1
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Kimura SI, Watanabe Y, Shibasaki S, Shinzato N, Inahashi Y, Sunazuka T, Hokari R, Ishiyama A, Iwatsuki M. New antimalarial iromycin analogs produced by Streptomyces sp. RBL-0292. J Antibiot (Tokyo) 2024; 77:272-277. [PMID: 38438501 DOI: 10.1038/s41429-024-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/06/2024]
Abstract
Two new antimalarial compounds, named prenylpyridones A (1) and B (2), were discovered from the actinomycete cultured material of Streptomyces sp. RBL-0292 isolated from the soil on Hamahiga Island in Okinawa prefecture. The structures of 1 and 2 were elucidated as new iromycin analogs having α-pyridone ring by MS and NMR analyses. Compounds 1 and 2 showed moderate in vitro antimalarial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with IC50 values ranging from 80.7 to 106.7 µM.
Collapse
Affiliation(s)
- So-Ichiro Kimura
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shiori Shibasaki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rei Hokari
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Aki Ishiyama
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
3
|
Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants (Basel) 2021; 10:antiox10121872. [PMID: 34942976 PMCID: PMC8698694 DOI: 10.3390/antiox10121872] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.
Collapse
|
4
|
Chen H, Zhu H, Yang J, Zhu Y, Mei J, Shen H, Liang K, Zhang X. Role of Programmed Cell Death 4 (PDCD4)-Mediated Akt Signaling Pathway in Vascular Endothelial Cell Injury Caused by Lower-Extremity Ischemia-Reperfusion in Rats. Med Sci Monit 2019; 25:4811-4818. [PMID: 31253757 PMCID: PMC6613321 DOI: 10.12659/msm.914035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We aimed to investigate the role of PDCD4-mediated Akt signaling pathway in vascular endothelial cell injury caused by ischemia-reperfusion in the lower extremities. MATERIAL AND METHODS Ten rats were used as control, while 50 rats were used for creating disease models and were assigned to 5 groups: model group (no injection), NC group (injected with vectors containing PDCD negative control sequence), sh-PDCD4 group (injected with vectors containing sh-PDCD4 sequence), IGF-1 group (injected with IGF-1), and sh-PDCD4+IGF-1 group (injected with IGF-1 and vectors containing sh-PDCD4 sequence). RESULTS Compared with the control group, the expression levels of PDCD4 mRNA and protein, as well as levels of circulating endothelial cells, von Willebrand factor, thrombomodulin, and malondialdehyde, increased in the other 5 groups, while the mRNA and protein expression levels of Akt and eNOS, the protein expression levels of p-Akt and p-eNOS, and superoxide dismutase content decreased in these groups (all P<0.05). Compared with the model group, the sh-PDCD4 and sh-PDCD4+1GF-1 groups had lower mRNA and protein expressions of PDCD4 (all P<0.05), whereas the IGF-1 group had similar levels (all P>0.05). These 3 groups had lower levels of circulating endothelial cells, von Willebrand factor, thrombomodulin, and malondialdehyde, and higher mRNA and protein expressions of Akt and eNOS, protein expressions of p-Akt and p-eNOS, and superoxide dismutase content (all P<0.05). The NC group did not differ from the model group (all P>0.05). CONCLUSIONS PDCD4 gene silencing can activate the Akt signaling pathway and attenuate vascular endothelial cell injury caused by ischemia-reperfusion in the lower extremities in rats.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Haifeng Zhu
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Yuefeng Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Jinhua Mei
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Haigang Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Kai Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| |
Collapse
|
5
|
Immunological bases of increased susceptibility to invasive nontyphoidal Salmonella infection in children with malaria and anaemia. Microbes Infect 2017; 20:589-598. [PMID: 29248635 PMCID: PMC6250906 DOI: 10.1016/j.micinf.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023]
Abstract
Malaria and anaemia are key underlying factors for iNTS disease in African children. Knowledge of clinical and epidemiological risk-factors for iNTS disease has not been paralleled by an in-depth knowledge of the immunobiology of the disease. Herein, we review human and animal studies on mechanisms of increased susceptibility to iNTS in children.
Collapse
|
6
|
Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res 2017; 45:1889-1901. [PMID: 27994033 PMCID: PMC5389722 DOI: 10.1093/nar/gkw1259] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
For reasons that remain unknown, the Plasmodium falciparum genome has an exceptionally high AT content compared to other Plasmodium species and eukaryotes in general - nearly 80% in coding regions and approaching 90% in non-coding regions. Here, we examine how this phenomenon relates to genome-wide patterns of de novo mutation. Mutation accumulation experiments were performed by sequential cloning of six P. falciparum isolates growing in human erythrocytes in vitro for 4 years, with 279 clones sampled for whole genome sequencing at different time points. Genome sequence analysis of these samples revealed a significant excess of G:C to A:T transitions compared to other types of nucleotide substitution, which would naturally cause AT content to equilibrate close to the level seen across the P. falciparum reference genome (80.6% AT). These data also uncover an extremely high rate of small indel mutation relative to other species, primarily associated with repetitive AT-rich sequences, in addition to larger-scale structural rearrangements focused in antigen-coding var genes. In conclusion, high AT content in P. falciparum is driven by a systematic mutational bias and ultimately leads to an unusual level of microstructural plasticity, raising the question of whether this contributes to adaptive evolution.
Collapse
Affiliation(s)
- William L Hamilton
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0SP, UK
| | - Antoine Claessens
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Mihir Kekre
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Dominic Kwiatkowski
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
7
|
Cobbold SA, Llinás M, Kirk K. Sequestration and metabolism of host cell arginine by the intraerythrocytic malaria parasite Plasmodium falciparum. Cell Microbiol 2016; 18:820-30. [PMID: 26633083 DOI: 10.1111/cmi.12552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022]
Abstract
Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes.
Collapse
Affiliation(s)
- Simon A Cobbold
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Manuel Llinás
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
8
|
Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity. Mol Biochem Parasitol 2014; 198:29-36. [PMID: 25454716 DOI: 10.1016/j.molbiopara.2014.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/05/2014] [Accepted: 11/20/2014] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS inhibitors led to a decrease in intraerythrocytic NO accumulation and if this was associated with a change in surface expression of the phagocytosis markers CD47 and phosphatidyl serine. The specific inducible NOS inhibitors l-canavanine and GW274150 dose-dependently decreased intraerythrocytic NO while l-NMMA (an unspecific NOS inhibitor) and caveolin-1 scaffolding domain peptide (a specific endothelial NOS inhibitor) did not affect NO levels. Phosphatidyl serine externalization markedly increased upon P. falciparum infection. l-canavanine did not modify this whereas caveolin-1 scaffolding domain peptide increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion, the data imply that NOS inhibitors decrease NO accumulation in P. falciparum-infected erythrocytes but this does not correlate with the level of two major erythrocytic phagocytosis markers.
Collapse
|
9
|
Alvarez CL, Schachter J, de Sá Pinheiro AA, Silva LDS, Verstraeten SV, Persechini PM, Schwarzbaum PJ. Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum. PLoS One 2014; 9:e96216. [PMID: 24858837 PMCID: PMC4032238 DOI: 10.1371/journal.pone.0096216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
In human erythrocytes (h-RBCs) various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics) depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages). A "3V" mixture containing isoproterenol (β-adrenergic agonist), forskolin (adenylate kinase activator) and papaverine (phosphodiesterase inhibitor) was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs), t-RBCs (trophozoite-infected RBCs) and s-RBCs (schizont-infected RBCs) showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe]) increased nonlinearly with parasitemia (from 2 to 12.5%). Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs) showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83-87% for h-RBCs and 63-74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300-900 nM) and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO) was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an upregulated ATPe degradation, an enhanced NO production, and a decreased intracellular ATP concentration.
