1
|
Gautam D, Sindhu A, Vats A, Rajput S, Rana C, De S. Evolutionary insights of interferon lambda genes in tetrapods. J Evol Biol 2024; 37:1101-1112. [PMID: 39066611 DOI: 10.1093/jeb/voae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Type III interferon (IFN), also known as IFN-λ, is an innate antiviral protein. We retrieved the sequences of IFN-λ and their receptors from 42 tetrapod species and conducted a computational evolutionary analysis to understand the diversity of these genes. The copy number variation (CNV) of IFN-λ was determined through qPCR in Indian cattle and buffalo. The tetrapod species feature intron-containing type III IFN genes. Some reptiles and placental mammals have 2 IFN-λ loci, while marsupials, monotremes, and birds have a single IFN-λ locus. Some placental mammals and amphibians exhibit multiple IFN-λ genes, including both intron-less and intron-containing forms. Placental mammals typically possess 3-4 functional IFN-λ genes, some of them lack signal peptides. IFN-λ of these tetrapod species formed 3 major clades. Mammalian IFN-λ4 appears as an ancestral form, with syntenic conservation in most mammalian species. The intron-less IFN-λ1 and both type III IFN receptors have conserved synteny in tetrapod. Purifying selection was noted in their evolutionary analysis that plays a crucial role in minimizing genetic diversity and maintaining the integrity of biological function. This indicates that these proteins have successfully retained their biological function and indispensability, even in the presence of the type I IFNs. The expansion of IFN-λ genes in amphibians and camels have led to the evolution of multiple IFN-λ. The CNV can arise from gene duplication and conversion events. The qPCR-based absolute quantification revealed that IFN-λ3 and IFN-λ4 have more than 1 copy in buffalo (Murrah) and 6 cattle breeds (Sahiwal, Tharparkar, Kankrej, Red Sindhi, Jersey, and Holstein Friesian). Overall, these findings highlight the evolutionary diversity and functional significance of IFN-λ in tetrapod species.
Collapse
Affiliation(s)
- Devika Gautam
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India
| | - Ashutosh Vats
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Shiveeli Rajput
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Chanchal Rana
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sachinandan De
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| |
Collapse
|
2
|
Ren W, Fu C, Zhang Y, Ju X, Jiang X, Song J, Gong M, Li Z, Fan W, Yao J, Ding Q. Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2. Proc Natl Acad Sci U S A 2024; 121:e2403235121. [PMID: 39145933 PMCID: PMC11348293 DOI: 10.1073/pnas.2403235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The ZIKA virus (ZIKV) evades the host immune response by degrading STAT2 through its NS5 protein, thereby inhibiting type I interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism underlying this process has remained elusive. In this study, we performed a genome-wide CRISPR/Cas9 screen, revealing that ZSWIM8 as the substrate receptor of Cullin3-RING E3 ligase is required for NS5-mediated STAT2 degradation. Genetic depletion of ZSWIM8 and CUL3 substantially impeded NS5-mediated STAT2 degradation. Biochemical analysis illuminated that NS5 enhances the interaction between STAT2 and the ZSWIM8-CUL3 E3 ligase complex, thereby facilitating STAT2 ubiquitination. Moreover, ZSWIM8 knockout endowed A549 and Huh7 cells with partial resistance to ZIKV infection and protected cells from the cytopathic effects induced by ZIKV, which was attributed to the restoration of STAT2 levels and the activation of IFN signaling. Subsequent studies in a physiologically relevant model, utilizing human neural progenitor cells, demonstrated that ZSWIM8 depletion reduced ZIKV infection, resulting from enhanced IFN signaling attributed to the sustained levels of STAT2. Our findings shed light on the role of ZIKV NS5, serving as the scaffold protein, reprograms the ZSWIM8-CUL3 E3 ligase complex to orchestrate STAT2 proteasome-dependent degradation, thereby facilitating evasion of IFN antiviral signaling. Our study provides unique insights into ZIKV-host interactions and holds promise for the development of antivirals and prophylactic vaccines.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Chonglei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yu Zhang
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xiaohui Ju
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Jingwei Song
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Mingli Gong
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Zhuoyang Li
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
- School of Management, Shanxi Medical University, Taiyuan030001, China
| | - Wenchun Fan
- Life Science Institute, Zhejiang University, Hangzhou31008, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Ding
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
| |
Collapse
|
3
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
4
|
Crow MK, Olferiev M, Kirou KA. Standing on Shoulders: Interferon Research From Viral Interference to Lupus Pathogenesis and Treatment. Arthritis Rheumatol 2024; 76:1002-1012. [PMID: 38500017 DOI: 10.1002/art.42849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The discovery of interferon in the 1950s represents much more than the identification of the first cytokine and the key mediator of antiviral host defense. Defining the molecular nature and complexity of the type I interferon family, as well as its inducers and molecular mechanisms of action, was the work of investigators working at the highest level and producing insights of great consequence. Current knowledge of receptor-ligand interactions, cell signaling, and transcriptional regulation derives from studies of type I interferon. It is on the shoulders of the giants who produced that knowledge that others stand and have revealed critical mechanisms of the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. The design of novel therapeutics is informed by the advances in investigation of type I interferon, with the potential for important impact on patient management.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| |
Collapse
|
5
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
6
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
7
|
Bastard P, Gervais A, Taniguchi M, Saare L, Särekannu K, Le Voyer T, Philippot Q, Rosain J, Bizien L, Asano T, Garcia-Prat M, Parra-Martínez A, Migaud M, Tsumura M, Conti F, Belot A, Rivière JG, Morio T, Tanaka J, Javouhey E, Haerynck F, Duvlis S, Ozcelik T, Keles S, Tandjaoui-Lambiotte Y, Escoda S, Husain M, Pan-Hammarström Q, Hammarström L, Ahlijah G, Abi Haidar A, Soudee C, Arseguel V, Abolhassani H, Sahanic S, Tancevski I, Nukui Y, Hayakawa S, Chrousos GP, Michos A, Tatsi EB, Filippatos F, Rodriguez-Palmero A, Troya J, Tipu I, Meyts I, Roussel L, Ostrowski SR, Schidlowski L, Prando C, Condino-Neto A, Cheikh N, Bousfiha AA, El Bakkouri J, Peterson P, Pujol A, Lévy R, Quartier P, Vinh DC, Boisson B, Béziat V, Zhang SY, Borghesi A, Pession A, Andreakos E, Marr N, Mentis AFA, Mogensen TH, Rodríguez-Gallego C, Soler-Palacin P, Colobran R, Tillmann V, Neven B, Trouillet-Assant S, Brodin P, Abel L, Jouanguy E, Zhang Q, Martinón-Torres F, Salas A, Gómez-Carballa A, Gonzalez-Granado LI, Kisand K, Okada S, Puel A, Cobat A, Casanova JL. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J Exp Med 2024; 221:e20231353. [PMID: 38175961 PMCID: PMC10771097 DOI: 10.1084/jem.20231353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Maki Taniguchi
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Liisa Saare
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Takaki Asano
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Miyuki Tsumura
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alexandre Belot
- National Reference Center for Rheumatic, and Autoimmune and Systemic Diseases in Children, Lyon, France
- Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomohiro Morio
- Dept. of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Junko Tanaka
- Dept. of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Filomeen Haerynck
- Dept. of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev”, Stip, Republic of Northern Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje, North Macedonia
| | - Tayfun Ozcelik
- Dept. of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Sevgi Keles
- Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Yacine Tandjaoui-Lambiotte
- Pulmonology and Infectious Disease Department, Saint Denis Hospital, Saint Denis, France
- INSERM UMR 1137 IAME, Paris, France
- INSERM UMR 1272 Hypoxia and Lung, Bobigny, France
| | - Simon Escoda
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Maya Husain
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Qiang Pan-Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gloria Ahlijah
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Anthony Abi Haidar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Camille Soudee
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Vincent Arseguel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Hassan Abolhassani
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabina Sahanic
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Yoko Nukui
- Dept. of Infection Control and Prevention, Medical Hospital, TMDU, Tokyo, Japan
| | - Seiichi Hayakawa
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Michos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Filippos Filippatos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Agusti Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Dept. of Pediatrics, Germans Trias i Pujol University Hospital, UAB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jesus Troya
- Dept. of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Imran Tipu
- University of Management and Technology, Lahore, Pakistan
| | - Isabelle Meyts
- Dept. of Immunology, Laboratory of Inborn Errors of Immunity, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium
| | - Lucie Roussel
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Sisse Rye Ostrowski
- Dept. of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laire Schidlowski
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Antonio Condino-Neto
- Dept. of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathalie Cheikh
- Pediatric Hematology Unit, University Hospital of Besançon, Besançon, France
| | - Ahmed A. Bousfiha
- Dept. of Pediatric Infectious Disease and Clinical Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, CIBERER U759, and Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Quartier
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Donald C. Vinh
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Alexios-Fotios A. Mentis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Trine H. Mogensen
- Dept. of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carlos Rodríguez-Gallego
- Hospital Universitario de Gran Canaria Dr Negrín, Canarian Health System, Las Palmas, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Dept., Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, UAB, Barcelona, Spain
| | - Vallo Tillmann
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Bénédicte Neven
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Dept., Hospital Clínico Universitario de Santiago, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Alberto Gómez-Carballa
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital 12 de octubre, Research Institute Hospital 12 octubre, Madrid, Spain
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Satoshi Okada
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
8
|
Doughty BR, Hinks MM, Schaepe JM, Marinov GK, Thurm AR, Rios-Martinez C, Parks BE, Tan Y, Marklund E, Dubocanin D, Bintu L, Greenleaf WJ. Single-molecule chromatin configurations link transcription factor binding to expression in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578660. [PMID: 38352517 PMCID: PMC10862896 DOI: 10.1101/2024.02.02.578660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The binding of multiple transcription factors (TFs) to genomic enhancers activates gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state, and gene expression levels remain opaque. We applied single-molecule footprinting (SMF) to measure the simultaneous occupancy of TFs, nucleosomes, and components of the transcription machinery on engineered enhancer/promoter constructs with variable numbers of TF binding sites for both a synthetic and an endogenous TF. We find that activation domains enhance a TF's capacity to compete with nucleosomes for binding to DNA in a BAF-dependent manner, TF binding on nucleosome-free DNA is consistent with independent binding between TFs, and average TF occupancy linearly contributes to promoter activation rates. We also decompose TF strength into separable binding and activation terms, which can be tuned and perturbed independently. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the binding microstates observed at the enhancer and subsequent time-dependent gene expression. This work provides a template for quantitative dissection of distinct contributors to gene activation, including the activity of chromatin remodelers, TF activation domains, chromatin acetylation, TF concentration, TF binding affinity, and TF binding site configuration.
Collapse
Affiliation(s)
| | - Michaela M Hinks
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Georgi K Marinov
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin E Parks
- Computer Science Department, Stanford University, Stanford, CA 94305, USA
| | - Yingxuan Tan
- Computer Science Department, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Danilo Dubocanin
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Lacramioara Bintu
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - William J Greenleaf
- Genetics Department, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94205, USA
| |
Collapse
|
9
|
Roy DG, Singh L, Chaturvedi HK, Chinnaswamy S. Gender-dependent multiple cross-phenotype association of interferon lambda genetic variants with peripheral blood profiles in healthy individuals. Mol Genet Genomic Med 2024; 12:e2292. [PMID: 37795763 PMCID: PMC10767428 DOI: 10.1002/mgg3.2292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Type III interferons (IFN), also called as lambda IFNs (IFN-λs), are antiviral and immunomodulatory cytokines that are evolutionarily important in humans. Given their central roles in innate immunity, they could be influencing other aspects of human biology. This study aimed to examine the association of genetic variants that control the expression and/or activity of IFN-λ3 and IFN-λ4 with multiple phenotypes in blood profiles of healthy individuals. METHODS In a cohort of about 550 self-declared healthy individuals, after applying several exclusion criteria to determine their health status, we measured 30 blood parameters, including cellular, biochemical, and metabolic profiles. We genotyped them at rs12979860 and rs28416813 using competitive allele-specific PCR assays and tested their association with the blood profiles under dominant and recessive models for the minor allele. IFN-λ4 variants rs368234815 and rs117648444 were also genotyped or inferred. RESULTS We saw no association in the combined cohort under either of the models for any of the phenotypes. When we stratified the cohort based on gender, we saw a significant association only in males with monocyte (p = 1 × 10-3 ) and SGOT (p = 7 × 10-3 ) levels under the dominant model and with uric acid levels (p = 0.01) under the recessive model. When we tested the IFN-λ4 activity modifying variant within groupings based on absence or presence of one or two copies of IFN-λ4 and on different activity levels of IFN-λ4, we found significant (p < 0.05) association with several phenotypes like monocyte, triglyceride, VLDL, ALP, and uric acid levels, only in males. All the above significant associations did not show any confounding when we tested for the same with up to ten different demographic and lifestyle variables. CONCLUSIONS These results show that lambda interferons can have pleiotropic effects. However, gender seems to be an effect modifier, with males being more sensitive than females to the effect.
