemographic data were collected by interviewing the participating mothers. Hematological parameters and the anthropometry of the newborns and their mothers were analyzed; likewise, the G177C polymorphism in the ALAD gene was genotyped by PCR-RFLP as a marker of genetic vulnerability to lead. The geometric mean of lead in umbilical cord blood was 0.7 µg/dL (< limit of detection = 0.01-28.22). Boys presented higher values than girls (p = 0.03). Only 5.8% of these were above the safety value of the US Centers for Disease Control and Prevention (CDC) of 3.5 µg/dL. Correlations among lead concentrations, maternal age, weeks of gestation, newborn anthropometry, and hematological parameters were not found; however, the participating mothers who reported using glazed ceramics for cooking or storing food had the highest cord-blood lead concentrations (p = 0.04). Regarding genotyping, 97% had ALAD 1, while 3% had ALAD 1, 2; unfortunately, the sample size did not allow analysis of genetic vulnerability to lead. The preparation and conservation of food in handcrafted clay pottery increased the risk of having cord-blood lead values higher than those recommended by the CDC of 3.5 µg/dL (OR = 5; 95% CI:1.3-23; p = 0.01). Our preliminary results suggest that there continues to be intrauterine exposure to lead in Guanajuato.
Collapse
Affiliation(s)
- Jorge Alejandro Alegría-Torres
- Departamento de Farmacia, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Edificio I, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| | - Diana Olivia Rocha-Amador
- Departamento de Farmacia, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Edificio I, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Rebeca Yazmín Pérez-Rodríguez
- Departamento de Química, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico
| | - Valeria Monserrat Rodríguez-Felipe
- Departamento de Farmacia, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Edificio I, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Mayra Cauich-Díaz
- Departamento de Biología, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico
| | - Patricia Ponce-Noyola
- Departamento de Biología, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico
| | - Leticia Carrizales-Yáñez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Lomas de San Luis, C.P. 78210, San Luis Potosí, Mexico
| |
Collapse
|
35
|
Carretero VJ, Liccardi N, Tejedor MA, de Pascual R, Campano JH, Hernández-Guijo JM. Lead exerts a depression of neurotransmitter release through a blockade of voltage dependent calcium channels in chromaffin cells. Toxicology 2024; 505:153809. [PMID: 38648961 DOI: 10.1016/j.tox.2024.153809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The present work, using chromaffin cells of bovine adrenal medullae (BCCs), aims to describe what type of ionic current alterations induced by lead (Pb2+) underlies its effects reported on synaptic transmission. We observed that the acute application of Pb2+ lead to a drastic depression of neurotransmitters release in a concentration-dependent manner when the cells were stimulated with both K+ or acetylcholine, with an IC50 of 119,57 μM and of 5,19 μM, respectively. This effect was fully recovered after washout. Pb2+ also blocked calcium channels of BCCs in a time- and concentration-dependent manner with an IC50 of 6,87 μM. This blockade was partially reversed upon washout. This compound inhibited the calcium current at all test potentials and shows a shift of the I-V curve to more negative values of about 8 mV. The sodium current was not blocked by acute application of high Pb2+ concentrations. Voltage-dependent potassium current was also shortly affected by high Pb2+. Nevertheless, the calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 24,49 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to Ca2+-activated K+-channels (BK) instead a direct linking to these channels. Under current-clamp conditions, BCCs exhibit a resting potential of -52.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of K+ channels. In spite of the effect on ionic channels exerted by Pb2+, we found that Pb2+ didn't alter cellular excitability, no modification of the membrane potential, and no effect on action potential firing. Taken together, these results point to a neurotoxic action evoked by Pb2+ that is associated with changes in neurotransmitter release by blocking the ionic currents responsible for the calcium influx.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ninfa Liccardi
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Maria Arribas Tejedor
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ricardo de Pascual
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jorge Hernández Campano
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain; Ramón y Cajal Institute for Health Research, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, Madrid 28029, Spain.