Collapse
Affiliation(s)
- Cora Lilia Alvarez
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Julieta Schachter
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Ana Acacia de Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leandro de Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sandra Viviana Verstraeten
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Muanis Persechini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Oliveira-Lima OC, Bernardes D, Xavier Pinto MC, Esteves Arantes RM, Carvalho-Tavares J. Mice lacking inducible nitric oxide synthase develop exacerbated hepatic inflammatory responses induced by Plasmodium berghei NK65 infection. Microbes Infect 2013; 15:903-10. [PMID: 23988520 DOI: 10.1016/j.micinf.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023]
Abstract
Infection of mice with Plasmodium berghei NK65 represents a well-recognized malaria model in which infection is accompanied by an intense hepatic inflammatory response. Enzyme-inducible nitric oxide synthase is an important regulator of inflammation and leukocyte recruitment in microvessels, but these functions have yet to be evaluated in experimental malaria. In this study, we assessed the involvement of inducible nitric oxide synthase in inflammatory responses to murine experimental malaria induced by P. berghei NK65. We observed that wild type (WT) and nitric oxide synthase (iNOS)-deficient mice (iNOS(-/-)) mice showed similar levels of parasitemia following P. berghei NK65 infection, although infected iNOS(-/-) mice presented early mortality. Inducible nitric oxide synthase deficiency led to increased leukocyte rolling and adhesion to the liver in iNOS(-/-) mice relative to the WT animals, as observed via intravital microscopy. Infected iNOS(-/-) mice also exhibited increased hepatic leukocyte migration and subsequent liver damage, which was associated with high serum levels of the cytokines TNF-α, IL-6 and IL-10. Our data suggest potential role for the iNOS enzyme as a regulator of hepatic inflammatory response induced by P. berghei NK65-infection, and its absence leads to exacerbated inflammation and sequential associated-hepatic damage in the animals.
Collapse
Affiliation(s)
- Onésia Cristina Oliveira-Lima
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | | | | | | | | |
Collapse
|
11
|
Sequential Serum Cytokine Levels of TNF-Alpha, IL-4 and IL-12 are Associated with Prognosis in Plasmodium falciparum Malaria. Indian J Clin Biochem 2013; 29:321-6. [PMID: 24966480 DOI: 10.1007/s12291-013-0359-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
We investigated the prognostic role of TNF-alpha, IL-4 and IL-12 in a clinically well defined group of Plasmodium falciparum infected patients (n = 32) sequentially from Day 0 to Day 10 with a 2 day interval along with a control group of 16 healthy volunteers of same range of age and sex. Infection with malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. ATP deficiency arises in malaria due to an inability of mitochondria through the effects of inflammatory cytokines on their function, to utilize available oxygen. In our study TNF-alpha and IL-12 levels were significantly elevated but IL-4 level showed persistent decline in Day 0, but subsequent measurement in Day 2, 4, 6, 8 and 10 showed persistent decline in levels of TNF-alpha and IL-12, an elevation in IL-4 levels which were associated with disease prognosis of the infected patients. These results again provide evidence that cytokines are very much a dominant partner in malaria pathogenesis with a specific prognostic role.
Collapse
|
12
|
de Macchi BM, Miranda FJB, de Souza FS, de Carvalho ECQ, Albernaz AP, do Nascimento JLM, DaMatta RA. Chickens treated with a nitric oxide inhibitor became more resistant to Plasmodium gallinaceum infection due to reduced anemia, thrombocytopenia and inflammation. Vet Res 2013; 44:8. [PMID: 23398940 PMCID: PMC3582474 DOI: 10.1186/1297-9716-44-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/05/2013] [Indexed: 02/04/2023] Open
Abstract
Malaria is a serious infectious disease caused by parasites of the Plasmodium genus that affect different vertebrate hosts. Severe malaria leads to host death and involves different pathophysiological phenomena such as anemia, thrombocytopenia and inflammation. Nitric oxide (NO) is an important effector molecule in this disease, but little is known about its role in avian malaria models. Plasmodium gallinaceum-infected chickens were treated with aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase, to observe the role of NO in the pathogenesis of this avian model. AG increased the survival of chickens, but also induced higher parasitemia. Treated chickens demonstrated reduced anemia and thrombocytopenia. Moreover, erythrocytes at different stages of maturation, heterophils, monocytes and thrombocytes were infected by Plasmodium gallinaceum and animals presented a generalized leucopenia. Activated leukocytes and thrombocytes with elongated double nuclei were observed in chickens with higher parasitemia; however, eosinophils were not involved in the infection. AG reduced levels of hemozoin in the spleen and liver, indicating lower inflammation. Taken together, the results suggest that AG reduced anemia, thrombocytopenia and inflammation, explaining the greater survival rate of the treated chickens.
Collapse
Affiliation(s)
- Barbarella Matos de Macchi
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602, Campos dos Goytacazes, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
13
|
Piatakova NV, Severina IS. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:32-42. [PMID: 22642150 DOI: 10.18097/pbmc20125801032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.
Collapse
|
14
|
Keshari RS, Jyoti A, Kumar S, Dubey M, Verma A, Srinag BS, Krishnamurthy H, Barthwal MK, Dikshit M. Neutrophil extracellular traps contain mitochondrial as well as nuclear DNA and exhibit inflammatory potential. Cytometry A 2011; 81:238-47. [PMID: 22170804 DOI: 10.1002/cyto.a.21178] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/04/2011] [Accepted: 11/09/2011] [Indexed: 01/12/2023]
Abstract
Neutrophils expel extracellular traps (NETs) to entrap and exterminate the invaded micro-organisms. Acute/chronic inflammatory disorders are often observed with aberrantly enhanced NETs formation and high nitric oxide (NO) availability. Recent study from this laboratory demonstrated release of NETs from human neutrophils following treatment with SNP or SNAP. This study is an extension of our previous finding to explore the extracellular bacterial killing, source of DNA in the expelled NETs, their ability to induce proinflammatory cytokines release from platelets/THP-1 cells, and assessment of NO-mediated free radical formation by using a consistent NO donor, DETA-NONOate. NO-mediated NETs exhibited extracellular bacterial killing as determined by colony forming units. NO-mediated NETs formation was due to the activation of NADPH oxidase and myeloperoxidase. NO- or PMA-mediated NETs were positive for both nuclear and mitochondrial DNA as well as proteolytic enzymes. Incubation of NETs with human platelets enhanced the release of IL-1β and IL-8, while with THP-1 cells, release of IL-1β, IL-8, and TNFα was observed. This study demonstrates that NO by augmenting enzymatic free radical generation release NETs to promote extracellular bacterial killing. These NETs were made up of mitochondrial and nuclear DNA and potentiated release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Ravi S Keshari
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226 001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bioinformatics analysis and prediction for structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei. ASIAN PAC J TROP MED 2011; 4:1-4. [PMID: 21771405 DOI: 10.1016/s1995-7645(11)60021-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 11/27/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To search and analyze nitric oxide synthase (NOS) and similar proteins from Plasmodium berghei(Pb). METHODS The structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei were analyzed and predicted by bioinformatics. RESULTS PbNOS were not available, but nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium (NADPH)-cytochrome p450 reductase(CPR) were gained. PbCPR was in the nucleus of Plasmodium berghei, while 134aa-229aa domain was localize in nucleolar organizer. The amino acids sequence of PbCPR had the closest genetic relationship with Plasmodium vivax showing a 73% homology. The tertiary structure of PbCPR displayed the forcep-shape with wings, but no wings existed in the tertiary structure of its' host, Mus musculus(Mm). 137aa-200aa, 201aa-218aa, 220aa-230aa, 232aa-248, 269aa-323aa, 478aa-501aa and 592aa-606aa domains of PbCPR showed no homology with MmCPRs', and all domains were exposed on the surface of the protein. CONCLUSIONS NOS can't be found in Plasmodium berghei and other Plasmodium species. PbCPR may be a possible resistance site of antimalarial drug, and the targets of antimalarial drug and vaccine. It may be also one of the mechanisms of immune evasion. This study on Plasmodium berghei may be more suitable to Plasmodium vivax. And 137aa-200aa, 201aa-218aa, 220aa-230aa, 232aa-248, 269aa-323aa, 478aa-501aa and 592aa-606aa domains of PbCPR are more ideal targets of antimalarial drug and vaccine.