Collapse
Affiliation(s)
- Debarati Guha Roy
- Infectious Disease GeneticsNational Institute of Biomedical GenomicsKalyaniIndia
- Regional Centre for BiotechnologyFaridabadIndia
| | - Lucky Singh
- ICMR‐National Institute of Medical StatisticsNew DelhiIndia
| | | | - Sreedhar Chinnaswamy
- Infectious Disease GeneticsNational Institute of Biomedical GenomicsKalyaniIndia
- Regional Centre for BiotechnologyFaridabadIndia
| |
Collapse
|
10
|
Tembrock LR, Zink FA, Gilligan TM. Viral Prevalence and Genomic Xenology in the Coevolution of HzNV-2 (Nudiviridae) with Host Helicoverpa zea (Lepidoptera: Noctuidae). INSECTS 2023; 14:797. [PMID: 37887809 PMCID: PMC10607169 DOI: 10.3390/insects14100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Insect viruses have been described from numerous lineages, yet patterns of genetic exchange and viral prevalence, which are essential to understanding host-virus coevolution, are rarely studied. In Helicoverpa zea, the virus HzNV-2 can cause deformity of male and female genitalia, resulting in sterility. Using ddPCR, we found that male H. zea with malformed genitalia (agonadal) contained high levels of HzNV-2 DNA, confirming previous work. HzNV-2 was found to be prevalent throughout the United States, at more than twice the rate of the baculovirus HaSNPV, and that it contained several host-acquired DNA sequences. HzNV-2 possesses four recently endogenized lepidopteran genes and several more distantly related genes, including one gene with a bacteria-like sequence found in both host and virus. Among the recently acquired genes is cytosolic serine hydroxymethyltransferase (cSHMT). In nearly all tested H. zea, cSHMT contained a 200 bp transposable element (TE) that was not found in cSHMT of the sister species H. armigera. No other virus has been found with host cSHMT, and the study of this shared copy, including possible interactions, may yield new insights into the function of this gene with possible applications to insect biological control, and gene editing.
Collapse
Affiliation(s)
- Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Frida A. Zink
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd M. Gilligan
- USDA-APHIS-PPQ-Science & Technology, Identification Technology Program, Fort Collins, CO 80526, USA
| |
Collapse
|
11
|
Rector I, Owen KA, Bachali P, Hubbard E, Yazdany J, Dall'era M, Grammer AC, Lipsky PE. Differential regulation of the interferon response in systemic lupus erythematosus distinguishes patients of Asian ancestry. RMD Open 2023; 9:e003475. [PMID: 37709528 PMCID: PMC10503349 DOI: 10.1136/rmdopen-2023-003475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES Type I interferon (IFN) plays a role in the pathogenesis of systemic lupus erythematosus (SLE), but insufficient attention has been directed to the differences in IFN responses between ancestral populations. Here, we explored the expression of the interferon gene signatures (IGSs) in SLE patients of European ancestry (EA) and Asian ancestry (AsA). METHODS We used gene set variation analysis with multiple IGS encompassing the response to both type 1 and type 2 IFN in isolated CD14+ monocytes, CD19+B cells, CD4+T cells and Natural Killer (NK) cells from patients with SLE stratified by self-identified ancestry. The expression of genes upstream of the IGS and influenced by lupus-associated risk alleles was also examined. Lastly, we employed machine learning (ML) models to assess the most important features classifying patients by disease activity. RESULTS AsA patients with SLE exhibited greater enrichment in the IFN core and IFNA2 IGS compared with EA patients in all cell types examined and, in the presence and absence of autoantibodies. Overall, AsA patients with SLE demonstrated higher expression of genes upstream of the IGS than EA counterparts. ML with feature importance analysis indicated that IGS expression in NK cells, anti-dsDNA, complement levels and AsA status contributed to disease activity. CONCLUSIONS AsA patients with SLE exhibited higher IGS than EA patients in all cell types regardless of autoantibody status, with enhanced expression of genetically associated genes upstream of the IGS potentially contributing. AsA, along with the IGS in NK cells, anti-dsDNA and complement, independently influenced SLE disease activity.
Collapse
Affiliation(s)
- Ian Rector
- AMPEL Biosolutions LLC and the RILITE Research Institute, Charlottesville, Virginia, USA
| | | | - Prathyusha Bachali
- AMPEL Biosolutions LLC and the RILITE Research Institute, Charlottesville, Virginia, USA
| | - Erika Hubbard
- AMPEL Biosolutions LLC and the RILITE Research Institute, Charlottesville, Virginia, USA
| | - Jinoos Yazdany
- Medicine/Rheumatology, University of California, San Francisco, California, USA
| | - Maria Dall'era
- Division of Rheumatology, University of California, San Francisco, California, USA
| | - Amrie C Grammer
- AMPEL Biosolutions LLC and the RILITE Research Institute, Charlottesville, Virginia, USA
| | - Peter E Lipsky
- AMPEL Biosolutions LLC and the RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Moreau TRJ, Bondet V, Rodero MP, Duffy D. Heterogeneity and functions of the 13 IFN-α subtypes - lucky for some? Eur J Immunol 2023; 53:e2250307. [PMID: 37367434 DOI: 10.1002/eji.202250307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Type I IFNs are critical for host responses to viral infection and are also implicated in the pathogenesis of multiple autoimmune diseases. Multiple subtypes exist within the type I IFN family, in particular 13 distinct IFN-α genes, which signal through the same heterodimer receptor that is ubiquitously expressed by mammalian cells. Both evolutionary genetic studies and functional antiviral assays strongly suggest differential functions and activity between the 13 IFN-α subtypes, yet we still lack a clear understanding of these different roles. This review summarizes the evidence from studies describing differential functions of IFN-α subtypes and highlights potential reasons for discrepancies between the reports. We examine both acute and chronic viral infection, as well as autoimmunity, and integrate a more recent awareness of the importance of anti-IFN-α autoantibodies in shaping the type I IFN responses in these different conditions.
Collapse
Affiliation(s)
- Thomas R J Moreau
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu P Rodero
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Deng S, Graham ML, Chen XM. The Complexity of Interferon Signaling in Host Defense against Protozoan Parasite Infection. Pathogens 2023; 12:319. [PMID: 36839591 PMCID: PMC9962834 DOI: 10.3390/pathogens12020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Protozoan parasites, such as Plasmodium, Leishmania, Toxoplasma, Cryptosporidium, and Trypanosoma, are causative agents of health-threatening diseases in both humans and animals, leading to significant health risks and socioeconomic losses globally. The development of effective therapeutic and prevention strategies for protozoan-caused diseases requires a full understanding of the pathogenesis and protective events occurring in infected hosts. Interferons (IFNs) are a family of cytokines with diverse biological effects in host antimicrobial defense and disease pathogenesis, including protozoan parasite infection. Type II IFN (IFN-γ) has been widely recognized as the essential defense cytokine in intracellular protozoan parasite infection, whereas recent studies also revealed the production and distinct function of type I and III IFNs in host defense against these parasites. Decoding the complex network of the IFN family in host-parasite interaction is critical for exploring potential new therapeutic strategies against intracellular protozoan parasite infection. Here, we review the complex effects of IFNs on the host defense against intracellular protozoan parasites and the crosstalk between distinct types of IFN signaling during infections.
Collapse
Affiliation(s)
- Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Fang MZ, Jackson SS, Pfeiffer RM, Kim EY, Chen S, Hussain SK, Jacobson LP, Martinson J, Prokunina-Olsson L, Thio CL, Duggal P, Wolinsky S, O’Brien TR. No Association of IFNL4 Genotype With Opportunistic Infections and Cancers Among Men With Human Immunodeficiency Virus 1 Infection. Clin Infect Dis 2023; 76:521-527. [PMID: 36573283 PMCID: PMC10169417 DOI: 10.1093/cid/ciac447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND IFNL4 genetic variants that are strongly associated with clearance of hepatitis C virus have been linked to risk of certain opportunistic infections (OIs) and cancers, including Kaposi sarcoma, cytomegalovirus infection, and herpes simplex virus infection. As the interferon (IFN) λ family plays a role in response to viral, bacterial, and fungal infections, IFNL4 genotype might affect risk for a wide range of OIs/cancers. METHODS We examined associations between genotype for the functional IFNL4 rs368234815 polymorphism and incidence of 16 OIs/cancers among 2310 men with human immunodeficiency virus (2038 white; 272 black) enrolled in the Multicenter AIDS Cohort Study during 1984-1990. Our primary analyses used Cox proportional hazards models adjusted for self-reported racial ancestry to estimate hazard ratios with 95% confidence intervals, comparing participants with the genotypes that generate IFN-λ4 and those with the genotype that abrogates IFN-λ4. We censored follow-up at the introduction of highly effective antiretroviral therapies. RESULTS We found no statistically significant association between IFNL4 genotype and the incidence of Kaposi sarcoma (hazard ratio, 0.92 [95% confidence interval, .76-1.11]), cytomegalovirus infection (0.94 [.71-1.24]), herpes simplex virus infection (1.37 [.68-2.93]), or any other OI/cancer. We observed consistent results using additive genetic models and after controlling for CD4 cell count through time-dependent adjustment or restriction to participants with a low CD4 cell count. CONCLUSIONS The absence of associations between IFNL4 genotype and these OIs/cancers provides evidence that this gene does not affect the risk of disease from opportunistic pathogens.
Collapse
Affiliation(s)
- Michelle Z Fang
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sarah S Jackson
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Eun-Young Kim
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sabrina Chen
- Information Management Services Inc., Calverton, Maryland, USA
| | - Shehnaz K Hussain
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Lisa P Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chloe L Thio
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Steven Wolinsky
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas R O’Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Ndong Sima CAA, Smith D, Petersen DC, Schurz H, Uren C, Möller M. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 2022; 75:215-230. [DOI: 10.1007/s00251-022-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
|
17
|
Defective activation and regulation of type I interferon immunity is associated with increasing COVID-19 severity. Nat Commun 2022; 13:7254. [PMID: 36434007 PMCID: PMC9700809 DOI: 10.1038/s41467-022-34895-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Host immunity to infection with SARS-CoV-2 is highly variable, dictating diverse clinical outcomes ranging from asymptomatic to severe disease and death. We previously reported reduced type I interferon in severe COVID-19 patients preceded clinical worsening. Further studies identified genetic mutations in loci of the TLR3- or TLR7-dependent interferon-I pathways, or neutralizing interferon-I autoantibodies as risk factors for development of COVID-19 pneumonia. Here we show in patient cohorts with different severities of COVID-19, that baseline plasma interferon α measures differ according to the immunoassay used, timing of sampling, the interferon α subtype measured, and the presence of autoantibodies. We also show a consistently reduced induction of interferon-I proteins in hospitalized COVID-19 patients upon immune stimulation, that is not associated with detectable neutralizing autoantibodies against interferon α or interferon ω. Intracellular proteomic analysis shows increased monocyte numbers in hospitalized COVID-19 patients but impaired interferon-I response after stimulation. We confirm this by ex vivo whole blood stimulation with interferon-I which induces transcriptomic responses associated with inflammation in hospitalized COVID-19 patients, that is not seen in controls or non-hospitalized moderate cases. These results may explain the dichotomy of the poor clinical response to interferon-I based treatments in late stage COVID-19, despite the importance of interferon-I in early acute infection and may guide alternative therapeutic strategies.
