1
|
Bear R, Sloan SA, Caspary T. Primary cilia shape postnatal astrocyte development through Sonic Hedgehog signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618851. [PMID: 39464094 PMCID: PMC11507945 DOI: 10.1101/2024.10.17.618851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Primary cilia function as specialized signaling centers that regulate many cellular processes including neuron and glia development. Astrocytes possess cilia, but the function of cilia in astrocyte development remains largely unexplored. Critically, dysfunction of either astrocytes or cilia contributes to molecular changes observed in neurodevelopmental disorders. Here, we show that a sub-population of developing astrocytes in the prefrontal cortex are ciliated. This population corresponds to proliferating astrocytes and largely expresses the ciliary protein ARL13B. Genetic ablation of astrocyte cilia in vivo at two distinct stages of astrocyte development results in changes to Sonic Hedgehog (Shh) transcriptional targets. We show that Shh activity is decreased in immature and mature astrocytes upon loss of cilia. Furthermore, loss of cilia in immature astrocytes results in decreased astrocyte proliferation and loss of cilia in mature astrocytes causes enlarged astrocyte morphology. Together, these results indicate that astrocytes require cilia for Shh signaling throughout development and uncover functions for astrocyte cilia in regulating astrocyte proliferation and maturation. This expands our fundamental knowledge of astrocyte development and cilia function to advance our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rachel Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
| |
Collapse
|
2
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
3
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Lewis TR, Castillo CM, Klementieva NV, Hsu Y, Hao Y, Spencer WJ, Drack AV, Pazour GJ, Arshavsky VY. Contribution of intraflagellar transport to compartmentalization and maintenance of the photoreceptor cell. Proc Natl Acad Sci U S A 2024; 121:e2408551121. [PMID: 39145934 PMCID: PMC11348033 DOI: 10.1073/pnas.2408551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The first steps of vision take place in the ciliary outer segment compartment of photoreceptor cells. The protein composition of outer segments is uniquely suited to perform this function. The most abundant among these proteins is the visual pigment, rhodopsin, whose outer segment trafficking involves intraflagellar transport (IFT). Here, we report three major findings from the analysis of mice in which ciliary transport was acutely impaired by conditional knockouts of IFT-B subunits. First, we demonstrate the existence of a sorting mechanism whereby mislocalized rhodopsin is recruited to and concentrated in extracellular vesicles prior to their release, presumably to protect the cell from adverse effects of protein mislocalization. Second, reducing rhodopsin expression significantly delays photoreceptor degeneration caused by IFT disruption, suggesting that controlling rhodopsin levels may be an effective therapy for some cases of retinal degenerative disease. Last, the loss of IFT-B subunits does not recapitulate a phenotype observed in mutants of the BBSome (another ciliary transport protein complex relying on IFT) in which non-ciliary proteins accumulate in the outer segment. Whereas it is widely thought that the role of the BBSome is to primarily participate in ciliary transport, our data suggest that the BBSome has another major function independent of IFT and possibly related to maintaining the diffusion barrier of the ciliary transition zone.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | | | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - William J. Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA01605
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
5
|
Berg K, Gorham J, Lundt F, Seidman J, Brueckner M. Endocardial primary cilia and blood flow are required for regulation of EndoMT during endocardial cushion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594405. [PMID: 38798559 PMCID: PMC11118576 DOI: 10.1101/2024.05.15.594405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Blood flow is critical for heart valve formation, and cellular mechanosensors are essential to translate flow into transcriptional regulation of development. Here, we identify a role for primary cilia in vivo in the spatial regulation of cushion formation, the first stage of valve development, by regionally controlling endothelial to mesenchymal transition (EndoMT) via modulation of Kruppel-like Factor 4 (Klf4) . We find that high shear stress intracardiac regions decrease endocardial ciliation over cushion development, correlating with KLF4 downregulation and EndoMT progression. Mouse embryos constitutively lacking cilia exhibit a blood-flow dependent accumulation of KLF4 in these regions, independent of upstream left-right abnormalities, resulting in impaired cushion cellularization. snRNA-seq revealed that cilia KO endocardium fails to progress to late-EndoMT, retains endothelial markers and has reduced EndoMT/mesenchymal genes that KLF4 antagonizes. Together, these data identify a mechanosensory role for endocardial primary cilia in cushion development through regional regulation of KLF4.
Collapse
|
6
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell RH. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. Dev Dyn 2024; 253:846-858. [PMID: 38501709 PMCID: PMC11411014 DOI: 10.1002/dvdy.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. RESULTS We demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent reduction of ventral neuroepithelial stiffness in a notochord adjacent area at the level of the rhombomere 5. The formation of cranial and paravertebral ganglia is also impaired in these embryos. CONCLUSIONS This study reveals that hypoplastic hindbrain development, identified by abnormal rhombomere morphology and persistent loss of ventral neuroepithelial stiffness, precedes exencephaly in Fuz ablated murine mutants, indicating that the gene Fuz has a critical function sustaining normal neural tube development and neuronal differentiation.
Collapse
Affiliation(s)
- Carlo Donato Caiaffa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Yogeshwari S Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Bogdan Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Salavat R Aglyamov
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Li Y, Yang S, Yang S. IFT20 and WWTR1 govern bone homeostasis via synchronously regulating the expression and stability of TβRII in osteoblast lineage cells. RESEARCH SQUARE 2024:rs.3.rs-4009802. [PMID: 38562782 PMCID: PMC10984095 DOI: 10.21203/rs.3.rs-4009802/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Balance of bone and marrow fat formation is critical for bone homeostasis. The imbalance of bone homeostasis will cause various bone diseases, such as osteoporosis. However, the precise mechanisms governing osteoporotic bone loss and marrow adipose tissue (MAT) accumulation remain poorly understood. By analysis of publicly available databases from bone samples of osteoporosis patients, we found that the expression of intraflagellar transport 20 (IFT20) and WW domain containing transcription regulator 1 (WWTR1) were significantly downregulated in osteoblast lineage cells. Additionally, we found that double deletions of IFT20 and WWTR1 in osteoblasts resulted in a significant accumulation of MAT and bone loss. Moreover, IFT20 and WWTR1 deficiency in osteoblasts exacerbated bone-fat imbalance in ovariectomy (OVX)- and high-fat-diet (HFD)-induced osteoporosis mouse models. Mechanistically, we found that deletions of IFT20 and WWTR1 in osteoblasts synergistically inhibited osteogenesis and promoted adipogenesis and osteoclastogenesis. We also found that IFT20 interacted with TGF-β receptor type II (TβRII) to enhance TβRII stability by blocking c-Cbl-mediated ubiquitination and degradation of TβRII. WWTR1 transcriptionally upregulated TβRII expression by directly binding its promoter. These findings indicate that targeting IFT20/WWTR1 may be a potential therapeutic strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University Baltimore, MD 21205, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Cheng T, Mariappan A, Langner E, Shim K, Gopalakrishnan J, Mahjoub MR. Inhibiting centrosome clustering reduces cystogenesis and improves kidney function in autosomal dominant polycystic kidney disease. JCI Insight 2024; 9:e172047. [PMID: 38385746 DOI: 10.1172/jci.insight.172047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder accounting for approximately 5% of patients with renal failure, yet therapeutics for the treatment of ADPKD remain limited. ADPKD tissues display abnormalities in the biogenesis of the centrosome, a defect that can cause genome instability, aberrant ciliary signaling, and secretion of pro-inflammatory factors. Cystic cells form excess centrosomes via a process termed centrosome amplification (CA), which causes abnormal multipolar spindle configurations, mitotic catastrophe, and reduced cell viability. However, cells with CA can suppress multipolarity via "centrosome clustering," a key mechanism by which cells circumvent apoptosis. Here, we demonstrate that inhibiting centrosome clustering can counteract the proliferation of renal cystic cells with high incidences of CA. Using ADPKD human cells and mouse models, we show that preventing centrosome clustering with 2 inhibitors, CCB02 and PJ34, blocks cyst initiation and growth in vitro and in vivo. Inhibiting centrosome clustering activates a p53-mediated surveillance mechanism leading to apoptosis, reduced cyst expansion, decreased interstitial fibrosis, and improved kidney function. Transcriptional analysis of kidneys from treated mice identified pro-inflammatory signaling pathways implicated in CA-mediated cystogenesis and fibrosis. Our results demonstrate that centrosome clustering is a cyst-selective target for the improvement of renal morphology and function in ADPKD.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ewa Langner
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyuhwan Shim
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Jena, Germany
| | - Moe R Mahjoub
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Bear RM, Caspary T. Uncovering cilia function in glial development. Ann Hum Genet 2024; 88:27-44. [PMID: 37427745 PMCID: PMC10776815 DOI: 10.1111/ahg.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.