Collapse
|
16
|
Patel S, Kumar S, Jyoti A, Srinag BS, Keshari RS, Saluja R, Verma A, Mitra K, Barthwal MK, Krishnamurthy H, Bajpai VK, Dikshit M. Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 2010; 22:226-34. [DOI: 10.1016/j.niox.2010.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/03/2009] [Accepted: 01/03/2010] [Indexed: 10/20/2022]
|
17
|
Morita H, Tomizawa Y, Deguchi J, Ishikawa T, Arai H, Zaima K, Hosoya T, Hirasawa Y, Matsumoto T, Kamata K. Synthesis and structure–activity relationships of cassiarin A as potential antimalarials with vasorelaxant activity. Bioorg Med Chem 2009; 17:8234-40. [DOI: 10.1016/j.bmc.2009.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
18
|
Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium. Blood 2009; 114:4243-52. [PMID: 19713460 DOI: 10.1182/blood-2009-06-226415] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cerebral malaria is a severe multifactorial condition associated with the interaction of high numbers of infected erythrocytes to human brain endothelium without invasion into the brain. The result is coma and seizures with death in more than 20% of cases. Because the brain endothelium is at the interface of these processes, we investigated the global gene responses of human brain endothelium after the interaction with Plasmodium falciparum-infected erythrocytes with either high- or low-binding phenotypes. The most significantly up-regulated transcripts were found in gene ontology groups comprising the immune response, apoptosis and antiapoptosis, inflammatory response, cell-cell signaling, and signal transduction and nuclear factor kappaB (NF-kappaB) activation cascade. The proinflammatory NF-kappaB pathway was central to the regulation of the P falciparum-modulated endothelium transcriptome. The proinflammatory molecules, for example, CCL20, CXCL1, CXCL2, IL-6, and IL-8, were increased more than 100-fold, suggesting an important role of blood-brain barrier (BBB) endothelium in the innate defense during P falciparum-infected erythrocyte (Pf-IRBC) sequestration. However, some of these diffusible molecules could have reversible effects on brain tissue and thus on neurologic function. The inflammatory pathways were validated by direct measurement of proteins in brain endothelial supernatants. This study delineates the strong inflammatory component of human brain endothelium contributing to cerebral malaria.
Collapse
|
19
|
Nahrevanian H, Gholizadeh J, Farahmand M, Assmar M, Sharifi K, Ayatollahi Mousavi SA, Abolhassani M. Nitric oxide induction as a novel immunoepidemiological target in malaria‐infected patients from endemic areas of the Islamic Republic of Iran. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 66:201-9. [PMID: 16714249 DOI: 10.1080/00365510600565011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Malaria has been prevalent for a long time in Iran and continues to be a health problem despite substantial control programs. In addition to numerous cytokines, nitric oxide (NO) is thought to be a key molecule and a novel target of malaria immunopathology. MATERIAL AND METHODS The objective of this research was to measure reactive nitrogen intermediates (RNI) as stable metabolites of NO induction in plasma of malaria-infected patients in Iran. In this study, 235 blood samples from malaria patients and 80 blood samples from healthy controls were randomly collected from different malarial endemic provinces of Iran, located in southeastern (Sistan & Balouchestan, Hormozgan, Kerman) and northwestern (Ardabil) areas. The involvement of NO in malaria patients has been investigated by statistical analysis of RNI values. Griess micro assay (GMA) was used during Plasmodium vivax, P. falciparum and mixed infections, in order to evaluate whether RNI changes are related to the provincial areas, parasite strains, clinical symptoms and age and gender parameters. RESULTS The results showed a significant increase of RNI level in malaria patients compared with the control groups of Ardabil (p<0.01), Sistan & Balouchestan, Hormozgan and Kerman (p<0.001) provinces. The level of RNI was higher in mixed plasmodial infection than in single infection. CONCLUSIONS The high level of RNI was dependent on the type of infection, the plasmodia strain, the clinical symptoms, the age groups and the endemic provinces. Although, this study did not clarify the pathogenic and/or protective role of NO in malaria, our findings provide a novel immunoepidemiological aspect of basal NO production in patients with malaria in endemic areas in Iran.
Collapse
Affiliation(s)
- H Nahrevanian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wilson NO, Huang MB, Anderson W, Bond V, Powell M, Thompson WE, Armah HB, Adjei AA, Gyasi R, Tettey Y, Stiles JK. Soluble factors from Plasmodium falciparum-infected erythrocytes induce apoptosis in human brain vascular endothelial and neuroglia cells. Mol Biochem Parasitol 2008; 162:172-6. [PMID: 18848585 DOI: 10.1016/j.molbiopara.2008.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 08/29/2008] [Accepted: 09/08/2008] [Indexed: 11/28/2022]
Abstract
The severity of malaria is multi-factorial. It is associated with parasite-induced alteration in pro-inflammatory and anti-inflammatory cytokine and chemokine levels in host serum and cerebrospinal fluid. It is also associated with sequestration and cytoadherence of parasitized erythrocytes (pRBCs) in post-capillary venules and blood-brain barrier (BBB) dysfunction. The role of these factors in development of vascular injury and tissue damage in malaria patients is unclear. While some studies indicate a requirement for pRBC adhesion to vascular endothelial cells (ECs) in brain capillaries to induce apoptosis and BBB damage, others show no role of apoptosis resulting from adhesion of pRBC to EC. In the present study, the hypothesis that soluble factors from Plasmodium falciparum-infected erythrocytes induce apoptosis in human brain vascular endothelial (HBVEC) and neuroglia cells (cellular components of the BBB) was tested. Apoptotic effects of parasitized (pRBC) and non-parasitized erythrocyte (RBC) conditioned medium on HBVEC and neuroglia cells were determined in vitro by evaluating nuclear DNA fragmentation (TUNEL assay) in cultured cells. Soluble factors from P. falciparum-infected erythrocytes in conditioned medium induced extensive DNA fragmentation in both cell lines, albeit to a greater extent in HBVEC than neuroglia, indicating that extended exposure to high levels of these soluble factors in serum may be associated with vascular, neuronal and tissue injury in malaria patients.
Collapse
Affiliation(s)
- Nana O Wilson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Taylor CJ, McRobert L, Baker DA. Disruption of a Plasmodium falciparum cyclic nucleotide phosphodiesterase gene causes aberrant gametogenesis. Mol Microbiol 2008; 69:110-8. [PMID: 18452584 PMCID: PMC2615252 DOI: 10.1111/j.1365-2958.2008.06267.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphodiesterase (PDE) and guanylyl cyclase (GC) enzymes are key components of the cGMP signalling pathway and are encoded in the genome of Plasmodium falciparum. Here we investigate the role of specific GC and PDE isoforms in gamete formation – a process that is essential for malaria transmission and occurs in the Anopheles mosquito midgut following feeding on an infected individual. Details of the intracellular signalling events controlling development of the male and female gametes from their precursors (gametocytes) remain sparse in P. falciparum. Previous work involving the addition of pharmacological agents to gametocytes implicated cGMP in exflagellation – the emergence of highly motile, flagellated male gametes from the host red blood cell. In this study we show that decreased GC activity in parasites having undergone disruption of the PfGCβ gene had no significant effect on gametogenesis. By contrast, decreased cGMP-PDE activity during gametocyte development owing to disruption of the PfPDEδ gene, led to a severely reduced ability to undergo gametogenesis. This suggests that the concentration of cGMP must be maintained below a threshold in the developing gametocyte to allow subsequent differentiation to proceed normally. The data indicate that PfPDEδ plays a crucial role in regulating cGMP levels during sexual development.
Collapse
Affiliation(s)
- Cathy J Taylor
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | | | | |
Collapse
|
22
|
Plasmodium falciparum: food vacuole localization of nitric oxide-derived species in intraerythrocytic stages of the malaria parasite. Exp Parasitol 2008; 120:29-38. [PMID: 18504040 DOI: 10.1016/j.exppara.2008.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO's biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite.
