1
|
Tran TT, Prakash H, Nagasawa T, Nakao M, Somamoto T. Characterization of CD83 homologs differently expressed during monocytes differentiation in ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105212. [PMID: 38878874 DOI: 10.1016/j.dci.2024.105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024]
Abstract
CD83 is a costimulatory molecule of antigen-presenting cells (APCs) that plays an important role in eliciting adaptive responses. It is also a well-known surface protein on mature dendritic cells (DCs). Furthermore, monocytes have been reported to differentiate into macrophages and monocyte-derived dendritic cells, which play an important role in innate immunity. CD83 expression affects the activation and maturation of DCs and stimulates cell-mediated immune responses. This study aims to reveal the CD83 expression during monocyte differentiation in teleosts, and the CD83 homologs evolutionary relationship. This study found two distinct CD83 homologs (GbCD83 and GbCD83-L) in ginbuna crucian carp (Gb) and investigated the evolutionary relationship among GbCD83 homologs and other vertebrates and the gene and protein expression levels of the homologs during 4 days of monocyte culture. The phylogenetic tree showed that the two GbCD83 homologs are classified into two distinct branches. Interestingly, only ostariophysians (Gb, common carp, rohu, fathead minnow and channel catfish), but not neoteleosts, mammals, and others, have two CD83 homologs. Morphological observation and colony-stimulating factor-1 receptor (CSF-1R), CD83, CD80/86, and CCR7 gene expressions illustrated that there is a differentiation of monocytes isolated from peripheral blood leukocytes after 4 days. Specifically, gene expression and immunocytochemistry revealed that GbCD83 is mainly expressed on monocytes at the early stage of cell culture, whereas GbCD83-L is expressed in the latter stage. These findings provided the first evidence of differential expression of CD83 homologs during monocytes differentiation in teleost.
Collapse
Affiliation(s)
- Trang Thu Tran
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan.
| |
Collapse
|
2
|
Welch BM, Parikh SA, Kay NE, Medina KL. Profound deficiencies in mature blood and bone marrow progenitor dendritic cells in Chronic Lymphocyticcytic Leukemia patients. RESEARCH SQUARE 2024:rs.3.rs-4953853. [PMID: 39399662 PMCID: PMC11469369 DOI: 10.21203/rs.3.rs-4953853/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Chronic lymphocytic leukemia (CLL) patients are immunocompromised and highly vulnerable to serious recurrent infections. Conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) are principal sensors of infection and are essential in orchestrating innate and adaptive immune responses to resolve infection. This study identified significant deficiencies in six functionally distinct DC subsets in blood of untreated CLL (UT-CLL) patients and selective normalization of pDCs in response to acalabrutinib (a Bruton tyrosine kinase inhibitor) therapy. DCs are continuously replenished from hematopoiesis in bone marrow (BM). Four BM developmental intermediates that give rise to cDCs and pDCs were examined and significant reductions of these were identified in UT-CLL patients supporting a precursor/progeny relationship. The deficiencies in blood DCs and BM DC progenitors were significantly associated with alterations in the Flt3/FL signaling pathway critical to DC development and function. Regarding clinical parameter, cDC subset deficiencies are associated with adverse prognostic indicators of disease progression, including IGHV mutation, CD49d, CD38, and ZAP-70 status. Importantly, UT-CLL patients with shared DC subset deficiencies had shorter time-to-first treatment (TTFT), uncovering a profound alteration in innate immunity with the potential to instruct therapeutic decision-making.
Collapse
Affiliation(s)
- Baustin M. Welch
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Neil E. Kay
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Monif M, Sequeira RP, Muscat A, Stuckey S, Sanfilippo PG, Minh V, Loftus N, Voo V, Fazzolari K, Moss M, Maltby VE, Nguyen AL, Wesselingh R, Seery N, Nesbitt C, Baker J, Dwyer C, Taylor L, Rath L, Van der Walt A, Marriott M, Kalincik T, Lechner-Scott J, O'Brien TJ, Butzkueven H. CLADIN- CLADribine and INnate immune response in multiple sclerosis - A phase IV prospective study. Clin Immunol 2024; 265:110304. [PMID: 38964633 DOI: 10.1016/j.clim.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Richard P Sequeira
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Andrea Muscat
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sian Stuckey
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Paul G Sanfilippo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Viet Minh
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Melbourne, VIC, Australia
| | - Naomi Loftus
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Veronica Voo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | | | - Melinda Moss
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Vicki E Maltby
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Ai-Lan Nguyen
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Robb Wesselingh
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nabil Seery
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Cassie Nesbitt
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Neurology, Barwon Health, Melbourne, VIC, Australia
| | - Josephine Baker
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Chris Dwyer
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Lisa Taylor
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Louise Rath
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mark Marriott
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| | - Tomas Kalincik
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Jeannette Lechner-Scott
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Ipavec N, Rogić Vidaković M, Markotić A, Pavelin S, Buljubašić Šoda M, Šoda J, Dolić K, Režić Mužinić N. Treated and Untreated Primary Progressive Multiple Sclerosis: Walkthrough Immunological Changes of Monocytes and T Regulatory Cells. Biomedicines 2024; 12:464. [PMID: 38398067 PMCID: PMC10887021 DOI: 10.3390/biomedicines12020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to investigate regulatory T cells (Tregs) and monocytes; specifically, the expression of CTLA-4 (CD152) and FOXP3+ in CD4+CD25+ Tregs and the expression of CD40+ and CD192+ monocyte subpopulations in subjects with primary progressive multiple sclerosis (PPMS). Immunological analysis was conducted on peripheral blood samples collected from the 28 PPMS subjects (15 treated with ocrelizumab and 13 untreated PPMS subjects) and 10 healthy control subjects (HCs). The blood samples were incubated with antihuman CD14, CD16, CD40, and CD192 antibodies for monocytes and antihuman CD4, CD25, FOXP3, and CTLA-4 antibodies for lymphocytes. The study results showed that in comparison to HCs both ocrelizumab treated (N = 15) and untreated (N = 13) PPMS subjects had significantly increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs. Further, ocrelizumab treated PPMS subjects, compared to the untreated ones, had significantly decreased percentages of CD192+ and CD40+ nonclassical monocytes. Increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs in both ocrelizumab treated and untreated PPMS subjects indicates the suppressive (inhibitory) role of Tregs in abnormal immune responses in PPMS subjects. Decreased percentages of CD40+ and CD192+ non-classical CD14+CD16++ monocytes for treated compared to untreated PPMS subjects suggests a possible role for ocrelizumab in dampening CNS inflammation.
Collapse
Affiliation(s)
- Nina Ipavec
- Transfusion Medicine Division, University Hospital of Split, 21000 Split, Croatia;
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | | | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | - Krešimir Dolić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia;
- Department of Radiology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| |
Collapse
|
5
|
Voskamp AL, Tak T, Gerdes ML, Menafra R, Duijster E, Jochems SP, Kielbasa SM, Kormelink TG, Stam KA, van Hengel OR, de Jong NW, Hendriks RW, Kloet SL, Yazdanbakhsh M, de Jong EC, Gerth van Wijk R, Smits HH. Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge. J Exp Med 2023; 220:e20221111. [PMID: 37428185 PMCID: PMC10333709 DOI: 10.1084/jem.20221111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.
Collapse
Affiliation(s)
- Astrid L. Voskamp
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten L. Gerdes
- Department of Ear, Nose and Throat, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Roberta Menafra
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Ellen Duijster
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Szymon M. Kielbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Groot Kormelink
- Department of Exp Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nicolette W. de Jong
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Susan L. Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Esther C. de Jong
- Department of Exp Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Roy Gerth van Wijk
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Bonaguro L, Schulte-Schrepping J, Carraro C, Sun LL, Reiz B, Gemünd I, Saglam A, Rahmouni S, Georges M, Arts P, Hoischen A, Joosten LA, van de Veerdonk FL, Netea MG, Händler K, Mukherjee S, Ulas T, Schultze JL, Aschenbrenner AC. Human variation in population-wide gene expression data predicts gene perturbation phenotype. iScience 2022; 25:105328. [PMID: 36310583 PMCID: PMC9614568 DOI: 10.1016/j.isci.2022.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function "in population" experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort.
Collapse
Affiliation(s)
- Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | - Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Laura L. Sun
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | | | - Ioanna Gemünd
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010 VIC, Australia
| | - Adem Saglam
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Souad Rahmouni
- Unit of Animal Genomics, GIGA-Institute, University of Liège, 4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-Institute, University of Liège, 4000 Liège, Belgium
| | - Peer Arts
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, 5000 SA, Australia
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Immunology and Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | - Kristian Händler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, 53127 Bonn, Germany
| | - Sach Mukherjee
- Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, 53127 Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, 53127 Bonn, Germany
| | - Anna C. Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| |
Collapse
|
8
|
Herwig R, Erlbacher K, Ibrahimagic A, Kacar M, Brajshori N, Beqiri P, Greilberger J. Vitamin D-Dimer: A Possible Biomolecule Modulator in Cytotoxic and Phagocytosis Processes? Biomedicines 2022; 10:biomedicines10081785. [PMID: 35892685 PMCID: PMC9331816 DOI: 10.3390/biomedicines10081785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Vitamin D3 complexed to deglycosylated vitamin D binding protein (VitD-dgVDBP) is a water-soluble vitamin D dimeric compound (VitD-dgVDBP). It is not clear how VitD-dgVDBP affects circulating monocytes, macrophages, other immune cell systems, including phagocytosis and apoptosis, and the generation of reactive oxygen species (ROS) compared to dgVDBP. Methods: Flow cytometry was used to measure superoxide anion radical (O2*−) levels and macrophage activity in the presence of VitD-dgVDBP or dgVDBP. VitD-dgVDBP was incubated with normal human lymphocytes (nPBMCs), and several clusters of determination (CDs) were estimated. dgVDBP and VitD-dgVDBP apoptosis was estimated on malignant prostatic cells. Results: The macrophage activity was 2.8-fold higher using VitD-dgVDBP (19.8·106 counts) compared to dgVDBP (7.0·106 counts), but O2*− production was 1.8-fold lower in favor of VitD-dgVDBP (355·103 counts) compared to dgVDBP (630·106 counts). The calculated ratio of the radical/macrophage activity was 5-fold lower compared to that of dgVDBP. Only VitD-dgVDBP activated caspase-3 (8%), caspase-9 (13%), and cytochrome-C (11%) on prostatic cancer cells. PE-Cy7-labeled VitD-dgVDBP was found to bind to cytotoxic suppressor cells, monocytes/macrophages, dendritic and natural killer cells (CD8+), and helper cells (CD4+). After 12 h of co-incubation of nPBMCs with VitD-dgVDBP, significant activation and expression were measured for CD16++/CD16 (0.6 ± 0.1% vs. 0.4 ± 0.1%, p < 0.05), CD45k+ (96.0 ± 6.0% vs. 84.7 ± 9.5%, p < 0.05), CD85k+ (24.3 ± 13.2% vs. 3.8 ± 3.2%, p < 0.05), and CD85k+/CD123+ (46.8 ± 8.1% vs. 3.5 ± 3.7%, p < 0.001) compared to the control experiment. No significant difference was found using CD3+, CD4+, CD8+, CD4/CD8, CD4/CD8, CD16+, CD16++, CD14+, or CD123+. A significant decline in CD14+/CD16+ was obtained in the presence of VitD-dgVDBP (0.7 ± 0.2% vs. 3.1 ± 1.7%; p < 0.01). Conclusion: The newly developed water-soluble VitD3 form VitD-dgVDBP affected cytotoxic suppressor cells by activating the low radical-dependent CD16 pathway and seemed to induce apoptosis in malignant prostatic cells.