Collapse
Affiliation(s)
- Rachel M. Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
| |
Collapse
|
10
|
Gupta M, Pazour GJ. Intraflagellar transport: A critical player in photoreceptor development and the pathogenesis of retinal degenerative diseases. Cytoskeleton (Hoboken) 2023:10.1002/cm.21823. [PMID: 38140908 PMCID: PMC11193844 DOI: 10.1002/cm.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments. This review covers the state of knowledge of the role of IFT in the formation and maintenance of outer segments and the human diseases that result from mutations in genes encoding the IFT complex and associated motors.
Collapse
Affiliation(s)
- Mohona Gupta
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester MA USA 01605
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester MA USA 01655
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester MA USA 01605
| |
Collapse
|
11
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron and collecting duct progenitor growth and fate resulting in fibrocystic kidney disease. Development 2023; 150:dev201976. [PMID: 37982452 PMCID: PMC10753588 DOI: 10.1242/dev.201976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Mutations that disrupt centrosome biogenesis or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet how centrosome dysfunction results in the kidney disease phenotypes remains unknown. Here, we examined the consequences of conditional knockout of the ciliopathy gene Cep120, essential for centrosome duplication, in the nephron and collecting duct progenitor niches of the mouse embryonic kidney. Cep120 loss led to reduced abundance of both cap mesenchyme and ureteric bud populations, due to a combination of delayed mitosis, increased apoptosis and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis and decline in kidney function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in the pathways essential for development, fibrosis and cystogenesis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney morphogenesis and identifies new therapeutic targets for patients with renal centrosomopathies.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Chidera Agwu
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Kyuhwan Shim
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Sanjay Jain
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University in St Louis, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Smith AO, Frantz WT, Preval KM, Edwards YJK, Ceol CJ, Jonassen JA, Pazour GJ. The Tumor-Associated Calcium Signal Transducer 2 (TACSTD2) oncogene is upregulated in pre-cystic epithelial cells revealing a new target for polycystic kidney disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23299387. [PMID: 38106222 PMCID: PMC10723484 DOI: 10.1101/2023.12.04.23299387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polycystic kidney disease (PKD) is an important cause of end stage renal disease, but treatment options are limited. While later stages of the disease have been extensively studied, mechanisms driving the initial conversion of renal tubules into cysts are not understood. To identify factors that promote the initiation of cysts we deleted polycystin-2 ( Pkd2 ) in mice and surveyed transcriptional changes before and immediately after cysts developed. We identified 74 genes which we term cyst initiation candidates (CICs). To identify conserved changes with relevance to human disease we compared these murine CICs to single cell transcriptomic data derived from patients with PKD and from healthy controls. Tumor-associated calcium signal transducer 2 ( Tacstd2 ) stood out as an epithelial-expressed gene whose levels were elevated prior to cystic transformation and further increased with disease progression. Human tissue biopsies and organoids show that TACSTD2 protein is low in normal kidney cells but is elevated in cyst lining cells. While TACSTD2 has not been studied in PKD, it has been studied in cancer where it is highly expressed in solid tumors while showing minimal expression in normal tissue. This property is being exploited by antibody drug conjugates that target TACSTD2 for the delivery of cytotoxic drugs. Our finding that Tacstd2 is highly expressed in cysts, but not normal tissue, suggests that it should be explored as a candidate for drug development in PKD. More immediately, our work suggests that PKD patients undergoing TACSTD2 treatment for cancer should be monitored for kidney effects. One Sentence Summary The oncogene, tumor-associated calcium signal transducer 2 (Tacstd2) mRNA increased in abundance shortly after Pkd2 loss and may be a driver of cyst initiation in polycystic kidney disease.
Collapse
|
13
|
Kretschmer V, Schneider S, Matthiessen PA, Reichert D, Hotaling N, Glasßer G, Lieberwirth I, Bharti K, De Cegli R, Conte I, Nandrot EF, May-Simera HL. Deletion of IFT20 exclusively in the RPE ablates primary cilia and leads to retinal degeneration. PLoS Biol 2023; 21:e3002402. [PMID: 38048369 PMCID: PMC10721183 DOI: 10.1371/journal.pbio.3002402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/14/2023] [Accepted: 10/26/2023] [Indexed: 12/06/2023] Open
Abstract
Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.
Collapse
Affiliation(s)
- Viola Kretschmer
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Sandra Schneider
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Andreas Matthiessen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Reichert
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan Hotaling
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gunnar Glasßer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- University of Naples “Federico II”, Naples, Italy
| | | | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
14
|
Jin Y, Cheng D, Duan Y, Zhuo Z, Weng J, Zhang C, Zhu M, Liu X, Du J, Hua T, Li H, Haller S, Barkhof F, Liu Y. "Soap bubble" sign as an imaging marker for posterior fossa ependymoma Group B. Neuroradiology 2023; 65:1707-1714. [PMID: 37837480 DOI: 10.1007/s00234-023-03231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE To investigate the predictive value of the "soap bubble" sign on molecular subtypes (Group A [PFA] and Group B [PFB]) of posterior fossa ependymomas (PF-EPNs). METHODS MRI scans of 227 PF-EPNs (internal retrospective discovery set) were evaluated by two independent neuroradiologists to assess the "soap bubble" sign, which was defined as clusters of cysts of various sizes that look like "soap bubbles" on T2-weighted images. Two independent cohorts (external validation set [n = 31] and prospective validation set [n = 27]) were collected to validate the "soap bubble" sign. RESULTS Across three datasets, the "soap bubble" sign was observed in 21 PFB cases (7.4% [21/285] of PF-EPNs and 12.9% [21/163] of PFB); none in PFA. Analysis of the internal retrospective discovery set demonstrated substantial interrater agreement (1st Rating: κ = 0.71 [0.53-0.90], 2nd Rating: κ = 0.83 [0.68-0.98]) and intrarater agreement (Rater 1: κ = 0.73 [0.55-0.91], Rater 2: κ = 0.74 [0.55-0.92]) for the "soap bubble" sign; all 13 cases positive for the "soap bubble" sign were PFB (p = 0.002; positive predictive value [PPV] = 100%, negative predictive value [NPV] = 44%, sensitivity = 10%, specificity = 100%). The findings from the external validation set and the prospective validation set were similar, all cases positive for the "soap bubble" sign were PFB (p < 0.001; PPV = 100%). CONCLUSION The "soap bubble" sign represents a highly specific imaging marker for the PFB molecular subtype of PF-EPNs.
