1
|
Morozov AA, Yurchenko VV. Effects of environmentally relevant concentrations of glyphosate and aminomethylphosphonic acid on biotransformation and stress response proteins in the liver of zebrafish (Danio rerio). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101366. [PMID: 39586218 DOI: 10.1016/j.cbd.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Herbicides pose a threat to various non-target organisms, including fish. A widely used herbicide, glyphosate, and its main breakdown product, aminomethylphosphonic acid (AMPA), are quite ubiquitous in freshwater systems. The aim of this work was to analyze changes in the relative abundance of hepatic proteins participating in the biotransformation and response to chemical stress in adult zebrafish Danio rerio exposed to environmentally relevant concentrations of glyphosate (100 μg/L), AMPA (100 μg/L), and their mixture (50 μg/L + 50 μg/L) for two weeks. Proteomic analysis showed that the tested concentrations caused dysregulation of various biotransformation proteins, the most upregulated of which in all treatment groups was the Phase I enzyme cyp27a7. While glyphosate had a more pronounced impact on the biotransformation pathways, AMPA showed stronger interference with redox homeostasis. When acting together, the parent compound and its metabolite were more potent to disturb fish metabolic processes, including nucleotide metabolism and proteasome pathway, and to downregulate proteins known for their roles in protection from oxidative modifications of cellular constituents and disruption of redox signaling.
Collapse
Affiliation(s)
- Alexey A Morozov
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, IBIW RAS, 109, Borok 152742, Russia.
| | - Victoria V Yurchenko
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, IBIW RAS, 109, Borok 152742, Russia
| |
Collapse
|
2
|
Harsha ML, Salas-Ortiz Y, Cypher AD, Osborn E, Valle ET, Gregg JL, Hershberger PK, Kurerov Y, King S, Goranov AI, Hatcher PG, Konefal A, Cox TE, Greer JB, Meador JP, Tarr MA, Tomco PL, Podgorski DC. Toxicity of crude oil-derived polar unresolved complex mixtures to Pacific herring embryos: Insights beyond polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177447. [PMID: 39521076 DOI: 10.1016/j.scitotenv.2024.177447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Crude oil toxicity to early life stage fish is commonly attributed to polycyclic aromatic hydrocarbons (PAHs). However, it remains unclear how the polar unresolved complex mixture (UCM), which constitutes the bulk of the water-soluble fraction of crude oil, contributes to crude oil toxicity. Additionally, the role of photomodification-induced toxicity in relation to the polar UCM is not well understood. This study addresses these knowledge gaps by assessing the toxicity of two laboratory generated polar UCMs from Cook Inlet crude oil, representing the readily water-soluble fraction of crude oil and photoproduced hydrocarbon oxidation products (HOPs), to Pacific herring (Clupea pallasii) embryos. A small-scale semi-static exposure design was utilized with a range of polar UCM concentrations (0.5-14 mg/L) in nonvolatile dissolved organic carbon (NVDOC) units, quantifying the entire polar UCM. Compositional analyses revealed a photochemical-driven shift toward more complex aromatic compositions, naphthenic acids, and no detectable levels of PAHs (above 0.3 μg/L). Exposure to the dark polar UCM resulted in higher mortality than exposure to the light polar UCM. Both dark and light polar UCMs induced developmental abnormalities commonly attributed to the PAH fraction, including edema, reduced heart rate, body axis defects, and decreased body lengths, with these effects observed at the lowest dose group (0.5 mg/L NVDOC). These responses suggest photomodification-induced toxicity is driven by exposure to increased concentrations of dissolved HOPs rather than photochemical induced compositional changes. Gene expression analyses focusing on xenobiotic metabolism and cardiac morphogenesis yielded results consistent with previous studies examining the biological mechanisms of crude oil toxicity. In summary, these phenotypic and genotypic responses in Pacific herring embryos indicate that the polar UCM is a significant driver of crude oil toxicity. These findings emphasize the importance of considering the polar UCM in future studies, metric reporting, and risk assessments related to crude oil toxicity.
Collapse
Affiliation(s)
- Maxwell L Harsha
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Yanila Salas-Ortiz
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | - Ed Osborn
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Eduardo Turcios Valle
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Jacob L Gregg
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, Washington 98358, USA
| | - Paul K Hershberger
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, Washington 98358, USA
| | - Yuri Kurerov
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Eurofins Central Analytical Laboratories, New Orleans, Louisiana 70122, USA
| | - Sarah King
- Eurofins Central Analytical Laboratories, New Orleans, Louisiana 70122, USA
| | - Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Anastasia Konefal
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - T Erin Cox
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington 98115, USA
| | - James P Meador
- University of Washington, Dept. of Environmental and Occupational Health Sciences, School of Public Health, Seattle, Washington 98105, USA
| | - Matthew A Tarr
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Patrick L Tomco
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education & Research Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| |
Collapse
|
3
|
Jerald I, Ravindran J, Babu MM. Fish in focus: Navigating organ damage assessment through analytical avenues - A comprehensive review. Toxicol Rep 2024; 13:101841. [PMID: 39717851 PMCID: PMC11665677 DOI: 10.1016/j.toxrep.2024.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Aquatic ecosystems, critical for biodiversity and food production, confront escalating threats from anthropogenic activities like pollution and climate change, impacting fish health. This review outlines various assays used to study organ damage in fish, ranging from traditional histopathology to advanced molecular and biochemical methods. The aim is to guide researchers in selecting suitable assays for their specific questions, considering the advantages and limitations of each technique. Covered methods include histopathological assessment, biomarker analysis, genotoxicity assays, oxidative stress indicators, and non-invasive imaging. The review explores their application in monitoring environmental stressors' impacts on fish organs, emphasizing emerging trends like omics technologies and non-destructive imaging for comprehensive assessments. These innovations hold promise for early detection and understanding the implications on fish populations and ecosystem health.
Collapse
Affiliation(s)
- Irine Jerald
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| | | | - Monica Muniendra Babu
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| |
Collapse
|
4
|
Dimatteo M, Di Napoli E, Paciello O, d’Aquino I, Iaccarino D, D’amore M, Guida M, Cozzolino L, Serpe FP, Fusco G, De Carlo E, degli Uberti B. Pathological Changes and CYP1A1 Expression as Biomarkers of Pollution in Sarpa Salpa and Diplodus Sargus. Animals (Basel) 2024; 14:3160. [PMID: 39518883 PMCID: PMC11544920 DOI: 10.3390/ani14213160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
In a marine ecosystem, the most sensitive organisms to environmental changes, mainly to anthropic pressures, are fishes and invertebrates. Therefore, they are considered the ideal targets to indirectly evaluate the health of an entire ecosystem. Teleost fishes, particularly those that occupy the highest trophic levels, can accumulate toxic substances through their diet. In this study, we used two fish species with sedentary behavior and trophic habits, Diplodus sargus and Sarpa salpa, caught in two areas at different anthropic pressures divided into the Gulf of Naples (Na) and the Gulf of Salerno (Sa). This study aimed to correlate the pathological alterations in target organs in both species with known concentrations of polychlorinated biphenyls (PCBs) and heavy metals (lead and cadmium) to the expression of CYP1A1. Histological examination took into consideration circulatory disorders, increase in melanomacrophages (MMs) number, inflammation in kidney and hepatopancreas and gonadal stage maturation. Next, the pathological and morphological changes found were compared to immunohistochemical expression of CYP1A1 in the same samples. Chemical analysis of PCBs, based on 28, 52, 101, 138, 153, and 180 congeners, and heavy metals, were performed on hepatopancreas and muscle samples. Higher median values of PCBs concentration were detected in both species in the Salerno area (8.1 ng/g in Diplodus sargus muscles and 51.1 ng/g in Sarpa salpa hepatopancreas, respectively), although the values were consistently below the legal limits. No critical values were found for lead and cadmium. Therefore, we hypothesized that CYP1A1 and pathological alterations were more expressed in fish from Salerno area. The pathological changes showed a statistically significant difference in inflammation of the kidneys (p < 0.0001) between S. salpa of both Gulfs. In addition, we found a statistically significant difference in the assessment of the increase in MMs/MMCs (p = 0.0384) and circulation disorders (p = 0.0325) of hepatopancreas in D. sargus of both Gulfs. As not all the variables considered showed statistical significance, the analysis of the results does not fully support the correlation between the highest levels of contaminants found in the Salerno area and the expression of CYP1A1. Our data could be a starting point for future studies to better correlate the role of CYP1A1 to pollutants, considering this is the first study involving two of the most common species in the Mediterranean Sea. Thus, future studies could include other species to improve and increase records.
Collapse
Affiliation(s)
- Maria Dimatteo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| | - Evaristo Di Napoli
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (O.P.); (I.d.); (L.C.)
| | - Orlando Paciello
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (O.P.); (I.d.); (L.C.)
| | - Ilaria d’Aquino
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (O.P.); (I.d.); (L.C.)
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| | - Marianna D’amore
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| | - Mariangela Guida
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| | - Luciana Cozzolino
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (O.P.); (I.d.); (L.C.)
| | - Francesco Paolo Serpe
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| | - Barbara degli Uberti
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80035 Portici, Italy; (D.I.); (M.D.); (M.G.); (F.P.S.); (G.F.); (E.D.C.); (B.d.U.)
| |
Collapse
|
5
|
Melo Alves MKD, Mariz CF, Melo TJBD, Alves RN, Valcarcel LA, Zanardi-Lamardo E, Feitosa JLL, Carvalho PSM. Oil spill impact on Brazilian coral reefs based on seawater polycyclic aromatic hydrocarbon contamination, biliary fluorescence and enzymatic biomarkers in damselfish Stegastes fuscus (Teleostei, Pomacentridae). MARINE POLLUTION BULLETIN 2024; 208:116958. [PMID: 39288671 DOI: 10.1016/j.marpolbul.2024.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The crude oil contamination along the Brazilian Northeast coast significantly impacted reef ecosystems. This study assessed polycyclic aromatic hydrocarbons (PAHs) in seawater, fluorescence of bile PAHs, and biochemical biomarkers in damselfish Stegastes fuscus across four coral reef areas pre- and post-oil contamination. Serrambi (SE) and Japaratinga (JP1) were identified as suitable reference areas. PAH concentrations significantly increased in water post-contamination, predominantly 2 to 3 ring parent and alkylated PAHs. Biliary PAHs naphthalene, phenanthrene, chrysene, pyrene and benzo(a)pyrene increased on Paiva post-spill versus pre-spill to 173 %, 449 %, 334 %, 331 % and 131 %, respectively. Significant increases in ethoxy-resorufin-O-deethylase (EROD) (852 %), catalase (CAT) (139 %) and decrease in lipid peroxidation (LPO) (40 %) and acetylcholinesterase (AChE) (75 %) were verified in Paiva samples. Biliary PAHs and biochemical biomarkers were altered in S. fuscus after exposure to PAHs dissolved from the oil. Stegastes fuscus emerges as a promising sentinel organism for coastal reef oil pollution monitoring.
Collapse
Affiliation(s)
- Maria Karolaine de Melo Alves
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Célio Freire Mariz
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Thalita Joana Bezerra de Melo
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Romulo Nepomuceno Alves
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Lino A Valcarcel
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - João Lucas Leão Feitosa
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Paulo S M Carvalho
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil.
| |
Collapse
|
6
|
Dal Pont G, Ostrensky A, Sadauskas-Henrique H, Castilho-Westphal GG, Dolatto RG, Grassi MT, de Souza-Bastos LR. The Combined Effects of Temperature and pH to the Toxicity of the Water-Soluble Fraction of Gasoline (WSFG) to the Neotropical Yellow-Tail Tetra, Astyanax altiparanae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:234-252. [PMID: 39373743 DOI: 10.1007/s00244-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Continental aquatic environments have undergone chemical pollution due to increased anthropogenic activities. Among those substances, petroleum hydrocarbons are a potential hazard for the aquatic animals. Additionally, alterations in the abiotic characteristics of the water, such as temperature and pH, can impose additional stress when those substances are present. We evaluate how alterations in water temperature and pH modified the acute (96 h) toxicity of the water-soluble fraction of gasoline (WSFG) to Astyanax altiparanae through physiological analysis. We also investigated the physiological responses after the fish recovery from exposure (96 h) in clean water. Both isolated and combined exposures to WSFG resulted in significant physiological changes. Alone, WSFG altered energetic metabolism and haematopoietic functions, potentially due to metabolic hypoxia. When combined with changes in water temperature (30 °C) and pH (4.0), A. altiparanae activated additional physiological mechanisms to counterbalance osmoregulatory and acid-base imbalances, likely exacerbated by severe metabolic hypoxia. In both isolated and combined exposure scenarios, A. altiparanae maintained cellular hydration, suggesting a robust capacity to uphold homeostasis under environmental stress conditions. Following a recovery in clean water, energetic metabolism returned to control levels. Nevertheless, plasmatic Na+ and Cl- levels and haematological parameters remained affected by WSFG exposure. Our findings underscore the impact of interactions between WSFG contaminants, temperature and pH, leading to additional biological damage in A. altiparanae.