Collapse
Affiliation(s)
- Ralf Herwig
- Laboratories PD Dr. R. Herwig, 80337 Munich, Germany; (R.H.); (K.E.)
- Heimerer-College, 10000 Pristina, Kosovo; (N.B.); (P.B.)
| | | | - Amela Ibrahimagic
- Department of Speech and Language Pathology and Audiology, Faculty of Education and Rehabilitation, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Mehtap Kacar
- Department of Physiology, Faculty of Medicine, Yeditepe University, Ataşehir, 34755 İstanbul, Turkey;
- Department of Pathophysiology, Health Sciences Institute, Yeditepe University, Ataşehir, 34755 İstanbul, Turkey
| | | | - Petrit Beqiri
- Heimerer-College, 10000 Pristina, Kosovo; (N.B.); (P.B.)
| | - Joachim Greilberger
- Institut fuer Laborwissenschaften, 8301 Lassnitzhoehe, Austria
- Division of Medicinal Chemistry, Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
9
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Feng J, Li X, Mo B. Monocytes subtypes from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Clin Lab Anal 2022; 36:e24579. [PMID: 35819097 PMCID: PMC9396188 DOI: 10.1002/jcla.24579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pleural effusion is a common clinical condition caused by several respiratory diseases, including tuberculosis and malignancy. However, rapid and accurate diagnoses of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remain challenging. Although monocytes have been confirmed as an important immune cell in tuberculosis and malignancy, little is known about the role of monocytes subpopulations in the diagnosis of pleural effusion. Methods Pleural effusion samples and peripheral blood samples were collected from 40 TPE patients, 40 MPE patients, and 24 transudate pleural effusion patients, respectively. Chemokines (CCL2, CCL7, and CX3CL1) and cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were measured by ELISA. The monocytes phenotypes were analyzed by flow cytometry. The chemokines receptors (CCR2 and CX3CR1) and cytokines above in different monocytes subsets were analyzed by real‐time PCR. Receiver operating characteristic curve analysis was performed for displaying differentiating power of intermediate and nonclassical subsets between tuberculous and malignant pleural effusions. Results CCL7 and CX3CL1 levels in TPE were significantly elevated in TPE compared with MPE and transudate pleural effusion. Cytokines, such as IL‐1β, IL‐17, IL‐27, and IFN‐γ, in TPE were much higher than in other pleural effusions. Moreover, CD14+CD16++ nonclassical subset frequency in TPE was remarkably higher than that in MPE, while CD14++CD16+ intermediate subset proportion in MPE was found elevated. Furthermore, CX3CL1‐CX3CR1 axis‐mediated infiltration of nonclassical monocytes in TPE was related to CX3CL1 and IFN‐γ expression in TPE. Higher expression of cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were found in nonclassical monocytes compared with other subsets. Additionally, the proportions of intermediate and nonclassical monocytes in pleural effusion have the power in discriminating tuberculosis from malignant pleural effusion. Conclusions CD14 and CD16 markers on monocytes could be potentially used as novel diagnostic markers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, China
| |
Collapse
|
10
|
Lende SSF, Pahus MH, Monrad I, Olesen R, Mahr AR, Vibholm LK, Østergaard L, Søgaard OS, Andersen AHF, Denton PW, Tolstrup M. CD169 (Siglec-1) as a Robust Human Cell Biomarker of Toll-Like Receptor 9 Agonist Immunotherapy. Front Cell Infect Microbiol 2022; 12:919097. [PMID: 35865810 PMCID: PMC9294151 DOI: 10.3389/fcimb.2022.919097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is a promising therapeutic area in cancer and chronic viral infections. An important component of immunotherapy in these contexts is the activation of innate immunity. Here we investigate the potential for CD169 (Siglec 1) expression on monocytes to serve as a robust biomarker for activation of innate immunity and, particular, as a proxy for IFN-α production. Specifically, we investigated the effects of Toll-like receptor 9 agonism with MGN1703 (lefitolimod) across experimental conditions ex vivo, in humanized mice, and in clinical trial participants. Ex vivo we observed that the percentage of classical monocytes expressing CD169 increased dramatically from 10% pre-stimulation to 97% 24 hrs after MGN1703 stimulation (p<0.0001). In humanized NOG mice, we observed prominent upregulation of the proportions of monocytes expressing CD169 after two doses of MGN1703 where 73% of classical monocytes were CD169 positive in bone marrow following MGN1703 treatment vs 19% in vehicle treated mice (p=0.0159). Finally, in a clinical trial in HIV-infected individuals receiving immunotherapy treatment with MGN1703, we observed a uniform upregulation of CD169 on monocytes after dosing with 97% of classical monocytes positive for CD169 (p=0.002). Hence, in this comprehensive evaluation ex vivo, in an animal model, and in a clinical trial, we find increases in the percentage of CD169 positive monocytes to be a reliable and robust biomarker of immune activation following TLR9 agonist treatment.
Collapse
Affiliation(s)
| | - Marie Høst Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ida Monrad
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anna R. Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Line K. Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Paul W. Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Martin Tolstrup,
| |
Collapse
|
11
|
Neely J, Hartoularos G, Bunis D, Sun Y, Lee D, Kim S, Ye CJ, Sirota M. Multi-Modal Single-Cell Sequencing Identifies Cellular Immunophenotypes Associated With Juvenile Dermatomyositis Disease Activity. Front Immunol 2022; 13:902232. [PMID: 35799782 PMCID: PMC9254730 DOI: 10.3389/fimmu.2022.902232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare autoimmune condition with insufficient biomarkers and treatments, in part, due to incomplete knowledge of the cell types mediating disease. We investigated immunophenotypes and cell-specific genes associated with disease activity using multiplexed RNA and protein single-cell sequencing applied to PBMCs from 4 treatment-naïve JDM (TN-JDM) subjects at baseline, 2, 4, and 6 months post-treatment and 4 subjects with inactive disease on treatment. Analysis of 55,564 cells revealed separate clustering of TN-JDM cells within monocyte, NK, CD8+ effector T and naïve B populations. The proportion of CD16+ monocytes was reduced in TN-JDM, and naïve B cells and CD4+ Tregs were expanded. Cell-type differential gene expression analysis and hierarchical clustering identified a pan-cell-type IFN gene signature over-expressed in TN-JDM in all cell types and correlated with disease activity most strongly in cytotoxic cell types. TN-JDM CD16+ monocytes expressed the highest IFN gene score and were highly skewed toward an inflammatory and antigen-presenting phenotype at both the transcriptomic and proteomic levels. A transitional B cell population with a distinct transcriptomic signature was expanded in TN-JDM and characterized by higher CD24 and CD5 proteins and less CD39, an immunoregulatory protein. This data provides new insights into JDM immune dysregulation at cellular resolution and serves as a novel resource for myositis investigators.
Collapse
Affiliation(s)
- Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - George Hartoularos
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, United States
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Daniel Bunis
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - David Lee
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Chun Jimmie Ye
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, United States
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Pieralisi AV, Cevey ÁC, Penas FN, Prado N, Mori A, Gili M, Mirkin GA, Gagliardi J, Goren NB. Fenofibrate Increases the Population of Non-Classical Monocytes in Asymptomatic Chagas Disease Patients and Modulates Inflammatory Cytokines in PBMC. Front Cell Infect Microbiol 2022; 11:785166. [PMID: 35360222 PMCID: PMC8963737 DOI: 10.3389/fcimb.2021.785166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic Chagas disease cardiomyopathy (CCC) is the most important clinical manifestation of infection with Trypanosma cruzi (T. cruzi) due to its frequency and effects on morbidity and mortality. Peripheral blood mononuclear cells (PBMC) infiltrate the tissue and differentiate into inflammatory macrophages. Advances in pathophysiology show that myeloid cell subpopulations contribute to cardiac homeostasis, emerging as possible therapeutic targets. We previously demonstrated that fenofibrate, PPARα agonist, controls inflammation, prevents fibrosis and improves cardiac function in a murine infection model. In this work we investigated the spontaneous release of inflammatory cytokines and chemokines, changes in the frequencies of monocyte subsets, and fenofibrate effects on PBMC of seropositive patients with different clinical stages of Chagas disease. The results show that PBMC from Chagas disease patients display higher levels of IL-12, TGF-β, IL-6, MCP1, and CCR2 than cells from uninfected individuals (HI), irrespectively of the clinical stage, asymptomatic (Asy) or with Chagas heart disease (CHD). Fenofibrate reduces the levels of pro-inflammatory mediators and CCR2 in both Asy and CHD patients. We found that CHD patients display a significantly higher percentage of classical monocytes in comparison with Asy patients and HI. Besides, Asy patients have a significantly higher percentage of non-classical monocytes than CHD patients or HI. However, no difference in the intermediate monocyte subpopulation was found between groups. Moreover, monocytes from Asy or CHD patients exhibit different responses upon stimulation in vitro with T. cruzi lysates and fenofibrate treatment. Stimulation with T. cruzi significantly increases the percentage of classical monocytes in the Asy group whereas the percentage of intermediate monocytes decreases. Besides, there are no changes in their frequencies in CHD or HI. Notably, stimulation with T. cruzi did not modify the frequency of the non-classical monocytes subpopulation in any of the groups studied. Moreover, fenofibrate treatment of T. cruzi-stimulated cells, increased the frequency of the non-classical subpopulation in Asy patients. Interestingly, fenofibrate restores CCR2 levels but does not modify HLA-DR expression in any groups. In conclusion, our results emphasize a potential role for fenofibrate as a modulator of monocyte subpopulations towards an anti-inflammatory and healing profile in different stages of chronic Chagas disease.