Collapse
Affiliation(s)
- Ying Jin
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jinyuan Weng
- Department of Medical Imaging Product, Neusoft, Group Ltd., Shenyang, 110179, China
| | - Chengzhou Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100070, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jiang Du
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tiantian Hua
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hongfang Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Sven Haller
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- CIMC-Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
15
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
16
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
17
|
Wang B, Liang Z, Tan T, Zhang M, Jiang Y, Shang Y, Gao X, Song S, Wang R, Chen H, Liu J, Li J, Ren Y, Liu P. CRB3 navigates Rab11 trafficking vesicles to promote γTuRC assembly during ciliogenesis. eLife 2023; 12:RP86689. [PMID: 37737843 PMCID: PMC10516600 DOI: 10.7554/elife.86689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Zheyong Liang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Tan Tan
- Center for Precision Medicine, Affiliated to the First People’s Hospital of Chenzhou, University of South ChinaChenzhouChina
| | - Miao Zhang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yina Jiang
- Department of Pathology, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yangyang Shang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Xiaoqian Gao
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Shaoran Song
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Ruiqi Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - He Chen
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Jie Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Juan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Yu Ren
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi’an Jiaotong UniversityShaanxiChina
| |
Collapse
|
18
|
Yanda MK, Ciobanu C, Guggino WB, Cebotaru L. CFTR and PC2, partners in the primary cilia in autosomal dominant polycystic kidney disease. Am J Physiol Cell Physiol 2023; 325:C682-C693. [PMID: 37519231 PMCID: PMC10635646 DOI: 10.1152/ajpcell.00197.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Defects in the primary cilium are associated with autosomal dominant polycystic kidney disease (ADPKD). We used a combination of animal models, Western blotting, and confocal microscopy and discovered that CFTR and polycystin 2 (PC2) are both colocalized to the cilium in normal kidneys, with the levels of both being decreased in cystic epithelia. Cilia were longer in CFTR-null mice and in cystic cells in our ADPKD animal models. We examined septin 2, known to play a role in cilia length, to act as a diffusion barrier and to serve as an enhancer of proliferation. We found that septin 2 protein levels were upregulated and colocalized strongly with CFTR in cystic cells. Application of VX-809, the CFTR corrector, restored CFTR and PC2 toward normal in the cilia, decreased the protein levels of septin 2, and drastically reduced septin 2 colocalization with CFTR. Our data suggest that CFTR is present in the cilia and plays a role there, perhaps through its conductance of Cl-. We also postulate that septin 2 is important for localizing CFTR to the apical membrane in cystic epithelia.NEW & NOTEWORTHY CFTR is present in the primary cilia together with polycystin 2 (PC2). Ablation of CFTR makes cilia longer suggesting that CFTR plays a role there, perhaps through its conductance of Cl.
Collapse
Affiliation(s)
- Murali K Yanda
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Cristian Ciobanu
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - William B Guggino
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liudmila Cebotaru
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
19
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell R. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552068. [PMID: 37577618 PMCID: PMC10418252 DOI: 10.1101/2023.08.04.552068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The formation of the brain and spinal cord is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Convergent and extension movements transforms a flat sheet of ectodermal cells into a narrow and elongated line of neuroepithelia, while a major source of Sonic Hedgehog signaling from the notochord induces the overlying neuroepithelial cells to form two apposed neural folds. Afterward, neural tube closure occurs by synchronized coordination of the surface ectoderm and adjacent neuroepithelial walls at specific axial regions known as neuropores. Environmental or genetic interferences can impair neurulation resulting in neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, which is a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. In this work, we demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent loss of ventral neuroepithelial stiffness, in a notochord adjacent area at the level of the rhombomere 5, preceding the development of exencephaly in Fuz ablated mutants. The formation of cranial and paravertebral ganglia is also impaired in these embryos, indicating that Fuz has a critical function sustaining normal neural tube development and neuronal differentiation. SIGNIFICANCE STATEMENT Neural tube defects (NTDs) are a common cause of disability in children, representing the second most common congenital structural malformation in humans following only congenital cardiovascular malformations. NTDs affect approximately 1 to 2 pregnancies per 1000 births every year worldwide, when the mechanical forces folding the neural plate fails to close at specific neuropores located anteriorly (cranial) or posteriorly (caudal) along the neural tube, in a process known as neurulation, which happens throughout the third and fourth weeks of human pregnancy.
Collapse
|
20
|
Van Sciver RE, Long AB, Katz HG, Gigante ED, Caspary T. Ciliary ARL13B inhibits developmental kidney cystogenesis in mouse. Dev Biol 2023; 500:1-9. [PMID: 37209936 PMCID: PMC10330881 DOI: 10.1016/j.ydbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.
Collapse
Affiliation(s)
- Robert E Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| | - Alyssa B Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| | - Harrison G Katz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Department of Biology, Brown University, Providence, RI, 02912, USA.
| | - Eduardo D Gigante
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Graduate Program in Neuroscience, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Department of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Ning K, Bhuckory MB, Lo CH, Sendayen BE, Kowal TJ, Chen M, Bansal R, Chang KC, Vollrath D, Berbari NF, Mahajan VB, Hu Y, Sun Y. Cilia-associated wound repair mediated by IFT88 in retinal pigment epithelium. Sci Rep 2023; 13:8205. [PMID: 37211572 PMCID: PMC10200793 DOI: 10.1038/s41598-023-35099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Brent E Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ming Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kun-Che Chang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Vollrath
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
22
|
Van Sciver RE, Long AB, Katz HG, Gigante ED, Caspary T. Ciliary ARL13B inhibits developmental kidney cystogenesis in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527739. [PMID: 36798281 PMCID: PMC9934666 DOI: 10.1101/2023.02.08.527739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.
Collapse
Affiliation(s)
- Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Harrison G. Katz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Present address: Department of Biology, Brown University, Providence, RI 02912, USA
| | - Eduardo D. Gigante
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Graduate Program in Neuroscience, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Present address: Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Perutina I, Kelam N, Maglica M, Racetin A, Ogorevc M, Filipović N, Katsuyama Y, Mišković J, Vukojević K. Disturbances in Switching between Canonical and Non-Canonical Wnt Signaling Characterize Developing and Postnatal Kidneys of Dab1-/- ( yotari) Mice. Biomedicines 2023; 11:biomedicines11051321. [PMID: 37238991 DOI: 10.3390/biomedicines11051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to determine the protein expression patterns of acetylated α-tubulin, inversin, dishevelled-1, Wnt5a/b, and β-catenin in developing (E13.5 and E15.5) and early postnatal (P4 and P14) kidneys of Dab1-/- (yotari) mice, their role in regulating the Wnt signaling pathway, and the possible relation to congenital anomalies of kidney and urinary tract (CAKUT). The analysis of target protein co-expression, observed in the renal vesicles/immature glomeruli, ampullae/collecting ducts, convoluted tubules, metanephric mesenchyme of developing kidneys, but proximal convoluted tubules, distal convoluted tubules and glomeruli of postnatal kidneys, was performed using double immunofluorescence and semi-quantitative methods. The overall expression of acetylated α-tubulin and inversin during normal kidney development increases with higher expression in yotari mice as the kidney acquires mature morphology. An increase in β-catenin and cytosolic DVL-1 levels, indicating a switch from non-canonical to canonical Wnt signaling, is found in the postnatal kidney of yotari mice. In contrast, healthy mouse kidney expresses inversin and Wnt5a/b in the postnatal period, thus activating non-canonical Wnt signaling. Target protein expression patterns in kidney development and the early postnatal period observed in this study could indicate that switching between canonical and non-canonical Wnt signaling is crucial for normal nephrogenesis, while the defective Dab1 gene product in yotari mice may promote CAKUT due to interfering with this process.
