1
|
Mansour H, Slika H, Nasser SA, Pintus G, Khachab M, Sahebkar A, Eid AH. Flavonoids, gut microbiota and cardiovascular disease: Dynamics and interplay. Pharmacol Res 2024; 209:107452. [PMID: 39383791 DOI: 10.1016/j.phrs.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of global morbidity and mortality. Extensive efforts have been invested to explicate mechanisms implicated in the onset and progression of CVD. Besides the usual suspects as risk factors (obesity, diabetes, and others), the gut microbiome has emerged as a prominent and essential factor in the pathogenesis of CVD. With its endocrine-like effects, the microbiome modulates many physiologic processes. As such, it is not surprising that dysbiosis-by generating metabolites, inciting inflammation, and altering secondary bile acid signaling- could predispose to or aggravate CVD. Nevertheless, various natural and synthetic compounds have been shown to modulate the microbiome. Prime among these molecules are flavonoids, which are natural polyphenols mainly present in fruits and vegetables. Accumulating evidence supports the potential of flavonoids in attenuating the development of CVD. The ascribed mechanisms of these compounds appear to involve mitigation of inflammation, alteration of the microbiome composition, enhancement of barrier integrity, induction of reverse cholesterol transport, and activation of farnesoid X receptor signaling. In this review, we critically appraise the methods by which the gut microbiome, despite being essential to the human body, predisposes to CVD. Moreover, we dissect the mechanisms and pathways underlying the cardioprotective effects of flavonoids.
Collapse
Affiliation(s)
- Hadi Mansour
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Maha Khachab
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Piragine E, Malanima MA, Ceccanti C, Guidi L, Martelli A, Lucenteforte E, Calderone V. Alliaceae versus Brassicaceae for Dyslipidemia: State of the Art and Future Perspectives. Systematic Review and Meta-Analysis of Clinical Studies. Phytother Res 2024. [PMID: 39343737 DOI: 10.1002/ptr.8350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Dyslipidemia is a risk factor for cardiovascular diseases. Preclinical studies have shown that organosulfur compounds from the Alliaceae and Brassicaceae plants, such as garlic (Allium sativum L.) and broccoli (Brassica oleracea L.), have potential lipid-lowering effects. However, their clinical efficacy is controversial, especially in "drug-free" patients. The aim of this work was to summarize evidence on the lipid-lowering properties of extracts containing organosulfur compounds in patients with dyslipidemia. Studies were searched in four databases (Medline, Scopus, Embase, and CENTRAL), from inception to October 11, 2023.Controlled clinical studies on patients with dyslipidemia receiving Alliaceae or Brassicaceae were included. The outcome was the change in lipid parameters from baseline. Random-effect meta-analysis of the extracted data was performed using R software. The effect size was expressed as mean difference (MD) and 95% confidence interval (CI). The certainty of evidence was assessed with the GRADE approach. Out of 28 studies that were reviewed, 22 were included in the meta-analysis (publication period: 1981-2022). Results showed that Alliaceae extracts significantly reduce total cholesterol [MD: -15.2 mg/dL; 95% CI: -21.3; -9.1] and low-density lipoprotein cholesterol levels [MD: -12.0 mg/dL; 95% CI: -18.1; -5.7], although with low certainty of evidence. Conversely, the lipid-lowering properties of Brassicaceae extracts are still unexplored. Our results support the use of Alliaceae extracts in patients with hypercholesterolemia, but future high-quality studies are needed. Our work suggests further exploration of the efficacy of Brassicaceae extracts, which may have high nutraceutical/phytotherapeutic potential, opening new perspectives in the management of dyslipidemia.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
| | | | - Costanza Ceccanti
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science, Applications "G. Parenti" (DiSIA), University of Florence, Florence, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Li N, Cui C, Xu J, Mi M, Wang J, Qin Y. Quercetin intervention reduced hepatic fat deposition in patients with nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled crossover clinical trial. Am J Clin Nutr 2024; 120:507-517. [PMID: 39032786 DOI: 10.1016/j.ajcnut.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide. However, there is still lack of effective treatment strategies except lifestyle intervention. OBJECTIVES To evaluate whether quercetin improves intrahepatic lipid content in patients with NAFLD. METHODS In this randomized, double-blind, placebo-controlled crossover trial, 41 patients with NAFLD were randomly assigned to receive the quercetin (500 mg) or placebo capsules for 12 wk, then switched interventions for another 12 wk after a 4-wk washout period. The primary outcome was intrahepatic lipid content evaluated by magnetic resonance imaging estimated proton density fat fraction. The secondary outcomes were liver function measurements, etc. Safety outcomes included blood routine. RESULTS A total of 36 patients completed the trial. In intention-to-treat analyses, the quercetin intervention moderately decreased the intrahepatic lipid contents from 11.5% ± 6.4% to 9.6% ± 5.8%, compared with the placebo intervention (decreased by 0.1% ± 2.6%, P = 0.013 and adjusted P value is 0.028). Body weight and body mass index were mildly reduced by 1.5 ± 2.6 kg and 0.5 ± 0.9 kg/m2 after the quercetin intervention (P < 0.05 and both adjusted P values are 0.038), whereas the reductions were only 0.2 ± 1.8 kg and 0.1 ± 0.7 kg/m2 after the placebo intervention. The intrahepatic lipid content reductions were noticeably positively associated with the body weight losses after the quercetin and placebo interventions (r = 0.557 and 0.412, P < 0.001 and P = 0.007, respectively). Subgroup analyses found that the reduction of intrahepatic lipid contents in females (3.0% ± 3.7%) was about twice as large as that in males (1.4% ± 2.5%) with a trend of statistical significance (P = 0.113 and adjusted P value is 0.061). There were no significant differences in other secondary and safety outcomes. No adverse events associated with study intervention were found. CONCLUSIONS Twelve weeks treatment of quercetin could reduce intrahepatic lipid contents in patients with NAFLD, possibly explained by a slightly larger body weight loss in the quercetin group. TRIAL REGISTRATION The trial is registered at www.chictr.org.cn as ChiCTR2100047904.
Collapse
Affiliation(s)
- NingChao Li
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chun Cui
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - ManTian Mi
- Research Center for Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jian Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Yu Qin
- Research Center for Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
5
|
Liu P, Tang L, Li G, Wu X, Hu F, Peng W. Association between consumption of flavonol and its subclasses and chronic kidney disease in US adults: an analysis based on National Health and Nutrition Examination Survey data from 2007-2008, 2009-2010, and 2017-2018. Front Nutr 2024; 11:1399251. [PMID: 38957868 PMCID: PMC11217562 DOI: 10.3389/fnut.2024.1399251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Background There is little research on the relationship between flavonol consumption and chronic kidney disease (CKD). This study aimed to examine the link between flavonol consumption and the risk of CKD among US adults, using data from the 2007-2008, 2009-2010 and 2017-2018 National Health and Nutrition Examination Survey (NHANES). Methods A cross-sectional approach was used, drawing on data from three NHANES cycles. The flavonol consumption of the participants in this study was assessed using a 48 h dietary recall interview. CKD was diagnosed based on an estimated glomerular filtration rate below 60 mL/min/1.73 m2 or a urine albumin-to-creatinine ratio of 30 mg/g or higher. Results Compared to the lowest quartile of flavonol intake (Q1), the odds ratios for CKD were 0.598 (95% CI: 0.349, 1.023) for the second quartile (Q2), 0.679 (95% CI: 0.404, 1.142) for the third quartile (Q3), and 0.628 (95% CI: 0.395, 0.998) for the fourth quartile (Q4), with a p value for trend significance of 0.190. In addition, there was a significant trend in CKD risk with isorhamnetin intake, with the odds ratios for CKD decreasing to 0.860 (95% CI: 0.546, 1.354) in the second quartile, 0.778 (95% CI: 0.515, 1.177) in the third quartile, and 0.637 (95% CI: 0.515, 1.177) in the fourth quartile (p for trend = 0.013). Conclusion Our analysis of the NHANES data spanning 2007-2008, 2009-2010, and 2017-2018 suggests that high consumption of dietary flavonol, especially isorhamnetin, might be linked to a lower risk of CKD in US adults. These findings offer new avenues for exploring strategies for managing CKD.
Collapse
Affiliation(s)
- Peijia Liu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Leile Tang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guixia Li
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyu Wu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Feng Hu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wujian Peng
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Mantadaki AE, Linardakis M, Tsakiri M, Baliou S, Fragkiadaki P, Vakonaki E, Tzatzarakis MN, Tsatsakis A, Symvoulakis EK. Benefits of Quercetin on Glycated Hemoglobin, Blood Pressure, PiKo-6 Readings, Night-Time Sleep, Anxiety, and Quality of Life in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. J Clin Med 2024; 13:3504. [PMID: 38930033 PMCID: PMC11205103 DOI: 10.3390/jcm13123504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Diabetes is a rapidly growing global morbidity issue with high prevalence, and the associated dysglycemia leads to complications. Patients with type 2 diabetes mellitus (T2DM) often experience elevated anxiety levels, affecting their quality of life and diabetes management. This study investigated quercetin, a nutraceutical and potential senolytic with antioxidant activity, to detect its possible positive effect on the bio-clinical measurements and routine health of patients with T2DM. Methods: This prospective randomized controlled trial (RCT) investigated the clinical usefulness of quercetin in patients with T2DM receiving non-insulin medications. One hundred participants were stratified by age and sex (1:1) and randomized to control (n = 50) or intervention (n = 50) groups. The control received standard care only, while the intervention received 500 mg quercetin daily for 12 weeks, followed by an 8-week washout and a final consecutive 12-week supplementation period (total: 32 weeks), as adjunct to their usual care. Comprehensive health assessments, including blood analyses, were conducted at baseline and study termination. Quality of life and anxiety were assessed using the 36-item Short Form Health Survey (SF-36) and Short Anxiety Screening Test (SAST-10). Results: Eighty-eight patients with T2DM concluded the trial. Compared with the control, glycated hemoglobin (HbA1c) levels showed a significant decrease (Δ%-change: -4.0% vs. 0.1%, p = 0.011). Quercetin also significantly improved PiKo-6 readings (FEV1: 5.6% vs. -1.5%, p = 0.002), systolic blood pressure (-5.0% vs. -0.2%, p = 0.029), night-time sleep (11.6% vs. -7.3%, p < 0.001), anxiety levels (SAST-10) (-26.2% vs. 3.3%, p < 0.001), and quality of life (SF-36) (both physical and mental components, p < 0.001). Conclusions: Based on the current open-label study, quercetin appears to be a promising supplement for T2DM, providing lifestyle and care support. Further research is warranted to shift this potential from clinical usefulness and feasibility to multidisciplinary evidence.