Collapse
Affiliation(s)
- Azul V. Pieralisi
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Ágata C. Cevey
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Federico N. Penas
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Nilda Prado
- Division of Cardiology, Hospital del Gobierno de la Ciudad de Buenos Aires "Dr. Cosme Argerich", Buenos Aires, Argentina
| | - Ana Mori
- Division of Cardiology, Hospital del Gobierno de la Ciudad de Buenos Aires "Dr. Cosme Argerich", Buenos Aires, Argentina
| | - Mónica Gili
- Hospital Municipal de Rehabilitación Respiratoria María Ferrer, Buenos Aires, Argentina
| | - Gerardo A. Mirkin
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Juan Gagliardi
- Division of Cardiology, Hospital del Gobierno de la Ciudad de Buenos Aires "Dr. Cosme Argerich", Buenos Aires, Argentina
| | - Nora B. Goren
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- *Correspondence: Nora B. Goren,
| |
Collapse
|
13
|
Monocyte Gene and Molecular Expression Profiles Suggest Distinct Effector and Regulatory Functions in Beninese HIV Highly Exposed Seronegative Female Commercial Sex Workers. Viruses 2022; 14:v14020361. [PMID: 35215954 PMCID: PMC8878004 DOI: 10.3390/v14020361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that the female genital tract (FGT) of Beninese HIV highly-exposed seronegative (HESN) commercial sex workers (CSWs), presented elevated frequencies of a myeloid HLA-DR+CD14+CD11c+ population presenting “tolerogenic” monocyte derived dendritic cells (MoDC) features. In order to assess whether a differential profile of monocytes may be involved in the generation of these genital MoDCs, we have herein characterized the blood monocyte compartment of Beninese HESNs (HIV-uninfected ≥ 10 years CSWs) and relevant controls (HIV-uninfected 2.5–5 years CSWs herein termed “early HESNs”), HIV-infected CSWs, and low-risk HIV-uninfected women from the general population. Transcriptomic analyses by RNA-Seq of total sorted blood monocytes demonstrate that in comparison to the control groups, HESNs present increased expression levels of FCGR2C, FCAR, ITGAX, ITGAM, CR2, CD68, and CD163 genes, associated with effector functions. Moreover, we found increased expression levels of genes associated with protection/control against SHIV/HIV such as CCL3, CCL4, CCL5, BHLHE40, and TNFSF13, as well as with immune regulation such as IL-10, Ahr, CD83, and the orphan nuclear receptor (NR)4A1, NR4A2, and NR4A3. Through multicolor flow cytometry analyses, we noticed that the frequencies of intermediate and non-classical monocyte populations tended to be elevated in the blood of HESNs, and exhibited increased expression levels of effector CD16, CD11c, CD11b, as well as regulatory HLA-G, IL-10, and IFN-α markers when compared to HIV-uninfected women and/or HIV-infected CSWs. This profile is compatible with that previously reported in the FGT of HESNs, and likely confers an enormous advantage in their resistance to HIV infection.
Collapse
|
14
|
Alwani A, Andreasik A, Szatanek R, Siedlar M, Baj-Krzyworzeka M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022; 12:100. [PMID: 35053248 PMCID: PMC8773712 DOI: 10.3390/biom12010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Monocytes represent a heterogeneous population of blood cells that provide a link between innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages derived from them is tightly regulated at the transcriptional and post-transcriptional level. This review summarizes the current understanding of the role of small regulatory miRNA in monocyte formation, maturation and function in health and cancer development. Additionally, signatures of miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor environment on the function of monocytes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland; (A.A.); (A.A.); (R.S.); (M.S.)
| |
Collapse
|
15
|
Van Beusecum JP, Barbaro NR, Smart CD, Patrick DM, Loperena R, Zhao S, Ao M, Xiao L, Shibao CA, Harrison DG. Growth Arrest Specific-6 and Axl Coordinate Inflammation and Hypertension. Circ Res 2021; 129:975-991. [PMID: 34565181 PMCID: PMC9125747 DOI: 10.1161/circresaha.121.319643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Justin P. Van Beusecum
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Natalia R. Barbaro
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David M. Patrick
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Divison of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Roxana Loperena
- Vanderbilt Institute of Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Mingfang Ao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Liang Xiao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Cyndya A. Shibao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - David G. Harrison
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
16
|
Kalavska K, Sestakova Z, Mlcakova A, Kozics K, Gronesova P, Hurbanova L, Miskovska V, Rejlekova K, Svetlovska D, Sycova-Mila Z, Obertova J, Palacka P, Mardiak J, Chovanec M, Chovanec M, Mego M. Are Changes in the Percentage of Specific Leukocyte Subpopulations Associated with Endogenous DNA Damage Levels in Testicular Cancer Patients? Int J Mol Sci 2021; 22:8281. [PMID: 34361047 PMCID: PMC8347719 DOI: 10.3390/ijms22158281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance of germ cell tumors (GCTs) represents an intensively studied property of GCTs that is the result of a complicated multifactorial process. One of the driving factors in this process is the tumor microenvironment (TME). Intensive crosstalk between the DNA damage/DNA repair pathways and the TME has already been reported. This study aimed at evaluating the interplay between the immune TME and endogenous DNA damage levels in GCT patients. A cocultivation system consisting of peripheral blood mononuclear cells (PBMCs) from healthy donors and GCT cell lines was used in an in vitro study. The patient cohort included 74 chemotherapy-naïve GCT patients. Endogenous DNA damage levels were measured by comet assay. Immunophenotyping of leukocyte subpopulations was performed using flow cytometry. Statistical analysis included data assessing immunophenotypes, DNA damage levels and clinicopathological characteristics of enrolled patients. The DNA damage level in PBMCs cocultivated with cisplatin (CDDP)-resistant GCT cell lines was significantly higher than in PBMCs cocultivated with their sensitive counterparts. In GCT patients, endogenous DNA damage levels above the cutoff value were independently associated with increased percentages of natural killer cells, CD16-positive dendritic cells and regulatory T cells. The crosstalk between the endogenous DNA damage level and specific changes in the immune TME reflected in the blood of GCT patients was revealed. The obtained data contribute to a deeper understanding of ongoing interactions in the TME of GCTs.
Collapse
Affiliation(s)
- Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia; (K.K.); (D.S.)
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia
| | - Zuzana Sestakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia; (Z.S.); (L.H.); (M.C.)
| | - Andrea Mlcakova
- Department of Hematology, National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Katarína Kozics
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia;
| | - Paulina Gronesova
- Department of Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia;
| | - Lenka Hurbanova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia; (Z.S.); (L.H.); (M.C.)
| | - Viera Miskovska
- 1st Department of Oncology, Faculty of Medicine, Comenius University, St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovakia;
| | - Katarina Rejlekova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia; (K.R.); (M.C.)
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.S.-M.); (J.O.); (P.P.); (J.M.)
| | - Daniela Svetlovska
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia; (K.K.); (D.S.)
| | - Zuzana Sycova-Mila
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.S.-M.); (J.O.); (P.P.); (J.M.)
| | - Jana Obertova
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.S.-M.); (J.O.); (P.P.); (J.M.)
| | - Patrik Palacka
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.S.-M.); (J.O.); (P.P.); (J.M.)
| | - Jozef Mardiak
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.S.-M.); (J.O.); (P.P.); (J.M.)
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia; (K.R.); (M.C.)
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.S.-M.); (J.O.); (P.P.); (J.M.)
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia; (Z.S.); (L.H.); (M.C.)
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia; (K.K.); (D.S.)
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia; (Z.S.); (L.H.); (M.C.)
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, 833 10 Bratislava, Slovakia; (K.R.); (M.C.)
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.S.-M.); (J.O.); (P.P.); (J.M.)
| |
Collapse
|
17
|
Ciccocioppo R, Gibellini D, Astori G, Bernardi M, Bozza A, Chieregato K, Elice F, Ugel S, Caligola S, De Sanctis F, Canè S, Fiore A, Trovato R, Vella A, Petrova V, Amodeo G, Santimaria M, Mazzariol A, Frulloni L, Ruggeri M, Polati E, Bronte V. The immune modulatory effects of umbilical cord-derived mesenchymal stromal cells in severe COVID-19 pneumonia. Stem Cell Res Ther 2021; 12:316. [PMID: 34078447 PMCID: PMC8170427 DOI: 10.1186/s13287-021-02376-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) may result in a life-threatening condition due to a hyperactive immune reaction to severe acute respiratory syndrome-coronavirus-2 infection, for which no effective treatment is available. Based on the potent immunomodulatory properties of mesenchymal stromal cells (MSCs), a growing number of trials are ongoing. This prompted us to carry out a thorough immunological study in a patient treated with umbilical cord-derived MSCs and admitted to the Intensive Care Unit for COVID-19-related pneumonia. The exploratory analyses were assessed on both peripheral blood and bronchoalveolar fluid lavage samples at baseline and after cellular infusion by means of single-cell RNA sequencing, flow cytometry, ELISA, and functional assays. Remarkably, a normalization of circulating T lymphocytes count paralleled by a reduction of inflammatory myeloid cells, and a decrease in serum levels of pro-inflammatory cytokines, mostly of interleukin-6 and tumor necrosis factor-α, were observed. In addition, a drop of plasma levels of those chemokines essential for neutrophil recruitment became evident that paralleled the decrease of lung-infiltrating inflammatory neutrophils. Finally, circulating monocytes and low-density gradient neutrophils acquired immunosuppressive function. This scenario was accompanied by an amelioration of respiratory, renal, inflammatory, and pro-thrombotic indexes. Our results provide the first immunological data possibly related to the use of umbilical cord-derived MSCs in severe COVID-19 context.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy.