| |
Collapse
|
36
|
Zhang L, Yao X, Chen Y, Li Y, Qin J, Tang S. Abdominal pain caused by Tibetan medicine: A case report of lead poisoning. Heliyon 2024; 10:e30167. [PMID: 38765025 PMCID: PMC11096953 DOI: 10.1016/j.heliyon.2024.e30167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024] Open
Abstract
Nowadays, lead poisoning in children commonly occurs, but lead poisoning caused by the administration of Tibetan medicine is rarely reported. This report describes the diagnosis and management of lead poisoning in a 16-year-old girl presented with abdominal pain, vomiting, and anemia with limb numbness, who had a childhood history of epilepsy and took Tibetan medicine intermittently to control the symptoms. After admission into hospital, Computed tomography showed high-density shadows in the gastrointestinal tract. Video-Electroencephalography showed no signs of seizure. Reflux esophagitis was observed in gastroscopy. And no obvious abnormalities in the colonic mucosa through colonoscopy. Bone marrow smear test showed basophilic stippling in the erythrocytes. The blood and urine lead levels of 626 and 75.9 μg/L, respectively. We therefore considered lead poisoning, and the patient improved after chelation therapy. Due to its atypical clinical manifestations, lead poisoning is easily misdiagnosed. Thus, clinicians should pay more attention to this disease. When abdominal pain, anemia, and neurological symptoms are present, the possibility of lead poisoning should be considered.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Xin Yao
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yalun Chen
- Department of Geriatric Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Ying Li
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Jianping Qin
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Shanhong Tang
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| |
Collapse
|
37
|
Zachariah JP, Jone PN, Agbaje AO, Ryan HH, Trasande L, Perng W, Farzan SF. Environmental Exposures and Pediatric Cardiology: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1165-e1175. [PMID: 38618723 DOI: 10.1161/cir.0000000000001234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Environmental toxicants and pollutants are causes of adverse health consequences, including well-established associations between environmental exposures and cardiovascular diseases. Environmental degradation is widely prevalent and has a long latency period between exposure and health outcome, potentially placing a large number of individuals at risk of these health consequences. Emerging evidence suggests that environmental exposures in early life may be key risk factors for cardiovascular conditions across the life span. Children are a particularly sensitive population for the detrimental effects of environmental toxicants and pollutants given the long-term cumulative effects of early-life exposures on health outcomes, including congenital heart disease, acquired cardiac diseases, and accumulation of cardiovascular disease risk factors. This scientific statement highlights representative examples for each of these cardiovascular disease subtypes and their determinants, focusing specifically on the associations between climate change and congenital heart disease, airborne particulate matter and Kawasaki disease, blood lead levels and blood pressure, and endocrine-disrupting chemicals with cardiometabolic risk factors. Because children are particularly dependent on their caregivers to address their health concerns, this scientific statement highlights the need for clinicians, research scientists, and policymakers to focus more on the linkages of environmental exposures with cardiovascular conditions in children and adolescents.
Collapse
|
38
|
Tian C, Qiu Y, Zhao Y, Fu L, Xia D, Ying J. Selenium protects against Pb-induced renal oxidative injury in weaning rats and human renal tubular epithelial cells through activating NRF2. J Trace Elem Med Biol 2024; 83:127420. [PMID: 38432121 DOI: 10.1016/j.jtemb.2024.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Junjie Ying
- Department of Urology, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
39
|
Koslosky E, Oshoba S, Armstrong C, Chaput C, Landrum M. Navigating the complexity of spinal cord injuries with retained foreign bodies and the diagnostic challenge of lead toxicity-a case reportaaa. Spinal Cord Ser Cases 2024; 10:28. [PMID: 38653970 PMCID: PMC11039766 DOI: 10.1038/s41394-024-00640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Retained shrapnel from gunshots is a common occurrence; however, retained shrapnel within the spinal canal is exceedingly uncommon. Guidelines for removal and treatment of these cases are a difficult topic, as surgical removal is not necessarily without consequence, and retention can lead to possible further injury or a secondary disease process of plumbism, which can be difficult to diagnose in this population. CASE PRESENTATION This case report provides a unique example of a young patient with retained shrapnel from a gunshot. This patient suffered an initial spinal cord injury due to a gunshot and secondarily presented with abdominal pain, fatigue, elevated blood lead levels, and was diagnosed with plumbism. This was addressed with operative removal of shrapnel and posterior instrumented spinal fusion, resulting in decreased lead levels and symptom resolution postoperatively. DISCUSSION Lead toxicity risk in patients with retained shrapnel, particularly in the spine, warrants vigilant monitoring. While management guidelines lack consensus, symptomatic lead toxicity may necessitate intervention. Residual neurological deficits complicate evaluation, emphasizing individualized management decisions.
