1
|
Zhang Y, Munshi S, Burrows K, Kuplicki R, Figueroa-Hall LK, Aupperle RL, Khalsa SS, Teague TK, Taki Y, Paulus MP, Savitz J, Zheng H. Leptin's Inverse Association With Brain Morphology and Depressive Symptoms: A Discovery and Confirmatory Study Across 2 Independent Samples. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:714-725. [PMID: 38631553 DOI: 10.1016/j.bpsc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Major depressive disorder has a complex, bidirectional relationship with metabolic dysfunction, but the neural correlates of this association are not well understood. METHODS In this cross-sectional investigation, we used a 2-step discovery and confirmatory strategy utilizing 2 independent samples (sample 1: 288 participants, sample 2: 196 participants) to examine the association between circulating indicators of metabolic health (leptin and adiponectin) and brain structures in individuals with major depressive disorder. RESULTS We found a replicable inverse correlation between leptin levels and cortical surface area within essential brain areas responsible for emotion regulation, such as the left posterior cingulate cortex, right pars orbitalis, right superior temporal gyrus, and right insula (standardized beta coefficient range: -0.27 to -0.49, puncorrected < .05). Notably, this relationship was independent of C-reactive protein levels. We also identified a significant interaction effect of leptin levels and diagnosis on the cortical surface area of the right superior temporal gyrus (standardized beta coefficient = 0.26 in sample 1, standardized beta coefficient = 0.30 in sample 2, puncorrected < .05). We also observed a positive correlation between leptin levels and atypical depressive symptoms in both major depressive disorder groups (r = 0.14 in sample 1, r = 0.29 in sample 2, puncorrected < .05). CONCLUSIONS The inverse association between leptin and cortical surface area in brain regions that are important for emotion processing and leptin's association with atypical depressive symptoms support the hypothesis that metabolic processes may be related to emotion regulation. However, the molecular mechanisms through which leptin may exert these effects should be explored further.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | | | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, Oklahoma
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan; Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
2
|
Norbom LB, Rokicki J, Eilertsen EM, Wiker T, Hanson J, Dahl A, Alnæs D, Fernández‐Cabello S, Beck D, Agartz I, Andreassen OA, Westlye LT, Tamnes CK. Parental education and income are linked to offspring cortical brain structure and psychopathology at 9-11 years. JCPP ADVANCES 2024; 4:e12220. [PMID: 38486948 PMCID: PMC10933599 DOI: 10.1002/jcv2.12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/21/2023] [Indexed: 03/17/2024] Open
Abstract
Background A child's socioeconomic environment can shape central aspects of their life, including vulnerability to mental disorders. Negative environmental influences in youth may interfere with the extensive and dynamic brain development occurring at this time. Indeed, there are numerous yet diverging reports of associations between parental socioeconomic status (SES) and child cortical brain morphometry. Most of these studies have used single metric- or unimodal analyses of standard cortical morphometry that downplay the probable scenario where numerous biological pathways in sum account for SES-related cortical differences in youth. Methods To comprehensively capture such variability, using data from 9758 children aged 8.9-11.1 years from the ABCD Study®, we employed linked independent component analysis (LICA) and fused vertex-wise cortical thickness, surface area, curvature and grey-/white-matter contrast (GWC). LICA revealed 70 uni- and multimodal components. We then assessed the linear relationships between parental education, parental income and each of the cortical components, controlling for age, sex, genetic ancestry, and family relatedness. We also assessed whether cortical structure moderated the negative relationships between parental SES and child general psychopathology. Results Parental education and income were both associated with larger surface area and higher GWC globally, in addition to local increases in surface area and to a lesser extent bidirectional GWC and cortical thickness patterns. The negative relation between parental income and child psychopathology were attenuated in children with a multimodal pattern of larger frontal- and smaller occipital surface area, and lower medial occipital thickness and GWC. Conclusion Structural brain MRI is sensitive to SES diversity in childhood, with GWC emerging as a particularly relevant marker together with surface area. In low-income families, having a more developed cortex across MRI metrics, appears beneficial for mental health.
Collapse
Affiliation(s)
- Linn B. Norbom
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Jaroslav Rokicki
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Centre of Research and Education in Forensic PsychiatryOslo University HospitalOsloNorway
| | - Espen M. Eilertsen
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
| | - Thea Wiker
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Jamie Hanson
- Learning Research and Development Center University of PittsburghPennsylvaniaPittsburghUSA
- Department of PsychologyUniversity of PittsburghPennsylvaniaPittsburghUSA
| | - Andreas Dahl
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Dag Alnæs
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of PsychologyPedagogy and LawKristiania University CollegeOsloNorway
| | | | - Dani Beck
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Ingrid Agartz
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- K.G Jebsen Center for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- Centre for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care ServicesStockholmSweden
| | - Ole A. Andreassen
- K.G Jebsen Center for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- NORMENTDivision of Mental Health and AddictionOslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- K.G Jebsen Center for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- NORMENTDivision of Mental Health and AddictionOslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Christian K. Tamnes
- PROMENTA Research CenterDepartment of PsychologyUniversity of OsloOsloNorway
- NORMENTInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| |
Collapse
|
3
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Onishi H, Nagasaka K, Yokota H, Kojima S, Ohno K, Sakurai N, Kodama N, Sato D, Otsuru N. Association between somatosensory sensitivity and regional gray matter volume in healthy young volunteers: a voxel-based morphometry study. Cereb Cortex 2023; 33:2001-2010. [PMID: 35580840 PMCID: PMC9977372 DOI: 10.1093/cercor/bhac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Two-point discrimination (2PD) test reflects somatosensory spatial discrimination ability, but evidence on the relationship between 2PD and cortical gray matter (GM) volume is limited. This study aimed to analyze the relationship between cortical GM volume and 2PD threshold in young healthy individuals and to clarify the characteristics of brain structure reflecting the individual differences in somatosensory function. 2PD was measured in 42 healthy (20 females) volunteers aged 20-32 years using a custom-made test system that can be controlled by a personal computer. The 2PD of the right index finger measured with this device has been confirmed to show good reproducibility. T1-weighted images were acquired using a 3-T magnetic resonance imaging scanner for voxel-based morphometry analysis. The mean 2PD threshold was 2.58 ± 0.54 mm. Whole-brain multiple regression analysis of the relationship between 2PD and GM volume showed that a lower 2PD threshold (i.e. better somatosensory function) significantly correlated with decreased GM volume from the middle temporal gyrus to the inferior parietal lobule (IPL) in the contralateral hemisphere. In conclusion, a lower GM volume in the middle temporal gyrus and IPL correlates with better somatosensory function. Thus, cortical GM volume may be a biomarker of somatosensory function.
Collapse
Affiliation(s)
- Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Ken Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Noriko Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
5
|
Yan S, Chen J, Yin X, Zhu Z, Liang Z, Jin H, Li H, Yin J, Jiang Y, Xia Y. The structural basis of age-related decline in global motion perception at fast and slow speeds. Neuropsychologia 2023; 183:108507. [PMID: 36773806 DOI: 10.1016/j.neuropsychologia.2023.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
A decrease in global motion perception (GMP) has been reported in older adults, and this age-related decline in GMP varies with the speed of global motion. However, no studies have investigated whether the asynchronous age-related decline in GMP is related to degenerative changes in brain structure. In this study, the random dot kinematogram paradigm and structural magnetic resonance imaging were used to investigate the asynchronous aging of GMP at fast and slow speeds (called fast GMP and slow GMP, respectively) and their relationships with brain structure. Ninety-four older adults (65.74 ± 4.50 yrs) and 90 younger adults (22.83 ± 4.84 yrs) participated in the experiment. The results showed that older adults had higher motion coherence thresholds (MCT) than younger adults at both fast and slow speeds. Brain-behavior correlation analyses of younger adults revealed that none of the correlations between morphological measures and MCTs survived correction for multiple comparisons. For older adults, slow MCT was correlated with cortical thickness in the bilateral V4v, V5/MT+, left V7, V8, LO, and surface area in the right V7. Fast MCT was significantly correlated with gray matter volume in the right V7 and thickness in the left V5/MT+. These results support the view that global motion extraction occurs within two speed-tuned systems that are at least partially independent in terms of their neural substrates, which deteriorate with age at different speeds. Aging of GMP is also associated with morphological changes in the visual cortex. Age-related cerebral atrophy in the dorsal stream may impair both fast and slow GMP, whereas aging of the ventral stream specifically impairs slow GMP.