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies, Hematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Martina Bernardi
- Laboratory of Advanced Cellular Therapies, Hematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Angela Bozza
- Laboratory of Advanced Cellular Therapies, Hematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Katia Chieregato
- Laboratory of Advanced Cellular Therapies, Hematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Francesca Elice
- Hematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Stefano Ugel
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Simone Caligola
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Stefania Canè
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Alessandra Fiore
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Rosalinda Trovato
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Antonio Vella
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Varvara Petrova
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Giuseppe Amodeo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Monica Santimaria
- Nuclear Medicine Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Annarita Mazzariol
- Microbiology Section, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Luca Frulloni
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Marco Ruggeri
- Hematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Enrico Polati
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, A.O.U.I. Ospedale Maggiore & University of Verona, Verona, Italy
| | - Vincenzo Bronte
- Immunology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| |
Collapse
|
18
|
The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8060063. [PMID: 34206012 PMCID: PMC8228191 DOI: 10.3390/jcdd8060063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Background and aims: Chronic inflammation associated with the uncontrolled activation of innate and acquired immunity plays a fundamental role in all stages of atherogenesis. Monocytes are a heterogeneous population and each subset contributes differently to the inflammatory process. A high level of lipoprotein(a) (Lp(a)) is a proven cardiovascular risk factor. The aim of the study was to investigate the association between the increased concentration of Lp(a) and monocyte subpopulations in patients with a different severity of coronary atherosclerosis. Methods: 150 patients (124 males) with a median age of 60 years undergoing a coronary angiography were enrolled. Lipids, Lp(a), autoantibodies, blood cell counts and monocyte subpopulations (classical, intermediate, non-classical) were analyzed. Results: The patients were divided into two groups depending on the Lp(a) concentration: normal Lp(a) < 30 mg/dL (n = 82) and hyperLp(a) ≥ 30 mg/dL (n = 68). Patients of both groups were comparable by risk factors, autoantibody levels and blood cell counts. In patients with hyperlipoproteinemia(a) the content (absolute and relative) of non-classical monocytes was higher (71.0 (56.6; 105.7) vs. 62.2 (45.7; 82.4) 103/mL and 17.7 (13.0; 23.3) vs. 15.1 (11.4; 19.4) %, respectively, p < 0.05). The association of the relative content of non-classical monocytes with the Lp(a) concentration retained a statistical significance when adjusted for gender and age (r = 0.18, p = 0.03). The severity of coronary atherosclerosis was associated with the Lp(a) concentration as well as the relative and absolute (p < 0.05) content of classical monocytes. The high content of non-classical monocytes (OR = 3.5, 95% CI 1.2–10.8) as well as intermediate monocytes (OR = 8.7, 2.5–30.6) in patients with hyperlipoproteinemia(a) were associated with triple-vessel coronary disease compared with patients with a normal Lp(a) level and a low content of monocytes. Conclusion: Hyperlipoproteinemia(a) and a decreased quantity of classical monocytes were associated with the severity of coronary atherosclerosis. The expansion of CD16+ monocytes (intermediate and non-classical) in the presence of hyperlipoproteinemia(a) significantly increased the risk of triple-vessel coronary disease.
Collapse
|
19
|
Blondin-Ladrie L, Aranguren M, Doyon-Laliberté K, Poudrier J, Roger M. The Importance of Regulation in Natural Immunity to HIV. Vaccines (Basel) 2021; 9:vaccines9030271. [PMID: 33803543 PMCID: PMC8003059 DOI: 10.3390/vaccines9030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, most Human Immunodeficiency Virus (HIV) infections are acquired through heterosexual intercourse, and in sub-Saharan Africa, 59% of new HIV infections affect women. Vaccines and microbicides hold promise for preventing the acquisition of HIV. To this end, the study of HIV highly exposed seronegative (HESN) female commercial sex workers (CSWs), who constitute a model of natural immunity to HIV, provides an exceptional opportunity to determine important clues for the development of preventive strategies. Studies using both female genital tract (FGT) and peripheral blood samples of HESN CSWs, have allowed identifying distinct features, notably low-inflammatory patterns associated with resistance to infection. How this seemingly regulated response is achieved at the initial site of HIV infection remains unknown. One hypothesis is that populations presenting regulatory profiles contribute to the orchestration of potent anti-viral and low-inflammatory responses at the initial site of HIV transmission. Here, we view to update our knowledge regarding this issue.
Collapse
Affiliation(s)
- Laurence Blondin-Ladrie
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Matheus Aranguren
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Kim Doyon-Laliberté
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Johanne Poudrier
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: (J.P.); (M.R.)
| | - Michel Roger
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Institut National de Santé Publique du Québec, Montréal, QC H2P1E2, Canada
- Correspondence: (J.P.); (M.R.)
| |
Collapse
|
20
|
Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2020; 94:JVI.01478-20. [PMID: 32907978 DOI: 10.1128/jvi.01478-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Despite early antiretroviral therapy (ART), treatment interruption is associated with viral rebound, indicating early viral reservoir (VR) seeding and absence of full eradication of human immunodeficiency virus type 1 (HIV-1) that may persist in tissues. Herein, we address the contributing role of monocytes in maintaining VRs under ART, since these cells may represent a source of viral dissemination due to their ability to replenish mucosal tissues in response to injury. To this aim, monocytes with classical (CD14+), intermediate (CD14+ CD16+), and nonclassical (CD16+) phenotypes and CD4+ T cells were sorted from the blood, spleen, and intestines of untreated and early-ART-treated simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) before and after ART interruption. Cell-associated SIV DNA and RNA were quantified. We demonstrated that in the absence of ART, monocytes were productively infected with replication-competent SIV, especially in the spleen. Reciprocally, early ART efficiently (i) prevented the establishment of monocyte VRs in the blood, spleen, and intestines and (ii) reduced systemic inflammation, as indicated by changes in interleukin-18 (IL-18) and IL-1 receptor antagonist (IL-1Ra) plasma levels. ART interruption was associated with a rebound in viremia that led to the rapid productive infection of both CD4+ T cells and monocytes. Altogether, our results reveal the benefits of early ART initiation in limiting the contribution of monocytes to VRs and SIV-associated inflammation.IMPORTANCE Despite the administration of antiretroviral therapy (ART), HIV persists in treated individuals and ART interruption is associated with viral rebound. Persistent chronic immune activation and inflammation contribute to disease morbidity. Whereas monocytes are infected by HIV/SIV, their role as viral reservoirs (VRs) in visceral tissues has been poorly explored. Our work demonstrates that monocyte cell subsets in the blood, spleen, and intestines do not significantly contribute to the establishment of early VRs in SIV-infected rhesus macaques treated with ART. By preventing the infection of these cells, early ART reduces systemic inflammation. However, following ART interruption, monocytes are rapidly reinfected. Altogether, our findings shed new light on the benefits of early ART initiation in limiting VR and inflammation.
Collapse
|
21
|
Sanchez-Schmitz G, Morrocchi E, Cooney M, Soni D, Khatun R, Palma P, Dowling DJ, Levy O. Neonatal monocytes demonstrate impaired homeostatic extravasation into a microphysiological human vascular model. Sci Rep 2020; 10:17836. [PMID: 33082466 PMCID: PMC7576166 DOI: 10.1038/s41598-020-74639-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Infections are most frequent at the extremes of life, especially among newborns, reflecting age-specific differences in immunity. Monocytes maintain tissue-homeostasis and defence-readiness by escaping circulation in the absence of inflammation to become tissue-resident antigen presenting cells in vivo. Despite equivalent circulating levels, neonates demonstrate lower presence of monocytes inside peripheral tissues as compared to adults. To study the ability of monocytes to undergo autonomous transendothelial extravasation under biologically accurate circumstances we engineered a three-dimensional human vascular-interstitial model including collagen, fibronectin, primary endothelial cells and autologous untreated plasma. This microphysiological tissue construct enabled age-specific autonomous extravasation of monocytes through a confluent human endothelium in the absence of exogenous chemokines and activation. Both CD16- and CD16+ newborn monocytes demonstrated lower adherence and extravasation as compared to adults. In contrast, pre-activated tissue constructs were colonized by newborn monocytes at the same frequency than adult monocytes, suggesting that neonatal monocytes are capable of colonizing inflamed tissues. The presence of autologous plasma neither improved newborn homeostatic extravasation nor shaped age-specific differences in endothelial cytokines that could account for this impairment. Newborn monocytes demonstrated significantly lower surface expression of CD31 and CD11b, and mechanistic experiments using blocking antibodies confirmed a functional role for CD31 and CD54 in neonatal homeostatic extravasation. Our data suggests that newborn monocytes are intrinsically impaired in extravasation through quiescent endothelia, a phenomenon that could contribute to the divergent immune responsiveness to vaccines and susceptibility to infection observed during early life.
Collapse
Affiliation(s)
- Guzman Sanchez-Schmitz
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Elena Morrocchi
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Academic Department of Paediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Children's Hospital Bambino Gesù, Rome, Italy
| | - Mitchell Cooney
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Dheeraj Soni
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Rahima Khatun
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Paolo Palma
- Academic Department of Paediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Children's Hospital Bambino Gesù, Rome, Italy
- Chair of Paediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David J Dowling
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ofer Levy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
22
|
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol 2020; 92:e12883. [PMID: 32243617 DOI: 10.1111/sji.12883] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Monocytes are important cells of the innate system. They are a heterogeneous type of cells consisting of phenotypically and functionally distinct subpopulations, which play a specific role in the control, development and escalation of the immunological processes. Based on the expression of superficial CD14 and CD16 in flow cytometry, they can be divided into three subsets: classical, intermediate and non-classical. Variation in the levels of human monocyte subsets in the blood can be observed in patients in numerous pathological states, such as infections, cardiovascular and inflammatory diseases, cancer and autoimmune diseases. The aim of this review is to summarize current knowledge of human monocyte subsets and their significance in homeostasis and in pathological conditions.