Collapse
Affiliation(s)
- Ezekial Koslosky
- University of Texas Health Sciences Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Samuel Oshoba
- University of Texas Health Sciences Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Connor Armstrong
- University of Texas Health Sciences Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Christopher Chaput
- University of Texas Health Sciences Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Matthew Landrum
- University of Texas Health Sciences Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| |
Collapse
|
40
|
Ju Y, Bu D, Wang H, Li B, Cheng D. In silico prediction aided preparation of antioxidant soybean peptides by enzymatic hydrolysis for ameliorating lead exposure-induced toxicity. Food Funct 2024; 15:3365-3379. [PMID: 38289622 DOI: 10.1039/d3fo04697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Food derived bioactive peptides are prominent dietary supplements to protect against oxidative stress induced by lead (Pb) exposure. This study aimed to develop a new strategy for rapid preparation of highly active antioxidant soybean polypeptides (ASPs) against Pb toxicity. In silico enzymatic hydrolysis simulation and antioxidant activity prediction showed that pepsin, chymotrypsin and bromelain can produce peptides with the highest activity. The preparation process was then optimized, and the obtained ASP showed good antioxidant and metal-chelating activities in vitro. An in vivo study showed that ASP exerted prominent protective effects against Pb-induced cognitive impairment and tissue damage in mice by reducing Pb deposition and enhancing the antioxidant capacity in tissues and was superior to Vc, DMSA or their combination in some aspects. ASP composition analysis demonstrated that its prominent antioxidant activity might be attributed to the high proportion of amino acid residues E, L, P and V in the peptide sequence and L, V and A at the C- and N-termini. In conclusion, in silico prediction could facilitate the preparation of ASP. And the ASP prepared with the new strategy exerted prominent protective effects against Pb toxicity.
Collapse
Affiliation(s)
- Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| | - Dingdong Bu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| | - Haozhe Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| | - Bingye Li
- Tianxiang (Shandong) Biotechnology Co., Ltd, Room 1001, Block H2, Innovation Valley Industrial Park, Haichuan Road, Liuhang Street, Jining, Shandong, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
41
|
Shvachiy L, Amaro-Leal Â, Machado F, Rocha I, Outeiro TF, Geraldes V. Gender-Specific Effects on the Cardiorespiratory System and Neurotoxicity of Intermittent and Permanent Low-Level Lead Exposures. Biomedicines 2024; 12:711. [PMID: 38672068 PMCID: PMC11048361 DOI: 10.3390/biomedicines12040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Lead exposure is a significant health concern, ranking among the top 10 most harmful substances for humans. There are no safe levels of lead exposure, and it affects multiple body systems, especially the cardiovascular and neurological systems, leading to problems such as hypertension, heart disease, cognitive deficits, and developmental delays, particularly in children. Gender differences are a crucial factor, with women's reproductive systems being especially vulnerable, resulting in fertility issues, pregnancy complications, miscarriages, and premature births. The globalization of lead exposure presents new challenges in managing this issue. Therefore, understanding the gender-specific implications is essential for developing effective treatments and public health strategies to mitigate the impact of lead-related health problems. This study examined the effects of intermittent and permanent lead exposure on both male and female animals, assessing behaviours like anxiety, locomotor activity, and long-term memory, as well as molecular changes related to astrogliosis. Additionally, physiological and autonomic evaluations were performed, focusing on baro- and chemoreceptor reflexes. The study's findings revealed that permanent lead exposure has more severe health consequences, including hypertension, anxiety, and reactive astrogliosis, affecting both genders. However, males exhibit greater cognitive, behavioural, and respiratory changes, while females are more susceptible to chemoreflex hypersensitivity. In contrast, intermittent lead exposure leads to hypertension and reactive astrogliosis in both genders. Still, females are more vulnerable to cognitive impairment, increased respiratory frequency, and chemoreflex hypersensitivity, while males show more reactive astrocytes in the hippocampus. Overall, this research emphasizes the importance of not only investigating different types of lead exposure but also considering gender differences in toxicity when addressing this public health concern.