Collapse
Affiliation(s)
- Shizhen Yan
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Juntao Chen
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Xiaojuan Yin
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Ziliang Zhu
- State Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ziping Liang
- Mental Health Education Center, Zhengzhou University, Zhengzhou, China
| | - Hua Jin
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China.
| | - Han Li
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Jianzhong Yin
- Radiology Department, People's Hospital of Haikou, Haikou, China
| | - Yunpeng Jiang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yaoyuan Xia
- Department of Physical Education, Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
6
|
Kjelkenes R, Wolfers T, Alnæs D, Norbom LB, Voldsbekk I, Holm M, Dahl A, Berthet P, Tamnes CK, Marquand AF, Westlye LT. Deviations from normative brain white and gray matter structure are associated with psychopathology in youth. Dev Cogn Neurosci 2022; 58:101173. [PMID: 36332329 PMCID: PMC9637865 DOI: 10.1016/j.dcn.2022.101173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
Combining imaging modalities and metrics that are sensitive to various aspects of brain structure and maturation may help identify individuals that show deviations in relation to same-aged peers, and thus benefit early-risk-assessment for mental disorders. We used one timepoint multimodal brain imaging, cognitive, and questionnaire data from 1280 eight- to twenty-one-year-olds from the Philadelphia Neurodevelopmental Cohort. We estimated age-related gray and white matter properties and estimated individual deviation scores using normative modeling. Next, we tested for associations between the estimated deviation scores, and with psychopathology domain scores and cognition. More negative deviations in DTI-based fractional anisotropy (FA) and the first principal eigenvalue of the diffusion tensor (L1) were associated with higher scores on psychosis positive and prodromal symptoms and general psychopathology. A more negative deviation in cortical thickness (CT) was associated with a higher general psychopathology score. Negative deviations in global FA, surface area, L1 and CT were also associated with poorer cognitive performance. No robust associations were found between the deviation scores based on CT and DTI. The low correlations between the different multimodal magnetic resonance imaging-based deviation scores suggest that psychopathological burden in adolescence can be mapped onto partly distinct neurobiological features.
Collapse
Affiliation(s)
- Rikka Kjelkenes
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway.
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; Oslo New University College, Oslo, Norway
| | - Linn B Norbom
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Irene Voldsbekk
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Madelene Holm
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Pierre Berthet
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo, & Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway.
| |
Collapse
|
7
|
Lee Seldon H. Von Economo, Koskinas and the Masters of Human Cortex Structure and Function 100 Years Ago. BRAIN MULTIPHYSICS 2022. [DOI: 10.1016/j.brain.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Neuroanatomical Correlates of Perceived Stress Controllability in Adolescents and Emerging Adults. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:655-671. [PMID: 35091987 PMCID: PMC9308625 DOI: 10.3758/s13415-022-00985-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/08/2022]
Abstract
Stressful life events predict changes in brain structure and increases in psychopathology, but not everyone is equally affected by life stress. The learned helplessness theory posits that perceiving life stressors as uncontrollable leads to depression. Evidence supports this theory for youth, but the impact of perceived control diverges based on stressor type: perceived lack of control over dependent (self-generated) stressors is associated with greater depression symptoms when controlling for the frequency of stress exposure, but perceived control over independent (non-self-generated) stressors is not. However, it is unknown how perceived control over these stressor types is associated with brain structure. We tested whether perceived lack of control over dependent and independent life stressors, controlling for stressor exposure, is associated with gray matter (GM) in a priori regions of interest (ROIs; mPFC, hippocampus, amygdala) and across the cortex in a sample of 108 adolescents and emerging adults ages 14-22. There were no associations across the full sample between perceived control over either stressor type and GM in the ROIs. However, less perceived control over dependent stressors was associated with greater amygdala gray matter volume in female youth and greater medial prefrontal cortex thickness in male youth. Furthermore, whole-cortex analyses revealed less perceived control over dependent stressors was associated with greater GM thickness in cortical regions involved in cognitive and emotional regulation. Thus, appraisals of control have distinct associations with brain morphology while controlling for stressor frequency, highlighting the importance of differentiating between these aspects of the stress experience in future research.
Collapse
|
9
|
Lee JS, Kang W, Kang Y, Kim A, Han KM, Tae WS, Ham BJ. Alterations in the Occipital Cortex of Drug-Naïve Adults With Major Depressive Disorder: A Surface-Based Analysis of Surface Area and Cortical Thickness. Psychiatry Investig 2021; 18:1025-1033. [PMID: 34666430 PMCID: PMC8542746 DOI: 10.30773/pi.2021.0099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in surface-based morphometric methods have allowed researchers to separate cortical volume into cortical thickness (CTh) and surface area (SA). Although CTh alterations in major depressive disorder (MDD) have been observed in numerous studies, few studies have described significant SA alterations. Our study aimed to measure patients' SAs and to compare it with their CTh to examine whether SA exhibits alteration patterns that differ from those of CTh in drug-naïve patients with MDD. METHODS A total of 71 drug-naïve MDD patients and 111 healthy controls underwent structural magnetic resonance imaging, and SA and CTh were analyzed between the groups. RESULTS We found a smaller SA in the left superior occipital gyrus (L-SOG) in drug-naïve patients with MDD. In the CTh analysis, the bilateral fusiform gyrus, left middle occipital gyrus, left temporal superior gyrus, and right posterior cingulate showed thinner cortices in patients with MDD, while the CTh of the bilateral SOG, right straight gyrus, right posterior cingulate, and left lingual gyrus were increased. CONCLUSION Compared with the bilateral occipito-temporal changes in CTh, SA alterations in patients with MDD were confined to the L-SOG. These findings may improve our understanding of the neurobiological mechanisms of SA alteration in relation to MDD.
Collapse
Affiliation(s)
- Jee Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Norbom LB, Ferschmann L, Parker N, Agartz I, Andreassen OA, Paus T, Westlye LT, Tamnes CK. New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro- and microstructural MRI findings. Prog Neurobiol 2021; 204:102109. [PMID: 34147583 DOI: 10.1016/j.pneurobio.2021.102109] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Through dynamic transactional processes between genetic and environmental factors, childhood and adolescence involve reorganization and optimization of the cerebral cortex. The cortex and its development plays a crucial role for prototypical human cognitive abilities. At the same time, many common mental disorders appear during these critical phases of neurodevelopment. Magnetic resonance imaging (MRI) can indirectly capture several multifaceted changes of cortical macro- and microstructure, of high relevance to further our understanding of the neural foundation of cognition and mental health. Great progress has been made recently in mapping the typical development of cortical morphology. Moreover, newer less explored MRI signal intensity and specialized quantitative T2 measures have been applied to assess microstructural cortical development. We review recent findings of typical postnatal macro- and microstructural development of the cerebral cortex from early childhood to young adulthood. We cover studies of cortical volume, thickness, area, gyrification, T1-weighted (T1w) tissue contrasts such a grey/white matter contrast, T1w/T2w ratio, magnetization transfer and myelin water fraction. Finally, we integrate imaging studies with cortical gene expression findings to further our understanding of the underlying neurobiology of the developmental changes, bridging the gap between ex vivo histological- and in vivo MRI studies.
Collapse
Affiliation(s)
- Linn B Norbom
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Ole A Andreassen
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tomáš Paus
- ECOGENE-21, Chicoutimi, Quebec, Canada; Department of Psychology and Psychiatry, University of Toronto, Ontario, Canada; Department of Psychiatry and Centre hospitalier universitaire Sainte-Justine, University of Montreal, Canada
| | - Lars T Westlye
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| |
Collapse
|
11
|
Exploring the Relationship between Gray and White Matter in Healthy Adults: A Hybrid Research of Cortical Reconstruction and Tractography. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6628506. [PMID: 33778072 PMCID: PMC7979294 DOI: 10.1155/2021/6628506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 11/18/2022]
Abstract
The gray matter (GM) and white matter (WM) are structurally and functionally related in the human brain. Among the numerous neuroimaging studies, yet only a few have investigated these two structures in the same sample. So, there is limited and inconsistent information about how they are correlated in the brain of healthy adults. In this study, we combined cortical reconstruction with diffusion spectrum imaging (DSI) tractography to investigate the relationship between cortical morphology and microstructural properties of major WM tracts in 163 healthy young adults. The results showed that cortical thickness (CTh) was positively correlated with the coherent tract-wise fractional anisotropy (FA) value, and the correlation was stronger in the dorsal areas than in the ventral areas. For other diffusion parameters, CTh was positively correlated with axial diffusivity (AD) of coherent fibers in the frontal areas and negatively correlated with radial diffusivity (RD) of coherent fibers in the dorsal areas. These findings suggest that the correlation between GM and WM is inhomogeneity and could be interpreted with different mechanisms in different brain regions. We hope our research could provide new insights into the studies of diseases in which the GM and WM are both affected.
Collapse
|
12
|
Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders : Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group. Mol Psychiatry 2021; 26:4839-4852. [PMID: 32467648 PMCID: PMC8589644 DOI: 10.1038/s41380-020-0774-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
Abstract
Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = -0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.