Collapse
Affiliation(s)
- Aikaterini E. Mantadaki
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Maria Tsakiri
- Iatrica, Local Unit of Lab Analysis and Diagnostics Network, 71303 Heraklion, Greece;
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Emmanouil K. Symvoulakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| |
Collapse
|
7
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
8
|
Xu N, Ijaz M, Shu Y, Wang P, Ma L, Wang P, Ding H, Shahbaz M, Shi H. The in vivo study on antioxidant activity of wendan decoction in treating hyperlipidemia: a pharmacokinetic-pharmacodynamic (PK-PD) model. Front Pharmacol 2024; 15:1260603. [PMID: 38323083 PMCID: PMC10844532 DOI: 10.3389/fphar.2024.1260603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Background: Wendan Decoction (WDD) is a six-herb Chinese medicine recipe that was first mentioned in about 652 AD. It is frequently used to treat hyperlipidemic patients' clinical complaints. According to reports, oxidative stress has a significant role in hyperlipidemia. Purpose: There has not yet been a thorough pharmacokinetic-pharmacodynamic (PK-PD) examination of the clinical efficacy of WDD in the context of hyperlipemia-related oxidative stress. Therefore, the goal of this research is to explore the antioxidant essence of WDD by developing a PK-PD model, ordering to assure its implication in treating hyperlipidemia in medical practice. Methods: The model rats of foodborne hyperlipidemia were established by feeding with high-fat feed, and the lipid-lowering effect of WDD was explored. The plasma drug concentration of rats at different doses were measured by UPL-MS/MS technology, and PK parameters were calculated using Phoenix WinNonlin 8.1 software. The level of lipid peroxide (LPO) in plasma at different time points was measured by enzyme labeling instrument. Finally, the PK-PD model was established by using Phoenix WinNonlin 8.1 software, to explore the lipid-lowering effect of WDD and the relation between the dynamic changes of chemical components and antioxidant effect. Results: The findings suggested that, WDD can reduce the levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in plasma, and high-density lipoprotein cholesterol (HDL-C) was related to the dosage. Between the peak drug levels and the WDD's maximal therapeutic response, there existed a hysteresis. WDD's effect-concentration curves displayed a counterclockwise delaying loop. Alternatively, among the ten components of WDD, hesperetin, quercetin, naringenin and tangeretin might exert more significant effects in regulating the LPO levels in hyperlipidemic rats. Conclusion: This study can be helpful for other investigators to study the lipid-lowering effect of WDD.
Collapse
Affiliation(s)
- Nan Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
| | - Muhammad Ijaz
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan, China
| | - Yishuo Shu
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
| | - Peng Wang
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
| | - Lei Ma
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Ping Wang
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Hailing Ding
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
| | - Muhammad Shahbaz
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
- Research Center for Sectional and Imaging Anatomy, School of Basic Medical Science, Digital Human Institute, Shandong University, Jinan, Shandong, China
| | - Haiyan Shi
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
| |
Collapse
|
9
|
Frumuzachi O, Babotă M, Miere D, Mocan A, Crișan G. The impact of consuming technologically processed functional foods enriched/fortified with (poly)phenols on cardiometabolic risk factors: a systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38214689 DOI: 10.1080/10408398.2023.2286475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cardiovascular diseases are a major global cause of death and healthcare costs, emphasizing the need for effective prevention and management of cardiometabolic risk factors. One promising approach is the consumption of technologically processed functional foods enriched/fortified with (poly)phenols. The current systematic review aimed to evaluate the human clinical trials evidence on the effect of intake of these foods on reducing the most common cardiometabolic risk factors. 12 randomized controlled studies were included in the systematic review, with varying food intake amounts (27-360 g/day) and (poly)phenol doses (32.5-850 mg/day). These interventions included consumption of functional bakery goods, cereal bars, pasta, chocolate, and yogurt, with supplementation periods spanning from 2 to 52 wk. Several foods, such as green tea extract-fortified rye bread and olive fruit (poly)phenol-fortified yogurt, significantly lowered blood pressure. Flavonoid-enriched chocolate, hydroxytyrosol-fortified bread, and other products influenced glucose metabolism. Additionally, various functional foods were associated with improved blood lipid levels. While these results indicate the health advantages of consuming technologically processed functional foods enriched/fortified with (poly)phenols, caution is warranted due to the scarcity and limitations of existing studies. Further research is needed to confirm and expand upon these results in the prevention and management of cardiometabolic risk factors.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Babotă
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Ziaei S, Alimohammadi‐Kamalabadi M, Hasani M, Malekahmadi M, Persad E, Heshmati J. The effect of quercetin supplementation on clinical outcomes in COVID-19 patients: A systematic review and meta-analysis. Food Sci Nutr 2023; 11:7504-7514. [PMID: 38107099 PMCID: PMC10724618 DOI: 10.1002/fsn3.3715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
Coronavirus disease (COVID-19) affects both the respiratory system and the body as a whole. Natural molecules, such as flavonoid quercetin, as potential treatment methods to help patients combat COVID-19. The aim of this systematic review and meta-analysis is to give a comprehensive overview of the impact of quercetin supplementation on inflammatory factors, hospital admission, and mortality of patients with COVID-19. The search has been conducted on PubMed, Scopus, Web of Science, EMBASE, and the Cochrane Library using relevant keywords until August 25, 2023. We included randomized controlled trials (RCTs) comparing COVID-19 patients who received quercetin supplementation versus controls. We included five studies summarizing the evidence in 544 patients. Meta-analysis showed that quercetin administration significantly reduced LDH activity (standard mean difference (SMD): -0.42, 95% CI: -0.82, -0.02, I 2 = 48.86%), decreased the risk of hospital admission by 70% (RR: 0.30, 95% CI: 0.14, 0.62, I 2 = 00.00%), ICU admission by 73% (RR: 0.27, 95% CI: 0.09, 0.78, I 2 = 20.66%), and mortality by 82% (RR: 0.18, 95% CI: 0.03, 0.98, I 2 = 00.00%). No significant changes in CRP, D-dimmer, and ferritin were found between groups. Quercetin was found to significantly reduce LDH levels and decrease the risk of hospital and ICU admission and mortality in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Malek Alimohammadi‐Kamalabadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of HealthGolestan University of Medical SciencesGorganIran
| | - Mahsa Malekahmadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences Tehran IranTehran University of Medical SciencesTehranIran
| | - Emma Persad
- Department for Evidence‐based Medicine and EvaluationDanube University KremsKremsAustria
| | - Javad Heshmati
- Songhor Healthcare CenterKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
11
|
Zhang W, Zheng Y, Yan F, Dong M, Ren Y. Research progress of quercetin in cardiovascular disease. Front Cardiovasc Med 2023; 10:1203713. [PMID: 38054093 PMCID: PMC10694509 DOI: 10.3389/fcvm.2023.1203713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Quercetin is one of the most common flavonoids. More and more studies have found that quercetin has great potential utilization value in cardiovascular diseases (CVD), such as antioxidant, antiplatelet aggregation, antibacterial, cholesterol lowering, endothelial cell protection, etc. However, the medicinal value of quercetin is mostly limited to animal models and preclinical studies. Due to the complexity of the human body and functional structure compared to animals, more research is needed to explore whether quercetin has the same mechanism of action and pharmacological value as animal experiments. In order to systematically understand the clinical application value of quercetin, this article reviews the research progress of quercetin in CVD, including preclinical and clinical studies. We will focus on the relationship between quercetin and common CVD, such as atherosclerosis, myocardial infarction, ischemia reperfusion injury, heart failure, hypertension and arrhythmia, etc. By elaborating on the pathophysiological mechanism and clinical application research progress of quercetin's protective effect on CVD, data support is provided for the transformation of quercetin from laboratory to clinical application.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yan Zheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Yazhou Ren
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Arabi SM, Shahraki Jazinaki M, Chambari M, Bahrami LS, Maleki M, Sukhorukov VN, Sahebkar A. The effects of Quercetin supplementation on cardiometabolic outcomes: An umbrella review of meta-analyses of randomized controlled trials. Phytother Res 2023; 37:5080-5091. [PMID: 37654199 DOI: 10.1002/ptr.7971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Quercetin is a bioactive flavonoid, but the effect of it on cardiometabolic factors has remained uncertain and previous findings from meta-analyses have been controversial. OBJECTIVE To provide an overview of the effects of Quercetin on cardiometabolic factors based on meta-analyses of randomized controlled trials (RCTs). METHOD MEDLINE, SciVerse Scopus, and Clarivate Analytics Web of Science databases were searched to identify eligible publications. As part of the umbrella review, we summarized pooled estimates, 95% CIs, heterogeneity, and publication bias. A GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach was used to rate the certainty of evidence. RESULTS Five meta-analyses including 18 eligible RCTs plus 5 RCTs that were not included in previous meta-analyses were found. The results indicated Quercetin does not affect diastolic blood pressure (DBP), lipid profile, inflammation, anthropometric indices, fasting plasma glucose (FBG), and homeostatic model assessment for insulin resistance (HOMA-IR). However, Quercetin supplementation could significantly reduce systolic blood pressure (SBP) (weighted mean difference (WMD): -1.9, 95% CI = -3.2 to -0.6, I2 = 88.3%) and insulin level (WMD: -1.07, 95% CI = -1.9 to -0.1, I2 = 75.0%). The certainty of evidence ranged from very low to moderate. CONCLUSION Quercetin supplementation has reducing effects on SBP and insulin levels but not other cardiometabolic parameters. More high-quality trials with longer follow-up durations may be required to obtain a more robust conclusion.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahla Chambari
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Maleki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
14
|