Collapse
|
23
|
Francischetti IMB, Seydel KB, Monteiro RQ. Blood coagulation, inflammation, and malaria. Microcirculation 2008; 15:81-107. [PMID: 18260002 DOI: 10.1080/10739680701451516] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malaria remains a highly prevalent disease in more than 90 countries and accounts for at least 1 million deaths every year. Plasmodium falciparum infection is often associated with a procoagulant tonus characterized by thrombocytopenia and activation of the coagulation cascade and fibrinolytic system; however, bleeding and hemorrhage are uncommon events, suggesting that a compensated state of blood coagulation activation occurs in malaria. This article (i) reviews the literature related to blood coagulation and malaria in a historic perspective, (ii) describes basic mechanisms of coagulation, anticoagulation, and fibrinolysis, (iii) explains the laboratory changes in acute and compensated disseminated intravascular coagulation (DIC), (iv) discusses the implications of tissue factor (TF) expression in the endothelium of P. falciparum infected patients, and (v) emphasizes the procoagulant role of parasitized red blood cells (RBCs) and activated platelets in the pathogenesis of malaria. This article also presents the Tissue Factor Model (TFM) for malaria pathogenesis, which places TF as the interface between sequestration, endothelial cell (EC) activation, blood coagulation disorder, and inflammation often associated with the disease. The relevance of the coagulation-inflammation cycle for the multiorgan dysfunction and coma is discussed in the context of malaria pathogenesis.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA.
| | | | | |
Collapse
|
24
|
Gutierrez-Escobar AJ, Arenas AF, Villoria-Guerrero Y, Padilla-Londoño JM, Gómez-Marin JE. Toxoplasma gondii: molecular cloning and characterization of a nitric oxide synthase-like protein. Exp Parasitol 2008; 119:358-63. [PMID: 18439581 DOI: 10.1016/j.exppara.2008.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 12/01/2022]
Abstract
Toxoplasma gondii has a nitrite production and a putative nitric oxide synthase (NOS) motif genomic sequence. In order to demonstrate that this sequence is functional and could be involved in the metabolism of l-arginine derivatives, we constructed a baculovirus carrying the previously identified Toxoplasma NOS-like DNA sequence. The recombinant protein was expressed into insect Sf9 cells and his activity was tested in serial microplate colorimetric assays. The protein produced 21 nmol/min/ml nitrites per microgram of protein and followed Michaelis-Menten kinetics, with a K(m) for L-arginine of 2.3mM. Furthermore, the optimal pH, temperature and incubation time for the recombinant Toxoplasma NOS-like protein were established. Toxoplasma NOS runs as a band of 11.6 kDa on tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results indicate that the recombinant protein derived from the putative genomic sequence, at the chromosome 1b of T. gondii, is able to produce nitrites from L-arginine as substrate.
Collapse
Affiliation(s)
- Andrés J Gutierrez-Escobar
- Grupo de Parasitología Molecular (GEPAMOL), Centro de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | | | | | | | | |
Collapse
|
25
|
Rojas-Hernández S, Rodríguez-Monroy MA, Moreno-Fierros L, Jarillo-Luna A, Carrasco-Yepez M, Miliar-García A, Campos-Rodríguez R. Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri. Parasitol Res 2007; 101:269-74. [PMID: 17340143 DOI: 10.1007/s00436-007-0495-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Free-living ameba Naegleria fowleri produces an acute and fatal infectious disease called primary amebic meningoencephalitis (PAM), whose pathophysiological mechanism is largely unknown. The aim of this study was to investigate the role of nitric oxide (NO) in PAM. Although NO has a cytotoxic effect on various parasites, it is produced by others as part of the pathology, as is the case with Entamoeba histolytica. To test for the production of NO, we analyzed whether antibodies against mammalian NO synthase isoforms (neuronal, inducible, and endothelial) presented immunoreactivity to N. fowleri proteins. We found that the trophozoites produced NO in vitro. The Western blot results, which showed N. fowleri trophozoites, contained proteins that share epitopes with the three described mammalian NOS, but have relative molecular weights different than those described in the literature, suggesting that N. fowleri may contain undescribed NOS isoforms. Moreover, we found that trophozoites reacted to the NOS2 antibody, in amebic cultures as well as in the mouse brain infected with N. fowleri, suggesting that nitric oxide may participate in the pathogenesis of PAM. Further research aimed at determining whether N. fowleri contains active novel NOS isoforms could lead to the design of new therapies against this parasite.
Collapse
Affiliation(s)
- Saúl Rojas-Hernández
- Departamento de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, 11340, México, D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|
26
|
Amaroli A, Ognibene M, Trielli F, Trombino S, Falugi C, Delmonte Corrado MU. Detection of NADPH-diaphorase activity in Paramecium primaurelia. Eur J Protistol 2006; 42:201-8. [PMID: 17070764 DOI: 10.1016/j.ejop.2006.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/08/2006] [Accepted: 05/13/2006] [Indexed: 11/23/2022]
Abstract
Recently, we showed that Paramecium primaurelia synthesizes molecules functionally related to the cholinergic system and involved in modulating cell-cell interactions leading to the sexual process of conjugation. It is known that nitric oxide (NO) plays a role in regulating the release of transmitter molecules, such as acetylcholine, and that the NO biosynthetic enzyme, nitric oxide synthase (NOS), shows nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity. In this work, we detected the presence of NADPH-d activity in P. primaurelia. We characterized this activity histochemically by examining its specificity for beta-NADPH and alpha-NADH co-substrates, and sensitivity both to variations in chemico-physical parameters and to inhibitors of enzymes showing NADPH-d activity. Molecules immunologically related to NOS were recognized by the anti-rat brain NOS (bNOS) antibody. Moreover, bNOS immunoreactivity and NADPH-d activity sites were found to be co-localized. The non-denaturing electrophoresis, followed by exposure to beta-NADPH or alpha-NADH co-substrates, revealed the presence of a band of apparent molecular mass of about 124 kDa or a band of apparent molecular mass of about 175 kDa, respectively. In immunoblot experiments, the bNOS antibody recognized a single band of apparent molecular mass of about 123 kDa.
Collapse
Affiliation(s)
- Andrea Amaroli
- Dipartimento per lo Studio del Territorio e delle sue Risorse, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Nitric oxide (NO) generated from L-arginine by NO synthases in the endothelium and in other cells plays a central role in several aspects of vascular biology and has been linked to many regulatory functions in mammalian cells. Whereas for a long time the signaling actions of NO in the vasculature have been thought to be short-lived as a result of the rapid reaction of NO with hemoglobin, recent studies changed the biochemical thinking of NO. NO is not anymore the paracrine agent with only local effects, but, like a hormone, it disseminates throughout the body. Thus, a circulating pool of NO exists, opening new considerable pharmacological and therapeutical avenues in the diagnosis and therapy of cardiovascular diseases. In this review we briefly discuss the major routes of NO metabolism and transport in the mammalian circulation, considering plasma, red blood cell and tissue compartments separately, with a special focus on the implication of the circulating NO pool in clinical research.
Collapse
Affiliation(s)
- Tienush Rassaf
- University Hospital Aachen, Department of Cardiology and Pulmonary Diseases, Aachen, Germany
| | | | | |
Collapse
|
28
|
Gutierrez Escobar AJ, Gómez-Marin JE. Toxoplasma gondii: identification of a putative nitric oxide synthase motif DNA sequence. Exp Parasitol 2005; 111:211-8. [PMID: 16188255 DOI: 10.1016/j.exppara.2005.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) plays an important role as a mediator of the immune response to intracellular pathogens in mice; however discordant results were obtained in in vitro human cell lines experiments. Thus, we found that nitrite levels (nitric oxide derivatives) were increased in presence of Toxoplasma but not with IFN gamma plus LPS treatment during Toxoplasma infection of a human monocyte cell line THP1 and Griess assays confirmed that Toxoplasma alone has a nitrite production that was surprisingly increased by the most common inhibitor of nitric oxide synthase (NOS) in mammals. To look for genomic sequences that code for NOS gene in Toxoplasma, which could explain this production of NO derivatives, specific NOS motifs were sought by bioinformatics methods. A putative NOS motif sequence was found in one contig of the Toxoplasma genome (). Specific primers amplified a segment of 270 bp in RT-PCR assay, indicating that it is a transcription gene in the tachyzoite stage. Our results are the first description of the existence and transcription of a putative NOS DNA sequence in a pathogenic protozoan.