Collapse
|
13
|
Zhang X, Luo Q, Wang S, Qiu L, Pan N, Kuang W, Lui S, Huang X, Yang X, Kemp GJ, Gong Q. Dissociations in cortical thickness and surface area in non-comorbid never-treated patients with social anxiety disorder. EBioMedicine 2020; 58:102910. [PMID: 32739867 PMCID: PMC7393569 DOI: 10.1016/j.ebiom.2020.102910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Abnormalities of functional activation and cortical volume in brain regions involved in the neurobiology of fear and anxiety have been implicated in the pathophysiology of social anxiety disorder (SAD). However, few studies have performed separate measurements of cortical thickness (CT) and cortical surface area (CSA) which reflect different neurobiological processes. Thus, we aimed to explore the cortical morphological anomaly separately in SAD using FreeSurfer. METHODS High-resolution structural magnetic resonance images were obtained from 32 non-comorbid never-treated adult SAD patients and 32 demography-matched healthy controls. Cortical morphometry indices including CT and CSA were separately determined by FreeSurfer and compared between the two groups via whole-brain vertex-wise analysis, while partial correlation analysis using age and gender as covariates were conducted. FINDINGS The patients with SAD showed decreased CT but increased CSA near-symmetrically in the bilateral prefrontal cortex (PFC) of the dorsolateral, dorsomedial, and ventromedial subdivisions, as well as the right lateral orbitofrontal cortex; increased CSA in the left superior temporal gyrus (STG) was also observed in SAD. The CSA in the left PFC was negatively correlated with the disease duration. INTERPRETATION As the balloon model hypothesis suggests that the tangentially stretched cortex may cause dissociations in cortical morphometry and affect the cortical capacity for information processing, our findings of dissociated morphological alterations in the PFC and cortical expansion in the STG may reflect the morphological alterations of the functional reorganization in those regions, and highlight the important role of those structures in the pathophysiology and neurobiology of SAD. FUNDING This study was funded by the National Natural Science Foundation of China (Grant Nos. 31700964, 31800963, 81621003, and 81820108018).
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lihua Qiu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, The Second People's Hospital of Yibin, Yibin 644000, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weihong Kuang
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, PR, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China.
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Grydeland H, Vértes PE, Váša F, Romero-Garcia R, Whitaker K, Alexander-Bloch AF, Bjørnerud A, Patel AX, Sederevicius D, Tamnes CK, Westlye LT, White SR, Walhovd KB, Fjell AM, Bullmore ET. Waves of Maturation and Senescence in Micro-structural MRI Markers of Human Cortical Myelination over the Lifespan. Cereb Cortex 2020; 29:1369-1381. [PMID: 30590439 PMCID: PMC6373687 DOI: 10.1093/cercor/bhy330] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Seminal human brain histology work has demonstrated developmental waves of myelination. Here, using a micro-structural magnetic resonance imaging (MRI) marker linked to myelin, we studied fine-grained age differences to deduce waves of growth, stability, and decline of cortical myelination over the life-cycle. In 484 participants, aged 8–85 years, we fitted smooth growth curves to T1- to T2-weighted ratio in each of 360 regions from one of seven cytoarchitectonic classes. From the first derivatives of these generally inverted-U trajectories, we defined three milestones: the age at peak growth; the age at onset of a stable plateau; and the age at the onset of decline. Age at peak growth had a bimodal distribution comprising an early (pre-pubertal) wave of primary sensory and motor cortices and a later (post-pubertal) wave of association, insular and limbic cortices. Most regions reached stability in the 30-s but there was a second wave reaching stability in the 50-s. Age at onset of decline was also bimodal: in some right hemisphere regions, the curve declined from the 60-s, but in other left hemisphere regions, there was no significant decline from the stable plateau. These results are consistent with regionally heterogeneous waves of intracortical myelinogenesis and age-related demyelination.
Collapse
Affiliation(s)
- Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Petra E Vértes
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - František Váša
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Kirstie Whitaker
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,The Alan Turing Institute, British Library, London, UK
| | | | - Atle Bjørnerud
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, University of Oslo, Oslo, Norway
| | - Ameera X Patel
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Donatas Sederevicius
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Christian K Tamnes
- Department of Psychology, University of Oslo, Oslo, Norway.,Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Simon R White
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge University, Cambridge, UK
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, University of Oslo, Oslo, Norway
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Huntingdon, UK.,Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK
| |
Collapse
|
15
|
Cafiero R, Brauer J, Anwander A, Friederici AD. The Concurrence of Cortical Surface Area Expansion and White Matter Myelination in Human Brain Development. Cereb Cortex 2020; 29:827-837. [PMID: 30462166 PMCID: PMC6319170 DOI: 10.1093/cercor/bhy277] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023] Open
Abstract
The human brain undergoes dramatic structural changes during childhood that co-occur with behavioral development. These age-related changes are documented for the brain’s gray matter and white matter. However, their interrelation is largely unknown. In this study, we investigated age-related effects in cortical thickness (CT) and in cortical surface area (SA) as parts of the gray matter volume as well as age effects in T1 relaxation times in the white matter. Data from N = 170 children between the ages of 3 and 7 years contributed to the sample. We found a high spatial overlap of age-related correlations between SA and T1 relaxation times of the corresponding white matter connections, but no such relation between SA and CT. These results indicate that during childhood the developmental expansion of the cortical surface goes hand-in-hand with age-related increase of white matter fiber connections terminating in the cortical surface.
Collapse
Affiliation(s)
- Riccardo Cafiero
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
van der Meer D, Sønderby IE, Kaufmann T, Walters GB, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Cahn W, Calhoun VD, Caspers S, Cavalleri GL, Ching CRK, Cichon S, Ciufolini S, Corvin A, Crespo-Facorro B, Curran JE, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Delanty N, den Braber A, Desrivieres S, Di Forti M, Doherty JL, Donohoe G, Ehrlich S, Eising E, Espeseth T, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jacquemont S, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Kikuchi M, Knowles EEM, Kwok JB, Le Hellard S, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Martin NG, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Moberget T, Moreau C, Morris DW, Mühleisen TW, Murray RM, Nordvik JE, Nyberg L, Olde Loohuis LM, Ophoff RA, Owen MJ, Paus T, Pausova Z, Peralta JM, Pike B, Prieto C, Quinlan EB, Reinbold CS, Reis Marques T, Rucker JJH, Sachdev PS, Sando SB, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Silva AI, Sisodiya SM, Steen VM, Stein DJ, Strike LT, Tamnes CK, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Uhlmann A, Úlfarsson MÖ, van 't Ent D, van den Bree MBM, Vassos E, Wen W, Wittfeld K, Wright MJ, Zayats T, Dale AM, Djurovic S, Agartz I, Westlye LT, Stefánsson H, Stefánsson K, Thompson PM, Andreassen OA. Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry 2020; 77:420-430. [PMID: 31665216 PMCID: PMC6822096 DOI: 10.1001/jamapsychiatry.2019.3779] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023]
Abstract
Importance Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities. Objective To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance. Design, Setting, and Participants In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019. Main Outcomes and Measures The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort. Results Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks. Conclusions and Relevance These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - G Bragi Walters
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, Kew, Australia
- National Ageing Research Institute, Parkville, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
| | - Micael Andersson
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Manon Bernard
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Dorret I Boomsma
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Wiepke Cahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Altrecht Science, Utrecht, the Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta
- The Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gianpiero L Cavalleri
- The School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI FutureNeuro Research Centre, Dublin, Ireland
| | - Christopher R K Ching
- Interdepartmental Neuroscience Program, University of California, Los Angeles
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Sven Cichon
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, IdahoIVAL, Centre de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- University Hospital Virgen del Rocío, IBiS, Centre de Investigación Biomédica en Red Salud Mental (CIBERSAM), Sevilla, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Shareefa Dalvie
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Greig I de Zubicaray
- Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sonja M C de Zwarte
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Norman Delanty
- The SFI FutureNeuro Research Centre, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - Anouk den Braber
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sylvane Desrivieres
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marta Di Forti
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Stefan Ehrlich
- Psychological and Social Medicine, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tormod Fladby
- Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Lorenskog, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Frouin
- Neurospin, Le Commissariat à l'énergie atomique et aux énergies alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Life Science, Sokendai, Hayama, Japan
| | - Thomas Gareau
- Neurospin, Le Commissariat à l'énergie atomique et aux énergies alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David C Glahn
- Boston Children's Hospital, Boston, Massachusetts
- Institute of Living, Hartford, Connecticut
- Harvard Medical School, Boston, Massachusetts
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- St Olav's Hospital, Department of Radiology and Nuclear Medicine, Trondheim, Norway
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Osaka University, Osaka, Japan
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emma E M Knowles
- Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - John B Kwok
- The University of Sydney Central Clinical School, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Samuel R Mathias
- Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara Moreau
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | | | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - James J H Rucker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | | | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Shin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology and Chalfont Centre for Epilepsy, London, United Kingdom
| | - Vidar M Steen
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Diana Tordesillas-Gutiérrez
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute, IdahoIVAL, Santander, Spain
| | - Anne Uhlmann
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Magnús Ö Úlfarsson
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík, Iceland
| | - Dennis van 't Ent
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evangelos Vassos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tetyana Zayats
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Kári Stefánsson
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Vieira BH, Rondinoni C, Garrido Salmon CE. Evidence of regional associations between age-related inter-individual differences in resting-state functional connectivity and cortical thinning revealed through a multi-level analysis. Neuroimage 2020; 211:116662. [PMID: 32088317 DOI: 10.1016/j.neuroimage.2020.116662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/14/2020] [Accepted: 02/15/2020] [Indexed: 11/26/2022] Open
Abstract
Normal aging incurs functional and anatomical alterations in the brain. Cortical thinning, age-related alterations in resting-state functional connectivity (RSFC) and reductions in fractional amplitude of low frequency fluctuations (fALFF) are key components of brain aging that can be studied by neuroimaging. However, the level of association between these processes has not been fully established. We performed an analysis at multiple-levels, i.e. region or connection and modality, to investigate whether the evidence for the effect of aging on fALFF, RSFC and cortical thickness are associated in a large cohort. Our results show that there is a positive association between the level of evidence of age-related effects in all three in the brain. We also demonstrate that on a regional basis the association between RSFC alterations and cortical atrophy may be either positive or negative, which may relate to compensatory mechanisms predicted by the Scaffolding Theory of Aging and Cognition (STAC).