Collapse
Affiliation(s)
- Giorgi Dal Pont
- Grupo Integrado de Aquicultura E Estudos Ambientais (GIA),, Departamento de Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540 -Cabral, Curitiba, PR, 80035-050, Brazil.
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540-Cabral, Curitiba, PR, 80035-050, Brazil.
| | - Antonio Ostrensky
- Grupo Integrado de Aquicultura E Estudos Ambientais (GIA),, Departamento de Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540 -Cabral, Curitiba, PR, 80035-050, Brazil
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540-Cabral, Curitiba, PR, 80035-050, Brazil
| | - Helen Sadauskas-Henrique
- Laboratório de Ecofisiologia E Bioquímica de Organismos Aquáticos, Universidade Santa Cecília, Rua Oswaldo Cruz, N. 277-Boqueirão, Santos, SP, 11045-907, Brazil
| | - Gisela Geraldine Castilho-Westphal
- Grupo Integrado de Aquicultura E Estudos Ambientais (GIA),, Departamento de Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540 -Cabral, Curitiba, PR, 80035-050, Brazil
- Universidade Positivo-Programa de Pós-Graduação Em Gestão Ambiental, Rua Prof. Pedro Viriato Parigot de Souza, N. 5300-Ecoville, Curitiba, PR, 81280-330, Brazil
| | - Rafael Garrett Dolatto
- Grupo de Química Ambiental, Centro Politécnico, Universidade Federal Do Paraná, Rua Francisco H. Dos Santos, N. 100-Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| | - Marco Tadeu Grassi
- Grupo de Química Ambiental, Centro Politécnico, Universidade Federal Do Paraná, Rua Francisco H. Dos Santos, N. 100-Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| | - Luciana Rodrigues de Souza-Bastos
- Laboratório de Toxicologia E Avaliação Ambiental, Instituto de Tecnologia para o Desenvolvimento-LACTEC, Rodovia BR-116, Km 98, N. 8813-Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| |
Collapse
|
7
|
Molés G, Valdehita A, Connolly M, Navas JM. Involvement of ahr-dependent Cyp1a detoxification activity, oxidative stress and inflammatory regulation in response to graphene oxide exposure in rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2024; 364:143005. [PMID: 39121965 DOI: 10.1016/j.chemosphere.2024.143005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Graphene oxide (GO) is a very attractive material for use in a vast number of applications. However, before its widespread use, it is important to consider potential issues related to environmental safety to support its safe application. The aim of this study was to investigate effects on fish (rainbow trout) following GO exposure. Using both an in vitro approach with the RTL W1 rainbow trout liver cell line, and in vivo exposures, following OECD TG 203, disturbances at the cellular level as well as in the gills and liver tissue of juvenile trout were assessed. In RTL W1 cells, a time and concentration-dependent loss in cell viability, specifically plasma membrane integrity and lysosomal function, was observed after 96 h of exposure to GO at concentrations ≥18.75 mg/L. Additionally, increased reactive oxygen species (ROS) levels were evidenced at concentrations ≥18.75 mg/L, and an enhancement of metabolic activity was noted with concentrations ≥4.68 mg/L. In vivo exposures to GO did not provoke mortality in rainbow trout juveniles following 96 h exposure but led to histological alterations in gills and liver tissues, induction of enzymatic detoxification activities in the liver, as well as aryl hydrocarbon receptor (ahr)-cytochrome P450 1a (cyp1a) gene expression downregulation, and upregulation of pro-inflammatory cytokines il1b and il8 at GO concentrations ≥9.89 mg/L.
Collapse
Affiliation(s)
- Gregorio Molés
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040, Madrid, Spain.
| | - Ana Valdehita
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040, Madrid, Spain.
| | - Mona Connolly
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040, Madrid, Spain.
| | - José María Navas
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Kocagöz R, Onat İ, Öz MD, Turna B, Kumbaracı BS, Orman MN, Süzen HS, Orhan H. The role of tissue persistent organic pollutants and genetic polymorphisms in patients with benign and malignant kidney tumors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104495. [PMID: 38950873 DOI: 10.1016/j.etap.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
This study aimed to explore whether there is an association between environmental exposure to POPs and kidney tumor induction, and whether blood POP concentrations reflect kidney tissue concentrations. POP derivatives were determined in blood, tumor tissue, tumor surrounding tissue, and perirenal fat tissue samples taken from patients who underwent surgery for renal tumors. A voluntary control group was recruited for blood and urine samples as well. Urinary excretions of o,o'-dityrosine, chlorotyrosine, nitrotyrosine, and 8-OHdG were measured in the same patients. The possible role of genetic polymorphisms in CYP1A1, GST isozymes P, M, and T, and hOGG1 genes on the predisposition to renal cancer was investigated. Some POPs have been found to be associated with kidney cancer, as evidenced by their significantly high ORs. 8-OHdG levels were significantly higher compared to the control group. The GSTT1 null polymorphism can be a risk factor for malignant but not for benign kidney tumors.
Collapse
Affiliation(s)
- Rasih Kocagöz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - İlgen Onat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - Merve Demirbügen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Türki̇ye
| | | | | | - Mehmet Nurullah Orman
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - Halit Sinan Süzen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Türki̇ye
| | - Hilmi Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye; İzmir Biomedicine and Genome Center (İBG-İzmir), Balcova, İzmir 35340, Türkiye.
| |
Collapse
|
9
|
Ishak S, Allouche M, Alotaibi GS, Alwthery NS, Al-Subaie RA, Al-Hoshani N, Plavan OA, Selamoglu Z, Özdemir S, Plavan G, Badraoui R, Rudayni HA, Boufahja F. Experimental and computational assessment of Antiparkinson Medication effects on meiofauna: Case study of Benserazide and Trihexyphenidyl. MARINE POLLUTION BULLETIN 2024; 205:116668. [PMID: 38972217 DOI: 10.1016/j.marpolbul.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Two concentrations (6.25 and 1.25 mg/L) were used for two Parkinson's disease medications, Benserazide, and Trihexyphenidyl, to test their effects on the meiobenthic nematofauna. It is predicted that these highly hydrosoluble drugs will end up in marine environments. The results showed that both medications when added alone, induced (i) important changes in the numbers and (ii) taxonomic composition. The impact of Benserazide and Trihexyphenidyl was also reflected in the (iii) functional traits of nematofauna, with the most affected categories following exposure being the trophic group 1B, the clavate tails, the circular amphids, the c-p2 life history, and the body length of 1-2 mm. These results were supported by the molecular interactions of the studied drugs with both GLD-3 and SDP proteins of Caenorhabditis elegans. (iv) The mixtures of both drugs did not show any changes in the nematode communities, suggesting that no synergistic or antagonistic interactions exist between them.
Collapse
Affiliation(s)
- Sahar Ishak
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Mohamed Allouche
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia; Biology Department, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, BP: 382, Tunisia
| | - Ghadah S Alotaibi
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nada S Alwthery
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Raghad A Al-Subaie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Oana-Alexandra Plavan
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania.
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Sadin Özdemir
- Food Processing Programme Technical Science Vocational School Mersin University, TR-33343 Yenisehir, Mersin, Turkey.
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Bvd. Carol I, No. 20A, 700505, Iasi, Romania.
| | - Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia.
| | - Hassan A Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
10
|
Pihlaja T, Oksanen T, Vinkvist N, Sikanen T. Many human pharmaceuticals are weak inhibitors of the cytochrome P450 system in rainbow trout ( Oncorhynchus mykiss) liver S9 fractions. FRONTIERS IN TOXICOLOGY 2024; 6:1406942. [PMID: 39077557 PMCID: PMC11284600 DOI: 10.3389/ftox.2024.1406942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Pharmaceutical residues are widely detected in aquatic environment and can be taken up by nontarget species such as fish. The cytochromes P450 (CYP) represent an important detoxification mechanism in fish, like in humans. In the present study, we assessed the correlation of the substrate selectivities of rainbow trout CYP1A and CYP3A homologues with those of human, through determination of the half-maximal inhibitory concentrations (IC50) of a total sixteen human pharmaceuticals toward CYP1A-like ethoxyresorufin O-deethylase (EROD) and CYP3A-like 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylase (BFCOD) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (RT-S9). Methods The inhibitory impacts (IC50) of atomoxetine, atorvastatin, azelastine, bimatoprost, clomethiazole, clozapine, desloratadine, disulfiram, esomeprazole, felbinac, flecainide, orphenadrine, prazosin, quetiapine, sulpiride, and zolmitriptan toward the EROD and BFCOD activities in RT-S9 were determined using the IC50 shift assay, capable of identifying time-dependent inhibitors (TDI). Additionally, the nonspecific binding of the test pharmaceuticals to RT-S9 was assessed using equilibrium dialysis. Results Most test pharmaceuticals were moderate to weak inhibitors of both EROD and BFCOD activity in RT-S9, even if most are noninhibitors of human CYP1A or CYP3A. Only bimatoprost, clomethiazole, felbinac, sulpiride, and zolmitriptan did not inhibit either activity in RT-S9. EROD inhibition was generally stronger than that of BFCOD and some substances (atomoxetine, flecainide, and prazosin) inhibited selectively only EROD activity. The strongest EROD inhibition was detected with azelastine and esomeprazole (unbound IC50 of 3.8 ± 0.5 µM and 3.0 ± 0.8 µM, respectively). None of the test substances were TDIs of BFCOD, but esomeprazole was a TDI of EROD. Apart from clomethiazole and disulfiram, the nonspecific binding of the test pharmaceuticals to the RT-S9 was extensive (unbound fractions <0.5) and correlated well (R 2 = 0.7135) with their water-octanol distribution coefficients. Discussion The results indicate that the P450 interactions in RT-S9 cannot be explicitly predicted based on human data, but the in vitro data reported herein can shed light on the substrate selectivity of rainbow trout CYP1A1 and CYP3A27 in comparison to their human homologues. The IC50 concentrations are however many orders of magnitude higher than average environmental concentrations of pharmaceuticals. The time-dependent EROD inhibition by esomeprazole could warrant further research to evaluate its possible interlinkages with hepatotoxic impacts on fish.