Collapse
Affiliation(s)
- Ilija Perutina
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Mirko Maglica
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Josip Mišković
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
24
|
Jeong J, Kang I, Kim Y, Ku KB, Park JH, Kim HJ, Kim CW, La J, Jung HE, Kim HC, Choi YJ, Kim J, Kim J, Lee HK. Regulation of c-SMAC formation and AKT-mTOR signaling by the TSG101-IFT20 axis in CD4 + T cells. Cell Mol Immunol 2023; 20:525-539. [PMID: 37029318 DOI: 10.1038/s41423-023-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
CD4+ T cells play major roles in the adaptive immune system, which requires antigen recognition, costimulation, and cytokines for its elaborate orchestration. Recent studies have provided new insight into the importance of the supramolecular activation cluster (SMAC), which comprises concentric circles and is involved in the amplification of CD4+ T cell activation. However, the underlying mechanism of SMAC formation remains poorly understood. Here, we performed single-cell RNA sequencing of CD4+ T cells left unstimulated and stimulated with anti-CD3 and anti-CD28 antibodies to identify novel proteins involved in their regulation. We found that intraflagellar transport 20 (IFT20), previously known as cilia-forming protein, was upregulated in antibody-stimulated CD4+ T cells compared to unstimulated CD4+ T cells. We also found that IFT20 interacted with tumor susceptibility gene 101 (TSG101), a protein that endocytoses ubiquitinated T-cell receptors. The interaction between IFT20 and TSG101 promoted SMAC formation, which led to amplification of AKT-mTOR signaling. However, IFT20-deficient CD4+ T cells showed SMAC malformation, resulting in reduced CD4+ T cell proliferation, aerobic glycolysis, and cellular respiration. Finally, mice with T-cell-specific IFT20 deficiency exhibited reduced allergen-induced airway inflammation. Thus, our data suggest that the IFT20-TSG101 axis regulates AKT-mTOR signaling via SMAC formation.
Collapse
Affiliation(s)
- Jiung Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chae Won Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
25
|
Bakey Z, Cabrera OA, Hoefele J, Antony D, Wu K, Stuck MW, Micha D, Eguether T, Smith AO, van der Wel NN, Wagner M, Strittmatter L, Beales PL, Jonassen JA, Thiffault I, Cadieux-Dion M, Boyes L, Sharif S, Tüysüz B, Dunstheimer D, Niessen HW, Devine W, Lo CW, Mitchison HM, Schmidts M, Pazour GJ. IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.23.23286106. [PMID: 36865301 PMCID: PMC9980244 DOI: 10.1101/2023.02.23.23286106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Motile and non-motile cilia are critical to mammalian development and health. Assembly of these organelles depends on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). A series of human and mouse IFT74 variants were studied to understand the function of this IFT subunit. Humans missing exon 2, which codes for the first 40 residues, presented an unusual combination of ciliary chondrodysplasia and mucociliary clearance disorders while individuals carrying biallelic splice site variants developed a lethal skeletal chondrodysplasia. In mice, variants thought to remove all Ift74 function, completely block ciliary assembly and result in midgestational lethality. A mouse allele that removes the first 40 amino acids, analogous to the human exon 2 deletion, results in a motile cilia phenotype with mild skeletal abnormalities. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia could account for the motile cilia phenotype observed in human and mice.
Collapse
|
26
|
Li XW, Ran JH, Zhou H, He JZ, Qiu ZW, Wang SY, Wu MN, Zhu S, An YP, Ma A, Li M, Quan YZ, Li NN, Ren CQ, Yang BX. 1-Indanone retards cyst development in ADPKD mouse model by stabilizing tubulin and down-regulating anterograde transport of cilia. Acta Pharmacol Sin 2023; 44:406-420. [PMID: 35906293 PMCID: PMC9889777 DOI: 10.1038/s41401-022-00937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/β-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.
Collapse
Affiliation(s)
- Xiao-Wei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Wei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ya-Zhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chao-Qun Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
27
|
Mechanism of cystogenesis by Cd79a-driven, conditional mTOR activation in developing mouse nephrons. Sci Rep 2023; 13:508. [PMID: 36627370 PMCID: PMC9832032 DOI: 10.1038/s41598-023-27766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder arising from developmental and postnatal processes. Defects in primary cilia and their signaling (eg, mTOR) underlie the pathogenesis. However, how mTOR regulates tubular integrity remains unclear. The paucity of faithful models has limited our understanding of pathogenesis and, therefore, the refinement of therapeutic targets. To understand the role of mTOR in early cystogenesis, we studied an in-house mouse model, Cd79a-Cre;Tsc1ff. (Cd79a-Tsc1 KO hereafter), recapitulating human autosomal-dominant PKD histology. Cre-mediated Tsc1 depletion driven by the promoter for Cd79a, a known B-cell receptor, activated mTORC1 exclusively along the distal nephron from embryonic day 16 onward. Cysts appeared in the distal nephron at 1 weeks of age and mice developed definite PKD by 4 weeks. Cd79a-Tsc1 KO tubule cells proliferated at a rate comparable to controls after birth but continued to divide even after postnatal day 14 when tubulogenesis is normally completed. Apoptosis occurred only after 9 weeks. During postnatal days 7-11, pre-cystic Cd79a-Tsc1 KO tubule cells showed cilia elongation, aberrant cell intercalation, and mitotic division, suggesting that defective cell planar polarity (PCP) may underlie cystogenesis. mTORC1 was activated in a portion of cyst-lining cells and occasionally even when Tsc1 was not depleted, implying a non-autonomous mechanism. Our results indicate that mTORC1 overactivation in developing distal tubules impairs their postnatal narrowing by disrupting morphogenesis, which orients an actively proliferating cell toward the elongating axis. The interplay between mTOR and cilium signaling, which coordinate cell proliferation with PCP, may be essential for cystogenesis.
Collapse
|
28
|
Finetti F, Onnis A, Baldari CT. IFT20: An Eclectic Regulator of Cellular Processes beyond Intraflagellar Transport. Int J Mol Sci 2022; 23:ijms232012147. [PMID: 36292997 PMCID: PMC9603483 DOI: 10.3390/ijms232012147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Initially discovered as the smallest component of the intraflagellar transport (IFT) system, the IFT20 protein has been found to be implicated in several unconventional mechanisms beyond its essential role in the assembly and maintenance of the primary cilium. IFT20 is now considered a key player not only in ciliogenesis but also in vesicular trafficking of membrane receptors and signaling proteins. Moreover, its ability to associate with a wide array of interacting partners in a cell-type specific manner has expanded the function of IFT20 to the regulation of intracellular degradative and secretory pathways. In this review, we will present an overview of the multifaceted role of IFT20 in both ciliated and non-ciliated cells.