Collapse
Affiliation(s)
- Bruno Hebling Vieira
- InBrain Lab, Departamento de Física, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Carlo Rondinoni
- InBrain Lab, Departamento de Física, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | | |
Collapse
|
18
|
de Nijs J, Schnack HG, Koevoets MGJC, Kubota M, Kahn RS, van Haren NEM, Cahn W. Reward-related brain structures are smaller in patients with schizophrenia and comorbid metabolic syndrome. Acta Psychiatr Scand 2018; 138:581-590. [PMID: 30264457 DOI: 10.1111/acps.12955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Metabolic syndrome (MS) is highly prevalent in schizophrenia and often a consequence of unhealthy behaviour. Reward-related brain areas might be associated with MS, since they play a major role in regulating health behaviour. This study examined the relationship between MS and brain volumes related to the reward system in schizophrenia. METHOD We included patients with schizophrenia, with MS (MS+; n = 23), patients with schizophrenia, without MS (MS-; n = 48), and healthy controls (n = 54). Global brain volumes and volumes of (sub)cortical areas, part of the reward circuit, were compared between patients and controls. In case of a significant brain volume difference between patients and controls, the impact of MS in schizophrenia was examined. RESULTS Patients had smaller total brain (TB; P = 0.001), GM (P = 0.010), larger ventricles (P = 0.026), and smaller reward circuit volume (P < 0.001) than controls. MS+ had smaller TB (P = 0.017), GM (P = 0.008), larger ventricles (P = 0.015), and smaller reward circuit volume (P = 0.002) than MS-. MS+ had smaller orbitofrontal cortex (OFC; P = 0.002) and insula volumes (P = 0.005) and smaller OFC (P = 0.008) and insula cortical surface area (P = 0.025) compared to MS-. CONCLUSION In schizophrenia, structural brain volume reductions in areas of the reward circuitry appear to be related to comorbid MS.
Collapse
Affiliation(s)
- J de Nijs
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - H G Schnack
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M G J C Koevoets
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M Kubota
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - R S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA
| | - N E M van Haren
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - W Cahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Zoellner S, Benner J, Zeidler B, Seither-Preisler A, Christiner M, Seitz A, Goebel R, Heinecke A, Wengenroth M, Blatow M, Schneider P. Reduced cortical thickness in Heschl's gyrus as an in vivo marker for human primary auditory cortex. Hum Brain Mapp 2018; 40:1139-1154. [PMID: 30367737 DOI: 10.1002/hbm.24434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/28/2022] Open
Abstract
The primary auditory cortex (PAC) is located in the region of Heschl's gyrus (HG), as confirmed by histological, cytoarchitectonical, and neurofunctional studies. Applying cortical thickness (CTH) analysis based on high-resolution magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 60 primary school children and 60 adults, we investigated the CTH distribution of left and right auditory cortex (AC) and primary auditory source activity at the group and individual level. Both groups showed contoured regions of reduced auditory cortex (redAC) along the mediolateral extension of HG, illustrating large inter-individual variability with respect to shape, localization, and lateralization. In the right hemisphere, redAC localized more within the medial portion of HG, extending typically across HG duplications. In the left hemisphere, redAC was distributed significantly more laterally, reaching toward the anterolateral portion of HG. In both hemispheres, redAC was found to be significantly thinner (mean CTH of 2.34 mm) as compared to surrounding areas (2.99 mm). This effect was more dominant in the right hemisphere rather than in the left one. Moreover, localization of the primary component of auditory evoked activity (P1), as measured by MEG in response to complex harmonic sounds, strictly co-localized with redAC. This structure-function link was found consistently at the group and individual level, suggesting PAC to be represented by areas of reduced cortex in HG. Thus, we propose reduced CTH as an in vivo marker for identifying shape and localization of PAC in the individual brain.
Collapse
Affiliation(s)
- Simeon Zoellner
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg, Germany.,Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jan Benner
- Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Bettina Zeidler
- Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany.,Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | | | - Markus Christiner
- Department of Linguistics, Unit for Language Learning and Teaching Research, University of Vienna, Vienna, Austria
| | - Angelika Seitz
- Department of Phoniatrics and Pedaudiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology, Universiteit Maastricht, Maastricht, The Netherlands
| | - Armin Heinecke
- Department of Cognitive Neuroscience, Faculty of Psychology, Universiteit Maastricht, Maastricht, The Netherlands
| | - Martina Wengenroth
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Maria Blatow
- Department of Neuroradiology and Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Peter Schneider
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg, Germany.,Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
20
|
Krongold M, Cooper C, Bray S. Modular Development of Cortical Gray Matter Across Childhood and Adolescence. Cereb Cortex 2018; 27:1125-1136. [PMID: 26656727 DOI: 10.1093/cercor/bhv307] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Brain maturation across childhood and adolescence is characterized by cortical thickness (CT) and volume contraction, and early expansion of surface area (SA). These processes occur asynchronously across the cortical surface, with functional, topographic, and network-based organizing principles proposed to account for developmental patterns. Characterizing regions undergoing synchronized development can help determine whether "maturational networks" overlap with well-described functional networks, and whether they are targeted by neurodevelopmental and psychiatric disorders. In the present study, we modeled changes with age in CT, SA, and volume from 335 typically developing subjects in the NIH MRI study of normal brain development, with 262 followed longitudinally for a total of 724 scans. Vertices showing similar maturation between 5 and 22 years were grouped together using data-driven clustering. Patterns of CT development distinguished sensory and motor regions from association regions, and were vastly different from SA patterns, which separated anterior from posterior regions. Developmental modules showed little similarity to networks derived from resting-state functional connectivity. Our findings present a novel perspective on maturational changes across the cortex, showing that several proposed organizing principles of cortical development co-exist, albeit in different structural parameters, and enable visualization of developmental trends occurring in parallel at remote cortical sites.
Collapse
Affiliation(s)
- Mark Krongold
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital, Calgary, AB, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada T3B 6A8.,Biomedical Engineering Graduate Program
| | - Cassandra Cooper
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital, Calgary, AB, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada T3B 6A8
| | - Signe Bray
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital, Calgary, AB, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada T3B 6A8.,Department of Radiology, Cumming School of Medicine.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
21
|
Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiol Aging 2017; 62:146-158. [PMID: 29149632 PMCID: PMC5759896 DOI: 10.1016/j.neurobiolaging.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 01/17/2023]
Abstract
Fully characterizing age differences in the brain is a key task for combating aging-related cognitive decline. Using propensity score matching on 2 independent, narrow-age cohorts, we used data on childhood cognitive ability, socioeconomic background, and intracranial volume to match participants at mean age of 92 years (n = 42) to very similar participants at mean age of 73 years (n = 126). Examining a variety of global and regional structural neuroimaging variables, there were large differences in gray and white matter volumes, cortical surface area, cortical thickness, and white matter hyperintensity volume and spatial extent. In a mediation analysis, the total volume of white matter hyperintensities and total cortical surface area jointly mediated 24.9% of the relation between age and general cognitive ability (tissue volumes and cortical thickness were not significant mediators in this analysis). These findings provide an unusual and valuable perspective on neurostructural aging, in which brains from the 8th and 10th decades of life differ widely despite the same cognitive, socioeconomic, and brain-volumetric starting points.
Collapse
|
22
|
Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, Alnæs D, Douaud G, Duff E, Djurovic S, Melle I, Ueland T, Agartz I, Andreassen OA, Westlye LT. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. NEUROIMAGE-CLINICAL 2017; 15:719-731. [PMID: 28702349 PMCID: PMC5491456 DOI: 10.1016/j.nicl.2017.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/28/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
The brain underpinnings of schizophrenia and bipolar disorders are multidimensional, reflecting complex pathological processes and causal pathways, requiring multivariate techniques to disentangle. Furthermore, little is known about the complementary clinical value of brain structural phenotypes when combined with data on cognitive performance and genetic risk. Using data-driven fusion of cortical thickness, surface area, and gray matter density maps (GMD), we found six biologically meaningful patterns showing strong group effects, including four statistically independent multimodal patterns reflecting co-occurring alterations in thickness and GMD in patients, over and above two other independent patterns of widespread thickness and area reduction. Case-control classification using cognitive scores alone revealed high accuracy, and adding imaging features or polygenic risk scores increased performance, suggesting their complementary predictive value with cognitive scores being the most sensitive features. Multivariate pattern analyses reveal distinct patterns of brain morphology in mental disorders, provide insights on the relative importance between brain structure, cognitive and polygenetic risk score in classification of patients, and demonstrate the importance of multivariate approaches in studying the pathophysiological substrate of these complex disorders. Linked ICA showed six independent multivariate morphology patterns sensitive to SZ. Machine learning used to compare brain structure, cognitive and genetic scores. Cognition showed highest prediction of SZ, boosted by brain structure or genetics.