Collapse
Affiliation(s)
- Liana Shvachiy
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Ângela Amaro-Leal
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Filipa Machado
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| |
Collapse
|
42
|
Guo F, Zeng P, Liu J, Hu H, Zhu W, Wang Y, Cheng H. Simultaneous preconcentration and quantification of ultra-trace tin and lead species in seawater by online SPE coupled with HPLC-ICP-MS. Anal Chim Acta 2024; 1294:342294. [PMID: 38336410 DOI: 10.1016/j.aca.2024.342294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tin and lead contamination is a global threat to marine ecosystems considering their species-specific toxicity, bioavailability and mobility. Hence simultaneous measurement of multiple tin and lead compounds at μg L-1 to pg L-1 levels in environmental water is always an indispensable but challengeable task. High performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) is one of the most widely used choices for this purpose because of good sensitivity, strong separation power and good compatibility. Previous HPLC-ICP-MS methods based on a single elemental speciation strategy are low-efficiency and sensitivity-insufficient for a large set of unstable samples and interaction of multiple metal(loid)s down to ng L-1 levels. RESULTS In this study, we developed a sensitive, efficient and environment-friendly analytical method for accurate quantification of inorganic and organic species of tin and lead simultaneously based on HPLC-ICP-MS with online integration of solid phase extraction (SPE). By using graphene oxide modified silica conditioned with 1 mM benzoic acid to enrich tin and lead species from 10 mL sample, detection limits were improved to 2-8 pg per liter due to satisfactory enrichment factors (522-2848 folds). The SPE-HPLC-ICP-MS method was applicable to quantification of ultra-trace tin and lead species at pg L-1 levels in uncontaminated seawater. Tributyltin was the only tin species detected at subnanograms per liter levels while Pb(II) was the only lead species detected at several nanograms per liter in thirteen coastal seawater samples collected in Hangzhou Bay, indicating light contamination of tin and lead. SIGNIFICANCE Overall, the proposed SPE-HPLC-ICP-MS method is highly sensitive, efficient and environment-friendly that are fairly suitable to routine speciation analysis of tin and lead in environmental, food, and biological samples.
Collapse
Affiliation(s)
- Feng Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Pingxiu Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China.
| | - Wenbin Zhu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Yuanchao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
43
|
Goodwin G, Belok T, Bengio M, Winners B, Fan K, Garey M, Scumpia AJ, Marra EM, Tortora L. How Chicago's Past Resulted in Disproportionate Lead Poisoning of Minority Children of the Present: A Narrative Review. Cureus 2024; 16:e56694. [PMID: 38523874 PMCID: PMC10958577 DOI: 10.7759/cureus.56694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Chicago's lead problem has been shown to disproportionately affect populations of color and lower socioeconomic status (SES). The disproportionate effects on low-income areas and communities of color can be traced back to several key decisions in Chicago's history. A search of the National Library of Medicine's MEDLINE/PubMed as well as Google, and Google Scholar was performed to find all articles relating to lead poisoning in Chicago, lead utilization, Chicago's municipal and political history, and lead physiology between May 2020 and May 2023. Additionally, several studies and textbooks were reviewed regarding the latest advancements in lead poisoning. The study identified several key political moves over the course of Chicago's history that have resulted in disproportionate toxicity in minority populations and those of lower SES. Lead is more readily absorbed in the pediatric population. Additionally, prior regulations had published acceptable blood lead levels (BLLs) in children, but more recent evidence indicates a myriad of detrimental effects in BLLs below that cutoff. There is substantial evidence to suggest that there is no acceptable BLL. Lead toxicity is generally improving nationally but there still exists a considerable need for improvement. Programs should be expanded to ensure that individuals living in communities most at risk of lead exposure have the means to both, replace lead-contaminated infrastructure, and to be able to supply these communities with affordable housing. From a physician and clinician standpoint, knowing the increased risk of lead poisoning in these populations should prompt earlier testing.