Collapse
Affiliation(s)
- Tea Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Timo Oksanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Netta Vinkvist
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Rabuffetti G, Brola J, Pérez D, Somoza GM, Carriquiriborde P. EROD activity in the native fish Cnesterodon decemmaculatus as a biomarker for assessing aquatic pollution by AhR agonist chemicals within the Rio de la Plata Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174721. [PMID: 39002591 DOI: 10.1016/j.scitotenv.2024.174721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The 7-ethoxyresorufin-O-deethylase (EROD) activity was first time characterized in the neotropical fish Cnesterodon decemmaculatus as a biomarker for assessing environmental health in aquatic ecosystems of the Rio de la Plata Basin impacted by organic pollutants agonist of the aryl-hydrocarbon receptor (AhR). Both laboratory and field studies were conducted. Laboratory experiments were run using β-naphthoflavone (BNF) as an AhR agonist model. A clear concentration-response relationship was found between 1 and 100 μg/L, with a NOEC and LOEC of 1 and 10 μg/L. A fast time-dependent response was observed with a significant induction after 24 h and a plateau from 24 to 48 h up to 264 h of exposure. Differences in basal activity were found between juveniles, females, and males, but induction levels were similar. Both basal activities and induction levels were distinct in the whole body, liver, gill, muscle, brain, and embryos. Fold-change inductions in the respective tissues were: 20, 114, 3, 5, 1, and 14. Maternal transfer and early cyp1a activation were unveiled by embryonic induction. Clear differences in EROD activity were found among juveniles collected in hydrocarbon-polluted streams, beside the La Plata Petrochemical hub, and a reference stream. Similar EROD activities were observed in laboratory and feral fish, usually with values below or above 1,000 pmol/min x mg protein for unexposed or exposed organisms. The study contributes with original information about EROD activity in C. decemmaculatus that encourages the use of both the response as a robust biomarker of exposure and the species as a good sentinel organism to be included in surveillant programs for assessing aquatic pollution by AhR agonist chemicals within the Rio de la Plata Basin within the One Health paradigm.
Collapse
Affiliation(s)
- Gabriela Rabuffetti
- Centro de Investigaciones del Medioambiente (CIM), UNLP - CONICET, Boulevard 120 N1489, 1900, La Plata, Buenos Aires, Argentina
| | - Jéssica Brola
- Centro de Investigaciones del Medioambiente (CIM), UNLP - CONICET, Boulevard 120 N1489, 1900, La Plata, Buenos Aires, Argentina
| | - Daniela Pérez
- Centro de Investigaciones del Medioambiente (CIM), UNLP - CONICET, Boulevard 120 N1489, 1900, La Plata, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km. 8,2, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM), UNLP - CONICET, Boulevard 120 N1489, 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Li M, Deng A, He C, Yao Z, Zhuo Z, Wang XY, Wang Z. Genome sequencing, comparative analysis, and gene expression responses of cytochrome P450 genes in Oryzias curvinotus provide insights into environmental adaptation. Ecol Evol 2024; 14:e11565. [PMID: 38895576 PMCID: PMC11184212 DOI: 10.1002/ece3.11565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The mangrove fish (Oryzias curvinotus) serves as a model for researching environmental adaptation and sexual development. To further such research, we sequenced and assembled a high-quality 842 Mb reference genome for O. curvinotus. Comparative genomic analysis revealed 891 expanded gene families, including significantly expanded cytochrome P450 (CYP) detoxification genes known to be involved in xenobiotic defense. We identified 69 O. curvinotus CYPs (OcuCYPs) across 18 families and 10 clans using multiple methods. Extensive RNA-seq and qPCR analysis demonstrated diverse spatiotemporal expression patterns of OcuCYPs by developmental stage, tissue type, sex, and pollutant exposure (17β-estradiol (E2) and testosterone (MT)). Many OcuCYPs exhibited sexual dimorphism in gonads, suggesting reproductive roles in steroidogenesis, while their responsiveness to model toxicants indicates their importance in environmental adaptation through enhanced detoxification. Pathway analysis highlighted expanded CYP genes in arachidonic acid metabolism, drug metabolism, and steroid hormone biosynthesis. This chromosome-level genomic resource provides crucial biological insights to elucidate the functional roles of expanded CYPs in environmental adaptation, sexual development, early life history, and conservation in the anthropogenically impacted mangrove habitats of O. curvinotus. It also enables future ecotoxicology research leveraging O. curvinotus as a pollution sentinel species.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Aiping Deng
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Chuanmeng He
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zebin Yao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zixuan Zhuo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Xiu yue Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy CultureFisheries College, Guangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
13
|
Patra A, Das S, Das S, Mandal A, Sekhar Mondal N, Ratan Ghosh A. Assessing haematological parameters and probable toxicity analysis in two coastal fish species at harbouring areas of Digha coastal belt, West Bengal, India. ENVIRONMENTAL RESEARCH 2024; 249:118318. [PMID: 38307179 DOI: 10.1016/j.envres.2024.118318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Coastal ecosystems are vital for maintaining the biodiversity and human livelihoods, but they are increasingly subjected to anthropogenic pressures, including pollution from various sources. Present work intends to assess the possible threats in coastal ecosystem as well as coastal fish species, in particular, through haematological parameters caused due to exposure of environmental contaminants like polycyclic aromatic hydrocarbons (PAHs), potentially toxic metals (PTMs), etc. This study analysed the haematological parameters and probable toxicity levels in two important coastal fish species, viz., Mystus sp. and Mugil sp. widely available in Digha coastal belt. Different haematological parameters, such as WBCs (White Blood Cells), Lym (Lymphocytes), Gran (Granulocytes), Mid (Monocytes), RBCs (Red Blood Cells), HCT (Haematocrit) value, MCV (Mean Corpuscular Volume), MCH (Mean Corpuscular Haemoglobin), MCHC (Mean Corpuscular Haemoglobin Concentration), RDW- CV (Red Cells Distribution Width-Co-efficient of Variation), RDW- SD (Red Cells Distribution Width-Standard Deviation), PLT (Total Platelet Count), MPV (Mean Platelet Volume), PDW- SD (Platelet Distribution Width-Standard Deviation), PDW- CV (Platelet Distribution Width-Co-efficient of Variation), PCT (Plateletcrit), PLCR (Platelet Large Cell Ratio), PLCC (Platelet Large Cell Count) and many others were measured directly through Erba H360 Haematology Analyser, simultaneously air dried blood smear was stained by Haematoxylin-Eosin(H-E) and Giemsa stain for assessing morphometric alterations of RBCs, WBCs, platelets as well as to determine the differential counts of WBCs by observing through Leica DM2000 microscope. Evidence of several abnormalities in the erythrocyte's nucleus (ENAs) and the abundance of abnormal celled erythrocytes (ECAs), carcinoma (lymphoproliferative disorder, polycythaemia vera, Hodgkin lymphoma and non-Hodgkin lymphoma), elevation of WBCs content, Lym %(Lymphocyte percentage), Eo(Eosinophils), monocytes, HCT and gross depletion of Ne(Neutrophils), basophils, and PLCR levels indicated a sign of major impact of contamination to two intoxicated fishes which may also affect the human being through food chain and may result into leukaemia in mammalian species, finally. However, comprehensive evaluation of the long-term impacts of the contaminants like PAHs and/or PTMs, etc., on fish populations, human health risk and coastal ecosystem is required to be addressed.
Collapse
Affiliation(s)
- Atanu Patra
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India; Mankar College, Mankar, West Bengal, 713144, India
| | - Subhas Das
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India
| | - Sugata Das
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India
| | - Arghya Mandal
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India; Mankar College, Mankar, West Bengal, 713144, India
| | - Niladri Sekhar Mondal
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India; Netaji Subhas Open University, DD-26, Sector-I, Salt Lake City, Kolkata - 700 064, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India.
| |
Collapse
|
14
|
Zebral YD, Righi BDP, Anni ISA, Escarrone ALV, Guillante T, Vieira CED, Costa PG, Bianchini A. Organic contamination and multi-biomarker assessment in watersheds of the southern Brazil: an integrated approach using fish from the Astyanax genus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30543-30554. [PMID: 38607488 DOI: 10.1007/s11356-024-33181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
We aimed to examine the responses of pollution biomarkers in feral fish from Astyanax genus collected at three hydrographic regions in southern Brazil and the capacity of these tools to differentiate between various levels of contamination. To achieve this, levels of organochlorine pesticides (liver), as well as the biomarkers AChE (muscle and brain), TBARS (liver), and EROD (liver) were assessed. Collections were conducted in four municipalities (Alegrete, Caraá, Lavras, and Santa Vitória) during 1 year, encompassing winter and summer. Fish from Alegrete were the most contaminated overall, but animals sampled in Caraá, and Lavras also displayed elevated levels of current-use pesticides. Elevated levels of endosulfans, DDTs, HCHs, and current-use pesticides were accompanied by elevated levels of TBARS in the liver. Conversely, fish from Santa Vitória exhibited the highest levels of PAHs, accompanied by elevated levels of EROD in the liver and reduced levels of AChE in muscle and brain. TBARS proved to be a reliable biomarker for assessing impacts arising from pesticide accumulation, while EROD and AChE served as valuable indicators of impacts resulting from PAHs accumulation. Ultimately, the results obtained in this study demonstrate the reliable use of the proposed biomarkers for tracking biological impacts stemming from aquatic pollution using feral Astyanax as biomonitoring species.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Bruna Duarte Pereira Righi
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Iuri Salim Abou Anni
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ana Laura Venquiaruti Escarrone
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Tainá Guillante
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Carlos Eduardo Delfino Vieira
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Patrícia Gomes Costa
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
15
|
Laurent J, Diop M, Amara R, Fisson C, Armengaud J, Labadie P, Budzinski H, Couteau J, Maillet G, Le Floch S, Laroche J, Pichereau V. Relevance of flounder caging and proteomics to explore the impact of a major industrial accident caused by fire on the Seine estuarine water quality. MARINE POLLUTION BULLETIN 2024; 201:116178. [PMID: 38401391 DOI: 10.1016/j.marpolbul.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
On September 26th 2019, a major fire occurred in the Lubrizol factory located near the Seine estuary, in Rouen-France. Juvenile flounders were captured in the Canche estuary (a reference system) and caged one month in the Canche and in the Seine downstream the accident site. No significant increases of PAHs, PCBs and PFAS was detected in Seine vs Canche sediments after the accident, but a significant increase of dioxins and furans was observed in water and sewage sludge in the Rouen wastewater treatment plant. The proteomics approach highlighted a dysregulation of proteins associated with cholesterol synthesis and lipid metabolism, in fish caged in the Seine. The overall results suggested that the fire produced air borne dioxins and furans that got deposited on soil and subsequently entered in the Seine estuarine waters via runoff; thus contaminating fish preys and caged flounders in the Seine estuary.
Collapse
Affiliation(s)
- Jennifer Laurent
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France; CEDRE, 715 rue Alain Colas, 29200 Brest, France.
| | - Mamadou Diop
- Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Cédric Fisson
- GIP Seine-Aval, Hangar C - Espace des Marégraphes, CS 41174, 76176 Rouen Cedex 1, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRAe, F-30207 Bagnols-sur-Cèze, France
| | - Pierre Labadie
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Hélène Budzinski
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Jérôme Couteau
- TOXEM, 12 rue des 4 saisons, 76290 Montivilliers, France
| | | | | | - Jean Laroche
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Vianney Pichereau
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France.
| |
Collapse
|
16
|
Ács A, Kovács AW, Győri J, Farkas A. Optimization of assay conditions to quantify ECOD activity in vivo in individual Daphnia magna. Assay performance evaluation with model CYP 450 inducers/inhibitors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116159. [PMID: 38417318 DOI: 10.1016/j.ecoenv.2024.116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Screening the activity of the cytochrome P450 (CYP450) mixed function oxidase system in aquatic invertebrates received seldom applications in ecotoxicology due to low baseline enzymatic activities characteristic for these organisms. In this study, an existing in vivo spectrofluorometric assay method based on quantifying the cytochrome P450 mediated conversion of 7-ethocycoumarin (EtC) used as substrate to the product 7-hydroxycoumarin (HCm) called: ethoxycoumarin-O-deethylase (ECOD) activity, initially applicable on pooled samples of Daphnia magna, was optimized for use on individual organisms. Optimal assay conditions have been established for as small as 3- and 6 days old individuals, and the limits of spectrofluorometric detection of HCm excreted by daphnids in the incubation media were defined. The modified assay was tested by screening the modulation of ECOD activity in daphnids following 24 h exposure to β-naphthoflavone (β-NF, reference CYP450 inducer) and to prochloraz (PCZ), a potent CYP450 inhibitor. Maximal ECOD activity levels in daphnids were recorded following 2 hours of incubation to 200 nM EtC. The limit of spectrofluorometric detection of HCm in the incubation media was 6.25 nM, achieved by more than 80% of three days old daphnids and all six days old individuals. Exposure of daphnids to β-NF demonstrated a bell-shaped ECOD activity induction potential, while PCZ elicited partial (60%) inhibition of ECOD activity. This optimized in vivo ECOD activity assay may serve as a cost-effective tool to study the responsiveness of Phase-I metabolism in D. magna to toxic pressure and its applicability to other aquatic invertebrates is also worth for consideration.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary.