Collapse
Affiliation(s)
- Nhat Trung Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Christine Lycke Brandt
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Gwenaëlle Douaud
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Eugene Duff
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Li L, Abutalebi J, Emmorey K, Gong G, Yan X, Feng X, Zou L, Ding G. How bilingualism protects the brain from aging: Insights from bimodal bilinguals. Hum Brain Mapp 2017; 38:4109-4124. [PMID: 28513102 DOI: 10.1002/hbm.23652] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 03/16/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Abstract
Bilingual experience can delay cognitive decline during aging. A general hypothesis is that the executive control system of bilinguals faces an increased load due to controlling two languages, and this increased load results in a more "tuned brain" that eventually creates a neural reserve. Here we explored whether such a neuroprotective effect is independent of language modality, i.e., not limited to bilinguals who speak two languages but also occurs for bilinguals who use a spoken and a signed language. We addressed this issue by comparing bimodal bilinguals to monolinguals in order to detect age-induced structural brain changes and to determine whether we can detect the same beneficial effects on brain structure, in terms of preservation of gray matter volume (GMV), for bimodal bilinguals as has been reported for unimodal bilinguals. Our GMV analyses revealed a significant interaction effect of age × group in the bilateral anterior temporal lobes, left hippocampus/amygdala, and left insula where bimodal bilinguals showed slight GMV increases while monolinguals showed significant age-induced GMV decreases. We further found through cortical surface-based measurements that this effect was present for surface area and not for cortical thickness. Moreover, to further explore the hypothesis that overall bilingualism provides neuroprotection, we carried out a direct comparison of GMV, extracted from the brain regions reported above, between bimodal bilinguals, unimodal bilinguals, and monolinguals. Bilinguals, regardless of language modality, exhibited higher GMV compared to monolinguals. This finding highlights the general beneficial effects provided by experience handling two language systems, whether signed or spoken. Hum Brain Mapp 38:4109-4124, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Le Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics, University Vita Salute San Raffaele, Milan, Italy
| | - Karen Emmorey
- Laboratory for Language and Cognitive Neuroscience, School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, California
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xin Yan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiaoxia Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lijuan Zou
- College of Psychology and Education, Zaozhuang University, Zaozhuang, 277100, People's Republic of China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
24
|
Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. J Neurosci 2017; 37:3402-3412. [PMID: 28242797 PMCID: PMC5373125 DOI: 10.1523/jneurosci.3302-16.2017] [Citation(s) in RCA: 422] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 02/19/2017] [Indexed: 12/15/2022] Open
Abstract
Before we can assess and interpret how developmental changes in human brain structure relate to cognition, affect, and motivation, and how these processes are perturbed in clinical or at-risk populations, we must first precisely understand typical brain development and how changes in different structural components relate to each other. We conducted a multisample magnetic resonance imaging study to investigate the development of cortical volume, surface area, and thickness, as well as their inter-relationships, from late childhood to early adulthood (7-29 years) using four separate longitudinal samples including 388 participants and 854 total scans. These independent datasets were processed and quality-controlled using the same methods, but analyzed separately to study the replicability of the results across sample and image-acquisition characteristics. The results consistently showed widespread and regionally variable nonlinear decreases in cortical volume and thickness and comparably smaller steady decreases in surface area. Further, the dominant contributor to cortical volume reductions during adolescence was thinning. Finally, complex regional and topological patterns of associations between changes in surface area and thickness were observed. Positive relationships were seen in sulcal regions in prefrontal and temporal cortices, while negative relationships were seen mainly in gyral regions in more posterior cortices. Collectively, these results help resolve previous inconsistencies regarding the structural development of the cerebral cortex from childhood to adulthood, and provide novel insight into how changes in the different dimensions of the cortex in this period of life are inter-related.SIGNIFICANCE STATEMENT Different measures of brain anatomy develop differently across adolescence. Their precise trajectories and how they relate to each other throughout development are important to know if we are to fully understand both typical development and disorders involving aberrant brain development. However, our understanding of such trajectories and relationships is still incomplete. To provide accurate characterizations of how different measures of cortical structure develop, we performed an MRI investigation across four independent datasets. The most profound anatomical change in the cortex during adolescence was thinning, with the largest decreases observed in the parietal lobe. There were complex regional patterns of associations between changes in surface area and thickness, with positive relationships seen in sulcal regions in prefrontal and temporal cortices, and negative relationships seen mainly in gyral regions in more posterior cortices.
Collapse
|
25
|
Hopkins WD, Li X, Crow T, Roberts N. Vertex- and atlas-based comparisons in measures of cortical thickness, gyrification and white matter volume between humans and chimpanzees. Brain Struct Funct 2017; 222:229-245. [PMID: 27100220 PMCID: PMC8401708 DOI: 10.1007/s00429-016-1213-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 03/06/2016] [Indexed: 12/27/2022]
Abstract
What changes in cortical organisation characterise global and localised variation between humans and chimpanzees remains a topic of considerable interest in evolutionary neuroscience. Here, we examined regional variation in cortical thickness, gyrification and white matter in samples of human and chimpanzee brains. Both species were MRI scanned on the same platform using identical procedures. The images were processed and segmented by FSL and FreeSurfer and the relative changes in cortical thickness, gyrification and white matter across the entire cortex were compared between species. In general, relative to chimpanzees, humans had significantly greater gyrification and significantly thinner cortex, particularly in the frontal lobe. Human brains also had disproportionately higher white matter volumes in the frontal lobe, particularly in prefrontal regions. Collectively, the findings suggest that after the split from the common ancestor, white matter expansion and subsequently increasing gyrification occurred in the frontal lobe possibly due to increased selection for human cognitive and motor specialisations.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, P.O. Box 5030, 30302, Atlanta, Georgia.
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 30329, Atlanta, Georgia.
| | - Xiang Li
- Clinical Research Imaging Centre (CRIC), School of Clinical Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH13 0HT, UK
| | - Tim Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), School of Clinical Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH13 0HT, UK
| |
Collapse
|
26
|
Shen K, Doré V, Rose S, Fripp J, McMahon KL, de Zubicaray GI, Martin NG, Thompson PM, Wright MJ, Salvado O. Heritability and genetic correlation between the cerebral cortex and associated white matter connections. Hum Brain Mapp 2016; 37:2331-47. [PMID: 27006297 PMCID: PMC4883001 DOI: 10.1002/hbm.23177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to investigate the genetic influence on the cerebral cortex, based on the analyses of heritability and genetic correlation between grey matter (GM) thickness, derived from structural MR images (sMRI), and associated white matter (WM) connections obtained from diffusion MRI (dMRI). We measured on sMRI the cortical thickness (CT) from a large twin imaging cohort using a surface-based approach (N = 308, average age 22.8 ± 2.3 SD). An ACE model was employed to compute the heritability of CT. WM connections were estimated based on probabilistic tractography using fiber orientation distributions (FOD) from dMRI. We then fitted the ACE model to estimate the heritability of CT and FOD peak measures along WM fiber tracts. The WM fiber tracts where genetic influence was detected were mapped onto the cortical surface. Bivariate genetic modeling was performed to estimate the cross-trait genetic correlation between the CT and the FOD-based connectivity of the tracts associated with the cortical regions. We found some cortical regions displaying heritable and genetically correlated GM thickness and WM connectivity, forming networks under stronger genetic influence. Significant heritability and genetic correlations between the CT and WM connectivity were found in regions including the right postcentral gyrus, left posterior cingulate gyrus, right middle temporal gyri, suggesting common genetic factors influencing both GM and WM. Hum Brain Mapp 37:2331-2347, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kai‐Kai Shen
- CSIRO Health and BiosecurityThe Australian eHealth Research CentreHerstonQueenslandAustralia
| | - Vincent Doré
- CSIRO Health and BiosecurityThe Australian eHealth Research CentreHerstonQueenslandAustralia
| | - Stephen Rose
- CSIRO Health and BiosecurityThe Australian eHealth Research CentreHerstonQueenslandAustralia
| | - Jurgen Fripp
- CSIRO Health and BiosecurityThe Australian eHealth Research CentreHerstonQueenslandAustralia
| | - Katie L. McMahon
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Greig I. de Zubicaray
- Faculty of Health and Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
| | | | - Paul M. Thompson
- Imaging Genetics CenterInstitute for Neuroimaging & InformaticsUniversity of Southern CaliforniaMarina del ReyCalifornia
| | - Margaret J. Wright
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
| | - Olivier Salvado
- CSIRO Health and BiosecurityThe Australian eHealth Research CentreHerstonQueenslandAustralia
| |
Collapse
|
27
|
Navas-Sánchez FJ, Carmona S, Alemán-Gómez Y, Sánchez-González J, Guzmán-de-Villoria J, Franco C, Robles O, Arango C, Desco M. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents. Hum Brain Mapp 2016; 37:1893-902. [PMID: 26917433 DOI: 10.1002/hbm.23143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain
| | - Susana Carmona
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain
| | - Yasser Alemán-Gómez
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain
| | | | - Juan Guzmán-de-Villoria
- Departamento De Radiología, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain
| | - Carolina Franco
- Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain
| | - Olalla Robles
- Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain.,Centro De Referencia Estatal De Atención Al Daño Cerebral (CEADAC), Madrid, Spain
| | - Celso Arango
- Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain.,Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain.,Departamento De Psiquiatría, Facultad De Medicina, Universidad Complutense De Madrid, Madrid, Spain
| | - Manuel Desco
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain.,Unidad De Medicina Y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
28
|
Lorio S, Kherif F, Ruef A, Melie-Garcia L, Frackowiak R, Ashburner J, Helms G, Lutti A, Draganski B. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study. Hum Brain Mapp 2016; 37:1801-15. [PMID: 26876452 PMCID: PMC4855623 DOI: 10.1002/hbm.23137] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023] Open
Abstract
The high gray‐white matter contrast and spatial resolution provided by T1‐weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1‐weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1‐weighted images (R1 (=1/T1), R2*, and PD) in a large cohort of healthy subjects (n = 120, aged 18–87 years). Synthetic T1‐weighted images were calculated from these quantitative maps and used to extract morphometry features—gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue—myelination, iron, and water content—on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801–1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Lorio
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Ferath Kherif
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Anne Ruef
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Lester Melie-Garcia
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Richard Frackowiak
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, UCL, London, United Kingdom
| | - Gunther Helms
- Department of Clinical Sciences, Lund University, Medical Radiation Physics, Lund, Sweden
| | - Antoine Lutti
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Bodgan Draganski
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
29
|
Chiarello C, Vazquez D, Felton A, McDowell A. Structural asymmetry of the human cerebral cortex: Regional and between-subject variability of surface area, cortical thickness, and local gyrification. Neuropsychologia 2016; 93:365-379. [PMID: 26792368 DOI: 10.1016/j.neuropsychologia.2016.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Structural asymmetry varies across individuals, brain regions, and metrics of cortical organization. The current study investigated regional differences in asymmetry of cortical surface area, thickness, and local gyrification, and the extent of between-subject variability in these metrics, in a sample of healthy young adults (N=200). Between-subject variability in cortical structure may provide a means to assess the extent of biological flexibility or constraint of brain regions, and we explored the potential influence of this variability on the phenotypic expression of structural asymmetry. The findings demonstrate that structural asymmetries are nearly ubiquitous across the cortex, with differing regional organization for the three cortical metrics. This implies that there are multiple, only partially overlapping, maps of structural asymmetry. The results further indicate that the degree of asymmetry of a brain region can be predicted by the extent of the region's between-subject variability. These findings provide evidence that reduced biological constraint promotes the expression of strong structural asymmetry.