Collapse
Affiliation(s)
- Andrés J Gutierrez Escobar
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Centro de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad del Quindio, Armenia, Colombia
| | | |
Collapse
|
29
|
Pritchard MT, Li Z, Repasky EA. Nitric oxide production is regulated by fever-range thermal stimulation of murine macrophages. J Leukoc Biol 2005; 78:630-8. [PMID: 16000392 DOI: 10.1189/jlb.0404220] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As macrophages are often called to function at times of elevated ambient temperature (e.g., during local inflammation or systemic fever), it is possible that their production of critical effector molecules, such as nitric oxide (NO) or inducible NO synthase (iNOS), is sensitive to physiological changes in temperature. To test this possibility, the threshold requirements for production of NO and iNOS in murine peritoneal macrophages maintained under normothermic conditions (37 degrees C) or following mild (fever-range) hyperthermia (39.5 degrees C) were compared. We found that hyperthermia alone had no observable effect on basal NO production or iNOS protein or message. However, although interferon (IFN)-gamma and lipopolysaccharide (LPS) were needed to induce NO at 37 degrees C, we observed that addition of only LPS was sufficient for production of NO if there were a pretreatment at 39.5 degrees C. Further, if IFN-gamma and LPS were given after thermal exposure, a substantial increase in NO and iNOS was observed over that seen using cells kept at normothermic conditions. Macrophages isolated from mice lacking heat shock factor-1 did not attenuate the ability of mild thermal stress to modulate NO production. Reverse transcriptase-polymerase chain reaction data revealed that thermal regulation of iNOS expression is not entirely at the transcriptional level, suggesting possible points of post-transcriptional thermal sensitivity. These data support the concept that altering the thermal microenvironment is an important means by which the host can manipulate macrophage responses. Increases in temperature (e.g., during fever) may function to lower the activation threshold needed for production of effector molecules in times of infection.
Collapse
Affiliation(s)
- Michele T Pritchard
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
30
|
Nyangoto EO. Cell-mediated effector molecules and complicated malaria. Int Arch Allergy Immunol 2005; 137:326-42. [PMID: 15970642 DOI: 10.1159/000086490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 04/11/2005] [Indexed: 01/17/2023] Open
Abstract
In this review I attempt to advance hypotheses that might help contribute toward understanding the molecular pathogenesis of cerebral malaria (CM) and other complications based on a now widely accepted argument that the illness and pathology occasioned by Plasmodiumfalciparum infection might not necessarily be due to the direct effects of the parasite's 'toxins' and/or exoantigens or even its sequestration and consequent attendant effects in vital organs but rather to the parasite's mediated production of microbicidal molecules by the host. Tumor necrosis factor (TNF)-alpha is implicated in the pathogenesis of complicated malaria. There is a positive correlation between high levels of TNF-alpha and severity of malaria. The role of nitric oxide in the pathophysiology of complicated malaria is not clearly understood. Mononuclear phagocytes by virtue of their capacity to secrete toxic intermediates like reactive oxygen intermediates can inhibit the growth of both murine and human plasmodia. The role of interleukin-10 (IL-10) in malaria is also not well characterized to date. IL-10 is a powerful immunosuppressor factor. It acts as a natural dampener of immunoproliferative and inflammatory responses. Although transforming growth factor-beta has a crucial role in inflammation and repair, its role in complicated malaria is not too clearly understood. Furthermore, the anatomical source of these microbicidal molecules is not precisely known. The role of immune complexes (IC) in the pathophysiology of complicated malaria has hitherto not been tested. I argue here that IC play a critical role in influencing the outcome of malarial disease; IC-mediated stimulation of leukocytes to produce high levels of both TNF-alpha and NO and the fact that leukocytes are probably the principal anatomical source of these microbicidal and other pro-inflammatory mediators in complicated malaria provide a much more plausible explanation for the pathogenesis of CM and other complications. I also review the arguments that help contribute to rationalize hypoglycemia and hyperlactatemia in malarial disease and to some extent severe anemia. I am therefore tempted to conclude that CM and other complications are probably immune-mediated diseases or, at least, they present an inflammatory pathogenesis.
Collapse
Affiliation(s)
- Evans O Nyangoto
- Zoology Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
| |
Collapse
|
31
|
Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent JL. Red blood cell rheology in sepsis. Intensive Care Med 2003; 29:1052-61. [PMID: 12802488 DOI: 10.1007/s00134-003-1783-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2003] [Indexed: 12/25/2022]
Abstract
Changes in red blood cell (RBC) function can contribute to alterations in microcirculatory blood flow and cellular dysoxia in sepsis. Decreases in RBC and neutrophil deformability impair the passage of these cells through the microcirculation. While the role of leukocytes has been the focus of many studies in sepsis, the role of erythrocyte rheological alterations in this syndrome has only recently been investigated. RBC rheology can be influenced by many factors, including alterations in intracellular calcium and adenosine triphosphate (ATP) concentrations, the effects of nitric oxide, a decrease in some RBC membrane components such as sialic acid, and an increase in others such as 2,3 diphosphoglycerate. Other factors include interactions with white blood cells and their products (reactive oxygen species), or the effects of temperature variations. Understanding the mechanisms of altered RBC rheology in sepsis, and the effects on blood flow and oxygen transport, may lead to improved patient management and reductions in morbidity and mortality.
Collapse
Affiliation(s)
- M Piagnerelli
- Department of Intensive Care, Erasme University Hospital, Free University of Brussels, 808 route de Lennik, 1070, Brussels, Belgium
| | | | | | | |
Collapse
|
32
|
Clementi ME, Orsini F, Schininà ME, Noia G, Giardina B. Effect of nitric oxide on the transport and release of oxygen in fetal blood. Biochem Biophys Res Commun 2003; 302:515-9. [PMID: 12615064 DOI: 10.1016/s0006-291x(03)00118-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is well known that nitric oxide (NO), the most important vasodilator agent, plays an important role in lowering vascular resistance in the human umbilical-placental circulation and that its deficiency is related to the pathogenesis of pre-eclamptic disorder. Besides it has recently been demonstrated that human hemoglobin (HbA) is able to transport nitric oxide, as S-nitrosohemoglobin (SNO-Hb), from the arterial to the venous blood. In the present study we examine the functional properties of the adult and fetal nitrosated hemoglobins to see if the double transport of oxygen and NO may influence the fetal oxygenation and the relation between maternal and fetal blood. Our results show that S-nitrosation significantly increases the oxygen affinity of the adult Hb (HbA) with respect to native protein (no-nitrosated) while the functional properties of HbF are less influenced. The oxygen affinity modification, found for SNO-HbA, was ascribed to the nitrosation of cysteine beta 93: really, the same residue is also present in the gamma chains of fetal hemoglobin, while the increase of affinity is less evidenced; hence, it is probable that the 39 aminoacidic substitutions between beta and gamma chains allay the effects of S-nitrosation. As regards the physiological modulators (protons, chloride ions, 2,3-diphosphoglyceric acid, and temperature), they influence the oxygen affinity of the two hemoglobins S-nitrosated, in equal mode with respect to the native forms determining the same variation on the oxygen affinity. Hence, our results evidence the fact that the NO release by SNO-HbA "in vivo" would be limited to regions of extremely low oxygen tension (such as hypoxic regions), while in fetus, SNO-HbF would unload nitric oxide and oxygen at pressure values close to normal.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- CNR Institute Chimica del riconoscimento Molecolare, Catholic University, Largo F. Vito 1, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
33
|
Nahrevanian H, Dascombe MJ. Expression of inducible nitric oxide synthase (iNOS) mRNA in target organs of lethal and non-lethal strains of murine malaria. Parasite Immunol 2002; 24:471-8. [PMID: 12654089 DOI: 10.1046/j.1365-3024.2002.00490.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a putative mediator of the immunological and/or pathological responses to malaria, consequently it is a potential target for novel drug therapy. Numerous cell types increase expression of inducible nitric oxide synthase (iNOS) under inflammatory conditions, the most relevant stimuli being cytokines and endotoxins. In this study the expression of iNOS mRNA in several target organs (brain, liver, spleen) of malaria have been investigated in MF1 mice during lethal Plasmodium (P.) berghei and non-lethal P. c. chabaudi infection. In P. berghei malaria, iNOS mRNA decreased in liver and was unchanged in spleen during the period of rising parasitaemia, but increased in both organs late in the infection, when parasitaemia was high and death imminent. In mice infected with P. c. chabaudi, spleen iNOS mRNA increased progressively throughout the early, peak and recovery periods of parasitaemia, but decreased in liver. Brain iNOS mRNA decreased in samples collected throughout the time courses of both infections. Hence it is evident that changes in iNOS mRNA in murine malaria depend upon the tissue, day of infection, degree of parasitaemia and strain of Plasmodium. These data indicate induction of iNOS mRNA in the spleen has a role in combating these strains of Plasmodium in MF1 mice. Failure to clear lethal P. berghei parasitaemia was associated with increased iNOS mRNA expression in the liver, which may contribute to the pathology of this malaria.