Collapse
|
23
|
The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream. PLoS One 2019; 14:e0226126. [PMID: 31815949 PMCID: PMC6901223 DOI: 10.1371/journal.pone.0226126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Salmonella can appear in the bloodstream within CD18 expressing phagocytes following oral ingestion in as little as 15 minutes. Here, we provide evidence that the process underlying this phenomenon is reverse transmigration. Reverse transmigration is a normal host process in which dendritic cells can reenter the bloodstream by traversing endothelium in the basal to apical direction. We have developed an in vitro reverse transmigration assay in which dendritic cells are given the opportunity to cross endothelial monolayers in the basal to apical direction grown on membranes with small pores, modeling how such cells can penetrate the bloodstream. We demonstrate that exposing dendritic cells to microbial components negatively regulates reverse transmigration. We propose that microbial components normally cause the host to toggle between positively and negatively regulating reverse transmigration, balancing the need to resolve inflammation with inhibiting the spread of microbes. We show that Salmonella in part overcomes this negative regulation of reverse transmigration with the Salmonella pathogenicity island-2 encoded type III secretion system, which increases reverse transmigration by over an order of magnitude. The SPI-2 type III secretion system does this in part, but not entirely by injecting the type III effector SpvC into infected cells. We further demonstrate that SpvC greatly promotes early extra-intestinal dissemination in mice. This result combined with the previous observation that the spv operon is conserved amongst strains of non-typhoidal Salmonella capable of causing bacteremia in humans suggests that this pathway to the bloodstream could be important for understanding human infections.
Collapse
|
24
|
Fromm PD, Silveira PA, Hsu JL, Papadimitrious MS, Lo TH, Ju X, Kupresanin F, Romano A, Hsu WH, Bryant CE, Kong B, Abadir E, Mekkawy A, M McGuire H, Groth BFDS, Cunningham I, Newman E, Gibson J, Hogarth PM, Hart DNJ, Clark GJ. Distinguishing human peripheral blood CD16 + myeloid cells based on phenotypic characteristics. J Leukoc Biol 2019; 107:323-339. [PMID: 31749181 DOI: 10.1002/jlb.5a1119-362rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022] Open
Abstract
Myeloid lineage cells present in human peripheral blood include dendritic cells (DC) and monocytes. The DC are identified phenotypically as HLA-DR+ cells that lack major cell surface lineage markers for T cells (CD3), B cells (CD19, CD20), NK cells (CD56), red blood cells (CD235a), hematopoietic stem cells (CD34), and Mo that express CD14. Both DC and Mo can be phenotypically divided into subsets. DC are divided into plasmacytoid DC, which are CD11c- , CD304+ , CD85g+ , and myeloid DC that are CD11c+ . The CD11c+ DC are readily classified as CD1c+ DC and CD141+ DC. Monocytes are broadly divided into the CD14+ CD16- (classical) and CD14dim CD16+ subsets (nonclassical). A population of myeloid-derived cells that have DC characteristics, that is, HLA-DR+ and lacking lineage markers including CD14, but express CD16 are generally clustered with CD14dim CD16+ monocytes. We used high-dimensional clustering analyses of fluorescence and mass cytometry data, to delineate CD14+ monocytes, CD14dim CD16+ monocytes (CD16+ Mo), and CD14- CD16+ DC (CD16+ DC). We sought to identify the functional and kinetic relationship of CD16+ DC to CD16+ Mo. We demonstrate that differentiation of CD16+ DC and CD16+ Mo during activation with IFNγ in vitro and as a result of an allo-hematopoietic cell transplant (HCT) in vivo resulted in distinct populations. Recovery of blood CD16+ DC in both auto- and allo-(HCT) patients after myeloablative conditioning showed similar reconstitution and activation kinetics to CD16+ Mo. Finally, we show that expression of the cell surface markers CD300c, CCR5, and CLEC5a can distinguish the cell populations phenotypically paving the way for functional differentiation as new reagents become available.
Collapse
Affiliation(s)
- Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer L Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Adelina Romano
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Christian E Bryant
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Ahmed Mekkawy
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Helen M McGuire
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia
| | - Barbara Fazekas de St Groth
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia
| | - Ilona Cunningham
- Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Elizabeth Newman
- Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - John Gibson
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
CD16 + monocytes give rise to CD103 +RALDH2 +TCF4 + dendritic cells with unique transcriptional and immunological features. Blood Adv 2019; 2:2862-2878. [PMID: 30381402 DOI: 10.1182/bloodadvances.2018020123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Classical CD16- vs intermediate/nonclassical CD16+ monocytes differ in their homing potential and biological functions, but whether they differentiate into dendritic cells (DCs) with distinct contributions to immunity against bacterial/viral pathogens remains poorly investigated. Here, we employed a systems biology approach to identify clinically relevant differences between CD16+ and CD16- monocyte-derived DCs (MDDCs). Although both CD16+ and CD16- MDDCs acquire classical immature/mature DC markers in vitro, genome-wide transcriptional profiling revealed unique molecular signatures for CD16+ MDDCs, including adhesion molecules (ITGAE/CD103), transcription factors (TCF7L2/TCF4), and enzymes (ALDH1A2/RALDH2), whereas CD16- MDDCs exhibit a CDH1/E-cadherin+ phenotype. Of note, lipopolysaccharides (LPS) upregulated distinct transcripts in CD16+ (eg, CCL8, SIGLEC1, MIR4439, SCIN, interleukin [IL]-7R, PLTP, tumor necrosis factor [TNF]) and CD16- MDDCs (eg, MMP10, MMP1, TGM2, IL-1A, TNFRSF11A, lysosomal-associated membrane protein 1, MMP8). Also, unique sets of HIV-modulated genes were identified in the 2 subsets. Further gene set enrichment analysis identified canonical pathways that pointed to "inflammation" as the major feature of CD16+ MDDCs at immature stage and on LPS/HIV exposure. Finally, functional validations and meta-analysis comparing the transcriptome of monocyte and MDDC subsets revealed that CD16+ vs CD16- monocytes preserved their superior ability to produce TNF-α and CCL22, as well as other sets of transcripts (eg, TCF4), during differentiation into DC. These results provide evidence that monocyte subsets are transcriptionally imprinted/programmed with specific differentiation fates, with intermediate/nonclassical CD16+ monocytes being precursors for pro-inflammatory CD103+RALDH2+TCF4+ DCs that may play key roles in mucosal immunity homeostasis/pathogenesis. Thus, alterations in the CD16+ /CD16- monocyte ratios during pathological conditions may dramatically influence the quality of MDDC-mediated immunity.
Collapse
|
26
|
Hofer TP, van de Loosdrecht AA, Stahl-Hennig C, Cassatella MA, Ziegler-Heitbrock L. 6-Sulfo LacNAc (Slan) as a Marker for Non-classical Monocytes. Front Immunol 2019; 10:2052. [PMID: 31572354 PMCID: PMC6753898 DOI: 10.3389/fimmu.2019.02052] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monocytes are subdivided into three subsets, which have different phenotypic and functional characteristics and different roles in inflammation and malignancy. When in man CD14 and CD16 monoclonal antibodies are used to define these subsets, then the distinction of non-classical CD14low and intermediate CD14high monocytes requires setting a gate in what is a gradually changing level of CD14 expression. In the search for an additional marker to better dissect the two subsets we have explored the marker 6-sulfo LacNAc (slan). Slan is a carbohydrate residue originally described to be expressed on the cell surface of a type of dendritic cell in human blood. We elaborate herein that the features of slan+ cells are congruent with the features of CD16+ non-classical monocytes and that slan is a candidate marker for definition of non-classical monocytes. The use of this marker may help in studying the role of non-classical monocytes in health and in diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Thomas P Hofer
- Immunoanalytics Core Facility and RG Tissue Control of Immunocytes, Helmholtz Centre Munich, Munich, Germany
| | | | | | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
27
|
Guo J, Muse E, Christians AJ, Swanson SJ, Davila E. An Anticancer Drug Cocktail of Three Kinase Inhibitors Improved Response to a Dendritic Cell-Based Cancer Vaccine. Cancer Immunol Res 2019; 7:1523-1534. [PMID: 31266784 PMCID: PMC6726569 DOI: 10.1158/2326-6066.cir-18-0684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/22/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Monocyte-derived dendritic cell (moDC)-based cancer therapies intended to elicit antitumor T-cell responses have limited efficacy in most clinical trials. However, potent and sustained antitumor activity in a limited number of patients highlights the therapeutic potential of moDCs. In vitro culture conditions used to generate moDCs can be inconsistent, and moDCs generated in vitro are less effective than natural DCs. On the basis of our study highlighting the ability for certain kinase inhibitors to enhance tumor antigenicity, we therefore screened kinase inhibitors for their ability to improve DC immunogenicity. We identified AKT inhibitor MK2206, DNA-PK inhibitor NU7441, and MEK inhibitor trametinib as the compounds most effective at modulating moDC immunogenicity. The combination of these drugs, referred to as MKNUTRA, enhanced moDC activity over treatment with individual drugs while exhibiting minimal toxicity. An evaluation of 335 activation and T-cell-suppressive surface proteins on moDCs revealed that MKNUTRA treatment more effectively matured cells and reduced the expression of tolerogenic proteins as compared with control moDCs. MKNUTRA treatment imparted to ICT107, a glioblastoma (GBM) DC-based vaccine that has completed phase II trials, an increased ability to stimulate patient-derived autologous CD8+ T cells against the brain tumor antigens IL13Rα2(345-354) and TRP2(180-188) In vivo, treating ICT107 with MKNUTRA, prior to injection into mice with an established GBM tumor, reduced tumor growth kinetics. This response was associated with an increased frequency of tumor-reactive lymphocytes within tumors and in peripheral tissues. These studies broaden the application of targeted anticancer drugs and highlight their ability to increase moDC immunogenicity.