Collapse
|
30
|
Wang J, Yang N, Liao W, Zhang H, Yan CG, Zang YF, Zuo XN. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis. Dev Cogn Neurosci 2015; 15:117-29. [PMID: 26602957 PMCID: PMC6989820 DOI: 10.1016/j.dcn.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022] Open
Abstract
We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6-16 years, 42 boys). We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right) in its superior part, rightward (left < right) in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex) was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex) was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure-function relationships during the development.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Functional Connectome and Development, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liao
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Han Zhang
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao-Gan Yan
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Feng Zang
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xi-Nian Zuo
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Laboratory for Functional Connectome and Development, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Department of Psychology, School of Education Science, Guangxi Teachers Education University, Guangxi 530001, China
| |
Collapse
|
31
|
Abstract
Over 90 years ago, anatomists noted the cortex is thinner in sulci than gyri, suggesting that development may occur on a fine scale driven by local topology. However, studies of brain development in youth have focused on describing how cortical thickness varies over large-scale functional and anatomic regions. How the relationship between thickness and local sulcal topology arises in development is still not well understood. Here, we investigated the spatial relationships between cortical thickness, folding, and underlying white matter organization to elucidate the influence of local topology on human brain development. Our approach included using both T1-weighted imaging and diffusion tensor imaging (DTI) in a cross-sectional sample of 932 youths ages 8-21 studied as part of the Philadelphia Neurodevelopmental Cohort. Principal components analysis revealed separable development-related processes of regionally specific nonlinear cortical thickening (from ages 8-14) and widespread linear cortical thinning that have dissociable relationships with cortical topology. Whereas cortical thinning was most prominent in the depths of the sulci, early cortical thickening was present on the gyri. Furthermore, decline in mean diffusivity calculated from DTI in underlying white matter was correlated with cortical thinning, suggesting that cortical thinning is spatially associated with white matter development. Spatial permutation tests were used to assess the significance of these relationships. Together, these data demonstrate that cortical remodeling during youth occurs on a local topological scale and is associated with changes in white matter beneath the cortical surface.
Collapse
|
32
|
Accelerated longitudinal cortical thinning in adolescence. Neuroimage 2015; 104:138-45. [DOI: 10.1016/j.neuroimage.2014.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 01/26/2023] Open
|
33
|
Bootsman F, Brouwer RM, Schnack HG, van Baal GCM, van der Schot AC, Vonk R, Hulshoff Pol HE, Nolen WA, Kahn RS, van Haren NEM. Genetic and environmental influences on cortical surface area and cortical thickness in bipolar disorder. Psychol Med 2015; 45:193-204. [PMID: 25065711 DOI: 10.1017/s0033291714001251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The risk of developing bipolar disorder (BD) has been linked to structural brain abnormalities. The degree to which genes and environment influence the association of BD with cortical surface area remains to be elucidated. In this twin study, genetic and environmental contributions to the association between liability to develop BD and surface area, thickness and volume of the cortex were examined. METHOD The study cohort included 44 affected monozygotic (nine concordant, 12 discordant) and dizygotic (four concordant, 19 discordant) twin pairs, and seven twins from incomplete discordant monozygotic and dizygotic discordant twin pairs. In addition, 37 monozygotic and 24 dizygotic healthy control twin pairs, and six twins from incomplete monozygotic and dizygotic control pairs were included. RESULTS Genetic liability to develop BD was associated with a larger cortical surface in limbic and parietal regions, and a thicker cortex in central and parietal regions. Environmental factors related to BD were associated with larger medial frontal, parietal and limbic, and smaller orbitofrontal surfaces. Furthermore, thinner frontal, limbic and occipital cortex, and larger frontal and parietal, and smaller orbitofrontal volumes were also associated with environmental factors related to BD. CONCLUSIONS Our results suggest that unique environmental factors play a prominent role in driving the associations between liability to develop BD and cortical measures, particularly those involving cortical thickness. Further evaluation of their influence on the surface and thickness of the cortical mantle is recommended. In addition, cortical volume appeared to be primarily dependent on surface and not thickness.
Collapse
Affiliation(s)
- F Bootsman
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - R M Brouwer
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - H G Schnack
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - G C M van Baal
- Julius Center, University Medical Center Utrecht,Utrecht,The Netherlands
| | - A C van der Schot
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - R Vonk
- Reinier van Arkel Group, 's-Hertogenbosch,The Netherlands
| | - H E Hulshoff Pol
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - W A Nolen
- Department of Psychiatry,University Medical Center Groningen,Groningen,The Netherlands
| | - R S Kahn
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - N E M van Haren
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| |
Collapse
|
34
|
Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MGP, Walhovd KB. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. Cereb Cortex 2014; 26:257-267. [PMID: 25246511 DOI: 10.1093/cercor/bhu214] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque.
Collapse
Affiliation(s)
- Inge K Amlien
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Stine K Krogsrud
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Tristan A Chaplin
- Department of Physiology.,Monash Vision Group, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology.,Monash Vision Group, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Carmeli C, Fornari E, Jalili M, Meuli R, Knyazeva MG. Structural covariance of superficial white matter in mild Alzheimer's disease compared to normal aging. Brain Behav 2014; 4:721-37. [PMID: 25328848 PMCID: PMC4113976 DOI: 10.1002/brb3.252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/17/2014] [Accepted: 07/05/2014] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Interindividual variations in regional structural properties covary across the brain, thus forming networks that change as a result of aging and accompanying neurological conditions. The alterations of superficial white matter (SWM) in Alzheimer's disease (AD) are of special interest, since they follow the AD-specific pattern characterized by the strongest neurodegeneration of the medial temporal lobe and association cortices. METHODS Here, we present an SWM network analysis in comparison with SWM topography based on the myelin content quantified with magnetization transfer ratio (MTR) for 39 areas in each hemisphere in 15 AD patients and 15 controls. The networks are represented by graphs, in which nodes correspond to the areas, and edges denote statistical associations between them. RESULTS In both groups, the networks were characterized by asymmetrically distributed edges (predominantly in the left hemisphere). The AD-related differences were also leftward. The edges lost due to AD tended to connect nodes in the temporal lobe to other lobes or nodes within or between the latter lobes. The newly gained edges were mostly confined to the temporal and paralimbic regions, which manifest demyelination of SWM already in mild AD. CONCLUSION This pattern suggests that the AD pathological process coordinates SWM demyelination in the temporal and paralimbic regions, but not elsewhere. A comparison of the MTR maps with MTR-based networks shows that although, in general, the changes in network architecture in AD recapitulate the topography of (de)myelination, some aspects of structural covariance (including the interhemispheric asymmetry of networks) have no immediate reflection in the myelination pattern.