| | - Attila W Kovács
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Hungarian Research Network, Klebelsberg Kuno u. 3., Tihany H-8237, Hungary
| |
Collapse
|
17
|
Reboa A, Besio G, Cutroneo L, Geneselli I, Gorbi S, Nardi A, Piccione ME, Regoli F, Capello M. The EU Interreg Project "GEREMIA" on waste management for the improvement of port waters: results on monitoring the health status of fish as bioindicator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17617-17633. [PMID: 36719589 PMCID: PMC10923995 DOI: 10.1007/s11356-023-25587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Highly anthropized areas as ports represent complex scenarios that require accurate monitoring plans aimed to address the environmental status. In this context, the activities of the EU Interreg Project "GEstione dei REflui per il MIglioramento delle Acque portuali (GEREMIA)" were focused on comparing sites differently affected by human presence, as the Port of Genoa and the natural area of the S'Ena Arrubia fishpond: a panel of analyses was carried out on Mugilidae fish sampled in these two areas, aimed to address trace metal accumulation in the liver, gills, and muscle, as well as cytochrome P450 (CYP450) induction in liver and biliary polycyclic aromatic hydrocarbon (PAH) metabolites, and histopathological alterations in the liver and gills. Chemical analyses in the liver, gills, and muscle of specimens collected in the port area showed an overall higher degree of trace metal contamination compared to the natural fishpond, and similar results were obtained in terms of CYP450 induction and biliary PAH metabolites, suggesting a higher exposure to organic compounds. In addition, histopathological analyses revealed a significant alteration and then a loss of functionality of liver and gill tissue in individuals from the port. Overall, this study describes the complex environmental pollution scenario in the Port of Genoa, confirming the importance of using multidisciplinary approaches and different types of analyses to address both the presence and the effects of contaminants in marine environments.
Collapse
Affiliation(s)
- Anna Reboa
- DISTAV, University of Genoa, 16132, Genoa, Italy.
| | | | | | | | - Stefania Gorbi
- DISVA, Polytechnic University of Marche, 60131, Ancona, Italy
| | | | | | | | | |
Collapse
|
18
|
Molés G, Connolly M, Valdehita A, Pulido-Reyes G, Fernandez-Cruz ML, Flahaut E, Navas JM. Testing the Aquatic Toxicity of 2D Few-Layer Graphene Inks Using Rainbow Trout ( Oncorhynchus mykiss): In Vivo and In Vitro Approaches to Support an SSbD Assessment. TOXICS 2024; 12:97. [PMID: 38393192 PMCID: PMC10892222 DOI: 10.3390/toxics12020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Graphene-based conductive inks offer attractive possibilities in many printing technology applications. Often, these inks contain a mixture of compounds, such as solvents and stabilizers. For the safe(r) and sustainable use of such materials in products, potentially hazardous components must be identified and considered in the design stage. In this study, the hazards of few-layer graphene (FLG)-based ink formulations were tested in fish using in vitro (RTL-W1 cell line) and in vivo aquatic ecotoxicity tests (OECD TG 203). Five ink formulations were produced using different processing steps, containing varying amounts of solvents and stabilizers, with the end products formulated either in aqueous solutions or in powder form. The FLG ink formulations with the highest contents of the stabilizer sodium deoxycholate showed greater in vitro cytotoxic effects, but they did not provoke mortality in juvenile rainbow trout. However, exposure led to increased activities of the cytochrome P450 1a (Cyp1a) and Cyp3a enzymes in the liver, which play an essential role in the detoxification of xenobiotics, suggesting that any effects will be enhanced by the presence of the stabilizers. These results highlight the importance of an SSbD approach together with the use of appropriate testing tools and strategies. By incorporating additional processing steps to remove identified cytotoxic residual solvents and stabilizers, the hazard profile of the FLG inks improved, demonstrating that, by following the principles of the European Commission's safe(r) and sustainable by design (SSbD) framework, one can contribute to the safe(r) and sustainable use of functional and advanced 2D materials in products.
Collapse
Affiliation(s)
- Gregorio Molés
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Mona Connolly
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Ana Valdehita
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Gerardo Pulido-Reyes
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Maria L. Fernandez-Cruz
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Emmanuel Flahaut
- Centre Inter-Universitaire de Recherche et D’Ingénierie en Matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS), 16 Av Edouard Belin, 31400 Toulouse, France;
| | - José M. Navas
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| |
Collapse
|
19
|
Johnson H, Dubiel J, Collins CH, Eriksson ANM, Lu Z, Doering JA, Wiseman S. Assessing the Toxicity of Benzotriazole Ultraviolet Stabilizers to Fishes: Insights into Aryl Hydrocarbon Receptor-Mediated Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:110-120. [PMID: 38112502 PMCID: PMC10785820 DOI: 10.1021/acs.est.3c06117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.
Collapse
Affiliation(s)
- Hunter
M. Johnson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Justin Dubiel
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cameron H. Collins
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andreas N. M. Eriksson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer de Rimouski, Université du Québec
à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jon A. Doering
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steve Wiseman
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
20
|
Wang T, Hosseinzadeh M, Cuccagna A, Alakenova R, Casademunt P, Reyes Rovatti A, López-Rubio A, Porte C. Comparative toxicity of conventional versus compostable plastic consumer products: An in-vitro assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132123. [PMID: 37499498 DOI: 10.1016/j.jhazmat.2023.132123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study investigates the toxicity of methanolic extracts obtained from compostable plastics (BPs) and conventional plastics (both virgin and recycled). Additionally, it explores the potential influence of plastic photodegradation and composting on toxic responses using a battery of in vitro assays conducted in PLHC-1 cells. The extracts of BPs, but not those of conventional plastics, induced a significant decrease in cell viability (<70%) in PLHC-1 cells after 24 h of exposure. Toxicity was enhanced by either photodegradation or composting of BPs. Extracts of conventional plastics, and particularly those of recycled plastics, induced 7-ethoxyresorufin-O-deethylase (EROD) activity and micronucleus formation in exposed cells, indicating the presence of significant amounts of CYP1A inducers and genotoxic compounds in the extracts, which was enhanced by photodegradation. These findings highlight the importance of investigating the effects of degradation mechanisms such as sunlight and composting on the toxicity of BPs. It is also crucial to investigate the composition of newly developed formulations for BPs, as they may be more harmful than conventional ones.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain.
| | - Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Alice Cuccagna
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Rakhat Alakenova
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Paula Casademunt
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Alcira Reyes Rovatti
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC, C/ Jordi Girona, 18-26, Barcelona 08034, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
21
|
Doering JA, Tillitt DE, Wiseman S. Reevaluation of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Equivalency Factors for Dioxin-Like Polychlorinated Dibenzo-p-Dioxins, Polychlorinated Dibenzofurans, and Polychlorinated Biphenyls for Fishes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2215-2228. [PMID: 37283214 DOI: 10.1002/etc.5690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
An expert meeting was organized by the World Health Organization (WHO) in 1997 to streamline assessments of risk posed by mixtures of dioxin-like chemicals (DLCs) through development of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) equivalency factors (TEFs) for mammals, birds, and fishes. No reevaluation has been performed for fish TEFs. Therefore, the objective of the present study was to reevaluate the TEFs for fishes based on an updated database of relative potencies (RePs) for DLCs. Selection criteria consistent with the WHO meeting resulted in 53 RePs across 14 species of fish ultimately being considered. Of these RePs, 70% were not available at the time of the WHO meeting. These RePs were used to develop updated TEFs for fishes based on a similar decision process as used at the WHO meeting. The updated TEF for 16 DLCs was greater than the WHO TEF, but only four differed by more than an order of magnitude. Measured concentrations of DLCs in four environmental samples were used to compare 2,3,7,8-TCDD equivalents (TEQs) calculated using the WHO TEFs relative to the updated TEFs. The TEQs for none of these environmental samples differed by more than an order of magnitude. Therefore, present knowledge supports that the WHO TEFs are suitable potency estimates for fishes. However, the updated TEFs pull from a larger database with a greater breadth of data and as a result offer greater confidence relative to the WHO TEFs. Risk assessors will have different criteria in the selection of TEFs, and the updated TEFs are not meant to immediately replace the formal WHO TEFs; but those who value a larger database and increased confidence in TEQs could consider using the updated TEFs. Environ Toxicol Chem 2023;42:2215-2228. © 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
22
|
Yin-Liao I, Mahabir PN, Fisk AT, Bernier NJ, Laberge F. Lingering Effects of Legacy Industrial Pollution on Yellow Perch of the Detroit River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2158-2170. [PMID: 37341539 DOI: 10.1002/etc.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
We used yellow perch (Perca flavescens) captured at four sites differing in legacy industrial pollution in the Lake St. Clair-Detroit River system to evaluate the lingering sublethal effects of industrial pollution. We emphasized bioindicators of direct (toxicity) and indirect (chronic stress, impoverished food web) effects on somatic and organ-specific growth (brain, gut, liver, heart ventricle, gonad). Our results show that higher sediment levels of industrial contaminants at the most downstream Detroit River site (Trenton Channel) are associated with increased perch liver detoxification activity and liver size, reduced brain size, and reduced scale cortisol content. Trenton Channel also displayed food web disruption, where adult perch occupied lower trophic positions than forage fish. Somatic growth and relative gut size were lower in perch sampled at the reference site in Lake St. Clair (Mitchell's Bay), possibly because of increased competition for resources. Models used to determine the factors contributing to site differences in organ growth suggest that the lingering effects of industrial pollution are best explained by trophic disruption. Thus, bioindicators of fish trophic ecology may prove advantageous to assess the health of aquatic ecosystems. Environ Toxicol Chem 2023;42:2158-2170. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Irene Yin-Liao
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
23
|
Noor MI, Rahman MS. Roundup® disrupts tissue architecture, attenuates Na +/K +-ATPase expression, and induces protein oxidation/nitration, cellular apoptosis, and antioxidant enzyme expressions in the gills of goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109710. [PMID: 37532112 DOI: 10.1016/j.cbpc.2023.109710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Extensive agricultural activities to feed the growing population are one major driving force behind aquatic pollution. Different types of pesticides are used in farmlands to increase crop production and wash up into water bodies. Glyphosate-based herbicide Roundup® is one of the most used pesticides in the United States; however, its effects on teleost species are still poorly understood. This study focused on the effects of environmentally relevant concentrations of Roundup exposure (low- and high-dose: 0.5 and 5 μg/L for 2-week) on Na+/K+-ATPase (NKA, a biomarker for sodium‑potassium ion pump efficacy), cytochrome P450-1A (CYP1A, a monooxygenase enzyme), 2,4-dinitrophenyl protein (DNP, a biomarker for protein oxidation), 3-nitrotyrosine protein (NTP, a biomarker for protein nitration), superoxidase dismutase (SOD, an antioxidant enzyme), catalase (CAT, an antioxidant enzyme) expressions, and cellular apoptosis in the gills of goldfish. Histopathological and in situ TUNEL analyses showed widespread tissue damage, including lamellar fusion, loss of gill architecture, club shape of primary lamellae, mucous formation, and distortion in the epithelium layer, as well as apoptotic nuclei in gills. Immunohistochemical and qRT-PCR analyses provided insights into the expressions of molecular indicators in gills. Fish exposed to Roundup exhibited a significant (P < 0.05) downregulation of NKA expression in gills. Additionally, we observed upregulation of CYP1A, DNP, NTP, SOD, and CAT expressions in the gills of goldfish. Overall, our results suggest that exposure to Roundup causes disruption of gill architecture, induces protein oxidation/nitration and cellular apoptosis, and alters prooxidant-antioxidant homeostasis in tissues, which may lead to reduced fitness and survivability of teleost species.