Collapse
Affiliation(s)
- Jitao Guo
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elena Muse
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Allison J Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | | | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
- Human Immunology and Immunotherapy Initiative, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
28
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
29
|
Wefers C, Duiveman-de Boer T, Yigit R, Zusterzeel PLM, van Altena AM, Massuger LFAG, De Vries IJM. Survival of Ovarian Cancer Patients Is Independent of the Presence of DC and T Cell Subsets in Ascites. Front Immunol 2019; 9:3156. [PMID: 30687337 PMCID: PMC6336918 DOI: 10.3389/fimmu.2018.03156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Ascites is a prominent feature of ovarian cancer and could serve as liquid biopsy to assess the immune status of patients. Tumor-infiltrating T lymphocytes are correlated with improved survival in ovarian cancer. To investigate whether immune cells in ascites are associated with patient outcome, we analyzed the amount of dendritic cell (DC) and T cell subsets in ascites from ovarian cancer patients diagnosed with high-grade serous cancer (HGSC). Ascites was collected from 62 HGSC patients prior to chemotherapy. Clinicopathological, histological and follow-up data from patients were collected. Ascites-derived immune cells were isolated using density-gradient centrifugation. The presence of myeloid DCs (BDCA-1+, BDCA-3+, CD16+), pDCs (CD123+BDCA-2+), and T cells (CD4+, CD8+) was analyzed using flow cytometry. Complete cytoreduction, response to primary treatment and chemosensitivity were associated with improved patient outcome. In contrast, immune cells in ascites did not significantly correlate with patient survival. However, we observed a trend toward improved outcome for patients having low percentages of CD4+ T cells. Furthermore, we assessed the expression of co-stimulatory and co-inhibitory molecules on T cells and non-immune cells in 10 ascites samples. PD-1 was expressed by 30% of ascites-derived T cells and PD-L1 by 50% of non-immune cells. However, the percentage of DC and T cell subsets in ascites was not directly correlated to the survival of HGSC patients.
Collapse
Affiliation(s)
- Christina Wefers
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Tjitske Duiveman-de Boer
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Refika Yigit
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Petra L. M. Zusterzeel
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Anne M. van Altena
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Leon F. A. G. Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - I. Jolanda M. De Vries
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
30
|
Vlacil AK, Schuett J, Schieffer B, Grote K. Variety matters: Diverse functions of monocyte subtypes in vascular inflammation and atherogenesis. Vascul Pharmacol 2018; 113:9-19. [PMID: 30553027 DOI: 10.1016/j.vph.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022]
Abstract
Monocytes are important mediators of the innate immunity by recognizing and attacking especially bacterial pathogens but also play crucial roles in various inflammatory diseases, including vascular inflammation and atherosclerosis. Maturation, differentiation and function of monocytes have been intensively explored for a long time in innumerable experimental and clinical studies. Monocytes do not represent a uniform cell type but could be further subdivided into subpopulations with distinct features and functions. Those subpopulations have been identified in experimental mouse models as well as in humans, albeit distinguished by different cell surface markers. While Ly6C is used for subpopulation differentiation in mice, corresponding human subsets are differentiated by CD14 and CD16. In this review, we specifically focused on new experimental insights from recent years mainly in regard to murine monocyte subpopulations and their roles in vascular inflammation und atherogenesis.
Collapse
Affiliation(s)
| | - Jutta Schuett
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | | | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
31
|
Sanchez-Schmitz G, Stevens CR, Bettencourt IA, Flynn PJ, Schmitz-Abe K, Metser G, Hamm D, Jensen KJ, Benn C, Levy O. Microphysiologic Human Tissue Constructs Reproduce Autologous Age-Specific BCG and HBV Primary Immunization in vitro. Front Immunol 2018; 9:2634. [PMID: 30524426 PMCID: PMC6256288 DOI: 10.3389/fimmu.2018.02634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Current vaccine development disregards human immune ontogeny, relying on animal models to select vaccine candidates targeting human infants, who are at greatest risk of infection worldwide, and receive the largest number of vaccines. To help accelerate and de-risk development of early-life effective immunization, we engineered a human age-specific microphysiologic vascular-interstitial interphase, suitable for pre-clinical modeling of distinct age-targeted immunity in vitro. Our Tissue Constructs (TCs) enable autonomous extravasation of monocytes that undergo rapid self-directed differentiation into migratory Dendritic Cells (DCs) in response to adjuvants and licensed vaccines such as Bacille Calmette-Guérin (BCG) or Hepatitis B virus Vaccine (HBV). TCs contain a confluent human endothelium grown atop a tri-dimensional human extracellular matrix substrate, employ human age-specific monocytes and autologous non heat-treated plasma, and avoid the use of xenogenic materials and exogenous cytokines. Vaccine-pulsed TCs autonomously generated DCs that induced single-antigen recall responses from autologous naïve and memory CD4+ T lymphocytes, matching study participant immune-status, including BCG responses paralleling donor PPD status, BCG-induced adenosine deaminase (ADA) activity paralleling infant cohorts in vivo, and multi-dose HBV antigen-specific responses as demonstrated by lymphoproliferation and TCR sequencing. Overall, our microphysiologic culture method reproduced age- and antigen-specific recall responses to BCG and HBV immunization, closely resembling those observed after a birth immunization of human cohorts in vivo, offering for the first time a new approach to early pre-clinical selection of effective age-targeted vaccine candidates.
Collapse
Affiliation(s)
- Guzman Sanchez-Schmitz
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Chad R Stevens
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Ian A Bettencourt
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Peter J Flynn
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Klaus Schmitz-Abe
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Gil Metser
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - David Hamm
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Kristoffer J Jensen
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Christine Benn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | - Ofer Levy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
32
|
Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, Xiao L, Elijovich F, Laffer CL, Gnecco JS, Noonan J, Maffia P, Jasiewicz-Honkisz B, Czesnikiewicz-Guzik M, Mikolajczyk T, Sliwa T, Dikalov S, Weyand CM, Guzik TJ, Harrison DG. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc Res 2018; 114:1547-1563. [PMID: 29800237 PMCID: PMC6106108 DOI: 10.1093/cvr/cvy112] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/11/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023] Open
Abstract
Aims Monocytes play an important role in hypertension. Circulating monocytes in humans exist as classical, intermediate, and non-classical forms. Monocyte differentiation can be influenced by the endothelium, which in turn is activated in hypertension by mechanical stretch. We sought to examine the role of increased endothelial stretch and hypertension on monocyte phenotype and function. Methods and results Human monocytes were cultured with confluent human aortic endothelial cells undergoing either 5% or 10% cyclical stretch. We also characterized circulating monocytes in normotensive and hypertensive humans. In addition, we quantified accumulation of activated monocytes and monocyte-derived cells in aortas and kidneys of mice with Angiotensin II-induced hypertension. Increased endothelial stretch enhanced monocyte conversion to CD14++CD16+ intermediate monocytes and monocytes bearing the CD209 marker and markedly stimulated monocyte mRNA expression of interleukin (IL)-6, IL-1β, IL-23, chemokine (C-C motif) ligand 4, and tumour necrosis factor α. STAT3 in monocytes was activated by increased endothelial stretch. Inhibition of STAT3, neutralization of IL-6 and scavenging of hydrogen peroxide prevented formation of intermediate monocytes in response to increased endothelial stretch. We also found evidence that nitric oxide (NO) inhibits formation of intermediate monocytes and STAT3 activation. In vivo studies demonstrated that humans with hypertension have increased intermediate and non-classical monocytes and that intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3. Conclusions These findings provide insight into how monocytes are activated by the vascular endothelium during hypertension. This is likely in part due to a loss of NO signalling and increased release of IL-6 and hydrogen peroxide by the dysfunctional endothelium and a parallel increase in STAT activation in adjacent monocytes. Interventions to enhance bioavailable NO, reduce IL-6 or hydrogen peroxide production or to inhibit STAT3 may have anti-inflammatory roles in hypertension and related conditions.
Collapse
Affiliation(s)
- Roxana Loperena
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Justin P Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Noah Engel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Fanny Laroumanie
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Xiao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan S Gnecco
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan Noonan
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Barbara Jasiewicz-Honkisz
- Department of Internal Medicine, Jagiellonian University School of Medicine, Cracow, Poland
- Department of Immunology, Jagiellonian University School of Medicine, Cracow, Poland
| | | | - Tomasz Mikolajczyk
- Department of Internal Medicine, Jagiellonian University School of Medicine, Cracow, Poland
- Department of Immunology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Tomasz Sliwa
- Department of Internal Medicine, Jagiellonian University School of Medicine, Cracow, Poland
- Department of Immunology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
33
|
Olaru F, Döbel T, Lonsdorf AS, Oehrl S, Maas M, Enk AH, Schmitz M, Gröne EF, Gröne HJ, Schäkel K. Intracapillary immune complexes recruit and activate slan-expressing CD16+ monocytes in human lupus nephritis. JCI Insight 2018; 3:96492. [PMID: 29875315 DOI: 10.1172/jci.insight.96492] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/24/2018] [Indexed: 12/30/2022] Open
Abstract
Lupus nephritis is a major cause of morbidity in patients with systemic lupus erythematosus. Among the different types of lupus nephritis, intracapillary immune complex (IC) deposition and accumulation of monocytes are hallmarks of lupus nephritis class III and IV. The relevance of intracapillary ICs in terms of monocyte recruitment and activation, as well as the nature and function of these monocytes are not well understood. For the early focal form of lupus nephritis (class III) we demonstrate a selective accumulation of the proinflammatory population of 6-sulfo LacNAc+ (slan) monocytes (slanMo), which locally expressed TNF-α. Immobilized ICs induced a direct recruitment of slanMo from the microcirculation via interaction with Fc γ receptor IIIA (CD16). Interestingly, intravenous immunoglobulins blocked CD16 and prevented cell recruitment. Engagement of immobilized ICs by slanMo induced the production of neutrophil-attracting chemokine CXCL2 as well as TNF-α, which in a forward feedback loop stimulated endothelial cells to produce the slanMo-recruiting chemokine CX3CL1 (fractalkine). In conclusion, we observed that expression of CD16 equips slanMo with a unique capacity to orchestrate early IC-induced inflammatory responses in glomeruli and identified slanMo as a pathogenic proinflammatory cell type in lupus nephritis.