Wang Q, Zhang H, Jin Q, Wang X. Effects of Dietary Linoleic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis of 40 Randomized Controlled Trials. Foods 2023; 12:foods12112129. [PMID: 37297374 DOI: 10.3390/foods12112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Th aim of this meta-analysis was to elucidate whether dietary linoleic acid (LA) supplementation affected blood lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), compared with other fatty acids. Embase, PubMed, Web of Science and the Cochrane Library databases, updated to December 2022, were searched. The present study employed weighted mean difference (WMD) and a 95% confidence interval (CI) to examine the efficacy of the intervention. Out of the 3700 studies identified, a total of 40 randomized controlled trials (RCTs), comprising 2175 participants, met the eligibility criteria. Compared with the control group, the dietary intake of LA significantly decreased the concentrations of LDL-C (WMD: -3.26 mg/dL, 95% CI: -5.78, -0.74, I2 = 68.8%, p = 0.01), and HDL-C (WMD: -0.64 mg/dL, 95% CI: -1.23, -0.06, I2 = 30.3%, p = 0.03). There was no significant change in the TG and TC concentrations. Subgroup analysis showed that the LA intake was significantly reduced in blood lipid profiles compared with saturated fatty acids. The effect of LA on lipids was not found to be dependent on the timing of supplementation. LA supplementation in an excess of 20 g/d could be an effective dose for lowering lipid profiles. The research results provide further evidence that LA intake may play a role in reducing LDL-C and HDL-C, but not TG and TC.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
16
|
Kocaman Kalkan K, Şen S, Narlı B, Seymen CM, Yılmaz C. Effects of quercetin on hepatic fibroblast growth factor-21 (FGF-21) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) levels in rats fed with high fructose. Mol Biol Rep 2023; 50:4983-4997. [PMID: 37086297 DOI: 10.1007/s11033-023-08444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Available studies show that quercetin reduces Metabolic Syndrome (MetS) and its complications, increases insulin sensitivity and improves glucose levels. It has been reported that the increase in hepatic gene expressions of fibroblast growth factor-21 (FGF-21), an important metabolic regulator of insulin sensitivity, glucose and energy homeostasis, and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), which plays a central role in the regulation of cellular energy metabolism, eliminate the negative effects of fructose in fructose-fed rats. The main purpose of our study is to examine the effects of quercetin on hepatic FGF-21 and PGC-1α expressions and levels, as well as its protective and therapeutic role on MetS components in rats fed with fructose. METHODS AND RESULTS In our study, 24 Sprague Dawley male rats were divided into 4 groups: control, fructose, quercetin, fructose+quercetin (n = 6). During the 10-week experiment, quercetin was administered at a daily dose of 15 mg/kg body weight and fructose at a rate of 20%. Blood pressure and weights of all groups were measured and recorded. At the end of week 10, blood and liver tissue samples were taken. Serum insulin, glucose and triglyceride, total, HDL and VLDL cholesterol levels were determined from the samples. Insulin resistance was calculated using the HOMA-IR formula. Hepatic PGC-1α and FGF-21 protein levels and their mRNA expressions were determined. Criteria for metabolic syndrome were successfully established with fructose. It was observed that the administration of quercetin alone and in combination with fructose exerted positive effects and improved MetS criteria. It was determined that the administration of quercetin increased hepatic FGF-21 and PGC-1α protein levels and Messenger RNA (mRNA) expressions of them, which were decreased by fructose application. CONCLUSIONS The results of our study showed that 10-week administration of quercetin at 15 mg/kg exerted beneficial effects on lipid and carbohydrate metabolism in the fructose-mediated MetS model; therefore, quercetin may have great potential in the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
| | - Serkan Şen
- Ataturk Vocational School of Health Services, Afyonkarahisar University of Health Sciences, Afyon, Turkey
| | - Belkıs Narlı
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Canan Yılmaz
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Tomou EM, Papakyriakopoulou P, Skaltsa H, Valsami G, Kadoglou NPE. Bio-Actives from Natural Products with Potential Cardioprotective Properties: Isolation, Identification, and Pharmacological Actions of Apigenin, Quercetin, and Silibinin. Molecules 2023; 28:molecules28052387. [PMID: 36903630 PMCID: PMC10005323 DOI: 10.3390/molecules28052387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. As a result, pharmaceutical and non-pharmaceutical interventions modifying risk factors for CVDs are a top priority of scientific research. Non-pharmaceutical therapeutical approaches, including herbal supplements, have gained growing interest from researchers as part of the therapeutic strategies for primary or secondary prevention of CVDs. Several experimental studies have supported the potential effects of apigenin, quercetin, and silibinin as beneficial supplements in cohorts at risk of CVDs. Accordingly, this comprehensive review focused critically on the cardioprotective effects/mechanisms of the abovementioned three bio-active compounds from natural products. For this purpose, we have included in vitro, preclinical, and clinical studies associated with atherosclerosis and a wide variety of cardiovascular risk factors (hypertension, diabetes, dyslipidemia, obesity, cardiac injury, and metabolic syndrome). In addition, we attempted to summarize and categorize the laboratory methods for their isolation and identification from plant extracts. This review unveiled many uncertainties which are still unexplored, such as the extrapolation of experimental results to clinical practice, mainly due to the small clinical studies, heterogeneous doses, divergent constituents, and the absence of pharmacodynamic/pharmacokinetic analyses.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | |
Collapse
|
18
|
Kábelová A, Malínská H, Marková I, Hűttl M, Chylíková B, Šeda O. Quercetin supplementation alters adipose tissue and hepatic transcriptomes and ameliorates adiposity, dyslipidemia, and glucose intolerance in adult male rats. Front Nutr 2022; 9:952065. [PMID: 36245490 PMCID: PMC9558266 DOI: 10.3389/fnut.2022.952065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin, a flavonoid present in many fruits and vegetables, exhibits beneficial effects toward abnormalities related to metabolic syndrome. In this study, to further investigate metabolic and transcriptomic responses to quercetin supplementation, we used a genetic model of metabolic syndrome. Adult male rats of the PD/Cub strain were fed either a high-sucrose diet (HSD; control PD rats) or HSD fortified with quercetin (10 g quercetin/kg diet; PD-Q rats). Morphometric and metabolic parameters, along with transcriptomic profiles of the liver and retroperitoneal fat, were assessed. The relative weights of epididymal and retroperitoneal fat were significantly decreased in quercetin-treated animals. Furthermore, a smaller area under the glycemic curve along with a decreased level of fasting insulin were detected in PD-Q rats. While no changes in total cholesterol levels were observed, the overall level of triglycerides decreased in the serum and the liver of the PD-Q rats. The transcriptomic profile of the liver and the adipose tissue corroborated the metabolic and morphometric findings, revealing the pattern consistent with insulin-sensitizing changes, with major regulator nodes being Pparg, Adipoq, Nos2, and Mir378. In conclusion, quercetin supplementation improves abnormalities related to metabolic syndrome, namely adiposity, dyslipidemia and glucose intolerance.
Collapse
Affiliation(s)
- Adéla Kábelová
- First Faculty of Medicine, Institute of Biology and Medical Genetics, General University Hospital, Charles University, Prague, Czechia
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Martina Hűttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Blanka Chylíková
- First Faculty of Medicine, Institute of Biology and Medical Genetics, General University Hospital, Charles University, Prague, Czechia
| | - Ondřej Šeda
- First Faculty of Medicine, Institute of Biology and Medical Genetics, General University Hospital, Charles University, Prague, Czechia
- *Correspondence: Ondřej Šeda,
| |
Collapse
|
19
|
Ahmadi A, Jamialahmadi T, Sahebkar A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol Res 2022; 184:106414. [PMID: 36028188 DOI: 10.1016/j.phrs.2022.106414] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a major etiology of cardiovascular disease that causes considerable mortality. Oxidized low-density lipoprotein (oxLDL) is a fundamental attributor to atherosclerosis. Therefore, there seems to be an essential place for antioxidant therapy besides the current treatment protocols for coronary heart disease. Polyphenols are a class of compounds with substantial antioxidant properties that have shown the ability to reduce LDL oxidation in preclinical studies. However, clinical evidence has not been as conclusive although offering many promising signs. This review aims to examine the trials that have evaluated how dietary intake of polyphenols in different forms might influence the oxidation of LDL. Lowering the circulating cholesterol, incorporation into LDL particles, and enhancing systemic antioxidant activity are among the main mechanisms of action for polyphenols for lowering oxLDL. On the other hand, the population under study significantly affects the impact on oxLDL, as the type of the supplement and phenolic content. To conclude, although the polyphenols might decrease inflammation and enhance endothelial function via lowering oxLDL, there are still many gaps in our knowledge that need to be filled with further high-quality studies.
Collapse
Affiliation(s)
- Ali Ahmadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Asutralia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran.
| |
Collapse
|
20
|
Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081019. [PMID: 36015169 PMCID: PMC9412669 DOI: 10.3390/ph15081019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quercetin, as a member of flavonoids, has emerged as a potential therapeutic agent in cardiovascular diseases (CVDs) in recent decades. In this comprehensive literature review, our goal was a critical appraisal of the pathophysiological mechanisms of quercetin in relation to the classical cardiovascular risk factors (e.g., hyperlipidemia), atherosclerosis, etc. We also assessed experimental and clinical data about its potential application in CVDs. Experimental studies including both in vitro methods and in vivo animal models mainly outline the following effects of quercetin: (1) antihypertensive, (2) hypolipidemic, (3) hypoglycemic, (4) anti-atherosclerotic, and (5) cardioprotective (suppressed cardiotoxicity). From the clinical point of view, there are human studies and meta-analyses implicating its beneficial effects on glycemic and lipid parameters. In contrast, other human studies failed to demonstrate consistent favorable effects of quercetin on other cardiometabolic risk factors such as MS, obesity, and hypertension, underlying the need for further investigation. Analyzing the reason of this inconsistency, we identified significant drawbacks in the clinical trials’ design, while the absence of pharmacokinetic/pharmacodynamic tests prior to the studies attenuated the power of clinical results. Therefore, additional well-designed preclinical and clinical studies are required to examine the therapeutic mechanisms and clinical efficacy of quercetin in CVDs.
Collapse
|
21
|
The Impact of Flavonols on Cardiovascular Risk. Nutrients 2022; 14:nu14091973. [PMID: 35565940 PMCID: PMC9101293 DOI: 10.3390/nu14091973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of deaths globally. The main target for prevention of cardiovascular (CV) risk are lifestyle changes, including particular dietary recommendations, involving high intake of fruits and vegetables. Flavonols are a subgroup of flavonoids—compounds present in fruits, vegetables, and tea—known for their antioxidative properties. There are many findings about the beneficial impact of flavonols on general CV risk and its factors, but mainly from in vitro and animal model studies. This paper summarizes data from human studies about flavonols’ impact on general CV risk and its factors. A high dietary intake of flavonols could decrease CVD mortality directly or through impact on selected CV factors; however, available data are inconsistent. Nonetheless, specific groups of patients (smoking men, hypertensive and diabetic patients) can potentially benefit from selected dietary modifications or flavonols (quercetin) supplementation. Future investigations about kaempferol and myricetin are needed.