Collapse
Affiliation(s)
- Md Imran Noor
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
24
|
Valdehita A, Fernández-Cruz ML, Navas JM. The Potentiating Effect of Graphene Oxide on the Arylhydrocarbon Receptor (AhR)-Cytochrome P4501A (Cyp1A) System Activated by Benzo(k)fluoranthene (BkF) in Rainbow Trout Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2501. [PMID: 37764529 PMCID: PMC10534689 DOI: 10.3390/nano13182501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
The increasing use of graphene oxide (GO) will result in its release into the environment; therefore, it is essential to determine its final fate and possible metabolism by organisms. The objective of this study was to assess the possible role of the aryl hydrocarbon receptor (AhR)-dependent cytochrome P4501A (Cyp1A) detoxification activities on the catabolism of GO. Our hypothesis is that GO cannot initially interact with the AhR, but that after an initial degradation caused by other mechanisms, small fractions of GO could activate the AhR, inducing Cyp1A. The environmental pollutant benzo(k)fluoranthene (BkF) was used for the initial activation of the AhR in the rainbow trout (Oncorhynchus mykiss) cell line RTL-W1. Pre-, co-, and post-exposure experiments with GO were performed and Cyp1A induction was monitored. The strong stimulation of Cyp1A observed in cells after exposure to GO, when BkF levels were not detected in the system, suggests a direct action of GO. The role of the AhR was confirmed by a blockage of the observed effects in co-treatment experiments with αNF (an AhR antagonist). These results suggest a possible role for the AhR and Cyp1A system in the cellular metabolism of GO and that GO could modulate the toxicity of environmental pollutants.
Collapse
Affiliation(s)
| | | | - José M. Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain; (A.V.); (M.L.F.-C.)
| |
Collapse
|
25
|
Martínez-Gómez C, Fernández B, Barcala E, García-Aparicio V, Jumilla E, Gea-Pacheco Á, León VM. The impact of chemical pollution on the European eel (Anguilla anguilla) from a Mediterranean hypersaline coastal lagoon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80106-80122. [PMID: 37289386 PMCID: PMC10344999 DOI: 10.1007/s11356-023-27871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The European eel (Anguilla anguilla) is a critically endangered species. The impact of environmental contamination on this species has been highlighted as contributing to the decline in recruitment. The Mar Menor hypersaline coastal lagoon (SE Spain) is one of the most productive fisheries of European eel in Europe, making it a critical habitat for species conservation. The present study aimed to provide an initial overview of the impact of organic chemical contaminants on the European eel and the potential sublethal effects of chemical pollution on pre-migrating eels in this hypersaline habitat. We investigated muscle bioaccumulation of main persistent and hazardous organic contaminants (including some current-use pesticides) and genotoxicity, neurotoxicity, and xenobiotic detoxification system responses. The findings show that lagoon eels were exposed to high levels of legacy organochlorine contaminants, recently banned pesticides (chlorpyrifos), and some emerging chemicals. Some individuals surpassed the maximum levels of CBs authorized by the European Commission for human consumption. In this species, residuals of chlorpyrifos, pendimethalin, and chlorthal dimethyl have been reported for the first time. This field study provides relevant data to stock management and human health consumption and provides the first biomarker responses in European eel under permanent hypersaline conditions. Furthermore, the high frequency of micronuclei in peripheral erythrocytes of lagoon eels indicates sublethal genotoxic effects on the organism. Overall, the European eels growing and maturing in the Mar Menor lagoon are exposed to toxic and carcinogenic chemicals. The lack of seafood safety regulations for human consumption for some legacy chemicals that were measured in high concentrations in our study requires special action. Further biomonitoring and research are recommended to protect the animal, public, and environmental health.
Collapse
Affiliation(s)
- Concepción Martínez-Gómez
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Beatriz Fernández
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Elena Barcala
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Víctor García-Aparicio
- Centro de Edafología Y Biología Aplicada del Segura (CEBAS), CSIC, Campus Universitario de Espinardo. Espinardo 30100, Murcia, Spain
| | - Esther Jumilla
- Chemistry Faculty, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Ángel Gea-Pacheco
- Sciences Faculty, University of Alicante, San Vicente del Raspeig Road. S/N, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Víctor Manuel León
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| |
Collapse
|
26
|
Bony S, Labeille M, Lefrancois E, Noury P, Olivier JM, Santos R, Teichert N, Besnard A, Devaux A. The goby fish Sicydium spp. as valuable sentinel species towards the chemical stress in freshwater bodies of West Indies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106623. [PMID: 37429095 DOI: 10.1016/j.aquatox.2023.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Implementation of the European Water Framework Directive in tropical areas such as the French West Indies (FWI) requires to select relevant aquatic sentinel species for investigating the ecological status of surface waters. The present work aimed to study the biological response of the widespread fish Sicydium spp. towards river chemical quality in Guadeloupe island through a set of proper biomarkers. During a 2-year survey, the hepatic EROD activity, the micronucleus formation and the level of primary DNA strand breaks in erythrocytes were measured respectively as an enzymatic biomarker of exposure and genotoxicity endpoints in fish living upstream and downstream of two chemically-contrasted rivers. Hepatic EROD activity was shown to be variable along the time but always significantly higher in fish from the most contaminated river (Rivière aux Herbes) compared to the low contaminated one (Grande Rivière de Vieux-Habitants). Fish size did not influence EROD activity. Female fish exhibited a lower EROD activity compared to males depending on the catching period. We observed significant temporal variation in micronucleus frequency and primary DNA damage level measured in fish erythrocytes that did not depend on the fish size. Micronucleus frequency and to a lesser extent DNA damage were significantly higher in fish from the Rivière aux Herbes compared to the Grande Rivière de Vieux-Habitants. Our results argue for the interest of using Sicydium spp. as sentinel species to assess river quality and chemical pressures in FWI.
Collapse
Affiliation(s)
- S Bony
- Univ Lyon, Université Claude Bernard Lyon 1, ENTPE, CNRS, INRAE, USC 1369, UMR 5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - M Labeille
- Sentinelle Lab, F-97125 Bouillante, France
| | | | - P Noury
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - J M Olivier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - R Santos
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - N Teichert
- UMR 7208 BOREA, MNHN, CNRS, IRD, SU, UCN, UA, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France
| | - A Besnard
- CEFE, Université Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - A Devaux
- Univ Lyon, Université Claude Bernard Lyon 1, ENTPE, CNRS, INRAE, USC 1369, UMR 5023 LEHNA, F-69518 Vaulx-en-Velin, France.
| |
Collapse
|
27
|
Sun W, Dang Y, Dai L, Liu C, Wang J, Guo Y, Fan B, Kong J, Zhou B, Ma X, Yu L. Tris(1,3-dichloro-2-propyl) phosphate causes female-biased growth inhibition in zebrafish: Linked with gut microbiota dysbiosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106585. [PMID: 37247575 DOI: 10.1016/j.aquatox.2023.106585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is ubiquitous in aquatic environment, but its effect on intestinal health of fish has yet not been investigated. In the present study, the AB strain zebrafish embryos were exposed to environmentally realistic concentrations (0, 30, 300, and 3000 ng·L-1) of TDCIPP for 90 days, after which the fish growth and physiological activities were evaluated, and the intestinal microbes were analyzed by 16S rRNA gene high-throughput sequencing. Our results manifested that the body length and body weight were significantly reduced in the female zebrafish but not in males. Further analyses revealed that TDCIPP resulted in notable histological injury of intestine, which was accompanied by impairment of epithelial barrier integrity (decreased tight junction protein 2), inflammation responses (increased interleukin 1β), and disruption of neurotransmission (increased serotonin) in female intestine. Male intestines maintained intact intestinal structure, and the remarkably increased activity of glutathione peroxidase (GPx) might protect the male zebrafish from inflammation and intestinal damage. Furthermore, 16S rRNA sequencing analysis showed that TDCIPP significantly altered the microbial communities in the intestine in a gender-specific manner, with a remarkable increase in alpha diversity of the gut microbiome in male zebrafish, which might be another mechanism for male fish to protect their intestines from damage by TDCIPP. Correlation analysis revealed that abnormal abundances of pathogenic bacteria (Chryseobacterium, Enterococcus, and Legionella) might be partially responsible for the impaired epithelial barrier integrity and inhibition in female zebrafish growth. Taken together, our study for the first time demonstrates the high susceptibility of intestinal health and gut microbiota of zebrafish to TDCIPP, especially for female zebrafish, which could be partially responsible for the female-biased growth inhibition.
Collapse
Affiliation(s)
- Wen Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyong Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Boya Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Diesbourg E, MacDonald M, Reid HB, MacKinnon R, Reinhart B, Mercer A, Crémazy A. State of polycyclic aromatic hydrocarbon (PAH) contamination in the Saint John Harbour, New Brunswick, Canada. MARINE POLLUTION BULLETIN 2023; 189:114760. [PMID: 36863271 DOI: 10.1016/j.marpolbul.2023.114760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
This study examined the concentrations and compositions of polycyclic aromatic hydrocarbon (PAH) contaminants in the surficial sediments of the Saint John Harbour (SJH) and assessed PAH exposure to local aquatic biota. Our findings suggest that sedimentary PAH contamination is heterogeneous and widespread in the SJH, with several sites exceeding the Canadian and NOAA recommended guidelines for the protection of aquatic life. Despite high concentrations of PAHs at some sites, there was no indication that local nekton was affected. Lack of a biological response may be due in part to a low bioavailability of sedimentary PAHs, presence of confounding factors (e.g., trace metals), and/or adaptation of local wildlife to the historic PAH contamination in this region. Overall, although no indication of effects to wildlife was observed with the data collected in the present study, continued efforts should be made to remediate highly contaminated areas and reduce the prevalence of these compounds.
Collapse
Affiliation(s)
- Emilie Diesbourg
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Morgan MacDonald
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Heather Bauer Reid
- Atlantic Coastal Action Program (ACAP Saint John), Saint John, New Brunswick E2L 3S3, Canada
| | - Roxanne MacKinnon
- Atlantic Coastal Action Program (ACAP Saint John), Saint John, New Brunswick E2L 3S3, Canada
| | - Bethany Reinhart
- Atlantic Coastal Action Program (ACAP Saint John), Saint John, New Brunswick E2L 3S3, Canada
| | - Angella Mercer
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Anne Crémazy
- Centre Eau, Terre, Environnement de l'INRS, Quebec City, Quebec G1K 9A9, Canada.
| |
Collapse
|
29
|
Haque MN, Nam SE, Lee M, Kim HW, Gil HW, Park HS, Rhee JS. Chronic exposure to environmental concentrations of harmful algal bloom-forming dinoflagellates induces oxidative stress and reduces immune and hepatic functions in red seabream. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109573. [PMID: 36781091 DOI: 10.1016/j.cbpc.2023.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Harmful algal blooms (HABs) caused by dinoflagellates can be detrimental to aquaculture and fisheries. However, little is known regarding their ichthyotoxic effects on fish, particularly after chronic exposure to sublethal levels. In this study, significant modulations in physiology, immunity, antioxidant components, and hepatic indicators owing to non-toxin-producing dinoflagellate strains (Alexandrium affine and Cochlodinium polykrikoides) were analyzed in juvenile red seabream, Pagrus major, exposed to sublethal concentrations (0, 1, and 100 cells mL-1) for 60 days. At 60 days, higher mortality was induced by A. affine than by C. polykrikoides. Significant increases in respiration rate and plasma cortisol were observed in red seabream exposed to 100 cells mL-1 of the two dinoflagellates. Intracellular reactive oxygen species and malondialdehyde levels were significantly elevated in the gill and liver tissues in response to 100 cells mL-1 of either dinoflagellate. Immunity parameters such as alternative complement activity, lysozyme activity, and total immunoglobulin content were significantly decreased during exposure to 100 cells mL-1 of the two dinoflagellates. Although no significant change was observed in the gonadosomatic index, the hepatosomatic index was significantly decreased by exposure to 100 cells mL-1 of the two dinoflagellates on day 60. The significant decrease in enzymatic activities of ethoxyresorufin-O-deethylase, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase upon exposure to 100 cells mL-1 of either dinoflagellate suggested impaired hepatic function through prolonged exposure. Our results suggest that consistent exposure to sublethal concentrations of HAB-forming dinoflagellates is detrimental to fish physiology and biochemical defenses.