Collapse
|
18
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
19
|
The role of IFNL4 in liver inflammation and progression of fibrosis. Genes Immun 2022; 23:111-117. [PMID: 35585257 DOI: 10.1038/s41435-022-00173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The discovery that genetic variation within the interferon lambda locus has a profound effect on the outcome of hepatitis C virus (HCV) treatment and spontaneous clearance of HCV is one of the great triumphs of genomic medicine. Subsequently, the IFNL4 gene was discovered and proposed as the causal gene underlying this association. However, there has been a lively debate within the field concerning the causality, which has been further complicated by a change in naming. This review summarizes the genetic data available for the IFNL3/IFNl4 loci and provides an in-depth discussion of causality. We also discuss a new series of interesting data suggesting that the genetic variation at the IFNL4 loci influences the evolution of the HCV virus and the implication this relationship between our genetic makeup and virus evolution has upon our understanding of the IFNL4 system. Finally, new data support an influence of the IFNL4 gene upon liver inflammation and fibrosis that is independent of etiology, thereby linking the IFNL4 gene to some of the major liver diseases of today.
Collapse
|
20
|
Deymier S, Louvat C, Fiorini F, Cimarelli A. ISG20: an enigmatic antiviral RNase targeting multiple viruses. FEBS Open Bio 2022; 12:1096-1111. [PMID: 35174977 PMCID: PMC9157404 DOI: 10.1002/2211-5463.13382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Interferon-stimulated gene 20 kDa protein (ISG20) is a relatively understudied antiviral protein capable of inhibiting a broad spectrum of viruses. ISG20 exhibits strong RNase properties, and it belongs to the large family of DEDD exonucleases, present in both prokaryotes and eukaryotes. ISG20 was initially characterized as having strong RNase activity in vitro, suggesting that its inhibitory effects are mediated via direct degradation of viral RNAs. This mechanism of action has since been further elucidated and additional antiviral activities of ISG20 highlighted, including direct degradation of deaminated viral DNA and translational inhibition of viral RNA and nonself RNAs. This review focuses on the current understanding of the main molecular mechanisms of viral inhibition by ISG20 and discusses the latest developments on the features that govern specificity or resistance to its action.
Collapse
Affiliation(s)
- Séverine Deymier
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| | | | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| |
Collapse
|
21
|
Manry J, Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Michailidis E, Hoffmann HH, Eto S, Garcia-Prat M, Bizien L, Parra-Martínez A, Yang R, Haljasmägi L, Migaud M, Särekannu K, Maslovskaja J, de Prost N, Tandjaoui-Lambiotte Y, Luyt CE, Amador-Borrero B, Gaudet A, Poissy J, Morel P, Richard P, Cognasse F, Troya J, Trouillet-Assant S, Belot A, Saker K, Garçon P, Rivière JG, Lagier JC, Gentile S, Rosen LB, Shaw E, Morio T, Tanaka J, Dalmau D, Tharaux PL, Sene D, Stepanian A, Mégarbane B, Triantafyllia V, Fekkar A, Heath JR, Franco JL, Anaya JM, Solé-Violán J, Imberti L, Biondi A, Bonfanti P, Castagnoli R, Delmonte OM, Zhang Y, Snow AL, Holland SM, Biggs CM, Moncada-Vélez M, Arias AA, Lorenzo L, Boucherit S, Anglicheau D, Planas AM, Haerynck F, Duvlis S, Ozcelik T, Keles S, Bousfiha AA, El Bakkouri J, Ramirez-Santana C, Paul S, Pan-Hammarström Q, Hammarström L, Dupont A, Kurolap A, Metz CN, Aiuti A, Casari G, Lampasona V, Ciceri F, Barreiros LA, Dominguez-Garrido E, Vidigal M, Zatz M, van de Beek D, Sahanic S, Tancevski I, Stepanovskyy Y, Boyarchuk O, Nukui Y, Tsumura M, Vidaur L, Tangye SG, Burrel S, Duffy D, Quintana-Murci L, Klocperk A, Kann NY, Shcherbina A, Lau YL, Leung D, Coulongeat M, Marlet J, Koning R, Reyes LF, Chauvineau-Grenier A, Venet F, Monneret G, Nussenzweig MC, Arrestier R, Boudhabhay I, Baris-Feldman H, Hagin D, Wauters J, Meyts I, Dyer AH, Kennelly SP, Bourke NM, Halwani R, Sharif-Askari FS, Dorgham K, Sallette J, Sedkaoui SM, AlKhater S, Rigo-Bonnin R, Morandeira F, Roussel L, Vinh DC, Erikstrup C, Condino-Neto A, Prando C, Bondarenko A, Spaan AN, Gilardin L, Fellay J, Lyonnet S, Bilguvar K, Lifton RP, Mane S, Anderson MS, Boisson B, Béziat V, Zhang SY, Andreakos E, Hermine O, Pujol A, Peterson P, Mogensen TH, Rowen L, Mond J, Debette S, de Lamballerie X, Burdet C, Bouadma L, Zins M, Soler-Palacin P, Colobran R, Gorochov G, Solanich X, Susen S, Martinez-Picado J, Raoult D, Vasse M, Gregersen PK, Piemonti L, Rodríguez-Gallego C, Notarangelo LD, Su HC, Kisand K, Okada S, Puel A, Jouanguy E, Rice CM, Tiberghien P, Zhang Q, Casanova JL, Abel L, Cobat A. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc Natl Acad Sci U S A 2022; 119:e2200413119. [PMID: 35576468 PMCID: PMC9173764 DOI: 10.1073/pnas.2200413119] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
Collapse
Affiliation(s)
- Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | | | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065
| | - Shohei Eto
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- Groupe de Recherche Clinique Cardiovascular and Respiratory Manifestations of Acute Lung Injury and Sepsis (CARMAS), Faculté de santé de Créteil, Université Paris Est Créteil, 94010 Créteil Cedex, France
| | - Yacine Tandjaoui-Lambiotte
- Hypoxia and Lung, INSERM U1272, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93022 Bobigny, France
| | - Charles-Edouard Luyt
- Sorbonne Université, Hôpital Pitié Salpêtrière, Médecine Intensive Réanimation, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
- INSERM, UMRS 1166-iCAN, Institute of Cardiometabolism and Nutrition, 75013 Paris, France
| | - Blanca Amador-Borrero
- Internal Medicine Department, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, 75010 Paris, France
| | - Alexandre Gaudet
- INSERM U1019–CNRS UMR9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Centre Hospitalier Universitaire, de Lille, Pôle de Réanimation, Hôpital Roger Salengro Lille, 59000 Lille, France
| | - Julien Poissy
- INSERM U1019–CNRS UMR9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Centre Hospitalier Universitaire, de Lille, Pôle de Réanimation, Hôpital Roger Salengro Lille, 59000 Lille, France
| | - Pascal Morel
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
- Interactions Hôte-Greffon-Tumeur et Ingénierie Cellulaire et Génique (RIGHT), INSERM, Etablissement Français du Sang, Université de Franche-Comté, 25000 Besançon, France
| | - Pascale Richard
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
| | - Fabrice Cognasse
- Santé Ingéniérie Biologie St-Etienne (SAINBIOSE), INSERM U1059, University of Lyon, Université Jean Monnet Saint-Etienne, 42000 Saint-Étienne, France
- Etablissement Français du Sang, Auvergne-Rhône-Alpes, 42000 Saint-Étienne, France
| | - Jesús Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, 28031 Madrid, Spain
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-BioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, 69495 Pierre-Bénite, France
| | - Alexandre Belot
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
- National Referee Centre for Rheumatic, and Autoimmune and Systemic Diseases in Children, 69000 Lyon, France
- Immunopathology Federation Lyon Immunopathology Federation (LIFE), Hospices Civils de Lyon, 69002 Lyon, France
| | - Kahina Saker
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
| | - Pierre Garçon
- Intensive Care Unit, Grand Hôpital de l’Est Francilien Site de Marne-La-Vallée, 77600 Jossigny, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jean-Christophe Lagier
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| | - Stéphanie Gentile
- Service d’Evaluation Médicale, Hôpitaux Universitaires de Marseille Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
- Aix-Marseille University, School of Medicine, EA 3279, Centre d'Études et de Recherche sur les Services de Santé et la Qualité de vie (CEReSS)–Health Service Research and Quality of Life Center, 13385 Marseille, France
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - David Dalmau
- Hospital Universitari MútuaTerrassa, Universitat de Barcelona, 08193 Barcelona, Spain
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center (PARCC), INSERM, Université de Paris, 75015 Paris, France
| | - Damien Sene
- Internal Medicine Department, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, 75010 Paris, France
| | - Alain Stepanian
- Service d’Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75010 Paris, France
- EA3518, Institut Universitaire d’Hématologie-Hôpital Saint Louis, Université de Paris, 75010 Paris, France
| | - Bruno Mégarbane
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM, UMRS-1144, 75010 Paris, France
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | | | - José Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, 050010 Medellín, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, 110111 Bogotá, Colombia
| | - Jordi Solé-Violán
- Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, 35010 Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Sciences, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Luisa Imberti
- CHemato-oncology Research Laboratory of Associazione italiana contro le leucemie-linfomi e mieloma, Diagnostic Departement, Azienda Socio Sanitaria Territoriale, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), University of Milano Bicocca, Fondazione Monza Brianza Bambino Mamma (MBBM), Ospedale San Gerardo, 20900 Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano Bicocca, 20900 Monza, Italy
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- Pediatric Clinic, Fondazione Istituto di Ricovero e Cura a carattere scientifico (IRCCS) Policlinico San Matteo, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- National Institute of Allergy and Infectious Diseases (NIAID) Clinical Genomics Program, NIH, Bethesda, MD 20892
| | - Andrew L. Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Catherine M. Biggs
- Department of Pediatrics, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Primary Immunodeficiencies Group, University of Antioquia UdeA, 050010 Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, 75743 Paris, France
- Institut Necker Enfants Malades, INSERM U1151–CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Anna M. Planas
- Institute for Biomedical Research, Spanish National Research Council, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Filomeen Haerynck
- Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev,” Štip 2000, Republic of North Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje 1000, Republic of North Macedonia
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Sevgi Keles
- Meram Faculty of Medicine, Necmettin Erbakan University, 42080 Konya, Turkey
| | - Ahmed A. Bousfiha
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, Centre Hospitalier-Universitaire Ibn Roucshd, 20360 Casablanca, Morocco
- Laboratoire d’Immunologie Clinique, Inflammation et Allergie (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 20250 Casablanca, Morocco
| | - Jalila El Bakkouri
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, Centre Hospitalier-Universitaire Ibn Roucshd, 20360 Casablanca, Morocco
- Laboratoire d’Immunologie Clinique, Inflammation et Allergie (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 20250 Casablanca, Morocco
| | - Carolina Ramirez-Santana
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, 111211 Bogotá, Colombia
| | - Stéphane Paul
- Department of Immunology, CIC1408, Groupe sur l’Immunité des Muqueuses et des Agents Pathogènes (GIMAP) Centre International de Recherche en Infectiologie, INSERM U1111, University Hospital of Saint-Étienne, 42000 Saint-Étienne, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Annabelle Dupont
- University of Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
| | - Christine N. Metz
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, and Clinical Genomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, 20132 Milan, Italy
| | - Giorgio Casari
- Vita-Salute San Raffaele University, and Clinical Genomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, 20132 Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele University Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Lucila A. Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 05508-060 São Paulo, Brazil
| | | | | | - Mayana Zatz
- University of São Paulo, 05508-060 São Paulo, Brazil
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, 46022 Ternopil, Ukraine
| | - Yoko Nukui
- Department of Infection Control and Prevention, Medical Hospital, Tokyo Medical and Dental University, Tokyo 113-8655, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Loreto Vidaur
- Intensive Care Medicine, Donostia University Hospital, Biodonostia Institute of Donostia, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Sydney, NWS 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NWS 2010, Australia
| | - Sonia Burrel
- Sorbonne Université, INSERM U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Service de Virologie, 75013 Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Department of Human Genomics and Evolution, Collège de France, 75231 Paris, France
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, 150 06 Prague, Czech Republic
| | - Nelli Y. Kann
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia 117997
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia 117997
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Matthieu Coulongeat