Collapse
Affiliation(s)
- Glenn Goodwin
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| | - Todd Belok
- Emergency, University of Illinois at Chicago, Chicago, USA
| | - Moshe Bengio
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
- Emergency Medical Services, Hatzalah South Florida, Miami, USA
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| | - Bret Winners
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| | - Kevin Fan
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| | - Mitch Garey
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| | - Alexander J Scumpia
- Emergency Medicine, Lakeside Medical Center - Health Care District Palm Beach County, Belle Glade, USA
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| | - Erin M Marra
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| | - Laura Tortora
- Emergency Medicine, Aventura Hospital and Medical Center, Miami, USA
| |
Collapse
|
44
|
Stajnko A, Palir N, Snoj Tratnik J, Mazej D, Sešek Briški A, Runkel AA, Horvat M, Falnoga I. Genetic susceptibility to low-level lead exposure in men: Insights from ALAD polymorphisms. Int J Hyg Environ Health 2024; 256:114315. [PMID: 38168581 DOI: 10.1016/j.ijheh.2023.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The genetic susceptibility to low-level lead (Pb) exposure in general populations has been poorly investigated and is limited to the single nucleotide polymorphism (SNP) rs1800435 in the delta-aminolevulinic acid dehydratase gene (ALAD). This study explored associations between ten selected ALAD SNPs with Pb concentrations in blood (BPb) and urine (UPb) among 281 men aged 18-49 years from Slovenia, including 20 individuals residing in a Pb-contaminated area. The geometric mean (range) of BPb and UPb were 19.6 (3.86-84.7) μg/L and 0.69 (0.09-3.82) μg/L SG, respectively. The possible genetic influence was assessed by examining SNP haplotypes, individual SNPs, and the combination of two SNPs using multiple linear regression analyses. While no significant associations were found for haplotypes, the presence of variant alleles of rs1800435 and rs1805312 resulted in an 11% and 13% decrease in BPb, respectively, while the presence of variant allele of rs1139488 (homozygous only) exhibited significant 20% increase in BPb, respectively. Additionally, variant allele of rs1800435 resulted in lower UPb. Individual SNPs in the model explained only around 1 additional percentage point of BPb variability. In contrast, combination analyses identified six combinations of two SNPs, which significantly explained 3-22 additional percentage points of BPb variability, with the highest explanatory power observed for the rs1800435-rs1139488 and rs1139488-rs1805313 combinations. Moreover, excluding participants from the Pb-contaminated area indicated that exposure level influenced SNPs-Pb associations. Our results confirm the importance of the ALAD gene in Pb kinetics even at low exposure levels. Additionally, we demonstrated that identifying individuals with specific combinations of ALAD SNPs explained a larger part of Pb variability, suggesting that these combinations, pending confirmation in other populations and further evaluation through mechanistic studies, may serve as superior susceptibility biomarker in Pb exposure compared to individual SNPs.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Neža Palir
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Alenka Sešek Briški
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| |
Collapse
|
45
|
Wan C, Ma H, Liu J, Liu F, Liu J, Dong G, Zeng X, Li D, Yu Z, Wang X, Li J, Zhang G. Quantitative relationships of FAM50B and PTCHD3 methylation with reduced intelligence quotients in school aged children exposed to lead: Evidence from epidemiological and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167976. [PMID: 37866607 DOI: 10.1016/j.scitotenv.2023.167976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