Collapse
|
29
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
30
|
Golgi Dysfunctions in Ciliopathies. Cells 2022; 11:cells11182773. [PMID: 36139347 PMCID: PMC9496873 DOI: 10.3390/cells11182773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The Golgi apparatus (GA) is essential for intracellular sorting, trafficking and the targeting of proteins to specific cellular compartments. Anatomically, the GA spreads all over the cell but is also particularly enriched close to the base of the primary cilium. This peculiar organelle protrudes at the surface of almost all cells and fulfills many cellular functions, in particular during development, when a dysfunction of the primary cilium can lead to disorders called ciliopathies. While ciliopathies caused by loss of ciliated proteins have been extensively documented, several studies suggest that alterations of GA and GA-associated proteins can also affect ciliogenesis. Here, we aim to discuss how the loss-of-function of genes coding these proteins induces ciliary defects and results in ciliopathies.
Collapse
|
31
|
Rah G, Cha H, Kim J, Song J, Kim H, Oh YK, Ahn C, Kang M, Kim J, Yoo KH, Kim MJ, Ko HW, Ko JY, Park JH. KLC3 Regulates Ciliary Trafficking and Cyst Progression in CILK1 Deficiency-Related Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1726-1741. [PMID: 35961787 PMCID: PMC9529174 DOI: 10.1681/asn.2021111455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ciliogenesis-associated kinase 1 (CILK1) is a ciliary gene that localizes in primary cilia and regulates ciliary transport. Mutations in CILK1 cause various ciliopathies. However, the pathogenesis of CILK1-deficient kidney disease is unknown. METHODS To examine whether CILK1 deficiency causes PKD accompanied by abnormal cilia, we generated mice with deletion of Cilk1 in cells of the renal collecting duct. A yeast two-hybrid system and coimmunoprecipitation (co-IP) were used to identify a novel regulator, kinesin light chain-3 (KLC3), of ciliary trafficking and cyst progression in the Cilk1-deficient model. Immunocytochemistry and co-IP were used to examine the effect of KLC3 on ciliary trafficking of the IFT-B complex and EGFR. We evaluated the effects of these genes on ciliary trafficking and cyst progression by modulating CILK1 and KLC3 expression levels. RESULTS CILK1 deficiency leads to PKD accompanied by abnormal ciliary trafficking. KLC3 interacts with CILK1 at cilia bases and is increased in cyst-lining cells of CILK1-deficient mice. KLC3 overexpression promotes ciliary recruitment of IFT-B and EGFR in the CILK1 deficiency condition, which contributes to the ciliary defect in cystogenesis. Reduction in KLC3 rescued the ciliary defects and inhibited cyst progression caused by CILK1 deficiency. CONCLUSIONS Our findings suggest that CILK1 deficiency in renal collecting ducts leads to PKD and promotes ciliary trafficking via increased KLC3.
Collapse
Affiliation(s)
- Gyuyeong Rah
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hwayeon Cha
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Joohee Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyunho Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jongmin Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Min Jung Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| |
Collapse
|
32
|
Lv B, Zhang XO, Pazour GJ. Arih2 regulates Hedgehog signaling through smoothened ubiquitylation and ER-associated degradation. J Cell Sci 2022; 135:jcs260299. [PMID: 35899529 PMCID: PMC9481925 DOI: 10.1242/jcs.260299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
During Hedgehog signaling, the ciliary levels of Ptch1 and Smo are regulated by the pathway. At the basal state, Ptch1 localizes to cilia and prevents the ciliary accumulation and activation of Smo. Upon binding a Hedgehog ligand, Ptch1 exits cilia, relieving inhibition of Smo. Smo then concentrates in cilia, becomes activated and activates downstream signaling. Loss of the ubiquitin E3 ligase Arih2 elevates basal Hedgehog signaling, elevates the cellular level of Smo and increases basal levels of ciliary Smo. Mice express two isoforms of Arih2 with Arih2α found primarily in the nucleus and Arih2β found on the cytoplasmic face of the endoplasmic reticulum (ER). Re-expression of ER-localized Arih2β but not nuclear-localized Arih2α rescues the Arih2 mutant phenotypes. When Arih2 is defective, protein aggregates accumulate in the ER and the unfolded protein response is activated. Arih2β appears to regulate the ER-associated degradation (ERAD) of Smo preventing excess and potentially misfolded Smo from reaching the cilium and interfering with pathway regulation.
Collapse
Affiliation(s)
- Bo Lv
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| | - Xiao-Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China200092
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
33
|
Walker RV, Maranto A, Palicharla VR, Hwang SH, Mukhopadhyay S, Qian F. Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis. Front Mol Biosci 2022; 9:936070. [PMID: 35832738 PMCID: PMC9272769 DOI: 10.3389/fmolb.2022.936070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
Primary cilia play counterregulatory roles in cystogenesis-they inhibit cyst formation in the normal renal tubule but promote cyst growth when the function of polycystins is impaired. Key upstream cilia-specific signals and components involved in driving cystogenesis have remained elusive. Recent studies of the tubby family protein, Tubby-like protein 3 (TULP3), have provided new insights into the cilia-localized mechanisms that determine cyst growth. TULP3 is a key adapter of the intraflagellar transport complex A (IFT-A) in the trafficking of multiple proteins specifically into the ciliary membrane. Loss of TULP3 results in the selective exclusion of its cargoes from cilia without affecting their extraciliary pools and without disrupting cilia or IFT-A complex integrity. Epistasis analyses have indicated that TULP3 inhibits cystogenesis independently of the polycystins during kidney development but promotes cystogenesis in adults when polycystins are lacking. In this review, we discuss the current model of the cilia-dependent cyst activation (CDCA) mechanism in autosomal dominant polycystic kidney disease (ADPKD) and consider the possible roles of ciliary and extraciliary polycystins in regulating CDCA. We then describe the limitations of this model in not fully accounting for how cilia single knockouts cause significant cystic changes either in the presence or absence of polycystins. Based on available data from TULP3/IFT-A-mediated differential regulation of cystogenesis in kidneys with deletion of polycystins either during development or in adulthood, we hypothesize the existence of cilia-localized components of CDCA (cCDCA) and cilia-localized cyst inhibition (CLCI) signals. We develop the criteria for cCDCA/CLCI signals and discuss potential TULP3 cargoes as possible cilia-localized components that determine cystogenesis in kidneys during development and in adult mice.