Collapse
Affiliation(s)
- Cristian Carmeli
- LREN, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne Lausanne, Switzerland
| | - Eleonora Fornari
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne Lausanne, Switzerland ; CIBM (Centre d'Imagérie Biomédicale), CHUV Unit Lausanne, Switzerland
| | - Mahdi Jalili
- Department of Computer Engineering, Sharif University of Technology Tehran, Iran ; School of Electrical and Computer Engineering, RMIT University Melbourne, Australia
| | - Reto Meuli
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne Lausanne, Switzerland ; CIBM (Centre d'Imagérie Biomédicale), CHUV Unit Lausanne, Switzerland
| | - Maria G Knyazeva
- LREN, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne Lausanne, Switzerland ; Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne Lausanne, Switzerland
| |
Collapse
|
36
|
Koelkebeck K, Miyata J, Kubota M, Kohl W, Son S, Fukuyama H, Sawamoto N, Takahashi H, Murai T. The contribution of cortical thickness and surface area to gray matter asymmetries in the healthy human brain. Hum Brain Mapp 2014; 35:6011-22. [PMID: 25082171 DOI: 10.1002/hbm.22601] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/18/2014] [Accepted: 07/23/2014] [Indexed: 11/10/2022] Open
Abstract
Human cortical gray matter (GM) is structurally asymmetrical and this asymmetry has been discussed to be partly responsible for functional lateralization of human cognition and behavior. Past studies on brain asymmetry have shown mixed results so far, with some studies focusing on the global shapes of the brain's surface, such as gyrification patterns, while others focused on regional brain volumes. In this study, we investigated cortical GM asymmetries in a large sample of right-handed healthy volunteers (n = 101), using a surface-based method which allows to analyze brain cortical thickness and surface area separately. As a result, substantially different patterns of symmetry emerged between cortical thickness and surface area measures. In general, asymmetry is more prominent in the measure of surface compared to that of thickness. Such a detailed investigation of structural asymmetries in the normal brain contributes largely to our knowledge of normal brain development and also offers insights into the neurodevelopmental basis of psychiatric disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Katja Koelkebeck
- Department of Psychiatry and Psychotherapy, School of Medicine, University of Muenster, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bogart SL, Bennett AJ, Schapiro SJ, Reamer LA, Hopkins WD. Different early rearing experiences have long-term effects on cortical organization in captive chimpanzees (Pan troglodytes). Dev Sci 2014; 17:161-74. [PMID: 24206013 PMCID: PMC3959747 DOI: 10.1111/desc.12106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition; however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46) with age-group peers. Magnetic resonance brain images were analyzed with a processing program (BrainVISA) that extracts cortical sulci. We obtained various measurements from 11 sulci located throughout the brain, as well as whole brain gyrification and white and grey matter volumes. We found that mother-reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain morphology in chimpanzees and suggests potential differences in the development of white matter expansion and myelination.
Collapse
Affiliation(s)
- Stephanie L Bogart
- Neuroscience Institute and the Language Research Center, Georgia State University, USA; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, USA; Department of Anthropology, Lawrence University, USA
| | | | | | | | | |
Collapse
|
38
|
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol 2014; 117:20-40. [PMID: 24548606 DOI: 10.1016/j.pneurobio.2014.02.004] [Citation(s) in RCA: 523] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 01/18/2023]
Abstract
What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer's disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in fronto-temporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology.
Collapse
Affiliation(s)
- Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Linda McEvoy
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA
| | - Dominic Holland
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, CA, USA
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| |
Collapse
|
39
|
Abstract
The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter.
Collapse
|
40
|
Zhou D, Lebel C, Evans A, Beaulieu C. Cortical thickness asymmetry from childhood to older adulthood. Neuroimage 2013; 83:66-74. [PMID: 23827331 DOI: 10.1016/j.neuroimage.2013.06.073] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 06/01/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022] Open
Abstract
Age-related thinning of the cortical mantle varies regionally, leading to hemispheric asymmetries in cortical thickness that may emerge at various stages of development and aging. Cortical asymmetry may play a role in modulating the functional maturation (or degradation) of language and cognition in humans, but its evolution over the lifespan is unknown. Here cortical thickness was negatively correlated with age in 274 5-59 year old, right-handed healthy participants. Pre-adolescents showed limited regions of cortical asymmetry focused on medial occipital lobe (R>L) and inferior frontal gyrus (R>L), namely vision and language relevant areas. More extensive frontal (lateral R>L, medial L>R) and parietal lobe (lateral L>R, medial R>L) asymmetries emerged after adolescence, and increased during aging. Changes of cortical asymmetry in these regions may be linked to specialization of the brain with maturity.
Collapse
Affiliation(s)
- Dongming Zhou
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
41
|
Regional and hemispheric variation in cortical thickness in chimpanzees (Pan troglodytes). J Neurosci 2013; 33:5241-8. [PMID: 23516289 DOI: 10.1523/jneurosci.2996-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent advances in structural magnetic resonance imaging technology and analysis now allows for accurate in vivo measurement of cortical thickness, an important aspect of cortical organization that has historically only been conducted on postmortem brains. In this study, for the first time, we examined regional and lateralized cortical thickness in a sample of 71 chimpanzees for comparison with previously reported findings in humans. We also measured gray and white matter volumes for each subject. The results indicated that chimpanzees showed significant regional variation in cortical thickness with lower values in primary motor and sensory cortex compared with association cortex. Furthermore, chimpanzees showed significant rightward asymmetries in cortical thickness for a number of regions of interest throughout the cortex and leftward asymmetries in white but not gray matter volume. We also found that total and region-specific cortical thickness was significantly negatively correlated with white matter volume. Thus, chimpanzees with greater white matter volumes had thinner cortical thickness. The collective findings are discussed within the context of previous findings in humans and theories on the evolution of cortical organization and lateralization in primates.
Collapse
|
42
|
Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. ACTA ACUST UNITED AC 2012; 23:2521-30. [PMID: 22892423 DOI: 10.1093/cercor/bhs231] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Older adults exhibit global reductions in cortical surface area, but little is known about the regional patterns of reductions or how these relate to other measures of brain structure. This knowledge is critical to understanding the dynamic relationship between different macrostructural properties of the cortex throughout adult life. Here, cortical arealization, local gyrification index (LGI), and cortical thickness were measured vertex wise across the brain surface in 322 healthy adults (20-85 years), with the aims of 1) characterizing age patterns of the three separate cortical measures and 2) testing the age-independent relationships among cortical surface area, gyrification, and thickness. Surface area showed strong age-related decreases, particularly pronounced in dorsomedial prefrontal, lateral temporal, and fusiform cortices, independently of total white matter volume. LGI decreased with age independently of regional surface area, with strongest effects laterally, extending from the angular gyrus in all directions. As expected, regional surface area and LGI were positively related. However, both measures correlated negatively with thickness, indicating increasing local arealization and gyrification with decreasing cortical thickness. We suggest that this pattern of regional "cortical stretching" reflects the well-established phylogenetic principle of maximizing surface area and gyrification rather than increase thickness to facilitate brain connectivity and functional development.
Collapse
Affiliation(s)
- Larson J Hogstrom
- Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway
| | | | | | | |
Collapse
|
43
|
Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF. Regional contraction of brain surface area involves three large-scale networks in schizophrenia. Schizophr Res 2011; 129:163-8. [PMID: 21497489 DOI: 10.1016/j.schres.2011.03.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/05/2011] [Accepted: 03/20/2011] [Indexed: 12/28/2022]
Abstract
In schizophrenia, morphological changes in the cerebral cortex have been primarily investigated using volumetric or cortical thickness measurements. In healthy subjects, as the brain size increases, the surface area expands disproportionately when compared to the scaling of cortical thickness. In this structural MRI study, we investigated the changes in brain surface area in schizophrenia by constructing relative areal contraction/expansion maps showing group differences in surface area using Freesurfer software in 57 patients and 41 controls. We observed relative areal contraction affecting Default Mode Network, Central Executive Network and Salience Network, in addition to other regions in schizophrenia. We confirmed the surface area reduction across these three large-scale brain networks by undertaking further region-of-interest analysis of surface area. We also observed a significant hemispheric asymmetry in the surface area changes, with the left hemisphere showing a greater reduction in the areal contraction maps. Our findings suggest that a fundamental disturbance in cortical expansion is likely in individuals who develop schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Division of Psychiatry, University of Nottingham, A Floor, South Block, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Westlye LT, Grydeland H, Walhovd KB, Fjell AM. Associations between regional cortical thickness and attentional networks as measured by the attention network test. ACTA ACUST UNITED AC 2010; 21:345-56. [PMID: 20525771 DOI: 10.1093/cercor/bhq101] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Efficient attention is pivotal for cognitive functioning, and individual differences in attentional functions are likely related to variations in structural properties of the brain. Attention is supported by separate processes, and models of the relationship between attention and brain structure must take this into account. The Attention Network Test (ANT) yields behavioral measures of 3 independent attentional components: executive control (EC), alerting, and orienting. EC relates to resolving cognitive interference, alerting refers to continuous maintenance of a vigilant state, and orienting to selection of and orienting toward sensory information. Evidence from functional neuroimaging studies suggests that the ANT components recruit different cortical networks. However, the structural correlates are not established. Therefore, ANT scores were correlated with cortical thickness across the brain surface in 268 healthy adults spanning 20-84 years of age. Specific correlations were found between cortical thickness and EC and alerting in regions implicated by functional neuroimaging and lesion studies, including anterior cingulate, lateral prefrontal, and right inferior frontal gyri for EC and parietal areas for alerting. The brain-behavior correlations were relatively stable across adulthood, indicating that factors influencing cortical maturation rather than aging-related atrophy specifically were instrumental in shaping the structural foundation for visuospatial attention in adults.