Collapse
Affiliation(s)
- Md Niamul Haque
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Minji Lee
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea
| | - Hyo-Won Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea
| | - Hyun-Woo Gil
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea
| | - Hyoung Sook Park
- Department of Song-Do Biological Engineering, Incheon Jaeneung University, Incheon 22573, Republic of Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
30
|
Nos D, Navarro J, Solé M. The influence of ecological factors in the modulation of pollution biomarkers of two small pelagic marine fish. MARINE POLLUTION BULLETIN 2023; 188:114717. [PMID: 36860015 DOI: 10.1016/j.marpolbul.2023.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers are useful tools for the detection of marine pollution, which is poorly monitored in the pelagic environment. In this study, we investigated the role of key biological and environmental factors on three hepatic xenobiotic biomarkers: carboxylesterases (CEs), glutathione S-transferase (GST) and catalase (CAT). Additionally, ethoxyresorufin-O-deethylase (EROD) and benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) activities were determined for comparative purposes. The pelagic species targeted were the European anchovy (Engraulis encrasicolus) and the European sardine (Sardina pilchardus). The results revealed sex-dependent CE activities in sardine. CEs and GST activities were significantly affected by reproduction and, in anchovy, CE activities were also influenced by temperature. In vitro incubations revealed that the pesticide dichlorvos caused up to 90 % inhibition of basal CEs activity. This work highlights that the reproductive status, temperature and sex, modulate biomarker responses, and that anchovy would be more suitable pelagic bioindicator due to its higher in vitro sensitivity to dichlorvos and sex-independent biomarker responses.
Collapse
Affiliation(s)
- David Nos
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Montserrat Solé
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| |
Collapse
|
31
|
Badraoui R, Allouche M, El Ouaer D, Siddiqui AJ, Ishak S, Hedfi A, Beyrem H, Pacioglu O, Rudayni HA, Boufahja F. Ecotoxicity of chrysene and phenanthrene on meiobenthic nematodes with a case study of Terschellingia longicaudata: Taxonomics, toxicokinetics, and molecular interactions modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120459. [PMID: 36273696 DOI: 10.1016/j.envpol.2022.120459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic for humans and marine fauna alike. The current study assessed the impact of PAHs on the migratory behaviour of meiobenthic nematodes collected from the Bizerte lagoon, Tunisia. The experiment lasted for 15 days and was carried in open microcosms, which comprised a lower, contaminated and an upper, uncontaminated compartment. Three treatments were used, for each of them an untreated control was set up: sediment contaminated with chrysene (116 ng g-1 dry weight (DW), with phenanthrene (116 ng g-1 DW) and a mixture of both. The results showed a significant decrease in diversty and abundance in the lower, contaminated compartments compared to the upper zones. The results also highlighted that under an increased stress some species progressively increased in number, these were considered PAH-tolerant species such as Odontophora villoti, some others had an occasionally increased in number were considered as opportunistic species, such as Paracomesoma dubium and the species that showed a progressive decreased in number, such as Metoncholaimus pristiurus and Steineria sp., Terschellingia. longicaudata, and Oncholaimellus sp. were classified as PAH-sensitive. Moreover, an increase in the activity of biochemical biomarkers was observed following the exposure of males and gravid females of T. longicaudata to 29, 58 and 87 ng g-1 DW of chrysene and phenanthrene paralleled by a higher vulnerability of the latter demographic category. Besides, a significant decrease in fertility of females and an increase in pharyngeal sucking power were observed for both types of PAHs considered. The sex ratio was also significantly imbalanced in the favor of males, which suggest that chrysene and phenanthrene affect also the hormone system of T. longicaudata. The high affinities of these PAHs and their molecular interactions with both germ line development protein 3 (GLD-3) and sex-determining protein (SDP) may justify these results and explain the toxicokinetic attributes.
Collapse
Affiliation(s)
- Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il, 81451, Saudi Arabia; Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta, Tunis, Tunisia
| | - Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Dhia El Ouaer
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Arif J Siddiqui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il, 81451, Saudi Arabia
| | - Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Hassan A Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
32
|
Boháčková J, Havlíčková L, Semerád J, Titov I, Trhlíková O, Beneš H, Cajthaml T. In vitro toxicity assessment of polyethylene terephthalate and polyvinyl chloride microplastics using three cell lines from rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2023; 312:136996. [PMID: 36336021 DOI: 10.1016/j.chemosphere.2022.136996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/08/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The RTgill-W1 (gill), RTG-2 (gonad), and RTL-W1 (liver) cell lines derived from a freshwater fish rainbow trout (Oncorhynchus mykiss), were used to assess the toxicity of polyethylene terephthalate (PET) and two forms of polyvinyl chloride (PVC). Two size fractions (25-μm and 90-μm particles) were tested for all materials. The highest tested concentration was 1 mg/ml, corresponding to from 70 000 ± 9000 to 620 000 ± 57 000 particles/ml for 25-μm particles and from 2300 ± 100 to 11 000 ± 1000 particles/ml for 90-μm particles (depending on the material). Toxicity differences between commercial PVC dry blend powder and secondary microplastics created from a processed PVC were newly described. After a 24-h exposure, the cells were analyzed for changes in viability, 7-ethoxyresorufin-O-deethylase (EROD) activity, and reactive oxygen species (ROS) generation. In addition to the microplastic suspensions, leachates and particles remaining after leaching resuspended in fresh exposure medium were tested. The particles were subjected to leaching for 1, 8, and 15 days. The PVC dry blend (25 μm and 90 μm) and processed PVC (25 μm) increased ROS generation, to which leached chemicals appeared to be the major contributor. PVC dry blend caused substantially higher ROS induction than processed PVC, showing that the former is not suitable for toxicity testing, as it can produce different results from those of secondary PVC. The 90-μm PVC dry blend increased ROS generation only after prolonged leaching. PET did not induce any changes in ROS generation, and none of the tested polymers had any effect on viability or EROD activity. The importance of choosing realistic extraction procedures for microplastic toxicity experiments was emphasized. Conducting long-term experiments is crucial to detect possible environmentally relevant effects. In conclusion, the tested materials showed no acute toxicity to the cell lines.
Collapse
Affiliation(s)
- Jana Boháčková
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Lucie Havlíčková
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Ivan Titov
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 16206, Prague 6, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 16206, Prague 6, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
33
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
34
|
Yang TN, Li XN, Li XW, Li JY, Huang YQ, Li JL. DEHP triggers a damage severity grade increase in the jejunum in quail (Coturnix japonica) by disturbing nuclear xenobiotic receptors and the Nrf2-mediated defense response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104012. [PMID: 36372389 DOI: 10.1016/j.etap.2022.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
As a plasticizer, di-2-ethylhexyl phthalate (DEHP) has been listed as a potential endocrine disruptor by The World Health Organization. The toxicity of DEHP has been widely studied, but its toxicity on the digestive tract of birds has not been clarified. Female quail were treated by gavage with DEHP (250, 500, 750 mg/kg), with the blank and vehicle control groups reserved. The result showed that DEHP raised the damage severity grade, and decreased the ratio of villus length to crypt depth. The content and activity of cytochrome P450 system (CYP450s) were increased by DEHP. DEHP interfered with the transcription of nuclear xenobiotic receptors (NXRs), CYP isoforms, and the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. This study revealed DEHP could cause the imbalance in CYP450s mediated by NXRs, and then promote Nrf2 mediated antioxidant defense. This study provided new evidence about the mechanisms of DEHP-induced toxic effects on digestive tract.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
35
|
Jong MC, Li J, Noor HM, He Y, Gin KYH. Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155459. [PMID: 35472354 DOI: 10.1016/j.scitotenv.2022.155459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Accumulation of microplastics (MP) in oceanic waters is eroding the health of marine biota. We investigated how size-fractionated MP influence the toxicity risks towards a tropical keystone species, Perna viridis. Tissue-specific bioaccumulation and in vivo toxicity of polystyrene (PS) particles (0.5, 5, and 50 μm) were measured upon continuous exposure for 7 days, followed by 7 days depuration. P. viridis were exposed to equivalent mass (0.6 mg/L), corresponding to 4.0-4.6 particles/mL, 4.6-7.1 × 103 particles/mL, and 1.1-4.8 × 106 particles/mL for 50 μm, 5 μm and 0.5 μm PS particles, respectively. Onset toxicity were quantified through the enhanced integrated multi-biomarker response (EIBR) model, measured by weighting of biological organisation levels of eight biomarkers: (i) molecular (i.e., DNA damage (comet), 7-ethoxy resorufin O-deethylase (EROD), Catalase (CAT), Superoxide dismutase (SOD), Ferric Reducing Antioxidant Power (FRAP)); (ii) cellular (i.e., Neutral red retention (NRR), phagocytosis); and (iii) physiological (i.e., filtration rate). Data showed slightly elevated lysosomal instability (NRR) and antioxidant defences (FRAP, SOD, CAT, EROD) in specimens exposed to nano-PS (0.5 μm) compared to micro-PS (5 and 50 μm). Immunotoxicity (phagocytosis) and genotoxicity (comet) for haemocyte cells were significantly higher in specimens exposed to nano-PS (p < 0.05). EIBR index corroborated increasing toxicity modulated by MP sizes in descending order: 0.5 μm > 5 μm > 50 μm, with nano-PS exerted significantly higher biological effects (EIBR = 19.77 ± 5.89) than the unexposed group (EIBR = 10.97 ± 2.02; p < 0.05). Symptomatic organismal depression was manifested by the depleting filtering proficiency and weakened defence against invasive Zymosan bioparticles in the phagocytosis assay. Although impaired mussels duly recovered during depuration, individuals affected by nano-PS showed immunocompetence deficiency and gill responses that were not readily reversible, which could potentially increase their vulnerability towards further environmental stressors.
Collapse
Affiliation(s)
- Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Junnan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairati Mohd Noor
- Faculty of Resource Science and Technology, University of Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Block E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
36
|
Dubiel J, Green D, Raza Y, Johnson HM, Xia Z, Tomy GT, Hontela A, Doering JA, Wiseman S. Alkylation of Benz[a]anthracene Affects Toxicity to Early-Life Stage Zebrafish and In Vitro Aryl Hydrocarbon Receptor 2 Transactivation in a Position-Dependent Manner. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1993-2002. [PMID: 35694968 DOI: 10.1002/etc.5396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are structurally diverse organic chemicals that can have adverse effects on the health of fishes through activation of aryl hydrocarbon receptor 2 (AhR2). They are ubiquitous in the environment, but alkyl PAHs are more abundant in some environmental matrices. However, relatively little is known regarding the effects of alkylation on the toxicity of PAHs to fishes in vivo and how this relates to potency for activation of AhR2 in vitro. Therefore, the objectives of the present study were to determine the toxicity of benz[a]anthracene and three alkylated homologs representing various alkylation positions to early life stages of zebrafish (Danio rerio) and to assess the potency of each for activation of the zebrafish AhR2 in a standardized in vitro AhR transactivation assay. Exposure of embryos to each of the PAHs caused a dose-dependent increase in mortality and malformations characteristic of AhR2 activation. Each alkyl homolog had in vivo toxicities and in vitro AhR2 activation potencies different from those of the parent PAH in a position-dependent manner. However, there was no statistically significant linear relationship between responses measured in these assays. The results suggest a need for further investigation into the effect of alkylation on the toxicity of PAHs to fishes and greater consideration of the contribution of alkylated homologs in ecological risk assessments. Environ Toxicol Chem 2022;41:1993-2002. © 2022 SETAC.