Collapse
|
34
|
Malaguarnera L, Musumeci S. The immune response to Plasmodium falciparum malaria. THE LANCET. INFECTIOUS DISEASES 2002; 2:472-8. [PMID: 12150846 DOI: 10.1016/s1473-3099(02)00344-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Malaria is still a major cause of severe disease which is responsible for millions of deaths, mostly in children under 5 years old, in tropical countries, especially sub-Saharan Africa. Complications of severe anaemia and cerebral malaria are thought to be the major cause of morbidity and mortality but recent evidence suggests that the host's immunological response could also contribute to the pathophysiology of the disease in human beings. Intensive studies of the immune response to malaria parasites in human beings have provided a wealth of information about the cells and cytokines implicated in the pathophysiology of survival and fatal outcome in severe infections. This review focuses on the pivotal role of macrophages and other important cellular effectors, molecules, and cytokines involved in the activation of the immune response at the different stages of human falciparum malaria. Our understanding of the putative mechanisms by which cytokines may mediate beneficial and harmful effects, through activation of phagocytic cells, could help to develop new treatment strategies, regardless of the emergence of parasite multidrug resistance.
Collapse
|
35
|
Severina IS, Pyatakova NV, Bussygina OG, Mikhailitsyn FS, Khropov YV. Inhibition of nitric oxide-dependent activation of soluble guanylyl cyclase by the antimalarial drug, artemisinin. Eur J Pharmacol 2002; 438:69-73. [PMID: 11906712 DOI: 10.1016/s0014-2999(02)01266-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of artemisinin on the activity of human platelet soluble guanylyl cyclase was investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylyl cyclase with an IC(50) value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71+/-4.0%) the activation of the enzyme by the thiol-dependent nitric oxide (NO) donor, the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazole 2-oxide (10 microM), but did not influence the stimulation of soluble guanylyl cyclase by protoporphyrin 1X. Inhibition of guanylyl cyclase activation by NO donors but not by protoporphyrin 1X represents a possible additional mechanism of the pharmacological action of this drug.
Collapse
Affiliation(s)
- Irina S Severina
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaya str. 119992, Moscow, Russia. inst.@ibmh.mask.su
| | | | | | | | | |
Collapse
|
36
|
Romero JR, Suzuka SM, Nagel RL, Fabry ME. Arginine supplementation of sickle transgenic mice reduces red cell density and Gardos channel activity. Blood 2002; 99:1103-8. [PMID: 11830454 DOI: 10.1182/blood.v99.4.1103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO), essential for maintaining vascular tone, is produced from arginine by nitric oxide synthase. Plasma arginine levels are low in sickle cell anemia, and it is reported here that low plasma arginine is also found in our sickle transgenic mouse model that expresses human alpha, human beta(S), and human beta(S-Antilles) and is homozygous for the mouse beta(major) deletion (S+S-Antilles). S+S-Antilles mice were supplemented with a 4-fold increase in arginine that was maintained for several months. Mean corpuscular hemoglobin concentration (MCHC) decreased and the percent high-density red cells was reduced. Deoxy K(+) efflux is characteristic of red cells in sickle cell disease and contributes to the disease process by increasing the MCHC and rendering the cells more susceptible to polymer formation. This flux versus the room air flux was reduced in S+S-Antilles red cells from an average value of 1.6 +/- 0.3 mmol per liter of red cells x minute (FU) in nonsupplemented mice to 0.9 +/- 0.3 FU (n = 4, P < .02, paired t test) in supplemented mice. In room air, V(max) of the Ca(++)-activated K(+) channel (Gardos) was reduced from 4.1 +/- 0.6 FU (off diet) to 2.6 +/- 0.4 FU (n = 7 and 8, P < .04, t test) in arginine-supplemented mice versus clotrimazole. In conclusion, the major mechanism by which arginine supplementation reduces red cell density (MCHC) in S+S-Antilles mice is by inhibiting the Ca(++)-activated K(+) channel.
Collapse
Affiliation(s)
- José R Romero
- Endocrine-Hypertension Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
37
|
Nahrevanian H, Dascombe MJ. Nitric oxide and reactive nitrogen intermediates during lethal and nonlethal strains of murine malaria. Parasite Immunol 2001; 23:491-501. [PMID: 11589778 DOI: 10.1046/j.1365-3024.2001.00406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The virulence of Plasmodia depends partly on the strain of parasite and partly on the host. In this study, Plasmodium berghei N/13/1A/4/203 caused the death of mice, whereas Plasmodium chabaudi chabaudi AS was not lethal. Current opinion is that nitric oxide (NO) and other reactive nitrogen intermediates (RNI) are produced in several host organs during malaria to resist infection or produce tissue damage. NO and RNI production in blood or plasma, brain, liver and spleen in MF1 mice was investigated during P. berghei and P. c. chabaudi infection, in order to help determine whether changes in NO production are beneficial or detrimental to the host in vivo. NO production was measured both directly and indirectly as nitrites and nitrates, to represent RNI. No changes in blood NO were detected in P. berghei infected mice, but increases were observed in brain, liver and spleen. In P. c. chabaudi infected mice, rises in NO concentration were observed in blood and spleen, whereas a decline in liver NO was seen, but there were no changes in brain. Liver contained the highest concentration of RNI, but increasing concentrations were seen in both plasma and spleen in both P. berghei and P. c. chabaudi infected mice. These results show that NO and RNI production alters during murine malaria. The changes depend upon the tissue, the day of infection, the degree of parasitaemia, the strain of Plasmodia and the method of measuring NO biosynthesis. Lethal P. berghei induced NO production in the mid and late stages of infection in mice when parasitaemia was high, whereas in nonlethal P. c. chabaudi infection, NO production was increased in the early and late stages when parasitaemia was low. These data are consistent with a role for NO in the protection of the MF1 mouse against Plasmodia. Failure to clear the parasite is associated with evidence of increased NO production in brain and liver, which may contribute to the pathology of malaria, but this hypothesis requires confirmation from other experimental approaches.
Collapse
Affiliation(s)
- H Nahrevanian
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
38
|
Deharo E, Bourdy G, Quenevo C, Muñoz V, Ruiz G, Sauvain M. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. JOURNAL OF ETHNOPHARMACOLOGY 2001; 77:91-98. [PMID: 11483383 DOI: 10.1016/s0378-8741(01)00270-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
One hundred and twenty-five extracts of 122 different plant species traditionally used by the Tacana, a native community living in lowland forest at the base of the last foothills of the Cordillera Oriental of the Bolivian Andes, were screened for antimalarial activity in vitro on Plasmodium falciparum chloroquine resistant (D2) and sensitive strains (F32), and were evaluated in vivo on rodent malaria Plasmodium berghei. Five ethanolic stembark extracts showed marked activity either in vitro or in vivo, and only one of them, Bowdichia virgilioides being traditionally used against malaria, was active in vitro (IC50=1 microg/ml on both strains) and in vivo (51% at 100 mg/kg). Other active extracts were from Caesalpinia pluviosa bark displaying activity in vitro against chloroquine resistant strain (IC50 8.3 microg/ml), traditionally used against dysentery; two Lauraceae bark extracts, Nectandra aff. hihua and Licaria canella respectively used for construction purposes and against stomach ache, both displaying activity in vitro against P. falciparum sensible and resistant strains (IC50 around 4 microg/ml); finally, the bark of a strongly aromatic Burseraceae, Protium glabrescens exuding an anti-inflammatory and analgesic resin, was active in vivo only (61% at 100 mg/kg). Results are discussed in relation with Tacana traditional medicine.