Collapse
Affiliation(s)
- Lars T Westlye
- Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Blindern, 0317 OSLO, Norway.
| | | | | | | |
Collapse
|
45
|
Espeseth T, Westlye LT, Walhovd KB, Fjell AM, Endestad T, Rootwelt H, Reinvang I. Apolipoprotein E ε4-related thickening of the cerebral cortex modulates selective attention. Neurobiol Aging 2010; 33:304-322.e1. [PMID: 20382449 DOI: 10.1016/j.neurobiolaging.2009.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/19/2009] [Accepted: 12/27/2009] [Indexed: 10/19/2022]
Abstract
APOE ε4 carriers have thicker cortex in several neocortical areas than ε4 noncarriers (Espeseth T., Westlye L.T., Fjell A.M., Walhovd K.B., Rootwelt H., Reinvang I., 2008. Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E ε4. Neurobiol. Aging 29, 329-340). To investigate potential physiological and cognitive correlates of these anatomical effects structural magnetic resonance imaging (MRI) data were obtained from 20 APOE ε3 homozygotes and 20 ε4 hetero- and homozygotes, and event-related potentials (ERPs) were recorded during a selective attention task (i.e. three-stimulus oddball). Several areas in both hemispheres were thicker in ε4 carriers than in noncarriers. ε4 carriers also had lower amplitudes to distractors (P3a) and lower target detection accuracy than noncarriers. Mean thickness in cortical areas were correlated with P3a amplitudes, which in turn correlated with accuracy. Path analyses showed that APOE-related difference in accuracy was mediated by APOE-related differences in cortical thickness and P3a amplitudes. The results suggest that APOE ε4 modulates the structural integrity of critical nodes in brain attentional networks.
Collapse
Affiliation(s)
- Thomas Espeseth
- Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
46
|
Jalili M, Meuli R, Do KQ, Hasler M, Crow TJ, Knyazeva MG. Attenuated asymmetry of functional connectivity in schizophrenia: a high-resolution EEG study. Psychophysiology 2010; 47:706-16. [PMID: 20102536 DOI: 10.1111/j.1469-8986.2009.00971.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interhemispheric asymmetries that originate from connectivity-related structuring of the cortex are compromised in schizophrenia (SZ). Under the assumption that such abnormalities affect functional connectivity, we analyzed its correlate-EEG synchronization-in SZ patients and matched controls. We applied multivariate synchronization measures based on Laplacian EEG and tuned to various spatial scales. Compared to the controls who had rightward asymmetry at a local level (EEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (1st and 2nd order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization in the alpha and beta bands. The abnormalities of asymmetry increased with the duration of the disease and correlated with the negative symptoms. We discuss the tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern, in normal subjects and SZ patients.
Collapse
Affiliation(s)
- Mahdi Jalili
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
47
|
Verbal fluency deficits and altered lateralization of language brain areas in individuals genetically predisposed to schizophrenia. Schizophr Res 2009; 115:202-8. [PMID: 19840895 PMCID: PMC4841274 DOI: 10.1016/j.schres.2009.09.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 11/21/2022]
Abstract
Alterations of verbal fluency may correlate with deficits of gray matter volume and hemispheric lateralization of language brain regions like the pars triangularis (PT) in schizophrenia. Examining non-psychotic individuals at high genetic risk (HR) for schizophrenia may clarify if these deficits represent heritable trait markers or state dependent phenomena. We assessed adolescent and young adult HR subjects (N=60) and healthy controls (HC; N=42) using verbal fluency tests and Freesurfer to process T1-MRI scans. We hypothesized volumetric and lateralization alterations of the PT and their correlation with verbal fluency deficits. HR subjects had letter verbal fluency deficits (controlling for IQ), left PT deficits (p=.00), (controlling ICV) and reversal of the L>R PT asymmetry noted in HC. Right Heschl's (p=.00), left supramarginal (p=.00) and right angular gyrii (p=.02) were also reduced in HR subjects. The L>R asymmetry of the Heschl's gyrus seen in HC was exaggerated and asymmetries of L>R of supramarginal and R>L of angular gyri, seen in HC were attenuated in HR subjects. L>R asymmetry of the PT predicted better verbal fluency across the pooled HR and HC groups. Young relatives of schizophrenia patients have verbal fluency deficits, gray matter volume deficits and reversed asymmetry of the pars triangularis. A reversed structural asymmetry of the PT in HR subjects may impair expressive language abilities leading to verbal fluency deficits. Volumetric deficits and altered asymmetry in inferior parietal and Heschl's gyrii may accompany genetic liability to schizophrenia.
Collapse
|
48
|
Fornito A, Yücel M, Dean B, Wood SJ, Pantelis C. Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull 2009; 35:973-93. [PMID: 18436528 PMCID: PMC2728810 DOI: 10.1093/schbul/sbn025] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anterior cingulate cortex (ACC) is a functionally heterogeneous region involved in diverse cognitive and emotional processes that support goal-directed behaviour. Structural magnetic resonance imaging (MRI) and neuropathological findings over the past two decades have converged to suggest abnormalities in the region may represent a neurobiological basis for many of the clinical manifestations of schizophrenia. However, while each approach offers complimentary information that can provide clues regarding underlying patholophysiological processes, the findings from these 2 fields are seldom integrated. In this article, we review structural neuroimaging and neuropathological studies of the ACC, focusing on the unique information they provide. The available imaging data suggest grey matter reductions in the ACC precede psychosis onset in some categories of high-risk individuals, show sub-regional specificity, and may progress with illness duration. The available post-mortem findings indicate these imaging-related changes are accompanied by reductions in neuronal, synaptic, and dendritic density, as well as increased afferent input, suggesting the grey matter differences observed with MRI arise from alterations in both neuronal and non-neuronal tissue compartments. We discuss the potential mechanisms that might facilitate integration of these findings and consider strategies for future research.
Collapse
Affiliation(s)
- Alex Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia,ORYGEN Research Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Rebecca L Cooper Research Laboratories, The Mental Health Research Institute, Parkville, Victoria, Australia,Departments of Pathology and Psychiatry, The University of Melbourne, Victoria, Australia,Department of Psychological Medicine, Monash University, Victoria, Australia
| | - Stephen J. Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia,Howard Florey Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Leonard CM, Towler S, Welcome S, Halderman LK, Otto R, Eckert MA, Chiarello C. Size matters: cerebral volume influences sex differences in neuroanatomy. Cereb Cortex 2008; 18:2920-31. [PMID: 18440950 PMCID: PMC2583156 DOI: 10.1093/cercor/bhn052] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological and behavioral differences between the sexes range from obvious to subtle or nonexistent. Neuroanatomical differences are particularly controversial, perhaps due to the implication that they might account for behavioral differences. In this sample of 200 men and women, large effect sizes (Cohen's d > 0.8) were found for sex differences in total cerebral gray and white matter, cerebellum, and gray matter proportion (women had a higher proportion of gray matter). The only one of these sex differences that survived adjustment for the effect of cerebral volume was gray matter proportion. Individual differences in cerebral volume accounted for 21% of the difference in gray matter proportion, while sex accounted for an additional 4%. The relative size of the corpus callosum was 5% larger in women, but this difference was completely explained by a negative relationship between relative callosal size and cerebral volume. In agreement with Jancke et al., individuals with higher cerebral volume tended to have smaller corpora callosa. There were few sex differences in the size of structures in Broca's and Wernicke's area. We conclude that individual differences in brain volume, in both men and women, account for apparent sex differences in relative size.
Collapse
|
50
|
Qiu A, Vaillant M, Barta P, Ratnanather JT, Miller MI. Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder. Hum Brain Mapp 2008; 29:973-85. [PMID: 17705219 PMCID: PMC2847686 DOI: 10.1002/hbm.20444] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/29/2007] [Accepted: 06/05/2007] [Indexed: 11/12/2022] Open
Abstract
In neuroimaging studies, spatial normalization and multivariate testing are central problems in characterizing group variation of functions (e.g., cortical thickness, curvature, functional response) in an atlas coordinate system across clinical populations. We present a region-of-interest (ROI)-based analysis framework for detecting such a group variation. This framework includes two main techniques: ROI-based registration via large deformation diffeomorphic metric surface mapping and a multivariate testing using a Gaussian random field (GRF) model on the cortical surface constructed by the eigenfunctions of the Laplace-Beltramioperator. We compared our GRF statistical model with a pointwise hypothesis testing approach, whose P-value is corrected using false discovery rate or random field theory at several smoothness scales. As an illustration, we applied this framework to a clinical study of the cortical thickness of the left planum temporale (PT) in subjects with psychotic bipolar disorder, schizophrenia, and healthy comparison controls. Our results show that the anterior portion of the left PT is thinner in the psychotic bipolar and schizophrenic groups than in the healthy control group, and the posterior portion of the left PT shows the reversal finding. Moreover, there may be a greater thickness variation in the left PT in psychotic bipolar patients when compared with that in schizophrenic patients.
Collapse
Affiliation(s)
- Anqi Qiu
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|