Collapse
Affiliation(s)
- Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yamin Raza
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hunter M Johnson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Xia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alice Hontela
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Water Institute for Sustainable Environments, Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
37
|
Keller C, Kurita-Oyamada H, Grayson SM, Denslow ND. Physical Evidence of Oil Uptake and Toxicity Assessment of Amphiphilic Grafted Nanoparticles Used as Oil Dispersants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7917-7923. [PMID: 35580268 PMCID: PMC9227714 DOI: 10.1021/acs.est.1c08564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we report the toxicity evaluation of a new prototype dispersant system, silicon dioxide nanoparticles (NPs) functionalized with (3-glycidoxypropyl)triethoxysilane (GPS) and grafted poly(ε-caprolactone)-block-poly[oligo(ethylene glycol)methyl methacrylate mono-methyl ether] (NP-PCL-POEGMA). This serves as a follow up of our previous study where grafted silicon dioxide NPs functionalized with GPS and grafted hyperbranched poly(glycidol) (NP-HPG) were evaluated for reducing the toxicity in embryo, juvenile, and adult fish populations. In this study, the NP-HPG sample is used as a baseline to compare against the new NP-PCL-POEGMA samples. The relative size was established for three NP-PCL-POEGMA samples via cryogenic transmission electron microscopy. A quantitative mortality study determined that these NPs are non-toxic to embryo populations. An ethoxyresorufin-O-deethylase assay was performed on these NP-PCL-POEGMA samples to test for reduced cytochrome P450 1A after the embryos were exposed to the water-accommodated fraction of crude oil. Overall, these NP-PCL-POEGMA NPs better protected the embryo populations than the previous NP-HPG sample (using a protein activity end point), showing a trend in the right direction for prototype dispersants to replace the commercially utilized Corexit.
Collapse
Affiliation(s)
- Christopher
B. Keller
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hajime Kurita-Oyamada
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Nancy D. Denslow
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
38
|
Sathikumaran R, Madhuvandhi J, Priya KK, Sridevi A, Krishnamurthy R, Thilagam H. Evaluation of benzo[a]pyrene-induced toxicity in the estuarine thornfish Therapon jarbua. Toxicol Rep 2022; 9:720-727. [DOI: 10.1016/j.toxrep.2022.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
|
39
|
Hanslik L, Seiwert B, Huppertsberg S, Knepper TP, Reemtsma T, Braunbeck T. Biomarker responses in zebrafish (Danio rerio) following long-term exposure to microplastic-associated chlorpyrifos and benzo(k)fluoranthene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106120. [PMID: 35183844 DOI: 10.1016/j.aquatox.2022.106120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Continuously increasing plastic production causes a constant accumulation of microplastic particles (MPs) in the aquatic environment, especially in industrialized and urbanized areas with elevated wastewater discharges. This coincides with the release of persistent organic pollutants (polycyclic aromatic hydrocarbons (PAHs), pesticides) entering limnic ecosystems. Although the assessment of potential effects of environmental pollutants sorbed to MPs under chronic exposure scenarios seems vital, data on potential hazards and risk by combined exposure to pollutants and microplastics for aquatic vertebrates is still limited. Therefore, zebrafish (Danio rerio) were exposed over 21 days to the organophosphate insecticide chlorpyrifos (CPF; 10 and 100 ng/L) and the PAH benzo(k)fluoranthene (BkF; 0.78 and 50 µg/L) either dissolved directly in water or sorbed to different MPs (irregular polystyrene, spherical polymethyl methacrylate; ≤ 100 µm), where CPF was sorbed to polystyrene MPs and BkF was sorbed to polymethyl methacrylate MPs. Contaminant sorption to MPs and leaching were documented using GC-EI-MS; potential accumulation was studied in cryosections of the gastrointestinal tract. Enzymatic biomarkers and biotransformation were measured in liver and brain. Overall, exposure to non-contaminated MPs did not induce any adverse effects. Results of fluorescence tracking, CYP1A modulation by BkF as well as changes in acetylcholinesterase activity (AChE) by CPF were less pronounced when contaminants were sorbed to MPs, indicating reduced bioavailability of pollutants. Overall, following exposure to waterborne BkF, only minor amounts of parent BkF and biotransformation products were detected in zebrafish liver. Even high loads of MPs and sorbed contaminants did not induce adverse effects in zebrafish; thus, the potential threat of MPs as vectors for contaminant transfer in limnic ecosystems can be considered limited.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg d-69120, Germany.
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig d-04318, Germany
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein d-65510, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein d-65510, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig d-04318, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg d-69120, Germany.
| |
Collapse
|
40
|
Wang G, Wang T, Zhang X, Chen J, Feng C, Yun S, Cheng Y, Cheng F, Cao J. Sex-specific effects of fluoride and lead exposures on histology, antioxidant physiology, and immune system in the liver of zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:396-414. [PMID: 35088223 DOI: 10.1007/s10646-022-02519-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Fluoride and Pb are both toxic to organisms; however, their combination effects and the corresponding toxic mechanisms remain unclear. In this study, male and female zebrafish (1:1) were evaluated to understand the effects of F and Pb alone and combined on growth, tissue microstructure, oxidative stress, and immune system functions of the liver. Four different groups and two exposure periods were compared: control group (C group), 80 mg/L fluoride group (F group), 60 mg/L lead group (Pb group), and 80 mg/L fluoride + 60 mg/L lead group (F + Pb group) for 45 and 90 days. The results indicated that F and Pb reduced growth performances; F + Pb treatment inhibited the growth performance traits of male zebrafish more than those of female zebrafish. Histopathological examination revealed large areas with focal necrosis, hepatocytes with karyolysis, and pycnotic nuclei in zebrafish exposed to F and Pb. The oxidative balance indices in the liver in the F and Pb groups were disturbed. F + Pb co-exposure aggravated oxidative stress in a time-dependent manner. The most serious oxidative stress was observed in the male zebrafish of the F + Pb group. Moreover, F and Pb exposure of male zebrafish increased pro-inflammatory and anti-inflammatory cytokines expression, which was decreased after 90 days of exposure. These results demonstrated that both F and Pb could damage the liver via downstream alterations in the activities of immune-related enzymes and in the levels of immune-related genes. F and Pb showed synergistic or additive effects. Male zebrafish were found to be more sensitive to F and Pb than female zebrafish.
Collapse
Affiliation(s)
- Guodong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shaojun Yun
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanfen Cheng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Feier Cheng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
41
|
High Lipid Content of Prey Fish and n−3 PUFA Peroxidation Impair the Thiamine Status of Feeding-Migrating Atlantic Salmon (Salmo salar) and Is Reflected in Hepatic Biochemical Indices. Biomolecules 2022; 12:biom12040526. [PMID: 35454115 PMCID: PMC9031544 DOI: 10.3390/biom12040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Signs of impaired thiamine (vitamin B1) status in feeding-migrating Atlantic salmon (Salmo salar) were studied in three Baltic Sea areas, which differ in the proportion and nutritional composition of prey fish sprat (Sprattus sprattus) and herring (Clupea harengus). The concentration of n−3 polyunsaturated fatty acids (n−3 PUFAs) increased in salmon with dietary lipids and n−3 PUFAs, and the hepatic peroxidation product malondialdehyde (MDA) concentration increased exponentially with increasing n−3 PUFA and docosahexaenoic acid (DHA, 22:6n−3) concentration, whereas hepatic total thiamine concentration, a sensitive indicator of thiamine status, decreased with the increase in both body lipid and n−3 PUFA or DHA concentration. The hepatic glucose 6-phosphate dehydrogenase activity was suppressed by high dietary lipids. In salmon muscle and in prey fish, the proportion of thiamine pyrophosphate increased, and that of free thiamine decreased, with increasing body lipid content or PUFAs, or merely DHA. The thiamine status of salmon was impaired mainly due to the peroxidation of n−3 PUFAs, whereas lipids as a source of metabolic energy had less effect. Organochlorines or general oxidative stress did not affect the thiamine status. The amount of lipids, and, specifically, their long-chain n−3 PUFAs, are thus responsible for generating thiamine deficiency, and not a prey fish species per se.
Collapse
|
42
|
Santana MS, Domingues de Melo G, Sandrini-Neto L, Di Domenico M, Prodocimo MM. A meta-analytic review of fish antioxidant defense and biotransformation systems following pesticide exposure. CHEMOSPHERE 2022; 291:132730. [PMID: 34743868 DOI: 10.1016/j.chemosphere.2021.132730] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Pesticides reach aquatic ecosystems and interact with various targets in cells of fish and other living organisms. Toxicity originates during the metabolization process, which may produce toxic metabolites or reactive oxygen species (ROS). Ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) activities, and levels of reduced glutathione (GSH) indicate toxicants interacted with drug-metabolizing and antioxidant systems, i.e., they are biomarkers of biotransformation and oxidative stress. We meta-analytically quantified the impact of pesticides on the mean response and variability of these biomarkers. Our goals were to verify (i) the overall effect of pesticides on oxidative stress and biotransformation, and how each biomarker respond to exposure; (ii) how the life stage of fish (juvenile and adult) influence biomarkers variability and mean activity; (iii) to what extent fish sex (male, female or mixed-sex groups) modify pesticides toxicity; (iv) how different classes of pesticides, and the combination of their concentration and time of exposure, affect each biomarker. Overall, pesticides induced oxidative stress and the biotransformation system. Regardless of life stage, EROD mean activity increased significantly. In exposed juveniles, CAT and GST variability decreased and increased, respectively. CAT mean activity was higher in females, while EROD and GST activities increased in males after pesticide exposure. Organophosphorus (OPs) and organochlorine insecticides, along with imidazole and triazole fungicides, affected biomarkers the most, however the combined effect of concentration and time of exposure of OPs was not detected. Notably, imidazoles and triazoles classes increased EROD by more than 100%. Additionally, we identified research gaps, such as the lack of effect estimates of relevant pesticides on EROD (e.g., pyrethroids and neonicotinoids) and the small number of studies evaluating GSH on female fish. Future researchers may use these gaps as a guide towards enhanced experimental designs and, consequently, a better understanding of pesticide toxic effects on fish.
Collapse
Affiliation(s)
- Manuela S Santana
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, Paraná, Brazil; Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil.
| | - Gabriel Domingues de Melo
- Programa de Pós-graduação em Sistemas Costeiros e Oceânicos, Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Leonardo Sandrini-Neto
- Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Maikon Di Domenico
- Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
43
|
Alves LMF, Lemos MFL, Cabral H, Novais SC. Elasmobranchs as bioindicators of pollution in the marine environment. MARINE POLLUTION BULLETIN 2022; 176:113418. [PMID: 35150988 DOI: 10.1016/j.marpolbul.2022.113418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Bioindicator species are increasingly valuable in environmental pollution monitoring, and elasmobranch species include many suitable candidates for that role. By measuring contaminants and employing biomarkers of effect in relevant elasmobranch species, scientists may gain important insights about the impacts of pollution in marine ecosystems. This review compiles biomarkers applied in elasmobranchs to assess the effect of pollutants (e.g., metals, persistent organic pollutants, and plastics), and the environmental changes induced by anthropogenic activities (e.g., shifts in marine temperature, pH, and oxygenation). Over 30 biomarkers measured in more than 12 species were examined, including biotransformation biomarkers (e.g., cytochrome P450 1A), oxidative stress-related biomarkers (e.g., superoxide anion, lipid peroxidation, catalase, and vitamins), stress proteins (e.g., heat shock protein 70), reproductive and endocrine biomarkers (e.g., vitellogenin), osmoregulation biomarkers (e.g., trimethylamine N-oxide, Na+/K+-ATPase, and plasma ions), energetic and neurotoxic biomarkers (e.g., lactate dehydrogenase, lactate, and cholinesterases), and histopathological and morphologic biomarkers (e.g., tissue lesions and gross indices).