- Division of Geriatric Medicine, Tours University Medical Center, 37044 Tours, France
| | - Julien Marlet
- INSERM U1259, Morphogenèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours, 37044 Tours, France
- Service de Bactériologie, Virologie et Hygiène Hospitalière, Centre Hospitalier Universitaire de Tours, 37044 Tours, France
| | - Rutger Koning
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Luis Felipe Reyes
- Department of Microbiology, Universidad de La Sabana, 250001 Chía, Colombia
- Department of Critical Care Medicine, Clínica Universidad de La Sabana, 250001 Chía, Colombia
| | | | - Fabienne Venet
- Laboratoire d’Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, BioMérieux, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Guillaume Monneret
- Laboratoire d’Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, BioMérieux, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065
- HHMI, Rockefeller University, New York, NY 10065
| | - Romain Arrestier
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- Groupe de Recherche Clinique Cardiovascular and Respiratory Manifestations of Acute Lung Injury and Sepsis (CARMAS), Faculté de santé de Créteil, Université Paris Est Créteil, 94010 Créteil Cedex, France
| | - Idris Boudhabhay
- Department of Nephrology and Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, 75743 Paris, France
- Institut Necker Enfants Malades, INSERM U1151–CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Hagit Baris-Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Adam H. Dyer
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin D24 NR0A, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin D24 NR0A, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
- Immunology Research Lab, College of Medicine, King Saud University, 11362 Riyadh, Saudi Arabia
| | - Fatemeh Saheb Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, 75013 Paris, France
| | | | | | - Suzan AlKhater
- Department of Pediatrics, King Fahad Hospital of the University, Al Khobar 34445, Saudi Arabia
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Raúl Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Francisco Morandeira
- Department of Immunology, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Lucie Roussel
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Infectious Disease Susceptibility Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Donald C. Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Infectious Disease Susceptibility Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 05508-060 São Paulo, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, 80250-200 Curitiba, Brazil
| | | | - András N. Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Laurent Gilardin
- Service de Médecine Interne, Hôpital Universitaire Jean-Verdier, Assistance Publique-Hôpitaux de Paris, 93140 Bondy, France
- INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Stanislas Lyonnet
- Imagine Institute, Université de Paris, INSERM, UMR 1163, 75015 Paris, France
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06511
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510
- Department of Medical Genetics, Acibadem University School of Medicine, 34750 Istanbul, Turkey
| | - Richard P. Lifton
- Institute for Biomedical Research, Spanish National Research Council, 08036 Barcelona, Spain
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06511
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mark S. Anderson
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Olivier Hermine
- Imagine Institute, University of Paris, 75015 Paris, France
- Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER) U759, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lee Rowen
- Institute for Systems Biology, Seattle, WA 98109
| | | | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, F-33000 Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, F-33000 Bordeaux, France
| | - Xavier de Lamballerie
- Institut Hospitalo-Universitaire Méditerranée Infection, Unité des Virus Émergents, Aix-Marseille University, Institut pour la Recherche et le Développment (IRD) 190, INSERM 1207, 13005 Marseille, France
| | - Charles Burdet
- Epidémiologie clinique du Centre d’Investigation Clinique (CIC-EP), INSERM CIC 1425, Hôpital Bichat, 75018 Paris, France
- Université de Paris, Infection Antimicrobials Modelling Evolution (IAME), UMR 1137, INSERM, 75870 Paris, France
- Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France
| | - Lila Bouadma
- Université de Paris, Infection Antimicrobials Modelling Evolution (IAME), UMR 1137, INSERM, 75870 Paris, France
- Service de Réanimation Médicale et des Maladies Infectieuses, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Nord Université de Paris, F-75018 Paris, France
| | - Marie Zins
- Cohorte Constances Groupe Hospitalier Universitaire centre, Assistance Publique-Hôpitaux de Paris, Université de Paris, 94800 Villejuif, France
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, 75013 Paris, France
- Département d’Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpétrière, 75015 Paris, France
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Sophie Susen
- University of Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
- Department of Infectious Diseases and Immunity, University of Vic-Central University of Catalonia, 08500 Vic, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Didier Raoult
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| | - Marc Vasse
- Service de Biologie Clinique and UMR-S 1176, Hôpital Foch, 92150 Suresnes, France
| | - Peter K. Gregersen
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Carlos Rodríguez-Gallego
- Department of Clinical Sciences, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, 35010 Las Palmas de Gran Canaria, Spain
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065
| | - Pierre Tiberghien
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
- Interactions Hôte-Greffon-Tumeur et Ingénierie Cellulaire et Génique (RIGHT), INSERM, Etablissement Français du Sang, Université de Franche-Comté, 25000 Besançon, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- HHMI, Rockefeller University, New York, NY 10065
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| |
Collapse
|
22
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
23
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
24
|
De M, Bhushan A, Grubbe WS, Roy S, Mendoza JL, Chinnaswamy S. Distinct molecular phenotypes involving several human diseases are induced by IFN-λ3 and IFN-λ4 in monocyte-derived macrophages. Genes Immun 2022; 23:73-84. [PMID: 35115664 PMCID: PMC9042695 DOI: 10.1038/s41435-022-00164-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Human Interferon (IFN) lambda 3 (IFN-λ3) and IFN-λ4 are closely linked at the IFNL locus and show association with several diseases in genetic studies. Since they are only ~30% identical to each other, to better understand their roles in disease phenotypes, comparative studies are needed. Monocytes are precursors to macrophages (monocyte-derived macrophages; MDMs) that get differentiated under the influence of various immune factors, including IFNs. In a recent study, we characterized lipopolysaccharide-activated M1 and M2-MDMs that were differentiated in presence of IFN-λ3 or IFN-λ4. In this study, we performed transcriptomics on these M1 and M2-MDMs to further understand their molecular phenotypes. We identified over 760 genes that were reciprocally regulated by IFN-λ3 and IFN-λ4, additionally we identified over 240 genes that are significantly affected by IFN-λ4 but not IFN-λ3. We observed that IFN-λ3 was more active in M2-MDMs while IFN-λ4 showed superior response in M1-MDMs. Providing a structural explanation for these functional differences, molecular modeling showed differences in expected interactions of IFN-λ3 and IFN-λ4 with the extracellular domain of IFN-λR1. Further, pathway analysis showed several human infectious diseases and even cancer-related pathways being significantly affected by IFN-λ3 and/or IFN-λ4 in both M1 and M2-MDMs.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Anand Bhushan
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
- Cleveland Clinic Cole Eye Institute & Lerner Research Institute, Cleveland, OH, 44195, USA
| | - William S Grubbe
- Pritzker School of Molecular Engineering and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Subhajit Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Juan L Mendoza
- Pritzker School of Molecular Engineering and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
25
|
Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2022; 434:167374. [PMID: 34863779 PMCID: PMC8940657 DOI: 10.1016/j.jmb.2021.167374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.
Collapse
Affiliation(s)
- Monty E Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Boahen CK, Temba GS, Kullaya VI, Matzaraki V, Joosten LAB, Kibiki G, Mmbaga BT, van der Ven A, de Mast Q, Netea MG, Kumar V. A functional genomics approach in Tanzanian population identifies distinct genetic regulators of cytokine production compared to European population. Am J Hum Genet 2022; 109:471-485. [PMID: 35167808 DOI: 10.1016/j.ajhg.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research.
Collapse
Affiliation(s)
- Collins K Boahen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Godfrey S Temba
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania; Department of Paediatrics, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9700, the Netherlands; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Medical Sciences Complex, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
27
|
Yilmaz B, Çakmak Genç G, Karakaş Çelik S, Solak Tekin N, Can M, Dursun A. Association between Psoriasis Disease and IFN-λ Gene Polymorphisms. Immunol Invest 2022; 51:1772-1784. [PMID: 35118914 DOI: 10.1080/08820139.2022.2036187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Psoriasis is one of the most common chronic immune-mediated skin diseases, having a strong genetic predisposition. Psoriasis is a T-cell-mediated disease with a mixed Th1/Th17 cytokines environment. IL-23/IL-17 axis hyperactivation is the primary pathogenesis. Psoriasis lesions have been known to exhibit high IFN-λ1 and IFN-stimulated genes (ISGs) expression, which appears to be driven by Th17 cells. However, the role and mechanism of IFN-λs in psoriasis disease remains unknown. The study aimed to investigate the relationship between IL-28B and IL-29 gene polymorphisms with psoriasis disease and clinical severity. We performed single-nucleotide polymorphisms (SNPs) of IL-28B rs12979860 (IL-28 C/T), rs8099917 (IL-28 T/G), and IL-29 rs30461 (IL-29 T/C) in 140 patients with psoriasis disease and 159 healthy controls using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The genotype and allele frequency distributions of the rs12979860 (IL-28 C/T) and rs30461 (IL-29 T/C) polymorphisms were similar in the patient and control groups and were not statistically significant. The TG genotype of rs8099917 was statistically significantly different in patients from both groups. The TG genotype increased the risk of disease1.9-fold. The G allele may be associated with the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Büşra Yilmaz
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Güneş Çakmak Genç
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim Karakaş Çelik
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | | | - Murat Can
- Department of Biochemistry, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
28
|
Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: from cells to organisms. Curr Opin Immunol 2022; 74:172-182. [PMID: 35149239 PMCID: PMC8786610 DOI: 10.1016/j.coi.2022.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFNs) have broad and potent antiviral activity. We review the interplay between type I IFNs and SARS-CoV-2. Human cells infected with SARS-CoV-2 in vitro produce low levels of type I IFNs, and SARS-CoV-2 proteins can inhibit various steps in type I IFN production and response. Exogenous type I IFNs inhibit viral growth in vitro. In various animal species infected in vivo, type I IFN deficiencies underlie higher viral loads and more severe disease than in control animals. The early administration of exogenous type I IFNs improves infection control. In humans, inborn errors of, and auto-antibodies against type I IFNs underlie life-threatening COVID-19 pneumonia. Overall, type I IFNs are essential for host defense against SARS-CoV-2 in individual cells and whole organisms.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
29
|
Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 2022; 603:587-598. [PMID: 35090163 DOI: 10.1038/s41586-022-04447-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
SARS-CoV-2 infection is benign in most individuals but, in ˜10% of cases, it triggers hypoxemic COVID-19 pneumonia, which becomes critical in ˜3% of cases. The ensuing risk of death (˜1%) doubles every five years from childhood onward and is ˜1.5 times greater in men than in women. What are the molecular and cellular determinants of critical COVID-19 pneumonia? Inborn errors of type I IFNs, including autosomal TLR3 and X-linked TLR7 deficiencies, are found in ˜1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing autoantibodies neutralizing IFN-α, -β, and/or -ω, which are more common in men than in women, are found in ˜15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can apparently be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defense against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.