Collapse
Affiliation(s)
- Florina Olaru
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anke S Lonsdorf
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Maas
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander H Enk
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty, Technische Universität (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Regenerative Therapies Dresden (CRTD), Medical Faculty, TU Dresden, Dresden, Germany
| | - Elisabeth F Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann-J Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
34
|
Dave RS, Sharma RK, Muir RR, Haddad E, Gumber S, Villinger F, Nehra AP, Khan ZK, Wigdahl B, Ansari AA, Byrareddy SN, Jain P. FDC:TFH Interactions within Cervical Lymph Nodes of SIV-Infected Rhesus Macaques. J Neuroimmune Pharmacol 2018; 13:204-218. [PMID: 29288344 PMCID: PMC5757373 DOI: 10.1007/s11481-017-9775-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022]
Abstract
Cerebrospinal fluid (CSF) drains via the lymphatic drainage pathway. This lymphatic pathway connects the central nervous system (CNS) to the cervical lymph node (CLN). As the CSF drains to CLN via the dural and nasal lymphatics, T cells and antigen presenting cells pass along the channels from the subarachnoid space through the cribriform plate. Human immunodeficiency virus (HIV) may also egress from the CNS along this pathway. As a result, HIV egressing from the CNS may accumulate within the CLN. Towards this objective, we analyzed CLNs isolated from rhesus macaques that were chronically-infected with simian immunodeficiency virus (SIV). We detected significant accumulation of SIV within the CLNs. SIV virion trapping was observed on follicular dendritic cells (FDCs) localized within the follicular regions of CLNs. In addition, SIV antigens formed immune complexes when FDCs interacted with B cells within the germinal centers. Subsequent interaction of these B cells with CD4+ T follicular helper cells (TFHs) resulted in infection of the latter. Of note, 73% to 90% of the TFHs cells within CLNs were positive for SIV p27 antigen. As such, it appears that not only do the FDCs retain SIV they also transmit them (via B cells) to TFHs within these CLNs. This interaction results in infection of TFHs in the CLNs. Based on these observations, we infer that FDCs within the CLNs have a novel role in SIV entrapment with implications for viral trafficking.
Collapse
Affiliation(s)
- Rajnish S Dave
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ravi K Sharma
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
- Advanced Eye Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Roshell R Muir
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias Haddad
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sanjeev Gumber
- Department of Pathology & Laboratory Medicine, School of Medicine and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Artinder P Nehra
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA
| | - Aftab A Ansari
- Department of Pathology & Laboratory Medicine, School of Medicine and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Suite G47A, Philadelphia, PA, 19129, USA.
| |
Collapse
|
35
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
36
|
Scanning the Immunopathogenesis of Psoriasis. Int J Mol Sci 2018; 19:ijms19010179. [PMID: 29316717 PMCID: PMC5796128 DOI: 10.3390/ijms19010179] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the immunologic model of which has been profoundly revised following recent advances in the understanding of its pathophysiology. In the current model, a crosstalk between keratinocytes, neutrophils, mast cells, T cells, and dendritic cells is thought to create inflammatory and pro-proliferative circuits mediated by chemokines and cytokines. Various triggers, including recently identified autoantigens, Toll-like receptor agonists, chemerin, and thymic stromal lymphopoietin may activate the pathogenic cascade resulting in enhanced production of pro-inflammatory and proliferation-inducing mediators such as interleukin (IL)-17, tumor necrosis factor (TNF)-α, IL-23, IL-22, interferon (IFN)-α, and IFN-γ by immune cells. Among these key cytokines lie therapeutic targets for currently approved antipsoriatic therapies. This review aims to provide a comprehensive overview on the immune-mediated mechanisms characterizing the current pathogenic model of psoriasis.
Collapse
|
37
|
Abstract
Liver sinusoidal endothelial cells (LSECs) line the low shear, sinusoidal capillary channels of the liver and are the most abundant non-parenchymal hepatic cell population. LSECs do not simply form a barrier within the hepatic sinusoids but have vital physiological and immunological functions, including filtration, endocytosis, antigen presentation and leukocyte recruitment. Reflecting these multifunctional properties, LSECs display unique structural and phenotypic features that differentiate them from the capillary endothelium present within other organs. It is now clear that LSECs have a critical role in maintaining immune homeostasis within the liver and in mediating the immune response during acute and chronic liver injury. In this Review, we outline how LSECs influence the immune microenvironment within the liver and discuss their contribution to immune-mediated liver diseases and the complications of fibrosis and carcinogenesis.
Collapse
|
38
|
Martinez-Varea A, Romero R, Xu Y, Miller D, Ahmed AI, Chaemsaithong P, Chaiyasit N, Yeo L, Shaman M, Lannaman K, Cher B, Hassan SS, Gomez-Lopez N. Clinical chorioamnionitis at term VII: the amniotic fluid cellular immune response. J Perinat Med 2017; 45:523-538. [PMID: 27763883 PMCID: PMC5624709 DOI: 10.1515/jpm-2016-0225] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES 1) To characterize the cellular composition of the amniotic fluid of patients diagnosed with clinical chorioamnionitis at term, as a function of the presence or absence of microorganisms determined by cultivation techniques, and 2) to characterize the cytokine production by white blood cells present in the amniotic fluid using flow cytometry-based techniques. MATERIALS AND METHODS Amniotic fluid samples from 20 women who had the diagnosis of clinical chorioamnionitis at term were analyzed using cultivation techniques (for aerobic and anaerobic bacteria as well as genital Mycoplasmas). Amniotic fluid IL-6 concentrations were determined by an enzyme-linked immunosorbent assay. Amniotic fluid leukocytes were visualized by using hematoxylin and eosin staining and immunofluorescence. Immunophenotyping of surface markers and cytokines was performed in amniotic fluid leukocytes using flow cytometry. RESULTS 1) Neutrophils (CD45+CD15+ cells) were the most common leukocyte subset found in the amniotic fluid, followed by monocytes (CD45+CD14+ cells); other white blood cells (such as lymphocytes and natural killer cells) were scarce in the amniotic fluid; 2) the absolute counts of neutrophils and monocytes were significantly higher in patients with microorganisms found in the amniotic fluid than in those without detectable microorganisms, using cultivation techniques; 3) there was a significant correlation between the absolute counts of neutrophils and monocytes determined by flow cytometry (Spearman's correlation=0.97; P<0.001); 4) there was a significant correlation between the absolute white blood cell count determined with a hemocytometer chamber and by flow cytometric analysis (Spearman's correlation=0.88; P<0.001); and 5) the profile of cytokine expression differed between monocytes and neutrophils; while neutrophils predominantly produced TNF-α and MIP-1β, monocytes expressed higher levels of IL-1β and IL-1α. CONCLUSION Flow cytometry analysis of the amniotic fluid of patients with intra-amniotic infection and clinical chorioamnionitis at term demonstrated that neutrophils and monocytes are the most common cells participating in the inflammatory process. We have characterized, for the first time, the differential cytokine expression by these cells in this important complication of pregnancy.
Collapse
Affiliation(s)
- Alicia Martinez-Varea
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor,Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ahmed I. Ahmed
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Majid Shaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kia Lannaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Benjamin Cher
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
39
|
Controlling the pro-inflammatory function of 6-sulfo LacNAc (slan) dendritic cells with dimethylfumarate. J Dermatol Sci 2017; 87:278-284. [PMID: 28732748 DOI: 10.1016/j.jdermsci.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 11/23/2022]
Abstract
BACKROUND The fumaric acid ester (FAE) dimethylfumarate (DMF) is a small molecule immunomodulator successfully used for the treatment of psoriasis and multiple sclerosis (MS). DMF is thought to inhibit pathogenic immune responses with Th17/Th1T cells, and IL-23/IL-12 producing dendritic cells (DCs). 6-sulfo LacNAc expressing dendritic cells (slanDCs) are a human pro-inflammatory cell type found frequently among the infiltrating leukocytes in skin lesions of psoriasis and brain lesions of MS. OBJECTIVE To explore the influence of DMF on functional properties and cell signaling pathways of slanDCs. METHODS In the context of slanDCs we studied the role of DMF in modulating cell migration, phenotypic maturation, cytokine production, cell signaling and T cell stimulation. RESULTS Initially, we observed the reduction of slanDCs numbers in psoriasis skin lesions of FAE treated patients. Studying whether DMF controls the migratory capacity of slanDCs to chemotactic factors expressed in psoriasis we observed an inhibition of the CX3CL1 and C5a depedent cell migration. DMF also attenuated the rapid spontaneous phenotypic maturation of slanDCs, as judged by a reduced CD80, CD86, CD83 and HLA-DR expression. In addition, we observed a DMF-dependent decrease of IL-23, IL-12, TNF-α and IL-10 secretion, and noticed a reduced capacity to stimulate Th17/Th1 responses. DMF targeted in slanDCs different intracellular cell signaling pathways including NFκB, STAT1 and HO-1. CONCLUSIONS With this study we identify a frequent pro-inflammatory cell type found in psoriasis and MS as a relevant target for the therapeutic immunomodulatory effects of DMF.
Collapse
|
40
|
Krivanek J, Adameyko I, Fried K. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth. Front Physiol 2017. [PMID: 28638345 PMCID: PMC5461273 DOI: 10.3389/fphys.2017.00376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.
Collapse
Affiliation(s)
- Jan Krivanek
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria.,Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
41
|
Choi J, Fernandez R, Maecker HT, Butte MJ. Systems approach to uncover signaling networks in primary immunodeficiency diseases. J Allergy Clin Immunol 2017; 140:881-884.e8. [PMID: 28412396 DOI: 10.1016/j.jaci.2017.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/08/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Jeff Choi
- School of Medicine, Stanford University, Stanford, Calif
| | | | - Holden T Maecker
- Human Immune Monitoring Core, Stanford University, Stanford, Calif
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California, Los Angeles, Calif.
| |
Collapse
|
42
|
Pomeroy B, Sipka A, Hussen J, Eger M, Schukken Y, Schuberth HJ. Counts of bovine monocyte subsets prior to calving are predictive for postpartum occurrence of mastitis and metritis. Vet Res 2017; 48:13. [PMID: 28222802 PMCID: PMC5320682 DOI: 10.1186/s13567-017-0415-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/12/2017] [Indexed: 11/29/2022] Open
Abstract
The heightened susceptibility to infectious diseases in postpartum dairy cows is often attributed to immune dysfunction associated with the transition period. However, the cell populations involved in this immune dysfunction and the dynamics between those populations are not well defined. Monocytes play a crucial role in governing initial immune response in bacterial infections. Bovine monocytes are subdivided in classical (CD14+/CD16−), intermediate (CD14+/CD16+) and non-classical monocytes (CD14−/CD16+) with distinct phenotypic and functional differences. This study investigated the relationship of monocyte subsets counts in blood at 42 and 14 days prior to expected calving date to occurrence of metritis and mastitis within 2 weeks postpartum. In the enrolled prospective cohort of 27 German Holstein cows, housed at the Institute of Animal Nutrition of the Friedrich-Loeffler-Institute Braunschweig, Germany, n = 13 developed metritis and/or mastitis postpartum. A multivariable logistic regression was used to analyze the relationship between prepartum cell counts of monocyte subsets and neutrophils with postpartum disease. Our model revealed that higher counts of the two CD14+ monocyte subsets were predictive of disease. In contrast, higher numbers of the CD14− monocyte subset were negatively associated with disease. Interestingly, the neutrophil count, a common hallmark for inflammatory response, was not associated with the outcome variable at either time point. The results indicate that the number and composition of monocyte subsets before calving are related to the susceptibility to infectious disease within 2 weeks postpartum. Furthermore the oppositional effect of CD14+ and CD14− subsets strengthens the hypothesis that these subsets have different functional roles in the inflammatory response in dairy cows.