Collapse
Affiliation(s)
- Rebecca V. Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Yu SS, Wang E, Chiang CY, Cheng PH, Yeh YS, Wu YY, Chiou YY, Jiang ST. Large deletion of Wdr19 in developing renal tubules disrupts primary ciliogenesis leading to polycystic kidney disease in mice. J Pathol 2022; 257:5-16. [PMID: 35007346 DOI: 10.1002/path.5863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/03/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
WD repeat domain 19 (Wdr19) is a major component of the intraflagellar transport (IFT) machinery, which is involved in the function of primary cilia. However, the effects of Wdr19 on primary cilia formation, cystogenesis, and polycystic kidney disease (PKD) progression remain unclear. To study these effects, we generated three lines of kidney-specific conditional knockout mice: Wdr19-knockout (Wdr19-KO, Wdr19f/- ::Cdh16-CreTg/0 ), Pkd1-knockout (Pkd1-KO, Pkd1f/- ::Cdh16-CreTg/0 ), and Wdr19/Pkd1-double knockout (Wdr19&Pkd1-dKO, Wdr19f/- ;Pkd1f/- ::Cdh16-CreTg/0 ) mice. Ultrastructural analysis using transmission electron microscopy (TEM) indicated that the primary cilia were almost absent at postnatal day 10 in Wdr19-KO mice compared with Pkd1-KO and wild-type (WT) mice. However, the primary cilia appeared structurally normal even if malfunctional in Pkd1-deficient cysts. The Pkd1-KO mice had the most severe PKD progression, including the shortest lifespan (14 days) and the largest renal cysts, among the three knockout lines. Thus, the molecular mechanism of renal cystogenesis in Wdr19-KO mice (primary cilia abrogation) was different from that in Pkd1-KO mice (primary cilia malfunction). In summary, Wdr19 deficiency leads to primary cilia abrogation and renal cyst formation. Wdr19 is primarily proposed to participate in retrograde IFT and to be crucial for the construction of primary cilia, which are critical organelles for tubulogenesis in the developing kidneys. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shang-Shiuan Yu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70457, Taiwan.,National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Ellian Wang
- Department of Physiology, National Cheng Kung University Medical College, Tainan, 70101, Taiwan
| | - Chih-Ying Chiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Po-Hao Cheng
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Yu-Shan Yeh
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Ying-Ying Wu
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Yuan-Yow Chiou
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan.,Division of Pediatric Nephrology, Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| |
Collapse
|
35
|
Bai Y, Wei C, Li P, Sun X, Cai G, Chen X, Hong Q. Primary cilium in kidney development, function and disease. Front Endocrinol (Lausanne) 2022; 13:952055. [PMID: 36072924 PMCID: PMC9441790 DOI: 10.3389/fendo.2022.952055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The primary cilium is a hair-like, microtubule-based organelle that is covered by the cell membrane and extends from the surface of most vertebrate cells. It detects and translates extracellular signals to direct various cellular signaling pathways to maintain homeostasis. It is mainly distributed in the proximal and distal tubules and collecting ducts in the kidney. Specific signaling transduction proteins localize to primary cilia. Defects in cilia structure and function lead to a class of diseases termed ciliopathies. The proper functioning of primary cilia is essential to kidney organogenesis and the maintenance of epithelial cell differentiation and proliferation. Persistent cilia dysfunction has a role in the early stages and progression of renal diseases, such as cystogenesis and acute tubular necrosis (ATN). In this review, we focus on the central role of cilia in kidney development and illustrate how defects in cilia are associated with renal disease progression.
Collapse
Affiliation(s)
- Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Cuiting Wei
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xiangmei Chen, ; Quan Hong,
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- *Correspondence: Xiangmei Chen, ; Quan Hong,
| |
Collapse
|
36
|
Yamaguchi H, Kitami M, Uchima Koecklin KH, He L, Wang J, Lagor WR, Perrien DS, Komatsu Y. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice. Dev Biol 2021; 482:91-100. [PMID: 34929174 DOI: 10.1016/j.ydbio.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023]
Abstract
Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, the unique functions and roles of each IFT during endochondral ossification remain unclear. Here, we show that IFT20 is required for endochondral ossification in mice. Utilizing osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre and Col2-Cre), we deleted Ift20 to examine its function. Although chondrocyte-specific Ift20 deletion with Col2-Cre mice did not cause any overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) mice resulted in shortened limb outgrowth. Primary cilia were absent on chondrocytes of Ift20:Prx1-Cre mice, and ciliary-mediated Hedgehog signaling was attenuated in Ift20:Prx1-Cre mice. Interestingly, loss of Ift20 also increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate that IFT20 is a critical regulator of temporospatial FGF signaling that is required for endochondral ossification.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Megumi Kitami
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | | | - Li He
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Jianbo Wang
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, 30232, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth, Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
38
|
Iaconis D, Crina C, Brillante S, Indrieri A, Morleo M, Franco B. The HOPS complex subunit VPS39 controls ciliogenesis through autophagy. Hum Mol Genet 2021; 29:1018-1029. [PMID: 32077937 PMCID: PMC7158379 DOI: 10.1093/hmg/ddaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are microtubule-based organelles that assemble and protrude from the surface of most mammalian cells during quiescence. The biomedical relevance of cilia is indicated by disorders ascribed to cilia dysfunction, known as ciliopathies, that display distinctive features including renal cystic disease. In this report, we demonstrate that vacuolar protein sorting 39 (VPS39), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, acts as a negative regulator of ciliogenesis in human renal cells, by controlling the localization of the intraflagellar transport 20 protein at the base of cilia through autophagy. Moreover, we show that VPS39 controls ciliogenesis through autophagy also in vivo in renal tubules of medaka fish. These observations suggest a direct involvement of the HOPS complex in the regulation of autophagy-mediated ciliogenesis and eventually in target selection. Interestingly, we show that the impact of autophagy modulation on ciliogenesis is cell-type dependent and strictly related to environmental stimuli. This report adds a further tile to the cilia-autophagy connection and suggests that VPS39 could represent a new biological target for the recovery of the cilia-related phenotypes observed in the kidneys of patients affected by ciliopathies.
Collapse
Affiliation(s)
- Daniela Iaconis
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Claudia Crina
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council, 35 20122 Milan, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
39
|
Yamaguchi H, Meyer MD, He L, Senavirathna L, Pan S, Komatsu Y. The molecular complex of ciliary and golgin protein is crucial for skull development. Development 2021; 148:270770. [PMID: 34128978 DOI: 10.1242/dev.199559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 01/13/2023]
Abstract
Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Li He
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
40
|
Lv B, Stuck MW, Desai PB, Cabrera OA, Pazour GJ. E3 ubiquitin ligase Wwp1 regulates ciliary dynamics of the Hedgehog receptor Smoothened. J Cell Biol 2021; 220:212435. [PMID: 34161574 PMCID: PMC8236919 DOI: 10.1083/jcb.202010177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/01/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
The Hedgehog pathway, critical to vertebrate development, is organized in primary cilia. Activation of signaling causes the Hedgehog receptor Ptch1 to exit cilia, allowing a second receptor, Smo, to accumulate in cilia and activate the downstream steps of the pathway. Mechanisms regulating the dynamics of these receptors are unknown, but the ubiquitination of Smo regulates its interaction with the intraflagellar transport system to control ciliary levels. A focused screen of ubiquitin-related genes identified nine required for maintaining low ciliary Smo at the basal state. These included cytoplasmic E3s (Arih2, Mgrn1, and Maea), a ciliary localized E3 (Wwp1), a ciliary localized E2 (Ube2l3), a deubiquitinase (Bap1), and three adaptors (Kctd5, Skp1a, and Skp2). The ciliary E3, Wwp1, binds Ptch1 and localizes to cilia at the basal state. Activation of signaling removes both Ptch1 and Wwp1 from cilia, thus providing an elegant mechanism for Ptch1 to regulate ciliary Smo levels.