Collapse
|
22
|
Abdou HM, Hamaad FA, Ali EY, Ghoneum MH. Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomed Pharmacother 2022; 149:112838. [PMID: 35344738 DOI: 10.1016/j.biopha.2022.112838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes is a metabolic disease that is mainly characterized by hyperglycemia. The present work investigated the efficacy of the flavanones hesperetin (HES) and quercetin (Q) extracted from Trifolium alexandrinum (TA) to treat type 2 diabetic rats. Wistar albino rats were supplemented with a high fat diet (HFD) for 2 weeks and then administered streptozotocin to induce diabetes. Diabetic rats were orally treated with Q, HES, and TA extract at concentrations of 40, 50, and 200 mg/kg BW, respectively, for 4 weeks. Various biochemical, molecular, and histological analysis were performed to evaluate the antidiabetic effects of these treatments. Q, HES, and TA extract treatments all significantly improved diabetic rats' levels of serum glucose, insulin, glucagon, liver function enzymes, hepatic glycogen, α-amylase, lipase enzymes, lipid profiles, oxidative stress indicators, and antioxidant enzymes as compared with control diabetic untreated rats. In addition, supplementation with Q, HES, and TA extract attenuated the activities of glucose-6-phosphate; fructose-1,6-bisphospahate; 6-phosphogluconate dehydrogenase; glucose-6-phosphate dehydrogenase; glucokinase; and hexokinase in pancreatic tissue, and they improved the levels of glucose transporter 2 and glucose transporter 4. Furthermore, these treatments modulated the expressions levels of insulin receptor (IR), phosphoinositide 3-kinase (PI3K), AMP-activated protein kinase (AMPK), caspase-3, and interleukin-1β (IL-1β). Enhancement of the histological alterations in pancreatic tissues provided further evidence of the ability of Q, HES, and TA extract to exert antidiabetic effects. Q, HES, and TA extract remedied insulin resistance by altering the IR/PI3K and AMPK signaling pathways, and they attenuated type 2 diabetes by improving the antioxidant defense system.
Collapse
Affiliation(s)
- Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Egypt.
| | - Fatma A Hamaad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Esraa Y Ali
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Mamdooh H Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, 1621 E. 120th Street, Los Angeles, CA 90059, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Kozłowska A, Szostak-Węgierek D. Targeting Cardiovascular Diseases by Flavonols: An Update. Nutrients 2022; 14:1439. [PMID: 35406050 PMCID: PMC9003055 DOI: 10.3390/nu14071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Flavonols are one of the most plentiful flavonoid subclasses found in natural products and are extensively used as dietary supplements. Numerous in vitro and in vivo studies have shown the cardioprotective properties of flavonols, especially quercetin. This group of substances exerts positive impacts primarily due to their antiatherogenic, antithrombotic, and antioxidant activities. The potential of flavonols to promote vasodilation and regulation of apoptotic processes in the endothelium are other beneficial effects on the cardiovascular system. Despite promising experimental findings, randomized controlled trials and meta-analyses have yielded inconsistent results on the influence of these substances on human cardiovascular parameters. Thus, this review aims to summarize the most recent clinical data on the intake of these substances and their effects on the cardiovascular system. The present study will help clinicians and other healthcare workers understand the value of flavonol supplementation in both subjects at risk for cardiovascular disease and patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Aleksandra Kozłowska
- Department of Social Medicine and Public Health, Medical University of Warsaw, Oczki Str. 3, 02-007 Warsaw, Poland;
| | - Dorota Szostak-Węgierek
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka Str. 27, 01-445 Warsaw, Poland
| |
Collapse
|
24
|
Carvalho BMR, Nascimento LC, Nascimento JC, Gonçalves VSDS, Ziegelmann PK, Tavares DS, Guimarães AG. Citrus Extract as a Perspective for the Control of Dyslipidemia: A Systematic Review With Meta-Analysis From Animal Models to Human Studies. Front Pharmacol 2022; 13:822678. [PMID: 35237168 PMCID: PMC8884359 DOI: 10.3389/fphar.2022.822678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/09/2022] Open
Abstract
This study aims to obtain scientific evidence on the use of Citrus to control dyslipidemia. The surveys were carried out in 2020 and updated in March 2021, in the PubMed, Scopus, LILACS, and SciELO databases, using the following descriptors: Citrus, dyslipidemias, hypercholesterolemia, hyperlipidemias, lipoproteins, and cholesterol. The risk of bias was assessed according to the Cochrane methodology for clinical trials and ARRIVE for preclinical trials. A meta-analysis was performed using the application of R software. A total of 958 articles were identified and 26 studies demonstrating the effectiveness of the Citrus genus in controlling dyslipidemia were selected, of which 25 were included in the meta-analysis. The effects of Citrus products on dyslipidemia appear consistently robust, acting to reduce total cholesterol, LDL, and triglycerides, in addition to increasing HDL. These effects are associated with the composition of the extracts, extremely rich in antioxidant, as flavonoids, and that act on biochemical targets involved in lipogenesis and beta-oxidation. The risk of bias over all of the included studies was considered critically low to moderate. The meta-analysis demonstrated results favorable to control dyslipidemia by Citrus products. On the other hand, high heterogeneity values were identified, weakening the evidence presented. From this study, one can suggest that Citrus species extracts are potential candidates for dyslipidemia control, but more studies are needed to increase the strength of this occurrence.
Collapse
Affiliation(s)
- Betina M R Carvalho
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Laranda C Nascimento
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Jessica C Nascimento
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | | | - Patricia K Ziegelmann
- Departamento de Estatística, Programa de Pós-graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Débora S Tavares
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Adriana G Guimarães
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Brazil
| |
Collapse
|
25
|
Perry CA, Gadde KM. The Role of Calorie Restriction in the Prevention of Cardiovascular Disease. Curr Atheroscler Rep 2022; 24:235-242. [PMID: 35107761 DOI: 10.1007/s11883-022-00999-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Calorie restriction (CR) has emerged as a non-pharmacological treatment to prevent cardiovascular disease (CVD). This article reviews recent progress regarding the role of CR in CVD prevention via reduction of cardiometabolic risk factors and promoting atherosclerotic stability. RECENT FINDINGS Calorie restriction may be an approach to reduce the development of atherosclerosis. CR promotes eNOS activity and SIRT1 expression which in turn improves vasodilation resulting in greater regulation of blood pressure and blood flow. Modest CR in nonobese young and middle-aged adults results in improved cardiometabolic risk profile. The evidence for CR in CVD prevention has accumulated in the recent years. Most evidence, however, is from rodent or small human trials. Our understanding of the magnitude of calorie reduction that leads to the long-term therapeutic effects on cardiovascular health is limited. More well-designed controlled trials conducted in diverse populations with larger sample sizes and longer follow-ups are warranted.
Collapse
Affiliation(s)
- Cydne A Perry
- Department of Applied Health Science, Indiana University School of Public Health, 1025 E. 7th St. , Bloomington, IN, 47405, USA.
| | - Kishore M Gadde
- Pennington Biomedical Center, 6400 Perkins Rd, Baton Rouge, LA, USA
| |
Collapse
|
26
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
27
|
Wattanapitayakul SK, Kunchana K, Jarisarapurin W, Chularojmontri L. Screening of potential tropical fruits in protecting endothelial dysfunction in vitro. Food Nutr Res 2021; 65:7807. [PMID: 34539312 PMCID: PMC8432071 DOI: 10.29219/fnr.v65.7807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background High consumption of antioxidant-rich fruits and vegetables reduces the endothelial damage involved in cardiovascular disease pathogenesis. Objective To evaluate the phytochemical content, antioxidant and scavenging activities (FRAP, ORAC, OH•, HOCl, H2O2, and O2 -), endothelial H2O2-cytoprotective effect, nitric oxide (NO) release activation potential, and endothelial wound healing properties of 10 tropical fruits, comprising pineapple, sugar apple, papaya fruit, longan, mangosteen, lychee, langsat, mango, rambutan, and guava. Design Experimental study. The experiments were conducted in vitro using endothelial cell line EA.hy926. Results The high performance liquid chromatography (HPLC) phytochemical analysis indicated the presence of gallic acid and quercetin in all fruits, along with the overall absence of ellagic acid. Chlorogenic acid was only detected in three fruits, that is, pineapple, ripe papaya, and guava. The antioxidant and scavenging activities of all fruits were concentration-dependent. Only the H2O2 scavenging activity exhibited broad positive associations with other ROS-scavenging activities. Sugar apple and unripe papaya induced a significant reduction in H2O2-induced cell death in endothelial cells while pineapple, sugar apple, longan, and langsat activated NO release. Discussion All the studied tropical fruits contained bioactive phytoantioxidants with wide ranges of antioxidant capacity and scavenging activities. The endothelial functional tests were relevant to the screening for fruits that may benefit cardiovascular health. Among the four fruits that promoted endothelial wound closure, only sugar apple and unripe papaya induced cell migration and vascular capillary-like tube formation. Conclusion Sugar apple and unripe papaya are potential functional fruits that can protect against oxidative cell death and enhance endothelial wound healing.
Collapse
Affiliation(s)
| | - Khwandow Kunchana
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Bangkok, Thailand
| |
Collapse
|
28
|
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front Nutr 2021; 8:717343. [PMID: 34552954 PMCID: PMC8450594 DOI: 10.3389/fnut.2021.717343] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
The human diet and dietary patterns are closely linked to the health status. High-calorie Western-style diets have increasingly come under scrutiny as their caloric load and composition contribute to the development of non-communicable diseases, such as diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-reduced and health-promoting diets have shown promising results in maintaining health and reducing disease burden throughout aging. More recently, pharmacological Caloric Restriction Mimetics (CRMs) have gained interest of the public and scientific community as promising candidates that mimic some of the myriad of effects induced by caloric restriction. Importantly, many of the CRM candidates activate autophagy, prolong life- and healthspan in model organisms and ameliorate diverse disease symptoms without the need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine), hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g., resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify as CRM candidates, which are naturally available via foods and beverages. However, it is yet unclear how these bioactive substances contribute to the benefits of healthy diets. In this review, we thus discuss dietary sources, availability and intake levels of dietary CRMs. Finally, since translational research on CRMs has entered the clinical stage, we provide a summary of their effects in clinical trials.