At present, the application of DNA methylation (DNAm) biomarkers in environmental health risk assessment (EHRA) is more challenging due to the unclearly quantitative relationship between them. We aimed to explore the role of FAM50B and PTCHD3 at the level of signaling pathways, and establish the quantitative relationship between them and children's intelligence quotients (IQs). DNAm of target regions was measured in multiple cell models and was compared with the human population data. Then the dose-response relationships of lead exposure with neurotoxicity and DNAm were established by benchmark dose (BMD) model, followed by potential signaling pathway screening. Results showed that there was a quantitative linear relationship between children's IQs and FAM50B/PTCHD3 DNAm (DNAm between 51.40 % - 78.78 % and 31.41 % - 74.19 % for FAM50B and PTCHD3, respectively), and this relationship was more significant when children's IQs > 90. The receiver operating characteristic (ROC) and calibration curves showed that FAM50B/PTCHD3 DNAm had a satisfying accuracy and consistency in predicting children's IQs, which was confirmed by sensitivity analysis of gender and CpG site grouping data. In cell experiments, there was also a quantitative linear relationship between FAM50B DNAm and reactive oxygen species (ROS) production, which was mediated by PI3K-AKT signaling pathway. In addition, the lead BMD of ROS was close to that of FAM50B DNAm, suggesting that FAM50B DNAm was a suitable biomarker for the risk assessments of adverse outcomes induced by lead. Taken collectively, these results suggest that FAM50B/PTCHD3 can be applied to EHRA and the prevention/intervention of adverse effects of lead on children's IQs.
Collapse
Affiliation(s)
- Cong Wan
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Jiahong Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liu
- School of Business Administration, South China University of Technology, Guangzhou 510641, China
| | - Jing Liu
- Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
46
|
Wei YF, Gan CL, Xu F, Fang YY, Zhang B, Li WS, Nong K, Aschner M, Jiang YM. Clinical case analysis of 32 children aged 0-6 years with lead poisoning in Nanning, China. Toxicol Ind Health 2024; 40:41-51. [PMID: 37984499 PMCID: PMC11306939 DOI: 10.1177/07482337231215411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Lead is one of the heavy metals that is toxic and widely distributed in the environment, and children are more sensitive to the toxic effects of lead because the blood-brain barrier and immune system are not yet well developed. The objective of the study was to investigate the clinical characteristics of lead poisoning in children aged 0∼6 years in a hospital in Guangxi, and to provide scientific basis for the prevention and treatment of lead poisoning. We collected and analyzed the clinical data of 32 children with lead poisoning admitted to a hospital in Guangxi from 2010 to 2018. The results showed that most of the 32 cases presented with hyperactivity, irritability, poor appetite, abdominal pain, diarrhea, or constipation. The hemoglobin (HGB), mean corpusular volume (MCV), mean corpuscular hemoglobin (MCH), and hematocrit (HCT) of the lead-poisoned children were all decreased to different degrees and were below normal acceptable levels. Urinary β2-microglobulin was increased. Blood lead levels (BLL) decreased significantly after intravenous injection of the lead chelator, calcium disodium edetate (CaNa2-EDTA). In addition, HGB returned to normal levels, while MCV, MCH, and HCT increased but remained below normal levels. Urinary β2-microglobulin was reduced to normal levels. Therefore, in this cohort of children, the high-risk factors for lead poisoning are mainly Chinese medicines, such as baby powder. In conclusion, lead poisoning caused neurological damage and behavioral changes in children and decreased erythrocyte parameters, leading to digestive symptoms and renal impairment, which can be attenuated by CaNa2-EDTA treatment.