Collapse
|
30
|
Manry J, Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Michailidis E, Hoffmann HH, Eto S, Garcia-Prat M, Bizien L, Parra-Martínez A, Yang R, Haljasmägi L, Migaud M, Särekannu K, Maslovskaja J, de Prost N, Tandjaoui-Lambiotte Y, Luyt CE, Amador-Borrero B, Gaudet A, Poissy J, Morel P, Richard P, Cognasse F, Troya J, Trouillet-Assant S, Belot A, Saker K, Garçon P, Rivière JG, Lagier JC, Gentile S, Rosen L, Shaw E, Morio T, Tanaka J, Dalmau D, Tharaux PL, Sene D, Stepanian A, Mégarbane B, Triantafyllia V, Fekkar A, Heath J, Franco J, Anaya JM, Solé-Violán J, Imberti L, Biondi A, Bonfanti P, Castagnoli R, Delmonte O, Zhang Y, Snow A, Holland S, Biggs C, Moncada-Vélez M, Arias A, Lorenzo L, Boucherit S, Anglicheau D, Planas A, Haerynck F, Duvlis S, Nussbaum R, Ozcelik T, Keles S, Bousfiha A, El Bakkouri J, Ramirez-Santana C, Paul S, Pan-Hammarstrom Q, Hammarstrom L, Dupont A, Kurolap A, Metz C, Aiuti A, Casari G, Lampasona V, Ciceri F, Barreiros L, Dominguez-Garrido E, Vidigal M, Zatz M, van de Beek D, Sahanic S, Tancevski I, Stepanovskyy Y, Boyarchuk O, Nukui Y, Tsumura M, Vidaur L, Tangye S, Burrel S, Duffy D, Quintana-Murci L, Klocperk A, Kann N, Shcherbina A, Lau YL, Leung D, Coulongeat M, Marlet J, Koning R, Reyes L, Chauvineau-Grenier A, Venet F, Monneret G, Nussenzweig M, Arrestier R, Boudhabhay I, Baris-Feldman H, Hagin D, Wauters J, Meyts I, Dyer A, Kennelly S, Bourke N, Halwani R, Sharif-Askari F, Dorgham K, Sallette J, Mehlal-Sedkaoui S, AlKhater S, Rigo-Bonnin R, Morandeira F, Roussel L, Vinh D, Erikstrup C, Condino-Neto A, Prando C, Bondarenko A, Spaan A, Gilardin L, Fellay J, Lyonnet S, Bilguvar K, Lifton R, Mane S, Anderson M, Boisson B, Béziat V, Zhang SY, Andreakos E, Hermine O, Pujol A, Peterson P, Mogensen TH, Rowen L, Mond J, Debette S, deLamballerie X, Burdet C, Bouadma L, Zins M, Soler-Palacin P, Colobran R, Gorochov G, Solanich X, Susen S, Martinez-Picado J, Raoult D, Vasse M, Gregersen P, Rodríguez-Gallego C, Piemonti L, Notarangelo L, Su H, Kisand K, Okada S, Puel A, Jouanguy E, Rice C, Tiberghien P, Zhang Q, Casanova JL, Abel L, Cobat A. The risk of COVID-19 death is much greater and age-dependent with type I IFN autoantibodies. RESEARCH SQUARE 2022:rs.3.rs-1225906. [PMID: 35043109 PMCID: PMC8764723 DOI: 10.21203/rs.3.rs-1225906/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.
Collapse
Affiliation(s)
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163
| | | | | | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM
| | | | | | | | - Shohei Eto
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute
| | | | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | | | | | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu
| | | | | | - Charles-Edouard Luyt
- Hôpital Pitié-Salpêtrière, Service de Médecine Intensive Réanimation, Institut de Cardiologie
| | | | - Alexandre Gaudet
- University of Lille, U1019-UMR9017, Center for Infection and Immunity of Lille
| | - Julien Poissy
- University of Lille, U1019-UMR9017, Center for Infection and Immunity of Lille
| | | | | | | | - Jesus Troya
- Department of Internal Medicine, Infanta Leonor University Hospital
| | | | | | | | - Pierre Garçon
- Intensive Care Unit, Grand Hôpital de l'Est Francilien Site de Marne-La-Vallée
| | | | | | - Stéphanie Gentile
- Service d'Evaluation Médicale, Hôpitaux Universitaires de Marseille APHM
| | | | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | | | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima Universit
| | - David Dalmau
- Hospital Universitari MútuaTerrassa; Fundació Docència i Recerca MutuaTerrassa, Terrasa; Universitat de Barcelona
| | | | - Damien Sene
- Internal Medicine Department, Lariboisière Hospital AP-HP, Paris University
| | - Alain Stepanian
- Service d'Hématologie Biologique, Hôpital Lariboisière, AP-HP and EA3518, Institut Universitaire d'Hématologie-Hôpital Saint Louis, Université Paris
| | - Bruno Mégarbane
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière (AP-HP), Université Paris-Diderot, INSERM Unité Mixte de Recherche Scientifique (UMRS) 1144
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens
| | | | | | | | | | - Jordi Solé-Violán
- Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System
| | - Luisa Imberti
- CREA Laboratory (AIL Center for Hemato-Oncologic Research), Diagnostic Department, ASST Spedali Civili di Brescia
| | | | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano Bicocca
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Ottavia Delmonte
- Immune Deficiency Genetics Section, Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | | | - Andrew Snow
- Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Steve Holland
- Division of Intramural Research (HNM2), National Institute of Allergy and Infectious Diseases
| | - Catherine Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | - Andrés Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | | | | | | | | | | | - Sotirija Duvlis
- Faculty of Medical Sciences, University "Goce Delchev," Štip, Republic of Northern Macedonia
| | | | | | - Sevgi Keles
- Necmettin Erbakan University, Meram Medical Faculty
| | | | - Jalila El Bakkouri
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, CHU Ibn Rushd and LICIA, Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy
| | - Carolina Ramirez-Santana
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie Lyon
| | | | | | - Annabelle Dupont
- Université de Lille, INSERM, CHU de Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alina Kurolap
- Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan
| | - Giorgio Casari
- Vita-Salute San Raffaele University, and Clinical Genomics, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lucila Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Sabina Sahanic
- Department of Internal Medicine II, Medical University Innsbruck
| | | | | | - Oksana Boyarchuk
- Department of Children's Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yoko Nukui
- Department of Infection Control and Prevention, Medical Hospital, TMDU, Tokyo, Japan
| | | | - Loreto Vidaur
- Intensive Care Medicine, Donostia University Hospital, Biodonostia Institute of Donostia, San Sebastián, Spain
| | | | | | | | | | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague
| | - Nelli Kann
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Matthieu Coulongeat
- Division of Geriatric Medicine, Tours University Medical Center, Tours, France
| | - Julien Marlet
- INSERM U1259, MAVIVH, Université de Tours, Tours, France
| | - Rutger Koning
- Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Luis Reyes
- Department of Microbiology, Universidad de La Sabana, Chía, Colombia
| | | | | | | | | | - Romain Arrestier
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Idris Boudhabhay
- Department of Nephrology and Transplantation, Necker University Hospital, APHP, Paris, France. 58INEM, INSERM U1151-CNRS UMR 8253, Paris University, Paris, France
| | - Hagit Baris-Feldman
- Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Depart-ment of Microbiology, Immunology and Transplantation, KU Leuven
| | | | - Adam Dyer
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Sean Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Nollaig Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Fatemeh Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Karim Dorgham
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis UMRS 1135)
| | | | | | - Suzan AlKhater
- Department of Pediatrics, King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Raúl Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Francisco Morandeira
- Department of Immunology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Lucie Roussel
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC, Canada
| | - Donald Vinh
- The Research Institute of the McGill University Health Centre
| | | | | | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | | | - András Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Laurent Gilardin
- Service de Médecine Interne, Hôpital universitaire Jean-Verdier AP-HP, Bondy, France
| | | | | | | | - Richard Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University
| | | | - Mark Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Olivier Hermine
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) 1163
| | | | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu
| | | | - Lee Rowen
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Stéphanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219
| | | | | | - Lila Bouadma
- APHP- Hôpital Bichat - Médecine Intensive et Réanimation des Maladies
| | - Marie Zins
- Université de Paris, Université Paris-Saclay, UVSQ, INSERM UMS11, Villejuif, France
| | | | | | | | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Sophie Susen
- Université de Lille, INSERM, CHU de Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | - Didier Raoult
- Aix Marseille Université; IHU Méditerranée Infection-MEPHI
| | - Marc Vasse
- Service de Biologie Clinique and UMR-S 1176, Hôpital Foch, Suresnes, France
| | - Peter Gregersen
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Carlos Rodríguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, San Raffaele Diabetes Research Institute, Via Olgettina 60, 20132 Milan
| | | | | | | | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | | | | | | | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | | | | |
Collapse
|
31
|
Siddiqi KZ, Wilhelm TR, Ulff-Møller CJ, Jacobsen S. Cluster of highly expressed interferon-stimulated genes associate more with African ancestry than disease activity in patients with systemic lupus erythematosus. A systematic review of cross-sectional studies. Transl Res 2021; 238:63-75. [PMID: 34343626 DOI: 10.1016/j.trsl.2021.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFN) are central players in the pathogenesis of systemic lupus erythematosus (SLE) and the up-regulation of interferon-stimulated genes (ISGs) in SLE patients is subjected to increasing scrutiny as for its use in diagnosis, stratification and monitoring of SLE patients. Determinants of this immunological phenomenon are yet to be fully charted. The purpose of this systematic review was to characterize expressions of ISGs in blood of SLE patients and to analyze if they associated with core demographic and clinical features of SLE. Twenty cross-sectional, case-control studies comprising 1033 SLE patients and 602 study controls could be included. ISG fold-change expression values (SLE vs controls), demographic and clinical data were extracted from the published material and analyzed by hierarchical cluster analysis and generalized linear modelling. ISG expression varied substantially within each study with IFI27, IFI44, IFI44L, IFIT4 and RSAD2, being the top-five upregulated ISGs. Analysis of inter-study variation showed that IFI27, IFI44, IFI44L, IFIT1, PRKR and RSAD2 expression clustered with the fraction of SLE cases having African ancestry or lupus nephritis. Generalized linear models adjusted for prevalence of lupus nephritis and usage of hydroxychloroquine confirmed the observed association between African ancestry and IFI27, IFI44L, IFIT1, PRKR and RSAD2, whereas disease activity was associated with expression of IFI27 and RNASE2. In conclusion, this systematic review revealed that expression of ISGs often used for deriving an IFN signature in SLE patients were influenced by African ancestry rather than disease activity. This underscores the necessity of taking ancestry into account when employing the IFN signature for clinical research in SLE.
Collapse
Affiliation(s)
- Kanwal Z Siddiqi
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Theresa R Wilhelm
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Constance J Ulff-Møller
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark.
| |
Collapse
|
32
|
Chinnaswamy S. SARS-CoV-2 infection in India bucks the trend: Trained innate immunity? Am J Hum Biol 2021; 33:e23504. [PMID: 32965717 PMCID: PMC7536963 DOI: 10.1002/ajhb.23504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19 pandemic caught the world unawares by its sudden onset in early 2020. Memories of the 1918 Spanish Flu were rekindled raising extreme fear for the virus, but in essence, it was the host and not the virus, which was deciding the outcome of the infection. Age, gender, and preexisting conditions played critical roles in shaping COVID-19 outcome. People of lower socioeconomic strata were disproportionately affected in industrialized countries such as the United States. India, a developing country with more than 1.3 billion population, a large proportion of it being underprivileged and with substandard public health provider infrastructure, feared for the worst outcome given the sheer size and density of its population. Six months into the pandemic, a comparison of COVID-19 morbidity and mortality data between India, the United States, and several European countries, reveal interesting trends. While most developed countries show curves expected for a fast-spreading respiratory virus, India seems to have a slower trajectory. As a consequence, India may have gained on two fronts: the spread of the infection is unusually prolonged, thus leading to a curve that is "naturally flattened"; concomitantly the mortality rate, which is a reflection of the severity of the disease has been relatively low. I hypothesize that trained innate immunity, a new concept in immunology, may be the phenomenon behind this. Biocultural, socioecological, and socioeconomic determinants seem to be influencing the outcome of COVID-19 in different regions/countries of the world.