Collapse
Affiliation(s)
- Brianna Pomeroy
- S3 119, Schurman Hall, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA. .,Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Anja Sipka
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Jamal Hussen
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany.,Department of Microbiology and Parasitology, College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Melanie Eger
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany.,Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany
| | - Ynte Schukken
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.,GD Animal Health, Deventer, The Netherlands.,Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany
| |
Collapse
|
43
|
Chimen M, Yates CM, McGettrick HM, Ward LSC, Harrison MJ, Apta B, Dib LH, Imhof BA, Harrison P, Nash GB, Rainger GE. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface. THE JOURNAL OF IMMUNOLOGY 2017; 198:2834-2843. [PMID: 28193827 PMCID: PMC5357784 DOI: 10.4049/jimmunol.1601281] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023]
Abstract
Two major monocyte subsets, CD14+CD16− (classical) and CD14+/dimCD16+ (nonclassical/intermediate), have been described. Each has different functions ascribed in its interactions with vascular endothelial cells (EC), including migration and promoting inflammation. Although monocyte subpopulations have been studied in isolated systems, their influence on EC and on the course of inflammation has been ignored. In this study, using unstimulated or cytokine-activated EC, we observed significant differences in the recruitment, migration, and reverse migration of human monocyte subsets. Associated with this, and based on their patterns of cytokine secretion, there was a difference in their capacity to activate EC and support the secondary recruitment of flowing neutrophils. High levels of TNF were detected in cocultures with nonclassical/intermediate monocytes, the blockade of which significantly reduced neutrophil recruitment. In contrast, classical monocytes secreted high levels of IL-6, the blockade of which resulted in increased neutrophil recruitment. When cocultures contained both monocyte subsets, or when conditioned supernatant from classical monocytes cocultures (IL-6hi) was added to nonclassical/intermediate monocyte cocultures (TNFhi), the activating effects of TNF were dramatically reduced, implying that when present, the anti-inflammatory activities of IL-6 were dominant over the proinflammatory activities of TNF. These changes in neutrophil recruitment could be explained by regulation of E-selectin on the cocultured EC. This study suggests that recruited human monocyte subsets trigger a regulatory pathway of cytokine-mediated signaling at the EC interface, and we propose that this is a mechanism for limiting the phlogistic activity of newly recruited monocytes.
Collapse
Affiliation(s)
- Myriam Chimen
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Clara M Yates
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Lewis S C Ward
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Matthew J Harrison
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bonita Apta
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lea H Dib
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Beat A Imhof
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Paul Harrison
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Gerard B Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
44
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
45
|
Zakharenko AM, Engin AB, Chernyshev VV, Chaika VV, Ugay SM, Rezaee R, Karimi G, Drozd VA, Nikitina AV, Solomennik SF, Kudryavkina OR, Xin L, Wenpeng Y, Tzatzarakis M, Tsatsakis AM, Golokhvast KS. Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure. ENVIRONMENTAL RESEARCH 2017; 152:308-314. [PMID: 27833058 DOI: 10.1016/j.envres.2016.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Despite of the fact that engine manufacturers develop a new technology to reduce exhaust emissions, insufficient attention given to particulate emissions. However, diesel exhaust particles are a major source of air-borne pollution, contain vast amount of polycyclic aromatic hydrocarbons (PAHs) and may have deleterious effects on the immune system, resulting in the induction and enhancement of pro-allergic processes. In the current study, vehicle emitted particles (VEP) from 2 different types of cars (diesel - D and gasoline - G) and locomotive (L) were collected. Overall, 129 four-week-old, male SPF-class Kunming mice were subcutaneously instilled with either low dose 100, 250 or high dose, 500mg/kg VEP and 15 mice were assigned as control group. The systemic toxicity was evaluated and alterations in the percentages of the CD3, CD4, CD8, CD16, CD25 expressing cells, basophils, eosinophils and neutrophils were determined. Basophil percentages were inversely associated with the PAH content of the VEPs, however basophil sensitization was more important than cell count in VEP exposure. Thus, the effects of VEP-PAHs emerge with the activation of basophils in an allergen independent fashion. Despite the increased percentage of CD4+ T cells, a sharp decrease in basophil counts at 500mg/kg of VEP indicates a decreased inhibitory effect of CD16+ monocytes on the proliferation of CD4+ T cell and suppressed polarization into a Th2 phenotype. Therefore, although the restrictions for vehicles emissions differ between countries, follow up studies and strict regulations are needed.
Collapse
Affiliation(s)
- Alexander M Zakharenko
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, 06330, Hipodrom, Ankara, Turkey
| | - Valery V Chernyshev
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Vladimir V Chaika
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Sergey M Ugay
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vladimir A Drozd
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Anna V Nikitina
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Sergey F Solomennik
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Olga R Kudryavkina
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia
| | - Liu Xin
- Biology Institute Shandong Academy of Science, Jinan 250014, China
| | - Yuan Wenpeng
- Biology Institute Shandong Academy of Science, Jinan 250014, China
| | - Manolis Tzatzarakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristidis M Tsatsakis
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia; Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece.
| | - Kirill S Golokhvast
- Far Eastern Federal University, Engineering School, Scientific Educational Centre of Nanotechnology, 690950, Vladivostok, Russia.
| |
Collapse
|
46
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|
47
|
Abstract
BACKGROUND Infliximab (IFX), an anti-tumour necrosis factor alpha (TNFα) monoclonal antibody, provides clinical benefits in treating Crohn's disease (CD) but its mechanisms of action are not fully elucidated. This study investigated blood monocyte repertoires and the acute effects of IFX infusion on monocyte subset phenotype and function in IFX-treated patients with CD. METHODS Monocytes and monocyte subsets were enumerated and phenotypically characterized by multicolor flow cytometry in freshly isolated blood from healthy controls (n = 21) and patients with CD treated with (IFX, n = 24) and without (non-IFX, n = 20) IFX. For the IFX-CD group, blood was sampled immediately before (tough-IFX) and after (peak-IFX) infusion. Monocyte responses to lipopolysaccharide were analyzed by whole-blood intracellular cytokine staining. RESULTS Non-IFX and IFX-CD patients had increased numbers of intermediate (CD14CD16) monocytes compared with healthy controls, whereas classical (CD14CD16) and nonclassical (CD14CD16) monocytes were numerically reduced in the IFX-CD group alone. In all groups, monocyte subsets expressed high surface levels of transmembrane (tm)TNFα. After IFX infusion, a significant reduction in monocyte numbers occurred. Post-IFX monocytopenia was proportionately greatest for classical and intermediate subsets, correlated with postinfusion IFX levels and was not associated with monocyte apoptosis. In contrast, lipopolysaccharide-induced production of TNFα and IL-12 by monocytes was significantly reduced in peak-IFX compared with trough-IFX blood samples. CONCLUSIONS Actively managed CD is associated with monocyte repertoire skewing suggestive of chronic inflammatory stimulation. Infused IFX acutely targets monocytes, likely by binding to tmTNFα, resulting in a non-apoptosis-related decline in circulating monocyte numbers and blunting of the inflammatory response of monocytes remaining in the blood.
Collapse
|
48
|
Micheletti A, Finotti G, Calzetti F, Lonardi S, Zoratti E, Bugatti M, Stefini S, Vermi W, Cassatella MA. slanDCs/M-DC8+ cells constitute a distinct subset of dendritic cells in human tonsils [corrected]. Oncotarget 2016; 7:161-75. [PMID: 26695549 PMCID: PMC4807990 DOI: 10.18632/oncotarget.6660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022] Open
Abstract
Human blood dendritic cells (DCs) include three main distinct subsets, namely the CD1c+ and CD141+ myeloid DCs (mDCs) and the CD303+ plasmacytoid DCs (pDCs). More recently, a population of slan/M-DC8+ cells, also known as “slanDCs”, has been described in blood and detected even in inflamed secondary lymphoid organs and non-lymphoid tissues. Nevertheless, hallmarks of slan/M-DC8+ cells in tissues are poorly defined. Herein, we report a detailed characterization of the phenotype and function of slan/M-DC8+ cells present in human tonsils. We found that tonsil slan/M-DC8+ cells represent a unique DC cell population, distinct from their circulating counterpart and also from all other tonsil DC and monocyte/macrophage subsets. Phenotypically, slan/M-DC8+ cells in tonsils display a CD11c+HLA-DR+CD14+CD11bdim/negCD16dim/negCX3CR1dim/neg marker repertoire, while functionally they exhibit an efficient antigen presentation capacity and a constitutive secretion of TNFα. Notably, such DC phenotype and functions are substantially reproduced by culturing blood slan/M-DC8+ cells in tonsil-derived conditioned medium (TDCM), further supporting the hypothesis of a full DC-like differentiation program occurring within the tonsil microenvironment. Taken together, our data suggest that blood slan/M-DC8+ cells are immediate precursors of a previously unrecognizedcompetent DC subset in tonsils, and pave the way for further characterization of slan/M-DC8+ cells in other tissues.
Collapse
Affiliation(s)
- Alessandra Micheletti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Giulia Finotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Elisa Zoratti
- Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Stefania Stefini
- Unit of Pediatric Otorhinolaryngology, Spedali Civili di Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
49
|
Longitudinal characterization of bovine monocyte-derived dendritic cells from mid-gestation into subsequent lactation reveals nadir in phenotypic maturation and macrophage-like cytokine profile in late gestation. J Reprod Immunol 2016; 118:1-8. [DOI: 10.1016/j.jri.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
|
50
|
Duan M, Hibbs ML, Chen W. The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol Cell Biol 2016; 95:225-235. [DOI: 10.1038/icb.2016.97] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Monash University, Alfred Medical Research and Education Precinct, 89 Commercial Rd Melbourne Victoria Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| |
Collapse
|