Collapse
Affiliation(s)
- Bo Lv
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Oscar A Cabrera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
41
|
Wang W, Jack BM, Wang HH, Kavanaugh MA, Maser RL, Tran PV. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length. Front Cell Dev Biol 2021; 9:661350. [PMID: 34095126 PMCID: PMC8170031 DOI: 10.3389/fcell.2021.661350] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are small, antenna-like organelles that detect and transduce chemical and mechanical cues in the extracellular environment, regulating cell behavior and, in turn, tissue development and homeostasis. Primary cilia are assembled via intraflagellar transport (IFT), which traffics protein cargo bidirectionally along a microtubular axoneme. Ranging from 1 to 10 μm long, these organelles typically reach a characteristic length dependent on cell type, likely for optimum fulfillment of their specific roles. The importance of an optimal cilia length is underscored by the findings that perturbation of cilia length can be observed in a number of cilia-related diseases. Thus, elucidating mechanisms of cilia length regulation is important for understanding the pathobiology of ciliary diseases. Since cilia assembly/disassembly regulate cilia length, we review the roles of IFT in processes that affect cilia assembly/disassembly, including ciliary transport of structural and membrane proteins, ectocytosis, and tubulin posttranslational modification. Additionally, since the environment of a cell influences cilia length, we also review the various stimuli encountered by renal epithelia in healthy and diseased states that alter cilia length and IFT.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robin L Maser
- Department of Clinical Laboratory Sciences, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
42
|
Stuck MW, Chong WM, Liao JC, Pazour GJ. Rab34 is necessary for early stages of intracellular ciliogenesis. Curr Biol 2021; 31:2887-2894.e4. [PMID: 33989524 DOI: 10.1016/j.cub.2021.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023]
Abstract
Primary cilia are sensory organelles present on most vertebrate cells and are critical for development and health. Ciliary dysfunction is associated with a large class of human pathologies collectively known as ciliopathies. These include cystic kidneys, blindness, obesity, skeletal malformations, and other organ anomalies. Using a proximity biotinylation with Ift27 as bait, we identified the small guanosine triphosphatase (GTPase) Rab34 as a ciliary protein. Rab34 localizes to the centrosomes near the mother centriole, the axoneme of developed cilia, and highly dynamic tubule structures in the centrosomal region. Rab34 is required for cilia formation in fibroblasts, where we find that Rab34 loss blocks ciliogenesis at an early step of ciliary vesicle formation. In inner medullary collecting duct (IMCD3) epithelial cells, the requirement is more complex, with Rab34 needed in cells grown at low density but becoming less important as cell density increases. Ciliogenesis can proceed by an internal pathway where cilia form in the cytoplasm before being displayed on the ciliary surface or cilia can assemble by an external pathway where the centriole docks on the plasma membrane before ciliary assembly. Fibroblasts are thought to use the internal pathway, although IMCD3 cells are thought to use the external pathway. However, we find that IMCD3 cells can use the internal assembly pathway and significant numbers of internally assembling cilia are observed in low-density cells. Together, our work indicates that Rab34 is required for internal assembly of cilia, but not for cilia built on the cell surface.
Collapse
Affiliation(s)
- Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| | - Weng Man Chong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Alfadhel M, Umair M, Almuzzaini B, Asiri A, Al Tuwaijri A, Alhamoudi K, Alyafee Y, Al-Owain M. Identification of the TTC26 Splice Variant in a Novel Complex Ciliopathy Syndrome with Biliary, Renal, Neurological, and Skeletal Manifestations. Mol Syndromol 2021; 12:133-140. [PMID: 34177428 DOI: 10.1159/000513829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Ciliopathies constitute heterogeneous disorders that result from mutations in ciliary proteins. These proteins play an important role in the development of organs, physiology, and signaling pathways, and sequence variations in the genes encoding these proteins are associated with multisystem disorders. In this study, we describe a severe ciliopathy disorder that segregates in an autosomal recessive manner in a nonconsanguineous Saudi family. The proband exhibited features such as cholestasis, cystic dilatation of intrahepatic biliary ducts, diabetes insipidus, dysmorphic facial features, optic atrophy, pituitary hypoplasia, hydrocephalus, aqueductal stenosis, hyperextensible knee joints, bilateral knee dislocation, polydactyly, and syndactyly. Whole-genome sequencing and Sanger sequencing revealed a homozygous splice site variant (c.4-1G>C; NM_024926.3) in the tetratricopeptide repeat domain 26 (TTC26) gene located in chromosome 7q34, which cosegregated perfectly with the disease phenotype. qRT-PCR revealed a substantial decrease in the expression of the TTC26 gene as compared to the normal control, suggesting the pathogenicity of the identified variant. This report further strengthens the evidence that homozygous variants in the TTC26 gene cause severe ciliopathies with diverse phenotypes. We named this newly characterized condition as BRENS syndrome, which stands for biliary, renal, neurological, and skeletal features.
Collapse
Affiliation(s)
- Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, MNGH, Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, MNGH, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, MNGH, Riyadh, Saudi Arabia
| | - Abdulaziz Asiri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, MNGH, Riyadh, Saudi Arabia
| | - Khaloud Alhamoudi
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, MNGH, Riyadh, Saudi Arabia
| | - Yusra Alyafee
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, MNGH, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
De-Castro ARG, Quintas-Gonçalves J, Silva-Ribeiro T, Rodrigues DRM, De-Castro MJG, Abreu CM, Dantas TJ. The IFT20 homolog in Caenorhabditis elegans is required for ciliogenesis and cilia-mediated behavior. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 33997658 PMCID: PMC8114103 DOI: 10.17912/micropub.biology.000396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cilia are microtubule-based organelles that carry out a wide range of critical functions throughout the development of higher animals. Regardless of their type, all cilia rely on a motor-driven, bidirectional transport system known as intraflagellar transport (IFT). Of the many components of the IFT machinery, IFT20 is one of the smallest subunits. Nevertheless, IFT20 has been shown to play critical roles in the assembly of several types of mammalian cilia. Here we show that the IFT20 homolog in Caenorhabditis elegans, IFT-20, is also important for correct cilium assembly in sensory neurons. Strikingly, however, we find that IFT-20-deficient animals are able to assemble short, vestigial cilia. In spite of this, we show that practically all IFT-20-deficient animals fail to respond to environmental cues that are normally detected by cilia to modulate their behavior. Altogether, our results indicate that IFT-20 is critical for both the correct assembly and function of cilia in C. elegans.
Collapse
Affiliation(s)
- Ana R G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Joana Quintas-Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago Silva-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diogo R M Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Maria J G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carla M Abreu
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago J Dantas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
45
|
Peralta M, Ortiz Lopez L, Jerabkova K, Lucchesi T, Vitre B, Han D, Guillemot L, Dingare C, Sumara I, Mercader N, Lecaudey V, Delaval B, Meilhac SM, Vermot J. Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis. Cell Rep 2021; 32:107932. [PMID: 32698004 DOI: 10.1016/j.celrep.2020.107932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.