Collapse
Affiliation(s)
- Sreedhar Chinnaswamy
- Infectious Disease GeneticsNational Institute of Biomedical GenomicsKalyaniIndia
| |
Collapse
|
33
|
Gene cloning, prokaryotic expression and antiviral activities of interferon-αω from Chinese Bama miniature pigs. Vet Res Commun 2021; 46:59-66. [PMID: 34581981 DOI: 10.1007/s11259-021-09829-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/07/2021] [Indexed: 01/30/2023]
Abstract
Porcine interferon (PoIFN) complex represents an ideal model for studying IFN evolution that resulted from viral pressure during domestication. IFN-αω is an emergent subtype of type I IFNs which has been primarily characterized in domestic pigs. In this study, the PoIFN-αω cDNA was cloned from Chinese Bama miniature pigs by RT-PCR, and its tissue expression profile was analyzed by real-time RT-PCR. The cDNA was expressed in Escherichia coli as a His-tagged protein and purified by nickel affinity chromatography. The antiviral activities of recombinant PoIFN-αω (rPoIFN-αω) against four different pig viruses were measured using cytopathic effect (CPE) inhibition assay. Although the PoIFN-αω sequence of Bama miniature pigs was identical to that of domestic pigs, the tissue expression profiles differed significantly between the two pig species. The rPoIFN-αω showed dose-dependent pre-infection antiviral activities against porcine pseudorabies virus, vesicular stomatitis virus and porcine reproductive and respiratory syndrome virus, but not against porcine circovirus type 2. When used as treatment post infection with the three viruses, rPoIFN-αω showed the efficacy in decreasing CPE in the infected cells in a time-dependent manner. Therefore, the expressed rPoIFN-αω could be used as an antiviral agent against pig virus infections.
Collapse
|
34
|
Bondet V, Rodero MP, Posseme C, Bost P, Decalf J, Haljasmägi L, Bekaddour N, Rice GI, Upasani V, Herbeuval JP, Reynolds JA, Briggs TA, Bruce IN, Mauri C, Isenberg D, Menon M, Hunt D, Schwikowski B, Mariette X, Pol S, Rozenberg F, Cantaert T, Eric Gottenberg J, Kisand K, Duffy D. Differential levels of IFNα subtypes in autoimmunity and viral infection. Cytokine 2021; 144:155533. [PMID: 33941444 PMCID: PMC7614897 DOI: 10.1016/j.cyto.2021.155533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Type I interferons are essential for host response to viral infections, while dysregulation of their response can result in autoinflammation or autoimmunity. Among IFNα (alpha) responses, 13 subtypes exist that signal through the same receptor, but have been reported to have different effector functions. However, the lack of available tools for discriminating these closely related subtypes, in particular at the protein level, has restricted the study of their differential roles in disease. We developed a digital ELISA with specificity and high sensitivity for the IFNα2 subtype. Application of this assay, in parallel with our previously described pan-IFNα assay, allowed us to study different IFNα protein responses following cellular stimulation and in diverse patient cohorts. We observed different ratios of IFNα protein responses between viral infection and autoimmune patients. This analysis also revealed a small percentage of autoimmune patients with high IFNα2 protein measurements but low pan-IFNα measurements. Correlation with an ISG score and functional activity showed that in this small sub group of patients, IFNα2 protein measurements did not reflect its biological activity. This unusual phenotype was partly explained by the presence of anti-IFNα auto-antibodies in a subset of autoimmune patients. This study reports ultrasensitive assays for the study of IFNα proteins in patient samples and highlights the insights that can be obtained from the use of multiple phenotypic readouts in translational and clinical studies.
Collapse
Affiliation(s)
- Vincent Bondet
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Mathieu P Rodero
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université de Paris, CNRS, UMR8601, Paris, France
| | - Céline Posseme
- Translational Immunology Lab, Institut Pasteur, Paris, France; Frontiers of Innovation in Research and Education PhD program, CRI doctoral school, Université de Paris, Paris 75005, France
| | - Pierre Bost
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris 75015, France; Sorbonne Universite, Complexite du vivant, Paris 75005, France
| | - Jérémie Decalf
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Liis Haljasmägi
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nassima Bekaddour
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université de Paris, CNRS, UMR8601, Paris, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Jean-Philippe Herbeuval
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université de Paris, CNRS, UMR8601, Paris, France
| | - John A Reynolds
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Rheumatology Department, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ian N Bruce
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Claudia Mauri
- Centre for Rheumatology Research, Division of Medicine, University College of London, London WC1E 6JF, UK
| | - David Isenberg
- Centre for Rheumatology Research, Division of Medicine, University College of London, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology Research, Division of Medicine, University College of London, London WC1E 6JF, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, UK
| | - David Hunt
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris 75015, France; Sorbonne Universite, Complexite du vivant, Paris 75005, France
| | - Xavier Mariette
- Rheumatology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, INSERM UMR1184, Le Kremlin-Bicetre, France
| | - Stanislas Pol
- Unite d'Hépatologie, Assistance Publique-Hopitaux de Paris (AP-HP), Hopital Cochin, Paris, France
| | - Flore Rozenberg
- Department of Virology, APHP-CUP, Université de Paris, Paris, France
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - J Eric Gottenberg
- Faculté de Médecine de l'Université de Strasbourg, Strasbourg, France
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Darragh Duffy
- Translational Immunology Lab, Institut Pasteur, Paris, France.
| |
Collapse
|
35
|
Abstract
Type I interferons (IFNs) are a family of cytokines that represent a first line of defense against virus infections. The 12 different IFN-α subtypes share a receptor on target cells and trigger similar signaling cascades. Several studies have collectively shown that this apparent redundancy conceals qualitatively different responses induced by individual subtypes, which display different efficacies of inhibition of HIV replication. Some studies, however, provided evidence that the disparities are quantitative rather than qualitative. Since RNA expression analyses show a large but incomplete overlap of the genes induced, they may support both models. To explore if the IFN-α subtypes induce functionally relevant different anti-HIV activities, we have compared the efficacies of inhibition of all 12 subtypes on HIV spread and on specific steps of the viral replication cycle, including viral entry, reverse transcription, protein synthesis, and virus release. Finding different hierarchies of inhibition would validate the induction of qualitatively different responses. We found that while most subtypes similarly inhibit virus entry, they display distinctive potencies on other early steps of HIV replication. In addition, only some subtypes were able to target effectively the late steps. The extent of induction of known anti-HIV factors helps to explain some, but not all differences observed, confirming the participation of additional IFN-induced anti-HIV effectors. Our findings support the notion that different IFN-α subtypes can induce the expression of qualitatively different antiviral activities. IMPORTANCE The initial response against viruses relies in large part on type I interferons, which include 12 subtypes of IFN-α. These cytokines bind to a common receptor on the cell surface and trigger the expression of incompletely overlapping sets of genes. Whether the anti-HIV responses induced by IFN-α subtypes differ in the extent of expression or in the nature of the genes involved remains debated. Also, RNA expression profiles led to opposite conclusions, depending on the importance attributed to the induction of common or distinctive genes. To explore if relevant anti-HIV activities can be differently induced by the IFN-α subtypes, we compared their relative efficacies on specific steps of the replication cycle. We show that the hierarchy of IFN potencies depends on the step analyzed, supporting qualitatively different responses. This work will also prompt the search for novel IFN-induced anti-HIV factors acting on specific steps of the replication cycle.
Collapse
|
36
|
Roy S, Guha Roy D, Bhushan A, Bharatiya S, Chinnaswamy S. Functional genetic variants of the IFN-λ3 (IL28B) gene and transcription factor interactions on its promoter. Cytokine 2021; 142:155491. [PMID: 33725487 PMCID: PMC7611124 DOI: 10.1016/j.cyto.2021.155491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Interferon lambda 3 (IFN-λ3 or IFNL3, formerly IL28B), a type III interferon, modulates immune responses during infection/inflammation. Several human studies have reported an association of single nucleotide polymorphisms (SNP) in the IFNL3 locus with expression level of IFNL3. Previous genetic studies, in the context of hepatitis C virus infections, had predicted three regulatory SNPs: rs4803219, rs28416813 and rs4803217 that could have functional/causal roles. Subsequent studies confirmed this prediction for rs28416813 and rs4803217. A dinucleotide TA-repeat variant (rs72258881) has also been reported to be regulating the IFN-λ3 promoter. In this study, we tested all these genetic variants using a sensitive reporter assay. We show that the minor/ancestral alleles of both rs28416813 and rs4803217, together have a strong inhibitory effect on reporter gene expression. We also show an interaction between the two principal transcription factors regulating IFNL3 promoter: IRF7 and NF-kB RelA/p65. We show that IRF7 and p65 physically interact with each other. By using a transient ChIP assay, we show that presence of p65 increases the promoter occupancy of IRF7, thereby leading to synergistic activation of the IFNL3 promoter. We reason that, in contrast to p65, a unique nature of IRF7 binding to its specific DNA sequence makes it more sensitive to changes in DNA phasing. As a result, we see that IRF7, but not p65-mediated transcriptional activity is affected by the phase changes introduced by the TA-repeat polymorphism. Overall, we see that three genetic variants: rs28416813, rs4803217 and rs72258881 could have functional roles in controlling IFNL3 gene expression.
Collapse
Affiliation(s)
- Subhajit Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Debarati Guha Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Anand Bhushan
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Seema Bharatiya
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
37
|
Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021; 21:65. [PMID: 33902453 PMCID: PMC8074226 DOI: 10.1186/s12862-021-01783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one.
Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.
Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01783-z.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
38
|
Chen J, Li Y, Lai F, Wang Y, Sutter K, Dittmer U, Ye J, Zai W, Liu M, Shen F, Wu M, Hu K, Li B, Lu M, Zhang X, Zhang J, Li J, Chen Q, Yuan Z. Functional Comparison of Interferon-α Subtypes Reveals Potent Hepatitis B Virus Suppression by a Concerted Action of Interferon-α and Interferon-γ Signaling. Hepatology 2021; 73:486-502. [PMID: 32333814 DOI: 10.1002/hep.31282] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Interferon (IFN)-α, composed of numerous subtypes, plays a crucial role in immune defense. As the most studied subtype, IFN-α2 has been used for treating chronic hepatitis B virus (HBV) infection, with advantages of finite treatment duration and sustained virologic response, but its efficacy remains relatively low. This study aimed to screen for IFN-α subtypes with the highest anti-HBV potency and to characterize mechanisms of IFN-α-mediated HBV restriction. APPROACH AND RESULTS Using cell culture-based HBV infection systems and a human-liver chimeric mouse model, IFN-α subtype-mediated antiviral response and signaling activation were comprehensively analyzed. IFN-α14 was identified as the most effective subtype in suppression of HBV covalently closed circular DNA transcription and HBV e antigen/HBV surface antigen production, with median inhibitory concentration values approximately 100-fold lower than those of the conventional IFN-α2. IFN-α14 alone elicited IFN-α and IFN-γ signaling crosstalk in a manner similar to the combined use of IFN-α2 and IFN-γ, inducing multiple potent antiviral effectors, which synergistically restricted HBV replication. Guanylate binding protein 5, one of the most differentially expressed genes between IFN-α14-treated and IFN-α2-treated liver cells, was identified as an HBV restriction factor. A strong IFN-α-IFN-α receptor subunit 1 interaction determines the anti-HBV activity of IFN-α. The in vivo anti-HBV activity of IFN-α14 and treatment-related transcriptional patterns were further confirmed, and few adverse effects were observed. CONCLUSIONS A concerted IFN-α and IFN-γ response in liver, which could be efficiently elicited by IFN-α subtype 14, is associated with potent HBV suppression. These data deepen the understanding of the divergent activities of IFN-α subtypes and the mechanism underlying the synergism between IFN-α and IFN-γ signaling, with implications for improved IFN therapy and HBV curative strategies.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fritz Lai
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingaporeSingapore
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Kathrin Sutter
- Institute for VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Ulf Dittmer
- Institute for VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Min Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingaporeSingapore
| | - Fang Shen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Min Wu
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Baocun Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mengji Lu
- Institute for VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Xiaonan Zhang
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Jiming Zhang
- Department of Infectious DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qingfeng Chen
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingaporeSingapore
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
39
|
Wittling MC, Cahalan SR, Levenson EA, Rabin RL. Shared and Unique Features of Human Interferon-Beta and Interferon-Alpha Subtypes. Front Immunol 2021; 11:605673. [PMID: 33542718 PMCID: PMC7850986 DOI: 10.3389/fimmu.2020.605673] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNβ as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Ronald L. Rabin
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
40
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
41
|
Cardoso NP, Mansilla FC, Benedetti E, Turco CS, Barone LJ, Iserte JA, Soria I, Baumeister E, Capozzo AV. Bovine Interferon Lambda Is a Potent Antiviral Against SARS-CoV-2 Infection in vitro. Front Vet Sci 2020; 7:603622. [PMID: 33240967 PMCID: PMC7677234 DOI: 10.3389/fvets.2020.603622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Interferon lambda (IFN-λ) is an antiviral naturally produced in response to viral infections, with activity on cells of epithelial origin and located in the mucosal surfaces. This localized activity results in reduced toxicity compared to type I IFNs, whose receptors are ubiquitously expressed. IFN-λ has been effective in the therapy of respiratory viral infections, playing a crucial role in potentiating adaptive immune responses that initiate at mucosal surfaces. Human IFN-λ has polymorphisms that may cause differences in the interaction with the specific receptor in the human population. Interestingly, bovine IFN-λ3 has an in silico-predicted higher affinity for the human receptor than its human counterparts, with high identity with different human IFN-λ variants, making it a suitable antiviral therapeutic candidate for human health. Here, we demonstrate that a recombinant bovine IFN-λ (rbIFN-λ) produced in HEK-293 cells is effective in preventing SARS-CoV-2 infection of VERO cells, with an inhibitory concentration 50% (IC50) between 30 and 50 times lower than that of human type I IFN tested here (α2b and β1a). We also demonstrated the absence of toxicity of rbIFN-λ in human PBMCs and the lack of proinflammatory activity on these cells. Altogether, our results show that rbIFN-λ is as an effective antiviral potentially suitable for COVID-19 therapy. Among other potential applications, rbIFN-λ could be useful to preclude virus dispersion to the lungs and/or to reduce transmission from infected people. Moreover, and due to the non-specific activity of this IFN, it can be potentially effective against other respiratory viruses that may be circulating together with SARS-CoV-2.
Collapse
Affiliation(s)
- Nancy Patricia Cardoso
- Instituto de Virología e Innovaciones Tecnológicas IVIT, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Florencia Celeste Mansilla
- Instituto de Virología e Innovaciones Tecnológicas IVIT, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Instituto Nacional de Enfermedades Infecciosas, INEI–ANLIS “Dr. Carlos G. Malbrán,”Buenos Aires, Argentina
| | - Cecilia Soledad Turco
- Instituto de Virología e Innovaciones Tecnológicas IVIT, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Lucas José Barone
- Instituto de Virología e Innovaciones Tecnológicas IVIT, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Javier Alonso Iserte
- Structural Bioinformatics Group, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas IVIT, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Elsa Baumeister
- Servicio Virosis Respiratorias, Instituto Nacional de Enfermedades Infecciosas, INEI–ANLIS “Dr. Carlos G. Malbrán,”Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Instituto de Virología e Innovaciones Tecnológicas IVIT, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| |
Collapse
|
42
|
Sakr AA, Ahmed AE, Abd El-Maksoud MDE, Gamal A, El-Garem H, Ahmed OM. Interferon lambda 4 gene polymorphisms as a predicting tool of response to hepatitis C virus genotype 4 patients treated with Sofosbuvir and Ribavirin. INFECTION GENETICS AND EVOLUTION 2020; 86:104606. [PMID: 33127459 DOI: 10.1016/j.meegid.2020.104606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
Abstract
The relation between interferon lambda 4 gene (IFNL4) and direct acting antiviral (DAA) regimens in hepatitis C virus (HCV) infected patients is not clear. So, a single nucleotide polymorphisms (SNP) of IFNL4 gene genotypes and its relationship with Sofosbuvir (SOF) and Ribavirin (RBV) treatment response is under consideration. This study aims to investigate the relation between IFNL4 polymorphisms and clearance of HCV genotype 4 for HCV patients. Hence, the appropriate drug can be chosen for each patient. SNP genotyping assay for IFNL4 which formerly known as IL28B (rs368234815) was examined for genomic DNA. The DNA was extracted from whole blood of one hundred patients who documented to have infection with chronic HCV genotype 4 (positive PCR) and treated with SOF and RBV. Patients were diagnosed, previously, as HCV genotype 4 and classified according to drug response into two groups (responders, non-responders). All samples were compared with 50 of non-infected (negative PCR) people (control group). The TT/TT homozygous represents 48% of patients and 66% of non-infected people while the homozygous ∆G/∆G is 21% and 12%, respectively. There is significance to IFNL4 genotypes for the treatment response with the probability value p < 0.001. The percentages of the appearance of genotypes TT/TT, TT/∆G and ∆G/∆G for responders were 60%, 28% and 12%, respectively. There is no significance for gender, age, ALT and PLC to treatment response to SOF and RBV, while INR has.
Collapse
Affiliation(s)
- Amany A Sakr
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt.
| | - Amr E Ahmed
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Mohamed D E Abd El-Maksoud
- Department of Biochemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Amany Gamal
- National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Hasan El-Garem
- Department of Gastroenterology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Osama M Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
43
|
Premzl M. Comparative genomic analysis of eutherian interferon genes. Genomics 2020; 112:4749-4759. [DOI: 10.1016/j.ygeno.2020.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
|
44
|
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, Dorgham K, Philippot Q, Rosain J, Béziat V, Manry J, Shaw E, Haljasmägi L, Peterson P, Lorenzo L, Bizien L, Trouillet-Assant S, Dobbs K, de Jesus AA, Belot A, Kallaste A, Catherinot E, Tandjaoui-Lambiotte Y, Le Pen J, Kerner G, Bigio B, Seeleuthner Y, Yang R, Bolze A, Spaan AN, Delmonte OM, Abers MS, Aiuti A, Casari G, Lampasona V, Piemonti L, Ciceri F, Bilguvar K, Lifton RP, Vasse M, Smadja DM, Migaud M, Hadjadj J, Terrier B, Duffy D, Quintana-Murci L, van de Beek D, Roussel L, Vinh DC, Tangye SG, Haerynck F, Dalmau D, Martinez-Picado J, Brodin P, Nussenzweig MC, Boisson-Dupuis S, Rodríguez-Gallego C, Vogt G, Mogensen TH, Oler AJ, Gu J, Burbelo PD, Cohen JI, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Rossignol P, Mayaux J, Rieux-Laucat F, Husebye ES, Fusco F, Ursini MV, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Castagnoli R, Montagna D, Licari A, Marseglia GL, Duval X, Ghosn J, Tsang JS, Goldbach-Mansky R, Kisand K, Lionakis MS, Puel A, Zhang SY, Holland SM, Gorochov G, Jouanguy E, Rice CM, Cobat A, Notarangelo LD, Abel L, Su HC, Casanova JL. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020; 370:eabd4585. [PMID: 32972996 PMCID: PMC7857397 DOI: 10.1126/science.abd4585] [Citation(s) in RCA: 1783] [Impact Index Per Article: 445.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, (CIMI-Paris), Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adriana Almeida de Jesus
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandre Belot
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children (RAISE), Lyon, France
- Lyon Immunopathology Federation (LIFE), Hospices Civils de Lyon, Lyon, France
| | - Anne Kallaste
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | | | - Yacine Tandjaoui-Lambiotte
- Avicenne Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Bobigny, INSERM U1272 Hypoxia and Lung, Bobigny, France
| | - Jeremie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alessandro Aiuti
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Casari
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Vito Lampasona
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Fabio Ciceri
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Marc Vasse
- Service de Biologie Clinique and UMR-S 1176, Hôpital Foch, Suresnes, France
| | - David M Smadja
- INSERM UMR-S 1140, Biosurgical Research Laboratory (Carpentier Foundation), Paris University and European Georges Pompidou Hospital, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérome Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), University of Paris, Paris, France
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015, Paris, France
- Human Genomics and Evolution, Collège de France, Paris, France
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Lucie Roussel
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Donald C Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst 2010, NSW, Australia
| | - Filomeen Haerynck
- Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - David Dalmau
- Infectious Diseases and HIV Service, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Fundació Docència i Recerca Mutua Terrassa, Terrassa, Barcelona, Catalonia, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Infectious Diseases and Immunity, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Karolinska, Sweden
- Department of Pediatric Rheumatology, Karolinska University Hospital, Karolinska, Sweden
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Guillaume Vogt
- Neglected Human Genetics Laboratory, INSERM, University of Paris, Paris, France
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD, USA
| | - Peter D Burbelo
- Division of Intramural Research, National Institute of Dental Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy
| | - Mariella D'Angio
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital - University of Milano-Bicocca, Monza, Italy
| | - Patrick Rossignol
- University of Lorraine, Plurithematic Clinical Investigation Centre INSERM CIC-P 1433, INSERM U1116, CHRU Nancy Hopitaux de Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Julien Mayaux
- Intensive Care Unit, Pitié-Salpétrière Hospital, Paris University, AP-HP, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France
| | - Eystein S Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Francesca Fusco
- Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics, "A. Buzzati-Traverso" Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Matilde Valeria Ursini
- Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics, "A. Buzzati-Traverso" Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA) Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA) Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Simone Paghera
- Centro di Ricerca Emato-oncologica AIL (CREA) Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali di Brescia, Brescia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Daniela Montagna
- Laboratory of Immunology and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Xavier Duval
- INSERM CIC 1425, Paris, France
- AP-HP, University Hospital of Bichat, Paris, France
- University Paris Diderot, Paris 7, UFR de Médecine-Bichat, Paris, France
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMRS1137, University of Paris, Paris, France
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMRS1137, University of Paris, Paris, France
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France
| | - John S Tsang
- Center for Human Immunology, NIH, Bethesda, MD, USA
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Raphaela Goldbach-Mansky
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, (CIMI-Paris), Paris, France
- Département d'Immunologie, AP-HP, Hôpital Pitié-Salpétrière, Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
45
|
Guo K, Shen G, Kibbie J, Gonzalez T, Dillon SM, Smith HA, Cooper EH, Lavender K, Hasenkrug KJ, Sutter K, Dittmer U, Kroehl M, Kechris K, Wilson CC, Santiago ML. Qualitative Differences Between the IFNα subtypes and IFNβ Influence Chronic Mucosal HIV-1 Pathogenesis. PLoS Pathog 2020; 16:e1008986. [PMID: 33064743 PMCID: PMC7592919 DOI: 10.1371/journal.ppat.1008986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 10/28/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
The Type I Interferons (IFN-Is) are innate antiviral cytokines that include 12 different IFNα subtypes and IFNβ that signal through the IFN-I receptor (IFNAR), inducing hundreds of IFN-stimulated genes (ISGs) that comprise the 'interferome'. Quantitative differences in IFNAR binding correlate with antiviral activity, but whether IFN-Is exhibit qualitative differences remains controversial. Moreover, the IFN-I response is protective during acute HIV-1 infection, but likely pathogenic during the chronic stages. To gain a deeper understanding of the IFN-I response, we compared the interferomes of IFNα subtypes dominantly-expressed in HIV-1-exposed plasmacytoid dendritic cells (1, 2, 5, 8 and 14) and IFNβ in the earliest cellular targets of HIV-1 infection. Primary gut CD4 T cells from 3 donors were treated for 18 hours ex vivo with individual IFN-Is normalized for IFNAR signaling strength. Of 1,969 IFN-regulated genes, 246 'core ISGs' were induced by all IFN-Is tested. However, many IFN-regulated genes were not shared between the IFNα subtypes despite similar induction of canonical antiviral ISGs such as ISG15, RSAD2 and MX1, formally demonstrating qualitative differences between the IFNα subtypes. Notably, IFNβ induced a broader interferome than the individual IFNα subtypes. Since IFNβ, and not IFNα, is upregulated during chronic HIV-1 infection in the gut, we compared core ISGs and IFNβ-specific ISGs from colon pinch biopsies of HIV-1-uninfected (n = 13) versus age- and gender-matched, antiretroviral-therapy naïve persons with HIV-1 (PWH; n = 19). Core ISGs linked to inflammation, T cell activation and immune exhaustion were elevated in PWH, positively correlated with plasma lipopolysaccharide (LPS) levels and gut IFNβ levels, and negatively correlated with gut CD4 T cell frequencies. In sharp contrast, IFNβ-specific ISGs linked to protein translation and anti-inflammatory responses were significantly downregulated in PWH, negatively correlated with gut IFNβ and LPS, and positively correlated with plasma IL6 and gut CD4 T cell frequencies. Our findings reveal qualitative differences in interferome induction by diverse IFN-Is and suggest potential mechanisms for how IFNβ may drive HIV-1 pathogenesis in the gut.