Collapse
Affiliation(s)
- E Deharo
- Institut de Recherche pour le Développement (IRD), CP 9214, La Paz, Bolivia.
| | | | | | | | | | | |
Collapse
|
39
|
Golderer G, Werner ER, Leitner S, Gröbner P, Werner-Felmayer G. Nitric oxide synthase is induced in sporulation of Physarum polycephalum. Genes Dev 2001; 15:1299-309. [PMID: 11358872 PMCID: PMC313797 DOI: 10.1101/gad.890501] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The myxomycete Physarum polycephalum expresses a calcium-independent nitric oxide (NO) synthase (NOS) resembling the inducible NOS isoenzyme in mammals. We have now cloned and sequenced this, the first nonanimal NOS to be identified, showing that it shares < 39% amino acid identity with known NOSs but contains conserved binding motifs for all NOS cofactors. It lacks the sequence insert responsible for calcium dependence in the calcium-dependent NOS isoenzymes. NOS expression was strongly up-regulated in Physarum macroplasmodia during the 5-day starvation period needed to induce sporulation competence. Induction of both NOS and sporulation competence were inhibited by glucose, a growth signal and known repressor of sporulation, and by L-N6-(1-iminoethyl)-lysine (NIL), an inhibitor of inducible NOS. Sporulation, which is triggered after the starvation period by light exposure, was also prevented by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-sensitive guanylate cyclase. In addition, also expression of lig1, a sporulation-specific gene, was strongly attenuated by NIL or ODQ. 8-Bromo-cGMP, added 2 h before the light exposure, restored the capacity of NIL-treated macroplasmodia to express lig1 and to sporulate. This indicates that the second messenger used for NO signaling in sporulation of Physarum is cGMP and links this signaling pathway to expression of lig1.
Collapse
Affiliation(s)
- G Golderer
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
40
|
Abstract
The myxomycete Physarum polycephalum expresses a calcium-independent nitric oxide (NO) synthase (NOS) resembling the inducible NOS isoenzyme in mammals. We have now cloned and sequenced this, the first nonanimal NOS to be identified, showing that it shares < 39% amino acid identity with known NOSs but contains conserved binding motifs for all NOS cofactors. It lacks the sequence insert responsible for calcium dependence in the calcium-dependent NOS isoenzymes. NOS expression was strongly up-regulated inPhysarum macroplasmodia during the 5-day starvation period needed to induce sporulation competence. Induction of both NOS and sporulation competence were inhibited by glucose, a growth signal and known repressor of sporulation, and byl-N6–(1-iminoethyl)-lysine (NIL), an inhibitor of inducible NOS. Sporulation, which is triggered after the starvation period by light exposure, was also prevented by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-sensitive guanylate cyclase. In addition, also expression oflig1, a sporulation-specific gene, was strongly attenuated by NIL or ODQ. 8-Bromo-cGMP, added 2 h before the light exposure, restored the capacity of NIL-treated macroplasmodia to express lig1 and to sporulate. This indicates that the second messenger used for NO signaling in sporulation of Physarum is cGMP and links this signaling pathway to expression of lig1.
Collapse
|
41
|
Odeh M. The role of tumour necrosis factor-alpha in the pathogenesis of complicated falciparum malaria. Cytokine 2001; 14:11-8. [PMID: 11298488 DOI: 10.1006/cyto.2001.0845] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmodium falciparum malaria is the most important parasitic infection of humans and is one of the most serious health problems facing the inhabitants of developing countries. It is responsible for about 2 million deaths every year. To date there is no specific treatment for the disease apart from anti-malarials. The declining sensitivity to these drugs is a serious therapeutic problem, while no safe and effective vaccine is likely to be available for general use in the near future. There is now abundant laboratory and clinical evidence to suggest that tumour necrosis factor-alpha (TNF-alpha) plays a major role in the pathogenesis of complicated falciparum malaria. Modulation of TNF-alpha response in combination with the current anti-malarial drugs, may represent a novel approach to the treatment of the serious complications associated with the disease.
Collapse
Affiliation(s)
- M Odeh
- Department of Internal Medicine, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
42
|
Maneerat Y, Viriyavejakul P, Punpoowong B, Jones M, Wilairatana P, Pongponratn E, Turner GD, Udomsangpetch R. Inducible nitric oxide synthase expression is increased in the brain in fatal cerebral malaria. Histopathology 2000; 37:269-77. [PMID: 10971704 DOI: 10.1046/j.1365-2559.2000.00989.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Nitric oxide (NO) has been hypothesized to play a major role in the pathogenesis of cerebral malaria caused by P. falciparum infection. NO may act as a local neuroactive mediator contributing to the coma of cerebral malaria (CM). We hypothesized that increased expression of inducible nitric oxide synthase (iNOS) may cause increased release of NO, and examined the expression and distribution of iNOS in the brain during CM. MATERIAL AND RESULTS Brain tissues from fatal cases of cerebral malaria in Thai adults were examined using immunohistochemical staining to detect iNOS. The distribution and strength of staining was compared between 14 patients with CM, three of whom were recovering from coma, and controls. iNOS expression was found in endothelial cells, neurones, astrocytes and microglial cells in CM cases. There was also strong staining in macrophages surrounding ring haemorrhages. iNOS staining was decreased in recovering malaria cases compared to acute CM, and was low in controls. Quantification showed a significant association between the intensity and number of iNOS positive vessels with the severity of malaria related histopathological changes, although the total number of cells staining was not increased compared to recovering CM cases. CONCLUSIONS This study indicates that an acute induction of iNOS expression occurs in the brain during CM. This occurs in a number of different cells types, and is increased in the acute phase of CM compared to cases recovering from coma. As NO may activate a number of secondary neuropathological mechanisms in the brain, including modulators of synaptic function, induction of iNOS expression in cerebral malaria may contribute to coma, seizures and death.
Collapse
Affiliation(s)
- Y Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kang ES, Ford K, Grokulsky G, Wang YB, Chiang TM, Acchiardo SR. Normal circulating adult human red blood cells contain inactive NOS proteins. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 135:444-51. [PMID: 10850643 DOI: 10.1067/mlc.2000.106805] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human red blood cells (RBCs) are considered to play a significant role in both blood pressure (BP) regulation and tissue oxygenation, because they can bind as well as release previously bound nitric oxide (NO) from hemoglobin (Hb) and other intracellular components. Two reports indicate that the human RBC possesses nitric oxide synthase (NOS) activity-by the accumulation of nitrite across a membraned chamber in one and by the hydrolysis of labeled L-arginine, presumably to labeled L-citrulline, in the other. Furthermore, NOS proteins have been identified by immunoblot in RBCs. If true, the presence of NOS activity would convert the human RBC to a donor with limited ability to bind exogenously generated NO. In considering the importance of the question of the presence or not of NO synthetic capacity of this cell in BP regulation and tissue perfusion, whether human RBCs are, indeed, able to hydrolyze L-arginine to L-citrulline, the coproduct of NO was explored. RBC samples collected from control subjects were assayed for NOS activity by incubation of homogenized cellular fractions with labeled tritiated L-arginine in the presence of 0.5 mmol/L NADPH. By this method, the amino acid coproduct of NO, tritiated L-citrulline, would be recovered in the supernatant after removal of unused substrate by cationic resin treatment. At first, activity appeared to be present in the RBC supernatant but not in the pellet. However, activity was not suppressed by known inhibitors of NOS, whereas activity was suppressed by norvaline, an inhibitor of arginase activity with no known effect on NOS. By contrast, RBC arginase activity was not inhibited by N(omega)-nitro-L-arginine, NG-methyl-L-arginine, or aminoguanidine, known inhibitors of NOS, but was inhibited by norvaline. The label recovered by thin-layer chromatography was determined not to be tritiated L-citrulline but was instead tritiated L-ornithine, the product of arginase activity. Thus the enzymatic hydrolysis of L-arginine was not caused by NOS but was a result of the action of the enzyme arginase, which abounds in this cell. However, proteins interacting with antibodies to the endothelial and inducible isoforms of NOS were detected in human RBCs by immunoblot. Together, these findings indicate that human RBCs collected from normal adult individuals possess proteins that react with monoclonal antibodies to the Inducible and endothelial isoforms of NOS, but the proteins are without catalytic activity.