Collapse
Affiliation(s)
- Marina Peralta
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laia Ortiz Lopez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Katerina Jerabkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Tommaso Lucchesi
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Benjamin Vitre
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Dong Han
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Laurent Guillemot
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Chaitanya Dingare
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginie Lecaudey
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Benedicte Delaval
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
46
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
47
|
Desai PB, Stuck MW, Lv B, Pazour GJ. Ubiquitin links smoothened to intraflagellar transport to regulate Hedgehog signaling. J Cell Biol 2021; 219:151798. [PMID: 32435793 PMCID: PMC7337509 DOI: 10.1083/jcb.201912104] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
In the absence of Hedgehog ligand, patched-1 (Ptch1) localizes to cilia and prevents ciliary accumulation and activation of smoothened (Smo). Upon ligand binding, Ptch1 is removed from cilia, and Smo is derepressed and accumulates in cilia where it activates signaling. The mechanisms regulating these dynamic movements are not well understood, but defects in intraflagellar transport components, including Ift27 and the BBSome, cause Smo to accumulate in cilia without pathway activation. We find that in the absence of ligand-induced pathway activation, Smo is ubiquitinated and removed from cilia, and this process is dependent on Ift27 and BBSome components. Activation of Hedgehog signaling decreases Smo ubiquitination and ciliary removal, resulting in its accumulation. Blocking ubiquitination of Smo by an E1 ligase inhibitor or by mutating two lysine residues in intracellular loop three causes Smo to aberrantly accumulate in cilia without pathway activation. These data provide a mechanism to control Smo's ciliary level during Hedgehog signaling by regulating the ubiquitination state of the receptor.
Collapse
Affiliation(s)
- Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Bo Lv
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
48
|
Yang H, Zhang F, Long H, Lin Y, Liao J, Xia H, Huang K. IFT20 Mediates the Transport of Cell Migration Regulators From the Trans-Golgi Network to the Plasma Membrane in Breast Cancer Cells. Front Cell Dev Biol 2021; 9:632198. [PMID: 33748116 PMCID: PMC7968458 DOI: 10.3389/fcell.2021.632198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
IFT20 is a subunit of the intraflagellar transport (IFT) system essential for the formation and function of cilia. Besides predominant research in the cilia field, some IFT subunits perform extraciliary roles in non-ciliated cancer cells. However, the specific roles of IFT subunits in tumorigenesis remain unknown. Here, we found that knockout of IFT20 in mouse breast cancer cells lacking primary cilia promoted epithelial mesenchymal transitions (EMTs), active lamellipodia formation, and cell migration. IFT20 localized at the trans-Golgi and trans-Golgi network (TGN), and displayed vesicular co-distributions with Rab8a, the marker of TGN-to-plasma membrane vesicular trafficking. Proximity-dependent biotin identification (BioID) and colocalization analyzes showed that Numb and Ctnnal1, whose depletion promoted cell migration, co-localized with IFT20 at the trans-Golgi/TGN or intracellular transport vesicles. Furthermore, Strep-Tactin pulldown assays revealed an interaction between IFT20 and Ctnnal1 or Numb. Loss of IFT20 lowered the expression of actin-associated Tagln2, whose knockdown promoted cell migration. Thus, the extraciliary function of ITF20 in breast cancer cell was associated with the negative regulation of migration.
Collapse
Affiliation(s)
- Huihui Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiwen Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiahui Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education (Hubei-MOST & KLOBM), Wuhan University, Wuhan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education (Hubei-MOST & KLOBM), Wuhan University, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
Turn RE, Linnert J, Gigante ED, Wolfrum U, Caspary T, Kahn RA. Roles for ELMOD2 and Rootletin in ciliogenesis. Mol Biol Cell 2021; 32:800-822. [PMID: 33596093 PMCID: PMC8108518 DOI: 10.1091/mbc.e20-10-0635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ELMOD2 is a GTPase-activating protein with uniquely broad specificity for ARF family GTPases. We previously showed that it acts with ARL2 in mitochondrial fusion and microtubule stability and with ARF6 during cytokinesis. Mouse embryonic fibroblasts deleted for ELMOD2 also displayed changes in cilia-related processes including increased ciliation, multiciliation, ciliary morphology, ciliary signaling, centrin accumulation inside cilia, and loss of rootlets at centrosomes with loss of centrosome cohesion. Increasing ARL2 activity or overexpressing Rootletin reversed these defects, revealing close functional links between the three proteins. This was further supported by the findings that deletion of Rootletin yielded similar phenotypes, which were rescued upon increasing ARL2 activity but not ELMOD2 overexpression. Thus, we propose that ARL2, ELMOD2, and Rootletin all act in a common pathway that suppresses spurious ciliation and maintains centrosome cohesion. Screening a number of markers of steps in the ciliation pathway supports a model in which ELMOD2, Rootletin, and ARL2 act downstream of TTBK2 and upstream of CP110 to prevent spurious release of CP110 and to regulate ciliary vesicle docking. These data thus provide evidence supporting roles for ELMOD2, Rootletin, and ARL2 in the regulation of ciliary licensing.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Joshua Linnert
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz 655099, Germany
| | - Eduardo D Gigante
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322.,Neuroscience Graduate Program, Emory University, Atlanta, GA 30322
| | - Uwe Wolfrum
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz 655099, Germany
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
50
|
Paulson D, Harms R, Ward C, Latterell M, Pazour GJ, Fink DM. Loss of Primary Cilia Protein IFT20 Dysregulates Lymphatic Vessel Patterning in Development and Inflammation. Front Cell Dev Biol 2021; 9:672625. [PMID: 34055805 PMCID: PMC8160126 DOI: 10.3389/fcell.2021.672625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Microenvironmental signals produced during development or inflammation stimulate lymphatic endothelial cells to undergo lymphangiogenesis, in which they sprout, proliferate, and migrate to expand the vascular network. Many cell types detect changes in extracellular conditions via primary cilia, microtubule-based cellular protrusions that house specialized membrane receptors and signaling complexes. Primary cilia are critical for receipt of extracellular cues from both ligand-receptor pathways and physical forces such as fluid shear stress. Here, we report the presence of primary cilia on immortalized mouse and primary adult human dermal lymphatic endothelial cells in vitro and on both luminal and abluminal domains of mouse corneal, skin, and mesenteric lymphatic vessels in vivo. The purpose of this study was to determine the effects of disrupting primary cilia on lymphatic vessel patterning during development and inflammation. Intraflagellar transport protein 20 (IFT20) is part of the transport machinery required for ciliary assembly and function. To disrupt primary ciliary signaling, we generated global and lymphatic endothelium-specific IFT20 knockout mouse models and used immunofluorescence microscopy to quantify changes in lymphatic vessel patterning at E16.5 and in adult suture-mediated corneal lymphangiogenesis. Loss of IFT20 during development resulted in edema, increased and more variable lymphatic vessel caliber and branching, as well as red blood cell-filled lymphatics. We used a corneal suture model to determine ciliation status of lymphatic vessels during acute, recurrent, and tumor-associated inflammatory reactions and wound healing. Primary cilia were present on corneal lymphatics during all of the mechanistically distinct lymphatic patterning events of the model and assembled on lymphatic endothelial cells residing at the limbus, stalk, and vessel tip. Lymphatic-specific deletion of IFT20 cell-autonomously exacerbated acute corneal lymphangiogenesis resulting in increased lymphatic vessel density and branching. These data are the first functional studies of primary cilia on lymphatic endothelial cells and reveal a new dimension in regulation of lymphatic vascular biology.
Collapse
Affiliation(s)
- Delayna Paulson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Rebecca Harms
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Cody Ward
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Mackenzie Latterell
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Darci M. Fink
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
- *Correspondence: Darci M. Fink,
| |
Collapse
|