Collapse
Affiliation(s)
- Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Guannan Shen
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Jon Kibbie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Tania Gonzalez
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Harry A. Smith
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Emily H. Cooper
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Canada
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, Hamilton, MT, United States of America
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisberg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisberg-Essen, Essen, Germany
| | - Miranda Kroehl
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
46
|
Duffy D. Understanding immune variation for improved translational medicine. Curr Opin Immunol 2020; 65:83-88. [PMID: 32745736 DOI: 10.1016/j.coi.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
The goal of translational medicine is to use an improved understanding of human biology to develop new clinical approaches. Immune responses are highly variable from one person to another, with this variability strongly impacting clinical outcome. Variable immunity can determine differential risks for infection, for development of autoimmunity, and for response to therapeutic interventions. Therefore, a better understanding of the causes of such differences has huge potential to improve patient management through precision medicine strategies. Variability in immunity is determined by intrinsic (e.g. age, sex), extrinsic (e.g. environment, diet), and genetic factors. There is a growing consensus that genetics factors account for 20-40% of immune variability between individuals. The remaining unexplained variability is likely due to direct environmental influences, as well as specific gene-environmental interactions, which are more challenging to quantify and study. However, population based cohort studies with systems immunology approaches are now providing new understanding into these associations.
Collapse
Affiliation(s)
- Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France; INSERM U1223, Paris, France
| |
Collapse
|
47
|
Benedicenti O, Wang T, Morel E, Secombes CJ, Soleto I, Díaz-Rosales P, Tafalla C. Type I Interferon Regulates the Survival and Functionality of B Cells in Rainbow Trout. Front Immunol 2020; 11:1494. [PMID: 32733485 PMCID: PMC7363951 DOI: 10.3389/fimmu.2020.01494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
Interferons (IFNs) orchestrate antiviral responses in jawed vertebrates and can be classified into three types based on different aspects of their genomic organization, structure and receptors through which they signal and function. Generally, type I and type III IFNs include cytokines that directly induce an antiviral response, whereas type II IFNs are well-known for their immunomodulatory role during viral infections. In mammals, type I IFNs have been shown to also regulate many aspects of B cell development and differentiation. Yet, these functions have been only faintly investigated for teleost IFNs. Thus, in the current study, we have examined the effects of a model type I rainbow trout IFN molecule (IFNa) on blood naïve (IgM+IgD+) B cells, comparing them to those exerted by type II IFN (IFNγ). Our results demonstrate that IFNa increases the survival of naïve rainbow trout B cells, in the absence of lymphoproliferative effects, by rescuing them from spontaneous apoptosis. Additionally, IFNa increased the phagocytic capacity of blood IgM+IgD+ B cells and augmented the number of IgM-secreting cells in blood leukocyte cultures. IFNγ, on the other hand, had only minor effects up-regulating IgM secretion, whereas it increased the phagocytic capacity of IgM− cells in the cultures. Finally, given the recent identification of 9 mx genes in rainbow trout, we have also established which of these genes were transcriptionally regulated in blood naïve B cells in response to IFNa. This study points to a previously undescribed role for teleost type I IFNs in the regulation of B cell responses.
Collapse
Affiliation(s)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | |
Collapse
|
48
|
Wauters E, Thevissen K, Wouters C, Bosisio FM, De Smet F, Gunst J, Humblet-Baron S, Lambrechts D, Liston A, Matthys P, Neyts J, Proost P, Weynand B, Wauters J, Tejpar S, Garg AD. Establishing a Unified COVID-19 "Immunome": Integrating Coronavirus Pathogenesis and Host Immunopathology. Front Immunol 2020; 11:1642. [PMID: 32719686 PMCID: PMC7347900 DOI: 10.3389/fimmu.2020.01642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism and Department of Respiratory Diseases, University Hospitals KU Leuven, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Pediatric Immune-Inflammatory Diseases, Laboratory of Adaptive Immunology & Immunobiology, Department of Microbiology and Immunology, Department of Pediatrics, University Hospitals KU Leuven, KU Leuven, Leuven, Belgium
- Member of the European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases, Leuven, Belgium
| | - Francesca Maria Bosisio
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, Department of Pathology, University Hospitals of Leuven, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Clinical Department and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, VIB Center for Cancer Biology, VIB and KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, VIB Center for Brain and Disease Research, The Babraham Institute, Babraham Research Campus, KU Leuven, Cambridge, United Kingdom
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Pathology, University Hospitals KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Laboratory for Clinical Infectious and Inflammatory Diseases, Medical Intensive Care Unit, University Hospitals KU Leuven, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory for Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Rausell A, Luo Y, Lopez M, Seeleuthner Y, Rapaport F, Favier A, Stenson PD, Cooper DN, Patin E, Casanova JL, Quintana-Murci L, Abel L. Common homozygosity for predicted loss-of-function variants reveals both redundant and advantageous effects of dispensable human genes. Proc Natl Acad Sci U S A 2020; 117:13626-13636. [PMID: 32487729 PMCID: PMC7306792 DOI: 10.1073/pnas.1917993117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Humans homozygous or hemizygous for variants predicted to cause a loss of function (LoF) of the corresponding protein do not necessarily present with overt clinical phenotypes. We report here 190 autosomal genes with 207 predicted LoF variants, for which the frequency of homozygous individuals exceeds 1% in at least one human population from five major ancestry groups. No such genes were identified on the X and Y chromosomes. Manual curation revealed that 28 variants (15%) had been misannotated as LoF. Of the 179 remaining variants in 166 genes, only 11 alleles in 11 genes had previously been confirmed experimentally to be LoF. The set of 166 dispensable genes was enriched in olfactory receptor genes (41 genes). The 41 dispensable olfactory receptor genes displayed a relaxation of selective constraints similar to that observed for other olfactory receptor genes. The 125 dispensable nonolfactory receptor genes also displayed a relaxation of selective constraints consistent with greater redundancy. Sixty-two of these 125 genes were found to be dispensable in at least three human populations, suggesting possible evolution toward pseudogenes. Of the 179 LoF variants, 68 could be tested for two neutrality statistics, and 8 displayed robust signals of positive selection. These latter variants included a known FUT2 variant that confers resistance to intestinal viruses, and an APOL3 variant involved in resistance to parasitic infections. Overall, the identification of 166 genes for which a sizeable proportion of humans are homozygous for predicted LoF alleles reveals both redundancies and advantages of such deficiencies for human survival.
Collapse
Affiliation(s)
- Antonio Rausell
- Clinical Bioinformatics Laboratory, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France;
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Yufei Luo
- Clinical Bioinformatics Laboratory, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Marie Lopez
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Paris 75015, France
| | - Yoann Seeleuthner
- University of Paris, Imagine Institute, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Antoine Favier
- Clinical Bioinformatics Laboratory, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France
- University of Paris, Imagine Institute, 75015 Paris, France
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, CF14 4XN Cardiff, United Kingdom
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, CF14 4XN Cardiff, United Kingdom
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Paris 75015, France
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, 75015 Paris, France;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, New York, NY 10065
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Paris 75015, France
- Human Genomics and Evolution, Collège de France, Paris 75005, France
| | - Laurent Abel
- University of Paris, Imagine Institute, 75015 Paris, France;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| |
Collapse
|
50
|
Kerner G, Rosain J, Guérin A, Al-Khabaz A, Oleaga-Quintas C, Rapaport F, Massaad MJ, Ding JY, Khan T, Ali FA, Rahman M, Deswarte C, Martinez-Barricarte R, Geha RS, Jeanne-Julien V, Garcia D, Chi CY, Yang R, Roynard M, Fleckenstein B, Rozenberg F, Boisson-Dupuis S, Ku CL, Seeleuthner Y, Béziat V, Marr N, Abel L, Al-Herz W, Casanova JL, Bustamante J. Inherited human IFN-γ deficiency underlies mycobacterial disease. J Clin Invest 2020; 130:3158-3171. [PMID: 32163377 PMCID: PMC7260033 DOI: 10.1172/jci135460] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by a selective predisposition to clinical disease caused by the Bacille Calmette-Guérin (BCG) vaccine and environmental mycobacteria. The known genetic etiologies of MSMD are inborn errors of IFN-γ immunity due to mutations of 15 genes controlling the production of or response to IFN-γ. Since the first MSMD-causing mutations were reported in 1996, biallelic mutations in the genes encoding IFN-γ receptor 1 (IFN-γR1) and IFN-γR2 have been reported in many patients of diverse ancestries. Surprisingly, mutations of the gene encoding the IFN-γ cytokine itself have not been reported, raising the remote possibility that there might be other agonists of the IFN-γ receptor. We describe 2 Lebanese cousins with MSMD, living in Kuwait, who are both homozygous for a small deletion within the IFNG gene (c.354_357del), causing a frameshift that generates a premature stop codon (p.T119Ifs4*). The mutant allele is loss of expression and loss of function. We also show that the patients' herpesvirus Saimiri-immortalized T lymphocytes did not produce IFN-γ, a phenotype that can be rescued by retrotransduction with WT IFNG cDNA. The blood T and NK lymphocytes from these patients also failed to produce and secrete detectable amounts of IFN-γ. Finally, we show that human IFNG has evolved under stronger negative selection than IFNGR1 or IFNGR2, suggesting that it is less tolerant to heterozygous deleterious mutations than IFNGR1 or IFNGR2. This may account for the rarity of patients with autosomal-recessive, complete IFN-γ deficiency relative to patients with complete IFN-γR1 and IFN-γR2 deficiencies.
Collapse
Affiliation(s)
- Gaspard Kerner
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jérémie Rosain
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Antoine Guérin
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Ahmad Al-Khabaz
- Allergy and Clinical Immunology Unit, Pediatric Department, Mubarak Al-Kabeer Hospital, Kuwait University, Jabriya City, Kuwait
| | - Carmen Oleaga-Quintas
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Michel J. Massaad
- Department of Experimental Pathology, Immunology and Microbiology, and
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | - Caroline Deswarte
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Raif S. Geha
- Division of Immunology, Department of Pediatrics, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Valentine Jeanne-Julien
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Diane Garcia
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Chih-Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine and
- School of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Manon Roynard
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, Erlangen-Nurnberg University, Erlangen, Germany
| | - Flore Rozenberg
- Department of Virology, University of Paris, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), Paris, France
| | - Stéphanie Boisson-Dupuis
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yoann Seeleuthner
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Vivien Béziat
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Laurent Abel
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Jean-Laurent Casanova
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Jacinta Bustamante
- INSERM U1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM 1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|