Collapse
Affiliation(s)
- E S Kang
- Department of Pediatrics, University of Tennessee, Memphis 38163, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gómez-Marín JE. No NO production during human Toxoplasma infection. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:131. [PMID: 10689335 DOI: 10.1016/s0169-4758(99)01614-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
|
46
|
Schwartz E, Samuni A, Friedman I, Hempelmann E, Golenser J. The role of superoxide dismutation in malaria parasites. Inflammation 1999; 23:361-70. [PMID: 10443798 DOI: 10.1023/a:1020261600498] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxidant stress is associated with the generation of reactive oxygen species that are responsible for the damage of a variety of cellular components. The prevention of such biological damage can be achieved by dismutation of superoxide to H2O2 which in turn is removed by catalase and GSH peroxidase. However, redox-active iron released during the development of plasmodia in the erythrocyte can mediate the conversion of H2O2 to hydroxyl radical which is more reactive. The roles of SOD and the nitroxide SOD mimic 4-OH,2,2,6,6,tetramethyl piperidine-N-oxyl (Tempol) were examined in P. falciparum grown in vitro. Both compounds did not prevent the interference with growth inflicted by various inducers of oxidant stress. Moreover, Tempol inhibited parasite growth, in agreement with previous experiments depicting accelerated mortality in SOD overexpressing mouse model of malaria. Probably, effective defense against ROS requires balanced increments in antioxidant enzymes and is not necessarily improved by an increase in the activity of one enzyme.
Collapse
Affiliation(s)
- E Schwartz
- Sheba Medical Centre, Tel-Hashomer, Jerusalem
| | | | | | | | | |
Collapse
|
47
|
Hirunpetcharat C, Finkelman F, Clark IA, Good MF. Malaria parasite-specific Th1-like T cells simultaneously reduce parasitemia and promote disease. Parasite Immunol 1999; 21:319-29. [PMID: 10354354 DOI: 10.1046/j.1365-3024.1999.00234.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CD4+ T cells have been implicated in immunity to the blood stages of malaria and cytokines associated with both monocyte and T cell activation have been implicated in disease. To determine whether specific T cells capable of inhibiting parasite growth can also mediate pathology we have transfused populations of Plasmodium berghei-specific T cells into normal and immunodeficient naive mice. We observed that they could inhibit parasite growth but were unable to save the animals which exhibited significantly greater anaemia and weight loss than control infected animals receiving either no T cells or T cells specific for ovalbumin. T cell-dependent tomour necrosis factor (TNF)alpha was a critical component in both parasite killing and disease promotion. Experiments with blocking antibodies demonstrated that all T-cell mediated antiparasitic immunity and all T-cell mediated weight loss was TNF-dependent. Blocking TNF-alpha in mice that received parasite-specific T cells prolonged the survival of the mice. Nitric oxide demonstrated no antiparasite effect, but was involved in the regulation of T-cell mediated weight loss. The data thus show that while parasite-specific CD4+ T cells can significantly limit parasite growth, such an effect need not be beneficial to the host, and that TNF-alpha and nitric oxide are critical effector molecules operating downstream of parasite-specific T cells in both immunity and disease.
Collapse
Affiliation(s)
- C Hirunpetcharat
- The Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane 4029, Australia
| | | | | | | |
Collapse
|
48
|
Ghigo D, Aldieri E, Todde R, Costamagna C, Garbarino G, Pescarmona G, Bosia A. Chloroquine stimulates nitric oxide synthesis in murine, porcine, and human endothelial cells. J Clin Invest 1998; 102:595-605. [PMID: 9691096 PMCID: PMC508920 DOI: 10.1172/jci1052] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nitric oxide (NO) is a free radical involved in the regulation of many cell functions and in the expression of several diseases. We have found that the antimalarial and antiinflammatory drug, chloroquine, is able to stimulate NO synthase (NOS) activity in murine, porcine, and human endothelial cells in vitro: the increase of enzyme activity is dependent on a de novo synthesis of some regulatory protein, as it is inhibited by cycloheximide but is not accompanied by an increased expression of inducible or constitutive NOS isoforms. Increased NO synthesis is, at least partly, responsible for chloroquine-induced inhibition of cell proliferation: indeed, NOS inhibitors revert the drug-evoked blockage of mitogenesis and ornithine decarboxylase activity in murine and porcine endothelial cells. The NOS-activating effect of chloroquine is dependent on its weak base properties, as it is exerted also by ammonium chloride, another lysosomotropic agent. Both compounds activate NOS by limiting the availability of iron: their stimulating effects on NO synthesis and inhibiting action on cell proliferation are reverted by iron supplementation with ferric nitrilotriacetate, and are mimicked by incubation with desferrioxamine. Our results suggest that NO synthesis can be stimulated in endothelial cells by chloroquine via an impairment of iron metabolism.
Collapse
Affiliation(s)
- D Ghigo
- Department of Genetics, Biology, and Biochemistry, University of Torino, 10126 Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Nitric oxide (NO) is considered an important signaling molecule implied in different physiological processes, including nervous transmission, vascular regulation, immune defense, and in the pathogenesis of several diseases. The presence of NO is well demonstrated in all vertebrates. The recent data on the presence and roles of NO in the main invertebrate groups are reviewed here, showing the widespread diffusion of this signaling molecule throughout the animal kingdom, from higher invertebrates down to coelenterates and even to prokaryotic cells. In invertebrates, the main functional roles described for mammals have been demonstrated, whereas experimental evidence suggests the presence of new NOS isoforms different from those known for higher organisms. Noteworthy is the early appearance of NO throughout evolution and striking is the role played by the nitrergic pathway in the sensorial functions, from coelenterates up to mammals, mainly in olfactory-like systems. All literature data here reported suggest that future research on the biological roles of early signaling molecules in lower living forms could be important for the understanding of the nervous-system evolution.
Collapse
Affiliation(s)
- M Colasanti
- Department of Biology, University of Rome III, Italy
| | | |
Collapse
|
50
|
Abstract
Malaria continues to extract an incalculable cost on human morbidity and mortality throughout tropical and subtropical regions of the world, and effective control measures are urgently needed. Despite considerable efforts in recent years to develop subunit vaccines targeted at various stages of the Plasmodium life-cycle, the commercial availability of a vaccine is still a distant prospect. One of the underlying difficulties hindering successful vaccine design is our incomplete knowledge of the precise type(s) of immune response to aim for, and then how to achieve it. A greater appreciation of the mechanisms of protective immunity, on the one hand, and of immunopathology, on the other, should provide critical clues on how manipulation of the immune system may best be achieved. Ten years have passed since the identification of the Th1/Th2 paradigm for distinguishing CD4+ T cells according to cytokine secretion patterns which determine their function. This review summarises our progress towards understanding the broad spectrum of immune responsiveness to the blood stages of the malaria parasite during experimental infections in mice and highlights the way in which examination of rodent malarias provides a powerful tool to dissect the interaction of Th1 and Th2 cells during an immune response to an infectious disease agent. It is proposed that the pliability of rodent systems for investigating immunoregulation provides valuable insight into the balance between protection and pathology in human malaria and throws light on the factors involved in the modulation of vaccine-potentiated immunity.
Collapse
|