Collapse
Affiliation(s)
- Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
29
|
Mohammadi K, Alizadeh Sani M, Nattagh‐Eshtivani E, Yaribash S, Rahmani J, Shokrollahi Yancheshmeh B, Julian McClements D. A systematic review and meta-analysis of the impact of cornelian cherry consumption on blood lipid profiles. Food Sci Nutr 2021; 9:4629-4638. [PMID: 34401109 PMCID: PMC8358377 DOI: 10.1002/fsn3.2416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Polyphenolic and flavonoid compounds are claimed to improve blood lipid profiles and to provide protective effects against cardiovascular disease. For this reason, we conducted a systematic review and meta-analysis of studies that comprehensively investigated the effects of cornelian cherry supplementation on lipid profiles in rat models. Up to December 2020, 855 articles were screened, and finally, seven articles were selected as eligible for the meta-analysis. This meta-analysis revealed that cornelian cherry supplementation significantly decreased low-density lipoprotein (LDL) (WMD = -6.38 mg/dl; 95% CI, -9.93 to-2.84; p < .001), triglyceride (TG) (WMD = -52.36 mg/dl; 95% CI, -80.50 to -24.22; p < .005), and cholesterol level (WMD = -37.16 mg/dl; 95% CI, -51.19 to -23.13; p < .005) in treated rats compared with control groups. A nonsignificant increase in high-density lipoprotein (HDL) level was observed (WMD = 4.21 mg/dl; 95% CI, -3.25 to 11.66; p = .268). These results suggest that cherry supplementation may have health effects by modifying lipid profiles. However, there is a need for more well-controlled human clinical trials to make more definitive conclusions about the potential health benefits of cherry supplementation.
Collapse
Affiliation(s)
- Keyhan Mohammadi
- Department of Clinical PharmacyFaculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and HygieneSchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Shakila Yaribash
- Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Jamal Rahmani
- Student Research CommitteeDepartment of Clinical Nutrition and DieteticsFaculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | | | | |
Collapse
|
30
|
Adel Mehraban MS, Tabatabaei-Malazy O, Rahimi R, Daniali M, Khashayar P, Larijani B. Targeting dyslipidemia by herbal medicines: A systematic review of meta-analyses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114407. [PMID: 34252530 DOI: 10.1016/j.jep.2021.114407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The worldwide increasing prevalence of dyslipidemia has become a global health concern. Various herbal remedies have been claimed to be effective for the treatment of dyslipidemia in traditional and folkloric medicine of different regions clinical trials have been conducted to investigate their efficacy. The aim of the current systematic review is to critically assess the meta-analyses of controlled trials (CT) evaluated herb medicines for dyslipidemia. MATERIALS AND METHODS Relevant studies from Web of Science, PubMed, Scopus, and Cochrane Library databases based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist until January 2021 have been searched. All meta-analyses which pooled studies on the effect of herbal medicines on lipid profile including total cholesterol (TC), triglyceride (TG), and low- or high-density lipoprotein cholesterol (LDL-C, HDL-C) were also included. Meta-analyses of in vitro, animal or observational studies were excluded. RESULTS The overall of 141 meta-analyses were revealed. Vegetable oils, phytosterols, tea, soy protein, nuts, and curcumin have been studied frequently among the herbal medicines. Among 13 meta-analyses on vegetable oils, the greater reduce of TC (18.95 mg/dl), LDL-C (16.24 mg/dl) and TG (13.69 mg/dl) were exhibited from sunflower oil. Furthermore, rice bran oil (6.65 mg/dl) increased HDL-C significantly. Phytosterols in 12 meta-analyses demonstrated significant improvements in reducing TC, LDL-C and TG as 16.4, 23.7, and 8.85 mg/dl, respectively, and rise in HDL-C as 10.6 mg/dl. The highest reduction in serum level of TC, LDL-C and TG was reported while intake Green tea; 27.57, 24.75, and 31.87 mg/dl, accordingly within 9 meta-analyses. Average improvement of lipid profiles by 6 meta-analyses on plant proteins were 23.2, 21.7, 15.06, and 1.55 mg/dl for TC, LDL-C, TG, and HDL-C, respectively. Among 11 meta-analyses on nuts, almond showed better and significant alleviations in TC (10.69 mg/dl), walnut in LDL-C (9.23 mg/dl), pistachio in TG (22.14 mg/dl), and peanut in HDL-C (2.72 mg/dl). Overall, Curcumin, Curcuminoid, and Turmeric have resulted in the reduction of TC (25.13 mg/dl), LDL-C (39.83 mg/dl), TG (33.65 mg/dl), and an increase in the HDL-C (4.31 mg/dl). CONCLUSION The current systematic review shed light on the use of herbal medicines for the management of dyslipidemia. However, more well-conducted CTs are required to determine effective doses of herbal medicines.
Collapse
Affiliation(s)
- Mohammad Sadegh Adel Mehraban
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Marzieh Daniali
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Center for Microsystem Technology, Imec and Ghent University, Gent-Zwijnaarde, 9052, Belgium; Osteoporosis Research Center, Endocrinpology & Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Frank J, Kisters K, Stirban OA, Obeid R, Lorkowski S, Wallert M, Egert S, Podszun MC, Eckert GP, Pettersen JA, Venturelli S, Classen HG, Golombek J. The role of biofactors in the prevention and treatment of age-related diseases. Biofactors 2021; 47:522-550. [PMID: 33772908 DOI: 10.1002/biof.1728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
The present demographic changes toward an aging society caused a rise in the number of senior citizens and the incidence and burden of age-related diseases (such as cardiovascular diseases [CVD], cancer, nonalcoholic fatty liver disease [NAFLD], diabetes mellitus, and dementia), of which nearly half is attributable to the population ≥60 years of age. Deficiencies in individual nutrients have been associated with increased risks for age-related diseases and high intakes and/or blood concentrations with risk reduction. Nutrition in general and the dietary intake of essential and nonessential biofactors is a major determinant of human health, the risk to develop age-related diseases, and ultimately of mortality in the older population. These biofactors can be a cost-effective strategy to prevent or, in some cases, even treat age-related diseases. Examples reviewed herein include omega-3 fatty acids and dietary fiber for the prevention of CVD, α-tocopherol (vitamin E) for the treatment of biopsy-proven nonalcoholic steatohepatitis, vitamin D for the prevention of neurodegenerative diseases, thiamine and α-lipoic acid for the treatment of diabetic neuropathy, and the role of folate in cancer epigenetics. This list of potentially helpful biofactors in the prevention and treatment of age-related diseases, however, is not exhaustive and many more examples exist. Furthermore, since there is currently no generally accepted definition of the term biofactors, we here propose a definition that, when adopted by scientists, will enable a harmonization and consistent use of the term in the scientific literature.
Collapse
Affiliation(s)
- Jan Frank
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Klaus Kisters
- Medical Clinic I, St. Anna-Hospital & ESH Excellence Centre, Herne, Germany
| | | | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Sarah Egert
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | - Maren C Podszun
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Jacqueline A Pettersen
- Northern Medical Program, University of Northern British Columbia, Prince George, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sascha Venturelli
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Hans-Georg Classen
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | | |
Collapse
|
32
|
The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678662. [PMID: 34257817 PMCID: PMC8249127 DOI: 10.1155/2021/6678662] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/17/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Metabolic diseases have become major public health issues worldwide. Searching for effective drugs for treating metabolic diseases from natural compounds has attracted increasing attention. Quercetin, an important natural flavonoid, is extensively present in fruits, vegetables, and medicinal plants. Due to its potentially beneficial effects on human health, quercetin has become the focus of medicinal attention. In this review, we provide a timely and comprehensive summary of the pharmacological advances and clinical data of quercetin in the treatment of three metabolic diseases, including diabetes, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD). Accumulating evidences obtained from animal experiments prove that quercetin has beneficial effects on these three diseases. It can promote insulin secretion, improve insulin resistance, lower blood lipid levels, inhibit inflammation and oxidative stress, alleviate hepatic lipid accumulation, and regulate gut microbiota disorders in animal models. However, human clinical studies on the effects of quercetin in diabetes, hyperlipidemia, and NAFLD remain scarce. More clinical trials with larger sample sizes and longer trial durations are needed to verify its true effectiveness in human subjects. Moreover, another important issue that needs to be resolved in future research is to improve the bioavailability of quercetin. This review may provide valuable information for the basic research, drug development, and clinical application of quercetin in the treatment of metabolic diseases.
Collapse
|
33
|
Pawar A, Pal A, Goswami K, Squitti R, Rongiolettie M. Molecular basis of quercetin as a plausible common denominator of macrophage-cholesterol-fenofibrate dependent potential COVID-19 treatment axis. RESULTS IN CHEMISTRY 2021; 3:100148. [PMID: 34150487 PMCID: PMC8196513 DOI: 10.1016/j.rechem.2021.100148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
The world's largest randomized control trial against COVID-19 using remdesivir, hydroxychloroquine, lopinavir and interferon-β1a appeared to have little or no effect on hospitalized COVID-19 patients. This has again led to search for alternate re-purposed drugs and/or effective “add-on” nutritional supplementation, which can complement or enhance the therapeutic effect of re-purposed drug. Focus has been shifted to therapeutic targets of severe acute respiratory syndrome coronavirus (SARS-CoV-2), which includes specific enzymes and regulators of lipid metabolism. Very recently, fenofibrate (cholesterol-lowering drug), suppressed the SARS-CoV-2 replication and pathogenesis by affecting the pathways of lipid metabolism in lung cells of COVID-19 patients. A preclinical study has shown synergistic effect of quercetin (a flavonoid) and fenofibrate in reducing the cholesterol content, which might be useful in COVID-19 treatment. Based on the scientific literature, use of quercetin and fenofibrate in COVID-19 seems meaningful in pharmaceutical and biomedical research, and warrants basic, experimental and clinical studies. In this article, we have summarized the contemporary findings about drug fenofibrate and its effect on membrane synthesis of COVID-19 virus along with emphasizing on possible synergistic effects of quercetin with fenofibrate.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mauro Rongiolettie
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
34
|
Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur J Med Chem 2021; 221:113535. [PMID: 33992930 DOI: 10.1016/j.ejmech.2021.113535] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Natural products and synthetic analogs have drawn much attention as potential therapeutical drugs to treat metabolic syndrome. We reviewed the underlying mechanisms of 32 natural products and analogs with potential pharmacological effects in vitro, and especially in rodent models and/or patients, that usually act on the PPAR pathway, along with other molecular targets. Recent outstanding total syntheses or semisyntheses of these lead compounds are stated. In general, they can activate the transcriptional activity of PPARα, PPARγ, PPARα/γ, PPARβ/δ, PPARα/δ, PPARγ/δ and panPPAR as weak, partial agonists or selective PPARγ modulators (SPPARγM), which may be useful for managing obesity, type 2 diabetes (T2D), dyslipidemia and non-fatty liver disease (NAFLD). Terpenoids is the largest group of compounds that act as potential modulators on PPARs and are comprised from small lipophilic cannabinoids to lipophilic pentacyclic triterpenes and polar saponins. Shikimates-phenylpropanoids include polar heterocyclic flavonoids and phenolic compounds containing at least one C3-C6 unit and usually a double bond on the propyl chain. Quercetin (19), resveratrol (24) and curcumin (27), stand out from this group for exhibiting beneficial effects on patients. Alkaloids, the minor group of potential modulators on PPARs, include berberine (30), which has been widely explored in preclinical and clinical studies for its potential beneficial effects on T2D and dyslipidemia. However, large-scale clinical trials may be warranted for the promising compounds.