Collapse
Affiliation(s)
- Yi-fei Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Cui-liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Fang Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Liuzhou People’ Hospital, Liuzhou, China
| | - Yuan-yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Baodan Zhang
- Department of Clinical Toxicology, Guangxi Zhuang Autonomous Region Workers’ Hospital, Nanning, China
| | - Wu-shu Li
- Department of Clinical Toxicology, Guangxi Zhuang Autonomous Region Workers’ Hospital, Nanning, China
| | - Kang Nong
- Department of Clinical Toxicology, Guangxi Zhuang Autonomous Region Workers’ Hospital, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yue-ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
47
|
Arabnezhad MR, Haghani F, Ghaffarian-Bahraman A, Jafarzadeh E, Mohammadi H, Yadegari JG, Farkhondeh T, Aschner M, Darroudi M, Marouzi S, Samarghandian S. Involvement of Nrf2 Signaling in Lead-induced Toxicity. Curr Med Chem 2024; 31:3529-3549. [PMID: 37221680 DOI: 10.2174/0929867330666230522143341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is used as one of the main protective factors against various pathological processes, as it regulates cells resistant to oxidation. Several studies have extensively explored the relationship between environmental exposure to heavy metals, particularly lead (Pb), and the development of various human diseases. These metals have been reported to be able to, directly and indirectly, induce the production of reactive oxygen species (ROS) and cause oxidative stress in various organs. Since Nrf2 signaling is important in maintaining redox status, it has a dual role depending on the specific biological context. On the one hand, Nrf2 provides a protective mechanism against metal-induced toxicity; on the other hand, it can induce metalinduced carcinogenesis upon prolonged exposure and activation. Therefore, the aim of this review was to summarize the latest knowledge on the functional interrelation between toxic metals, such as Pb and Nrf2 signaling.
Collapse
Affiliation(s)
- Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Haghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Marouzi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|
48
|
Kumar K, Anjali S, Sharma S. Effect of lead exposure on histone modifications: A review. J Biochem Mol Toxicol 2024; 38:e23547. [PMID: 37867311 DOI: 10.1002/jbt.23547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Lead at any levels can result in detrimental health effects affecting various organ systems. These systematic manifestations under Pb exposure and the underlying probable pathophysiological mechanisms have not been elucidated completely. With advancements in molecular research under Pb exposure, epigenetics is one of the emerging field that has opened many possibilities for appreciating the role of Pb exposure in modulating gene expression profiles. In terms of epigenetic alterations reported in Pb toxicity, DNA methylation, and microRNA alterations are extensively explored in both experimental and epidemiological studies, however, the understanding of histone modifications under Pb exposure is still in its infant stage limited to experimental models. In this review, we aim to present a synoptic view of histone modifications explored in relation to Pb exposure attempting to bring out this potential lacunae in research. The scarcity of studies associating histone modifications with Pb toxicity, and the paucity of their validation in human cohort further emphasizes the strong research potential of this field. We summarize the review by presenting our hypotheses regarding the involvement of these histone modification in various diseases modalities associated with Pb toxicity.
Collapse
Affiliation(s)
- Kanishka Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sudha Anjali
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Shailja Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
49
|
Ghaderi S, Rashno M, Sarkaki A, Khoshnam SE. Sesamin mitigates lead-induced behavioral deficits in male rats: The role of oxidative stress. Brain Res Bull 2024; 206:110852. [PMID: 38141790 DOI: 10.1016/j.brainresbull.2023.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Lead (Pb) is a well-known toxic pollutant that has negative effects on behavioral functions. Sesamin, a phytonutrient of the lignan class, has shown neuroprotective effects in various neurological disorder models. The present study was undertaken to evaluate the putative protective effects of sesamin against Pb-induced behavioral deficits and to identify the role of oxidative stress in male rats. The rats were exposed to 500 ppm of Pb acetate in their drinking water and simultaneously treated orally with sesamin at a dose of 30 mg/kg/day for eight consecutive weeks. Standard behavioral paradigms were used to assess the behavioral functions of the animals during the eighth week of the study. Subsequently, oxidative stress factors were evaluated in both the cerebral cortex and hippocampal regions of the rats. The results of this study showed that Pb exposure triggered anxiety-/depression-like behaviors and impaired object recognition memory, but locomotor activity was indistinguishable from the normal control rats. These behavioral deficiencies were associated with suppressed enzymatic and non-enzymatic antioxidant levels, and enhanced lipid peroxidation in the investigated brain regions. Notably, correlations were detected between behavioral deficits and oxidative stress generation in the Pb-exposed rats. Interestingly, sesamin treatment mitigated anxio-depressive-like behaviors, ameliorated object recognition memory impairment, and modulated oxidative-antioxidative status in the rats exposed to Pb. The results suggest that the anti-oxidative properties of sesamin may be one of the underlying mechanisms behind its beneficial effect in ameliorating behavioral deficits associated with Pb exposure.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran.