Collapse
Affiliation(s)
- Luís M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | | | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| |
Collapse
|
44
|
Hedfi A, Ali MB, Noureldeen A, Almalki M, Rizk R, Mahmoudi E, Plăvan G, Pacioglu O, Boufahja F. Effects of benzo(a)pyrene on meiobenthic assemblage and biochemical biomarkers in an Oncholaimus campylocercoides (Nematoda) microcosm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16529-16548. [PMID: 34651273 DOI: 10.1007/s11356-021-16885-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
A microcosm experiment was carried out to determine how benzo(a)pyrene (BaP) may affect marine meiofauna community, with a main emphasis on nematode structure and functional traits. Three increasing concentrations of BaP (i.e. 100, 200 and 300 ng/l, respectively) were used for 30 days. The results revealed a gradual decrease in the abundance of all meiobenthic groups (i.e. nematodes, copepods, amphipods, polychaetes and oligochaetes), except for isopods. Starting at concentrations of 200 and 300 ng/l BaP, respectively, significant changes were observed at community level. At taxonomic level, the nematode communities were dominated at the start of the experiment and also after being exposed or not to BaP by Odontophora villoti, explicable through its high ecologic ubiquity and the presence of well-developed chemosensory organs (i.e. amphids), which potentially increased the avoidance reaction following exposure to this hydrocarbon. Moreover, changes in the activity of several biochemical biomarkers (i.e. catalase 'CAT', gluthatione S-transferase 'GST', and ethoxyresorufin-O-deethylase 'EROD') were observed in the nematode species Oncholaimus campylocercoides, paralleled by significant decreases in CAT activity for non-gravid females compared to controls at concentrations of 25 ng/l BaP and associated with significant increase in GST and EROD activities for both types of individuals.
Collapse
Affiliation(s)
- Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Almalki
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Roquia Rizk
- Research Centre for Biochemical, Environmental and Chemical Engineering, Sustainability Solutions Research Lab, University of Pannonia, Egyetem str. 10, 8200, Veszprém, Hungary
- Biochemisrty Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ezzeddine Mahmoudi
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Gabriel Plăvan
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
45
|
Baali H, Cosio C. Effects of carbamazepine in aquatic biota. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:209-220. [PMID: 35014660 DOI: 10.1039/d1em00328c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbamazepine (CBZ) is one of the most common pharmaceuticals found in the aquatic environment. Here, we reviewed studies in aquatic animals highlighting that CBZ affected ROS homeostasis but also the neuroendocrine system, cell viability, immunity, reproduction, feeding behavior and growth. Notably, the acetylcholinesterase activity was modified by concentrations of the order of ng L-1 CBZ. At ≥10 μg L-1, data pointed that CBZ triggered the production of ROS, modifying the activity of antioxidant enzymes and produced a significant cellular stress at concentrations ≥100 μg L-1. However, the response appeared species-, organ- and time-dependent, and was impacted by different experimental conditions and the origin of animals. In this context, this review discusses the available data and proposes future research priorities.
Collapse
Affiliation(s)
- Hugo Baali
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France.
| | - Claudia Cosio
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France.
| |
Collapse
|
46
|
Kang X, Li D, Zhao X, Lv Y, Chen X, Song X, Liu X, Chen C, Cao X. Long-Term Exposure to Phenanthrene Induced Gene Expressions and Enzyme Activities of Cyprinus carpio below the Safe Concentration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042129. [PMID: 35206316 PMCID: PMC8872569 DOI: 10.3390/ijerph19042129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
Phenanthrene (PHE) is a typical compound biomagnified in the food chain which endangers human health and generally accumulates from marine life. It has been listed as one of the 16 priority PAHs evaluated in toxicology. In order to evaluate the changes of CYP1A GST mRNA expression and EROD GST enzyme activity in carp exposed to lower than safe concentrations of PHE. Long-term exposure of carp to PHE at lower than safe concentrations for up to 25 days. The mRNA expression level and cytochrome P450 (CYP1A/EROD (7-Ethoxylesorufin O-deethylase)) and glutathione S-transferase (GST) activity were measured in carp liver and brain tissue. The results showed that PHE stress induced low-concentration induction and high-concentration inhibition of CYP1A expression and EROD enzyme activity in the liver and brain of carp. In both two organs, GST enzyme activity was also induced. However, the expression of GST mRNA was first induced and then inhibited, after the 15th day. These results indicate that long-term exposure to PHE at lower than safe concentrations still poses a potential threat to carp’s oxidase system and gene expression.
Collapse
Affiliation(s)
- Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Yanfeng Lv
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
| | - Xiangyu Liu
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (X.L.); (C.C.)
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (X.K.); (D.L.); (X.Z.); (Y.L.); (X.S.)
- Correspondence: ; Tel.: +86-21-6779-2550
| |
Collapse
|
47
|
Yurchenko V, Morozov A. Responses of hepatic biotransformation and antioxidant enzymes in Japanese medaka (Oryzias latipes) exposed to humic acid. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1-13. [PMID: 34816351 DOI: 10.1007/s10695-021-01034-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Humic substances, a major component of natural organic matter in surface waters, can induce biotransformation enzyme activities and influence antioxidant defense in fish. The study aimed to provide a molecular basis for the stress responses, the synthesis of biotransformation, and antioxidant enzymes in particular. Adult medaka fish (Hd-rR strain) were exposed to environmentally relevant concentrations of humic acid for 96 h. The actual humic acid concentrations in water were determined photometrically and expressed as organic carbon concentrations. Liquid chromatography with tandem mass spectrometry was used for protein profile analysis of medaka liver samples. The relative amount of isozymes was determined using the label-free quantification approach. Hepatic biotransformation enzyme activities were measured as well. Thus, ethoxyresorufin-O-deethylase activity showed a pronounced induction at the highest tested concentration (9.4 mg C/L). Various biotransformation and antioxidant isozymes responded to humic acid differently, reflecting a balanced interplay of proteins that ensures the metabolism of humic acid in fish liver. Some isozymes were not affected by humic acid. The study provides new insight into the molecular mechanisms of the fish stress response to the humic acid-related challenge.
Collapse
Affiliation(s)
- Victoria Yurchenko
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia.
| | - Alexey Morozov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
48
|
El Mourabit Y, Agnaou M, Ait Alla A, Moukrim A. Assessment of the marine ecotoxic state in the Moroccan coastal area Anza-Taghazout following the installation of two wastewater treatment plants: a multibiomarker study using Mytilus galloprovincialis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11718-11729. [PMID: 34546524 DOI: 10.1007/s11356-021-16046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study is the first to evaluate the ecotoxic state of the marine environment in Anza-Taghazout coasts (Morocco) after installation of two wastewater treatment plants using a natural population of marine bivalves Mytilus galloprovincialis. These coasts are exposed to many discharges generating, thus, different sources of pollutants. These pollutants can modulate the physiological responses of marine bivalves to environmental stress. In this context, a multibiomarker approach consisting of a battery of biomarker evaluation was used to assess the response of these species to stress. In the whole soft tissues of M. galloprovincialis, four biomarkers were evaluated as follows: acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (Cat), and malondialdehyde activity (MDA). In parallel, physico-chemical parameters were measured in the marine water of Anza-Taghazout within three selected sites: S1 considered as "hotspot" located at Anza city; S2 located near of Aourir city; and the third site, S3 "reference" located in Imouran beach. Our results showed that activities of both glutathione S-transferase and catalase were higher in M. galloprovincialis collected from site S1, but high values of malondialdehyde and acetylcholinesterase activities were observed successively at S3 and S2. Application of integrated biomarker response (IBR) index was suitable for classifying the stress response in the M. galloprovincialis but did not allow to evaluate the level of the xenobiotic exposure in the studied sites. The statistical results did not show any significant differences between the three studied sites, and therefore, S1 has recently become clean due to the installation of two wastewater treatment plants.
Collapse
Affiliation(s)
- Youssef El Mourabit
- Laboratory of "Aquatic Systems: Marine and Continental Environment", Faculty of Science of Agadir, Ibn Zohr University, P.O. Box 8106, Agadir, Morocco.
| | - Mustapha Agnaou
- Laboratory of "Aquatic Systems: Marine and Continental Environment", Faculty of Science of Agadir, Ibn Zohr University, P.O. Box 8106, Agadir, Morocco
| | - Aicha Ait Alla
- Laboratory of "Aquatic Systems: Marine and Continental Environment", Faculty of Science of Agadir, Ibn Zohr University, P.O. Box 8106, Agadir, Morocco
| | - Abdellatif Moukrim
- Department of Biology, Faculty of Sciences, Abdelmalek Essadi University, Tetouan, Morocco
| |
Collapse
|
49
|
Bérubé R, Lefebvre-Raine M, Gauthier C, Bourdin T, Bellot P, Triffault-Bouchet G, Langlois VS, Couture P. Comparative toxicity of conventional and unconventional oils during rainbow trout (Oncorhynchus mykiss) embryonic development: From molecular to health consequences. CHEMOSPHERE 2022; 288:132521. [PMID: 34648783 DOI: 10.1016/j.chemosphere.2021.132521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Canadian freshwater ecosystems are vulnerable to oil spills from pipelines, which contain mostly diluted bitumen. This study aimed to compare the toxicity of a dilbit and a conventional oil on developing rainbow trout. A total of five exposure scenarios were performed, from 10 to 43 days, using water-accommodated fraction (WAF) with an initial loading of 1:9 oil to water ratio (w/v) in a range of dilutions from 0.32 to 32% WAF, respectively, with TPAH and VOC concentrations from 2.41 to 17.5 μg/L and 7.94-660.99 μg/L, and with or without a recovery period. Following the five exposures, several endpoints were examined, including survivorship, morphometrics, gene expression, and enzymatic activity. Significant mortality rates were measured for the highest WAF concentration of the dilbit in all five exposures (60-100% mortality at 32% WAF). In comparison, the highest WAF concentration of the conventional oil induced significant mortality in three out of the five exposure (from 35 to 100% mortality at 32% WAF). Hatching delays were noted in embryos exposed to both oils. Developmental delays were observed in dilbit-exposed embryos and are suspected to be an indicator of reduced survivorship after hatching. The induced expression of cyp1a remained a reliable biomarker of exposure and of fish malformations, though it did not always predict mortality. Using CYP1A activity in combination with cyp1a may bring more insights in studies of oil risk assessment. This study demonstrates that dilbits are more toxic to early life stages compared to conventional oils and highlights the need to consider the most sensitive stage of development when performing risk assessment studies on oils.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, Canada
| | - Molly Lefebvre-Raine
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, Canada
| | - Charles Gauthier
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, Canada
| | - Thibault Bourdin
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, Canada
| | - Pauline Bellot
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, Canada
| | - Gaëlle Triffault-Bouchet
- CEAEQ, Ministère de l'Environnement et de la Lutte contre les changements climatiques, 2700 rue Einstein, Québec, Canada
| | - Valérie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, Canada.
| |
Collapse
|
50
|
Kartal ME, Bildik A. Assessment of pollution with biomarkers in fish culture. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:111. [PMID: 35048209 DOI: 10.1007/s10661-022-09774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biotransformation enzymes are stimulated or inhibited depending on the exposure to xenobiotics and widely used as a biomarker. In this study, EROD activity, GST activity, reduced GSH amount, amount of lipid peroxidation product MDA as oxidative stress parameter, and ACHE inhibition as a neuromuscular parameter were measured in liver and muscle tissues of rainbow trout (Oncorhynchus mykiss) produced in aquaculture of Kemer Dam and in concrete ponds located in Fethiye. Samples were collected in January and July from fish farming in net cages in Kemer Dam and concrete cages in Fethiye in order to evaluate seasonal changes. Also, physicochemical properties of water samples collected from trout farms were measured and evaluated together with five biomarkers. Significant ACHE inhibition was observed in both stations in parallel with the increase in ammonium nitrogen in the July period (p ≤ 0.05). In parallel with the increase in turbidity in the Kemer Dam, a significant increase in GSH, MDA level, and GST activity was detected (p ≤ 0.05). As a result of the assessment of all data, significant increases were detected in EROD induction, GST activity, MDA level, and ACHE inhibition in concrete cages in Fethiye when compared to Kemer Dam (p ≤ 0,05). It was observed that pollution was at a lower level in July compared to January, and in Kemer Dam compared to Fethiye.
Collapse
Affiliation(s)
- Mehmet Ersin Kartal
- Faculty of Veterinary Medicine, Department of Biochemistry, Adnan Menderes University, Aydın, Turkey.
| | - Ayşegül Bildik
- Faculty of Veterinary Medicine, Department of Biochemistry, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|