Collapse
|
35
|
Kutbi EH, Sohouli MH, Fatahi S, Lari A, Shidfar F, Aljhdali MM, Alhoshan FM, Elahi SS, Almusa HA, Abu-Zaid A. The beneficial effects of cinnamon among patients with metabolic diseases: A systematic review and dose-response meta-analysis of randomized-controlled trials. Crit Rev Food Sci Nutr 2021; 62:6113-6131. [PMID: 33739219 DOI: 10.1080/10408398.2021.1896473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This systematic review and meta-analysis aims to summarize and conclude the clinical evidence regarding the use of cinnamon among patients with metabolic diseases. A comprehensive literature search without any limitation on language was conducted using the following bibliographical databases: ISI Web of Science, Embase, Scopus, PubMed, and Google Scholar. Search was conducted up to 23 January 2020. A total of 35 clinical trials were included for final analysis. Pooling of results showed a significant reducing effect of cinnamon on total cholesterol (TC) (weighted mean difference (WMD) = -11.67 mg/dL; P = 0.010), triglyceride (TG) (WMD = -16.27 mg/dL; P < 0.001), low density lipoprotein-cholesterol (LDL-C) (WMD = -6.36 mg/dL; P < 0.001), serum glucose (WMD = -11.39 mg/dL; P < 0.001), serum insulin (WMD = -1.27 μIU/mL; P = 0.028), and waist circumstance (WC) (WMD = -1.68 cm; P = 0.016). These lowering effects on TG, TC, LDL-C, and serum glucose levels were robust in studies that used cinnamon supplementation dose ≤1.5 g. Also, our findings of the present meta-analysis showed that cinnamon supplementation could have favorable effects on high density lipoprotein-cholesterol (HDL-C, WMD = 1.35; P = 0.038) as well as systolic (WMD = -3.95 mmHg; P = 0.018) and diastolic (WMD = -3.36; P = 0.001) blood pressure among patients with metabolic diseases. The present meta-analysis suggests that cinnamon might exert beneficial effects on various cardiometabolic risk factors among patients with metabolic diseases.
Collapse
Affiliation(s)
- Emad H Kutbi
- Biomedical Research Administration, Biorepository Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammad Hassan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Lari
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Maha Mari Aljhdali
- Department of Internal Medicine, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Faisal Musaad Alhoshan
- College of Medicine, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Saad Saif Elahi
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem Ameen Almusa
- Department of Respiratory Care, Dr. Sulaiman Al Habib Hospital, Riyadh, Saudi Arabia
| | - Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
36
|
Teasdale SB, Marshall S, Abbott K, Cassettari T, Duve E, Fayet-Moore F. How should we judge edible oils and fats? An umbrella review of the health effects of nutrient and bioactive components found in edible oils and fats. Crit Rev Food Sci Nutr 2021; 62:5167-5182. [PMID: 33706623 DOI: 10.1080/10408398.2021.1882382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary guidelines for many Western countries base their edible oil and fat recommendations solely on saturated fatty acid content. This study aims to demonstrate which nutritional and bioactive components make up commonly consumed edible oils and fats; and explore the health effects and strength of evidence for key nutritional and bioactive components of edible oils. An umbrella review was conducted in several stages. Food composition databases of Australia and the United States of America, and studies were examined to profile nutrient and bioactive content of edible oils and fats. PUBMED and Cochrane databases were searched for umbrella reviews, systematic literature reviews of randomized controlled trials or cohort studies, individual randomized controlled trials, and individual cohort studies to examine the effect of the nutrient or bioactive on high-burden chronic diseases (cardiovascular disease, type 2 diabetes mellitus, obesity, cancer, mental illness, cognitive impairment). Substantial systematic literature review evidence was identified for fatty acid categories, tocopherols, biophenols, and phytosterols. Insufficient evidence was identified for squalene. The evidence supports high mono- and polyunsaturated fatty acid compositions, total biophenol content, phytosterols, and possibly high α-tocopherol content as having beneficial effects on high-burden health comes. Future dietary guidelines should use a more sophisticated approach to judge edible oils beyond saturated fatty acid content.
Collapse
Affiliation(s)
- Scott B Teasdale
- Department of Science, Nutrition Research Australia, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Skye Marshall
- Department of Science, Nutrition Research Australia, Sydney, Australia.,Bond University Nutrition & Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Kylie Abbott
- Department of Science, Nutrition Research Australia, Sydney, Australia
| | - Tim Cassettari
- Department of Science, Nutrition Research Australia, Sydney, Australia.,Department of Translational Science, Nutrition Research Australia, Sydney, Australia
| | - Emily Duve
- Department of Science, Nutrition Research Australia, Sydney, Australia.,Department of Translational Science, Nutrition Research Australia, Sydney, Australia
| | | |
Collapse
|
37
|
Grzelak-Błaszczyk K, Milala J, Kołodziejczyk K, Sójka M, Czarnecki A, Kosmala M, Klewicki R, Fotschki B, Jurgoński A, Juśkiewicz J. Protocatechuic acid and quercetin glucosides in onions attenuate changes induced by high fat diet in rats. Food Funct 2021; 11:3585-3597. [PMID: 32285077 DOI: 10.1039/c9fo02633a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yellow onion waste from industrial peeling was used to obtain three pure preparations: protocatechuic acid (PA), quercetin diglycosides (QD) and quercetin monoglycosides (QM). PA contained 61% protocatechuic acid, QD contained 35% quercetin diglucosides, mainly quercetin-3,4'-diglucoside, and QM contained 41% monoglucosides, mainly quercetin-4'-glucoside. The highest antioxidant activity was shown by PA. The effects of preparations on the digestive functions of the gastrointestinal tract of rats as well as the biochemical parameters and antioxidant capacity of the blood in model research on Wistar rats sustained by a high-fat diet were assessed (5 groups per 8 animals). The results of the present experiment showed that different onion phenolic preparations differently modulated the enzymatic activity of faecal (P < 0.001) and caecal (P < 0.001) microbiota. For instance, the QD preparation but not QM efficiently reduced the faecal and caecal bacterial β-glucuronidase activity. Both protocatechuic acid and quercetin monoglycosides showed a beneficial effect by regulating blood lipids (reduction of TC (P < 0.001) and TG (P < 0.001), non-HDL increase in HDL (P < 0.001)), thereby lowering the risk factors for atherosclerotic lesions AI (P = 0.038) and AII (P = 0.013). In addition, onion phenols showed a strong antioxidant effect, however, with a different mechanism: protocatechuic acid via serum ACL (P = 0.033) increase and hepatic GSSG (P = 0.070) decrease, QM via ACW (P < 0.001) increase and hepatic TBARS (P = 0.002) decrease, and QD via serum ACW increase and hepatic GSSG decrease. It can be concluded that onion polyphenols with a lower molar weight, i.e. QM more preferably affect the blood lipid profile than QD. However QD more efficiently reduced the faecal and caecal bacterial β-glucuronidase activity.
Collapse
Affiliation(s)
- Katarzyna Grzelak-Błaszczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Joanna Milala
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Krzysztof Kołodziejczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Michał Sójka
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Andrzej Czarnecki
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Robert Klewicki
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Adam Jurgoński
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
38
|
Zhang S, Li L, Chen W, Xu S, Feng X, Zhang L. Natural products: The role and mechanism in low-density lipoprotein oxidation and atherosclerosis. Phytother Res 2020; 35:2945-2967. [PMID: 33368763 DOI: 10.1002/ptr.7002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/30/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a chronic inflammatory, metabolic, and epigenetic disease, which leads to the life-threatening coronary artery disease. Emerging studies from bench to bedside have demonstrated the pivotal role of low-density lipoprotein (LDL) oxidation in the initiation and progression of atherosclerosis. This article hereby reviews oxidation mechanism of LDL, and the pro-atherogenic and biomarker role of oxidized LDL in atherosclerosis. We also review the pharmacological effects of several representative natural products (vitamin E, resveratrol, quercetin, probucol, tanshinone IIA, epigallocatechin gallate, and Lycopene) in protecting against LDL oxidation and atherosclerosis. Clinical and basic research supports the beneficial effects of these natural products in inhibiting LDL oxidation and preventing atherosclerosis, but the data are still controversial. This may be related to factors such as the population and the dosage and time of taking natural products involved in different studies. Understanding the mechanism of LDL oxidation and effect of oxidized LDL help researchers to find novel therapies against atherosclerosis.