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
50
|
Braga-Neto JT, Tozetto SO, Oliveira FS, Conceição TA, Santos WPC, Fernandes MS, Baliza MD. Comet assay to evaluate chromosomal changes in chickens (Gallus gallus domesticus) contaminated by lead in a city in Bahia. BRAZ J BIOL 2023; 83:e274806. [PMID: 38126633 DOI: 10.1590/1519-6984.274806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Chicken (Gallus gallus domesticus) is one of the primary sources of animal protein for the Brazilian population. Thus, the safety of this food is highly relevant. This study was based on the evidence of severe contamination of these animals by metals such as lead in Santo Amaro, Bahia. This exploratory study aimed to evaluate associations between lead levels in blood of chicken exposed to a contaminated area with the occurrence of chromosomal alterations, evidencing genotoxic effects. Serum lead analysis was performed by GF-AAS after dilution with a matrix modifier solution (Triton X-100 0.2% v/v and HNO3 0.1% v/v), while chromosomal damage was evaluated using the comet assay. The results showed genotoxic effects (positive comet assay) only for the specimen sample with higher serum lead concentrations (33.9 µg dL-1), suggesting the occurrence of toxic effects at this level of exposure. This work evaluated a relationship between the reduction of serum lead levels in chicken and increased distance from the primary polluting source - a lead processing plant (COBRAC). It also showed that lead is bioavailable in this territory, contaminating chicken and causing genotoxic effects in these animals, further expanding the concern with the local biota and the health of the residents of Santo Amaro.
Collapse
Affiliation(s)
- J T Braga-Neto
- Universidade Federal do Recôncavo da Bahia - UFRB, Centro de Ciências da Saúde, Complexo Multidisciplinar de Estudos e Pesquisa em Saúde, Santo Antônio de Jesus, BA, Brasil
| | - S O Tozetto
- Universidade Federal do Recôncavo da Bahia - UFRB, Centro de Ciências da Saúde, Complexo Multidisciplinar de Estudos e Pesquisa em Saúde, Santo Antônio de Jesus, BA, Brasil
| | - F S Oliveira
- Universidade Federal do Recôncavo da Bahia - UFRB, Centro de Ciências da Saúde, Complexo Multidisciplinar de Estudos e Pesquisa em Saúde, Santo Antônio de Jesus, BA, Brasil
| | - T A Conceição
- Universidade Federal do Recôncavo da Bahia - UFRB, Centro de Ciências da Saúde, Complexo Multidisciplinar de Estudos e Pesquisa em Saúde, Santo Antônio de Jesus, BA, Brasil
| | - W P C Santos
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA, Salvador, BA, Brasil
| | - M S Fernandes
- Universidade Federal da Fronteira Sul - UFFS, Campus Passo Fundo, Passo Fundo, RS, Brasil
| | - M D Baliza
- Universidade Federal do Recôncavo da Bahia - UFRB, Centro de Ciências da Saúde, Complexo Multidisciplinar de Estudos e Pesquisa em Saúde, Santo Antônio de Jesus, BA, Brasil
| |
Collapse
|