Collapse
Affiliation(s)
- Shengyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wenxu Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
39
|
Dehghani F, Sezavar Seyedi Jandaghi SH, Janani L, Sarebanhassanabadi M, Emamat H, Vafa M. Effects of quercetin supplementation on inflammatory factors and quality of life in post-myocardial infarction patients: A double blind, placebo-controlled, randomized clinical trial. Phytother Res 2020; 35:2085-2098. [PMID: 33216421 DOI: 10.1002/ptr.6955] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of death in the world. Epidemiological studies have shown that dietary flavonoids are inversely related to cardiovascular morbidity and mortality. The study aimed to determine whether quercetin supplementation can improve inflammatory factors, total antioxidant capacity (TAC) and quality of life (QOL) in patients following MI. This randomized double-blind, placebo-controlled trial was conducted on 88 post-MI patients. Participants were randomly assigned into quercetin (n = 44) and placebo groups (n = 44) receiving 500 mg/day quercetin or placebo tablets for 8 weeks. Quercetin supplementation significantly increased serum TAC compared to placebo (Difference: 0.24 (0.01) mmol/L and 0.00 (0.00) mmol/L respectively; p < .001). TNF-α levels significantly decreased in the quercetin group (p = .009); this was not, however, significant compared to the placebo group. As for QOL dimensions, quercetin significantly lowered the scores of insecurity (Difference: -0.66 (12.5) and 0.00 (5.55) respectively; p < .001). No significant changes in IL-6, hs-CRP, blood pressure and other QOL dimensions were observed between the two groups. Quercetin supplementation (500 mg/day) in post-MI patients for 8 weeks significantly elevated TAC and improved the insecurity dimension of QOL, but failed to show any significant effect on inflammatory factors, blood pressure and other QOL dimensions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hadi Emamat
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Carrizzo A, Izzo C, Forte M, Sommella E, Di Pietro P, Venturini E, Ciccarelli M, Galasso G, Rubattu S, Campiglia P, Sciarretta S, Frati G, Vecchione C. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E8706. [PMID: 33218062 PMCID: PMC7698807 DOI: 10.3390/ijms21228706] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Carmine Izzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Maurizio Forte
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Eleonora Venturini
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Speranza Rubattu
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Petro Campiglia
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Sebastiano Sciarretta
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Giacomo Frati
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Carmine Vecchione
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| |
Collapse
|
41
|
Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev 2020; 78:615-626. [PMID: 31940027 DOI: 10.1093/nutrit/nuz071] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CONTEXT Clinical trials examining the cardiovascular protective effects of quercetin in humans have reported conflicting results. OBJECTIVE The aim of this systematic review was to summarize evidence of the effects of quercetin supplementation on plasma lipid profiles, blood pressure (BP), and glucose levels in humans by performing a meta-analysis of randomized controlled trials. DATA SOURCES MEDLINE, Embase, and Scopus databases were searched electronically from their inception to July 2018 to identify randomized controlled trials that assessed the impact of quercetin on lipid profiles, BP, and glucose levels. STUDY SELECTION Randomized controlled trials assessing the effects of quercetin or a standardized quercetin-enriched extract on plasma lipid profiles, BP, and glucose levels in humans were eligible for inclusion. DATA EXTRACTION A random-effects model was used for data analysis. Continuous variables were expressed as weighted mean differences (WMDs) and 95%CIs. Subgroup analyses were conducted to explore possible influences of study characteristics. Sensitivity analyses were also performed, as were analyses of publication bias. RESULTS Seventeen trials (n = 896 participants total) were included in the overall analysis. Pooled results showed that quercetin significantly lowered both systolic BP (WMD, -3.09 mmHg; 95%CI, -4.59 to -1.59; P = 0.0001) and diastolic BP (WMD, -2.86 mmHg; 95%CI, -5.09 to -0.63; P = 0.01). Neither lipid profiles nor glucose concentrations changed significantly. In subgroup analyses, significant changes in high-density lipoprotein cholesterol and triglycerides were observed in trials with a parallel design and in which participants consumed quercetin for 8 weeks or more. CONCLUSION Quercetin intake resulted in significantly decreased BP in humans. Moreover, participants who consumed quercetin for 8 weeks or more showed significantly changed levels of high-density lipoprotein cholesterol and triglycerides in trials with a parallel design.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Dan Liao
- Department of Gynaecology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yong Dong
- Department of Oncology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
42
|
Flavonoids in adipose tissue inflammation and atherosclerosis: one arrow, two targets. Clin Sci (Lond) 2020; 134:1403-1432. [PMID: 32556180 DOI: 10.1042/cs20200356] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Collapse
|
43
|
Rafacho BPM. Short Editorial: Quercetin Ameliorates Lipid and Apolipoprotein Profile in High-Dose Glucocorticoid Treated Rats. Arq Bras Cardiol 2020; 115:109-110. [PMID: 32813823 PMCID: PMC8384330 DOI: 10.36660/abc.20200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bruna Paola Murino Rafacho
- Faculdade de Ciências Farmacêuticas, Alimentos e NutriçãoUniversidade Federal de Mato Grosso do SulCampo GrandeMSBrasilFaculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN) da Universidade Federal de Mato Grosso do Sul, Campo Grande, MS – Brasil
| |
Collapse
|
44
|
Derakhshanian H, Djalali M, Djazayery A, Javanbakht MH, Zarei M, Hekmatdoost A, Eslamian G, Mirhashemi SS, Dehpour AR. Quercetin Ameliorates Lipid and Apolipoprotein Profile in High-Dose Glucocorticoid Treated Rats. Arq Bras Cardiol 2020; 115:102-108. [PMID: 32813833 PMCID: PMC8384335 DOI: 10.36660/abc.20180397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/30/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background Glucocorticoids (GCs) are widely prescribed for the treatment of numerous clinical disorders due to their anti-inflammatory and immune-modulatory properties and one of the most common untoward effects of these drugs is dyslipidemia. Objective To evaluate the effect of quercetin, a plant-derived flavonoid, on the lipid profile of high-dose glucocorticoid treated rats. Methods A total of 32 Sprague-Dawley rats, were randomly distributed among four groups (8 rats per group) and treated for 6 weeks with one of the following: (i) normal saline; (ii) 40 mg/kg methylprednisolone sodium succinate (MP); (iii) MP + 50 mg/kg quercetin; (iv) MP + 150 mg/kg quercetin. MP was injected subcutaneously, and quercetin was administered by oral gavage 3 days a week. At the end of the study, the animals' lipid profile was measured by enzymatic kits. Data were analyzed and statistical significance was set at p<0.05. Results The mean serum total cholesterol (TC), triglyceride (TG) and LDL levels were drastically increased in GC-treated animals compared with the control group. Both doses of quercetin (50 and 150 mg/kg) ameliorated TC (43% and 45%), LDL (56% and 56%) and TG (46% and 55% respectively). Apo B/A1 ratio decreased more than 20% following quercetin intake and the decline in TC/HDL, TG/HL, LDL/HDL ratios were significant. Conclusions These data suggest that quercetin intake with both doses of 50 and 150 mg/kg could be considered as a protective agent for glucocorticoid-induced dyslipidemia. (Arq Bras Cardiol. 2020; 115(1):102-108.).
Collapse
Affiliation(s)
- Hoda Derakhshanian
- Probiotic Research CenterAlborz University of Medical SciencesKarajIrãDietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj - Irã
- Department of Biochemistry Nutrition and GeneticsSchool of MedicineAlborz University of Medical SciencesKarajIrãDepartment of Biochemistry Nutrition and Genetics, School of Medicine, Alborz University of Medical Sciences, Karaj - Irã
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIrãDepartment of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran - Irã
| | - Abolghassem Djazayery
- Department of Community NutritionSchool of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIrãDepartment of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran - Irã
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIrãDepartment of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran - Irã
| | - Mahnaz Zarei
- Department of Cellular and Molecular Nutrition School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIrãDepartment of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran - Irã
| | - Azita Hekmatdoost
- Faculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIrãDepartment of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran - Irã
| | - Ghazaleh Eslamian
- Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIranStudent Research Committee, Shahid Beheshti University of Medical Sciences, Tehran - Iran
| | - Seyyedeh Somayyeh Mirhashemi
- Probiotic Research CenterAlborz University of Medical SciencesKarajIrãDietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj - Irã
| | - Ahmad Reza Dehpour
- Department of PharmacologySchool of MedicineTehran University of Medical SciencesTehranIrãDepartment of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran - Irã
- Experimental Medicine Research CenterTehran University of Medical SciencesTehranIrãExperimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Irã.
| |
Collapse
|
45
|
Mazza A, Nicoletti M, Lenti S, Torin G, Rigatelli G, Pellizzato M, Fratter A. Effectiveness and Safety of Novel Nutraceutical Formulation Added to Ezetimibe in Statin-Intolerant Hypercholesterolemic Subjects with Moderate-to-High Cardiovascular Risk. J Med Food 2020; 24:59-66. [PMID: 32456525 DOI: 10.1089/jmf.2020.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effectiveness of statins in the primary and secondary prevention of cardiovascular (CV) diseases has been widely proven. However, the onset of adverse events associated with their use prevents to achieve the therapeutic targets recommended by the guidelines (GL) for the management of dyslipidemia. In the event of statin intolerance, the GL recommend to use bile acid sequestrants, fibrates, and ezetimibe in monotherapy, but their benefits in improving lipid pattern are quite modest. This study aims at evaluating the effectiveness and safety of a nutraceutical compound (NC) associated with ezetimibe (EZE) on the lipid profile in statin-intolerant patients with moderate-to-high CV risk. Ninety-six statin-intolerant hypertensive and hypercholesterolemic subjects treated pharmacologically with EZE 10 mg daily were randomized in open label (n = 48) to take for 3 months a NC containing Monacolin-K (MK), Berberine Hydrochloride (BC), t-Resveratrol (RES), Quercetin (QUER), and Chromium (CH) in the form of a gastro-resistant tablet that improves enteric bioaccessibility and bioavailability of these substances. The control group (n = 48) took only EZE in monotherapy at the same dosage; both groups followed a standardized lipid-lowering diet. The total serum cholesterol (TC), low density lipoprotein cholesterol (LDLC), high density lipoprotein cholesterol (HDLC), triglycerides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatinine phosphokinase (CPK) levels were compared at the follow-up in both groups using Student's t-test. TC and LDL levels reduced in both groups, but were lower in the group treated with EZE + NC (-25.9% vs. -15%, P < .05 and -38.7% vs. -21.0%, P < .05, respectively). No changes were observed in either group regarding a decrease in TG (-9.4% vs. -11.7%, NS) and an increase in HDLC (+4.2% vs. +1.1%, NS). The AST, ALT, and CPK levels increased in the group treated with the EZE + NC compared to the control group, but were still within the acceptable range. There was no difference concerning the lipid-lowering treatment between gender, and no patient withdrew from the study. In the short term, the EZE + NC combination therapy is well tolerated and effective in improving TC and LDLC levels in statin-intolerant patients with moderate-to-high CV risk.
Collapse
Affiliation(s)
- Alberto Mazza
- ESH Excellence Hypertension Centre, Internal Medicine Unit, Santa Maria della Misericordia General Hospital, Rovigo, Italy.,Italian Nutraceutical Society (SINut), Triveneto Area, Rovigo, Italy
| | | | - Salvatore Lenti
- Hypertension Centre and Internal Medicine and Geriatrics, San Donato Hospital, Arezzo, Italy
| | - Gioia Torin
- Internal Medicine Unit, Department of Medicine, Santa Maria della Misericordia General Hospital, Rovigo, Italy
| | - Gianluca Rigatelli
- Interventional Cardiology Unit, Division of Cardiology, S. Maria della Misericordia General Hospital, Rovigo, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNUT), Treviso, Italy
| | - Andrea Fratter
- Italian Society of Nutraceutical Formulators (SIFNUT), Treviso, Italy
| |
Collapse
|
46
|
Khaltourina D, Matveyev Y, Alekseev A, Cortese F, Ioviţă A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech Ageing Dev 2020; 189:111230. [PMID: 32251691 DOI: 10.1016/j.mad.2020.111230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The disease criteria used by the World Health Organization (WHO) were applied to human biological aging in order to assess whether aging can be classified as a disease. These criteria were developed for the 11th revision of the International Classification of Diseases (ICD) and included disease diagnostics, mechanisms, course and outcomes, known interventions, and linkage to genetic and environmental factors. RESULTS: Biological aging can be diagnosed with frailty indices, functional, blood-based biomarkers. A number of major causal mechanisms of human aging involved in various organs have been described, such as inflammation, replicative cellular senescence, immune senescence, proteostasis failures, mitochondrial dysfunctions, fibrotic propensity, hormonal aging, body composition changes, etc. We identified a number of clinically proven interventions, as well as genetic and environmental factors of aging. Therefore, aging fits the ICD-11 criteria and can be considered a disease. Our proposal was submitted to the ICD-11 Joint Task force, and this led to the inclusion of the extension code for "Ageing-related" (XT9T) into the "Causality" section of the ICD-11. This might lead to greater focus on biological aging in global health policy and might provide for more opportunities for the new therapy developers.
Collapse
Affiliation(s)
- Daria Khaltourina
- Department of Risk Factor Prevention, Federal Research Institute for Health Organization and Informatics of Ministry of Health of the Russian Federation, Dobrolyubova St. 11, Moscow, 127254, Russia; International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France.
| | - Yuri Matveyev
- Research Lab, Moscow Regional Research and Clinical Institute, Schepkina St. 61/2 k.1, Moscow, 129110, Russia
| | - Aleksey Alekseev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia
| | - Franco Cortese
- Biogerontology Research Foundation, Apt 2354 Chynoweth House, Trevissome Park, Truro, London, TR4 8UN, UK
| | - Anca Ioviţă
- International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France
| |
Collapse
|
47
|
Russo P, Prinzi G, Lamonaca P, Cardaci V, Fini M. Flavonoids and Reduction of Cardiovascular Disease (CVD) in Chronic Obstructive Pulmonary Disease (COPD). Curr Med Chem 2020; 26:7048-7058. [PMID: 29756566 DOI: 10.2174/0929867325666180514100640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) and Cardiovascular Diseases (CV) Often Coexist. COPD and CVD are complex diseases characterized by a strict interaction between environment and genetic. The mechanisms linking these two diseases are complex, multifactorial and not entirely understood, influencing the therapeutic approach. COPD is characterized by several comorbidities, it hypothesized the treatment of cardiovascular co-morbidities that may reduce morbidity and mortality. Flavonoids are an important class of plant low molecular weight Secondary Metabolites (SMs). Convincing data from laboratory, epidemiological, and human clinical studies point the important effects on CVD risk prevention. OBJECTIVE This review aims to provide up-to-date information on the ability of Flavonoids to reduce the CVD risk. CONCLUSION Current studies support the potential of Flavonoids to prevent the risk of CVD. Well-designed clinical studies are suggested to evaluate advantages and limits of Flavonoids for managing CVD comorbidity in COPD.
Collapse
Affiliation(s)
- Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS "San Raffaele Pisana" Via di Valcannuta, 247, I- 00166 Rome, Italy
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS "San Raffaele Pisana" Via di Valcannuta, 247, I- 00166 Rome, Italy
| | - Palma Lamonaca
- Unit of Clinical and Molecular Epidemiology, IRCCS "San Raffaele Pisana" Via di Valcannuta, 247, I- 00166 Rome, Italy
| | - Vittorio Cardaci
- Unit of Pulmonary Rehabilitation, IRCCS "San Raffaele Pisana" Via della Pisana, 235, 00163 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCCS "San Raffaele Pisana" Via di Valcannuta, 247, I-00166 Rome, Italy
| |
Collapse
|
48
|
Hosoda S, Kawazoe Y, Shiba T, Numazawa S, Manabe A. Anti-Obesity Effect of Ginkgo Vinegar, a Fermented Product of Ginkgo Seed Coat, in Mice Fed a High-Fat Diet and 3T3-L1 Preadipocyte Cells. Nutrients 2020; 12:nu12010230. [PMID: 31963184 PMCID: PMC7019924 DOI: 10.3390/nu12010230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Ginkgo seed coat is rarely used and is typically discarded, due to its offensive odor and its toxicity. Ginkgo vinegar is a fermented product of ginkgo seed coat, and fermentation removes the bad smell and most of the toxicity. Thus, ginkgo vinegar contains very low concentrations of toxic components. The present study examined the anti-obesity effect of ginkgo vinegar in mice fed a high-fat diet and its inhibition of adipogenesis in 3T3-L1 cells. Ginkgo vinegar suppressed high-fat diet-induced body weight gain and reduced the size of fat cells in mice. Ginkgo vinegar suppressed the expression of C/EBPδ and PPARγ, key proteins in adipogenesis, and inhibited lipid accumulation in 3T3-L1 cells that were induced to become adipocytes. These results suggested that ginkgo vinegar inhibited adipocyte differentiation. On the other hand, a corresponding concentration of acetic acid had significantly less effect on lipid accumulation and virtually no effect on adipogenic gene expression. These results suggested that, similar to Ginkgo biloba extract, ginkgo vinegar might prevent and improve adiposity. Therefore, ginkgo seed coat could be a useful material for medicinal ingredients.
Collapse
Affiliation(s)
- Shugo Hosoda
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, Ohta-ku, Tokyo 145-0062, Japan; (S.H.); (T.S.); (A.M.)
| | - Yumi Kawazoe
- RegeneTiss Inc., Okaya, Nagano 394-0046, Japan;
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshikazu Shiba
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, Ohta-ku, Tokyo 145-0062, Japan; (S.H.); (T.S.); (A.M.)
- RegeneTiss Inc., Okaya, Nagano 394-0046, Japan;
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
- Correspondence: ; Tel.: +81-3-3784-8205
| | - Atsufumi Manabe
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, Ohta-ku, Tokyo 145-0062, Japan; (S.H.); (T.S.); (A.M.)
| |
Collapse
|
49
|
Donaldson J, Ngema M, Nkomozepi P, Erlwanger K. Quercetin administration post-weaning attenuates high-fructose, high-cholesterol diet-induced hepatic steatosis in growing, female, Sprague Dawley rat pups. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6954-6961. [PMID: 31414497 DOI: 10.1002/jsfa.9984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Fructose and cholesterol-rich diets have been implicated in the upsurge of metabolic syndrome (MetS). Phytochemicals are being explored as alternatives for the prevention and management of MetS. Thirty-six 21-day-old, female Sprague Dawley rats fed a high-fructose, high-cholesterol diet post-weaning were used to investigate the prophylactic potential of quercetin. Group 1 was given standard rat chow (SRC); Group 2: SRC and quercetin (75 mg kg-1 daily); Group 3: SRC and fenofibrate (100 mg kg-1 daily); Group 4 was given a high cholesterol diet (HCD) (2% added dietary cholesterol in SRC), 20% fructose drinking solution (FS); Group 5 was given HCD, 20% FS and quercetin (75 mg kg-1 daily); Group 6: HCD, 20% FS and fenofibrate (100 mg kg-1 daily). Rats were fed ad libitum for 8 weeks, euthanized, and blood and liver samples were collected. RESULTS The HCD and FS significantly increased (P < 0.05) absolute and relative liver masses and serum cholesterol. Fasting blood glucose, serum triglycerides, alanine transaminase, creatinine, and urea were not significantly different (P > 0.05) between groups. The HCD and FS significantly increased liver lipid yield compared to the SRC and rats receiving SRC with fenofibrate (P < 0.05). Quercetin or fenofibrate together with HCD and FS attenuated the diet-induced increase in liver lipids by approximately 50%, although this was not statistically significant. Liver macro- and micro-steatosis scores were significantly increased (P < 0.05) in rats receiving HCD and FS. Quercetin or fenofibrate administration together with HCD and FS significantly decreased (P < 0.05) liver macro-steatosis scores. CONCLUSION The prophylactic effect of quercetin on fructose and cholesterol diet-induced liver lipid accumulation may be exploited in the fight against non-alcoholic fatty liver disease (NAFLD). © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mandisa Ngema
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Kennedy Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
50
|
Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 2019; 60:3290-3303. [PMID: 31680558 DOI: 10.1080/10408398.2019.1683810] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quercetin, one of the most taken flavonoid with diet, belongs to the family of flavonols in which kaempferol and myricetin are also found. Quercetin occurs as a glycoside (with linked sugars) or as an aglycone (without linked sugars). Although quercetin has many different forms in nature, the form found in plants is quercetin-3-O-glucoside, which generally functions as a pigment that gives color to a multitude of fruits and vegetables. The recent literature has been reviewed using PubMed, Science Direct, and Embase databases. In this article, we reviewed quercetin with respect to chemical properties, absorption mechanism, metabolism, bioavailability, food sources, bioactivities, and possible health-promoting mechanisms. Quercetin is known as an antioxidant, anti-inflammatory, cardioprotective, and anti-obesity compound. It is thought to be beneficial against cardiovascular diseases, cancer, diabetes, neurological diseases, obesity, allergy asthma, and atopic diseases. Further clinical studies with large sample sizes are needed to determine the appropriate dose and form of quercetin for preventing diseases.
Collapse
Affiliation(s)
- Hande Gül Ulusoy
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|