1
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wong KT, Hooi YT, Tan SH, Ong KC. Emerging and re-emerging viral infections of the central nervous system in Australasia and beyond. Pathology 2025; 57:230-240. [PMID: 39799084 DOI: 10.1016/j.pathol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country. Another orthoflavivirus, Murray Valley encephalitis virus, has re-emerged in Australia. The Hendra henipavirus together with Nipah henipavirus are listed as high-risk pathogens by the World Health Organization because both can cause lethal encephalitis. The former remains a health threat in Australasia because bats may still be able to spread the infection to unvaccinated Australian horses and other animals acting as intermediate hosts, and thence to humans. The global COVID-19 pandemic, caused by the emerging severe acute respiratory syndrome coronavirus-2, a virus transmitted from animals to humans that was first described and first arose in China, is associated with acute and long-lasting CNS pathology. Fortunately, the pathology and pathogenesis of these important neurotropic viruses are now better understood, leading to better management protocols and prevention strategies. Pathologists are in a unique position to contribute to the diagnosis and advancement in our knowledge of infectious diseases. This review summarises some of the current knowledge about a few important emerging and re-emerging CNS infections in Australasia and beyond.
Collapse
Affiliation(s)
- Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Goldin K, Liu Y, Rosenke R, Prado-Smith J, Flagg M, de Wit E. Nipah Virus-Associated Neuropathology in African Green Monkeys During Acute Disease and Convalescence. J Infect Dis 2025; 231:219-229. [PMID: 38842160 PMCID: PMC11793039 DOI: 10.1093/infdis/jiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Nipah virus is an emerging zoonotic virus that causes severe respiratory disease and meningoencephalitis. The pathophysiology of Nipah virus meningoencephalitis is poorly understood. METHODS We have collected the brains of African green monkeys during multiple Nipah virus, Bangladesh studies, resulting in 14 brains with Nipah virus-associated lesions. RESULTS The lesions seen in the brain of African green monkeys infected with Nipah virus, Bangladesh were very similar to those observed in humans with Nipah virus, Malaysia infection. We observed viral RNA and antigen within neurons and endothelial cells, within encephalitis foci and in uninflamed portions of the central nervous system (CNS). CD8+ T cells had a consistently high prevalence in CNS lesions. We developed a UNet model for quantifying and visualizing inflammation in the brain in a high-throughput and unbiased manner. While CD8+ T cells had a consistently high prevalence in CNS lesions, the model revealed that CD68+ cells were numerically the immune cell with the highest prevalence in the CNS of Nipah virus-infected animals. CONCLUSIONS Our study provides an in-depth analysis on Nipah virus infection in the brains of primates, and similarities between lesions in patients and the animals in our study validate this model.
Collapse
Affiliation(s)
- Kerry Goldin
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Yanling Liu
- Integrated Data Sciences Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jessica Prado-Smith
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Meaghan Flagg
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Branda F, Ceccarelli G, Giovanetti M, Albanese M, Binetti E, Ciccozzi M, Scarpa F. Nipah Virus: A Zoonotic Threat Re-Emerging in the Wake of Global Public Health Challenges. Microorganisms 2025; 13:124. [PMID: 39858892 PMCID: PMC11767623 DOI: 10.3390/microorganisms13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The re-emergence of the Nipah virus (NiV) in Kerala, India, following the tragic death of a 14-year-old boy, underscores the persistent threat posed by zoonotic pathogens and highlights the growing global public health challenge. With no vaccine or curative treatment available, and fatality rates as high as 94% in past outbreaks, the Nipah virus is a critical concern for health authorities worldwide. Transmitted primarily through contact with fruit bats or consumption of contaminated food, as well as direct human-to-human transmission, NiV remains a highly lethal and unpredictable pathogen. The World Health Organization has classified Nipah as a priority pathogen due to its alarming potential to cause widespread outbreaks and even trigger the next pandemic. Recent outbreaks in India and Bangladesh, occurring with seasonal regularity, have once again exposed the vulnerability of public health systems in containing this virus. This study explores the epidemiology, ecological factors driving transmission, and the public health response to NiV, emphasizing the role of zoonotic spillovers in pandemic preparedness. As the global community grapples with an increasing number of emerging infectious diseases, the Nipah virus stands as a stark reminder of the importance of coordinated surveillance, rapid containment measures, and the urgent development of novel strategies to mitigate the impact of this re-emerging threat.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Azienda Ospedaliero Universitaria Umberto I, 00161 Rome, Italy
- Migrant and Global Health Research Organization—Mi-Hero, Italy
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Mattia Albanese
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Erica Binetti
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (G.C.); (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| |
Collapse
|
5
|
Bhowmik A, Hasan M, Redoy MMH, Saha G. Nipah virus outbreak trends in Bangladesh during the period 2001 to 2024: a brief review. SCIENCE IN ONE HEALTH 2024; 4:100103. [PMID: 40026914 PMCID: PMC11872451 DOI: 10.1016/j.soh.2024.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025]
Abstract
Nipah virus (NiV) is a zoonotic threat that has caused recurrent outbreaks in Bangladesh since 2001, raising significant public health concerns. This study provides a descriptive analysis of NiV outbreaks from 2001 to 2024, examining trends in infection and death rates and their correlation with climatic factors such as temperature, humidity, and rainfall. The findings highlight significant spikes in NiV cases during specific years, with environmental factors, particularly temperature and precipitation, showing solid correlations with outbreak patterns. The study also explores the impact of population dynamics on transmission risks, including urbanization and density. By focusing on these factors, this research supports the development of targeted public health interventions in high-risk areas, particularly in Bangladesh's northwestern and central districts, where recurrent outbreaks have been observed. These insights improve surveillance and preventive strategies for mitigating future NiV outbreaks.
Collapse
Affiliation(s)
- Awnon Bhowmik
- Colorado State University, Global Campus, 555 17th St., Ste. 1000, Denver, CO, 80202, United States
| | | | | | - Goutam Saha
- University of Dhaka, Dhaka, 1000, Bangladesh
- Miyan Research Institute, International University of Business Agriculture and Technology, Uttara, Dhaka, 1230, Bangladesh
| |
Collapse
|
6
|
Peng Q, Dong Y, Jia M, Liu Q, Bi Y, Qi J, Shi Y. Cryo-EM structure of Nipah virus L-P polymerase complex. Nat Commun 2024; 15:10524. [PMID: 39627254 PMCID: PMC11615333 DOI: 10.1038/s41467-024-54994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Nipah virus (NiV) is a non-segmented, negative-strand (NNS) RNA virus, belonging to Paramyxoviridae. The RNA polymerase complex, composed of large (L) protein and tetrameric phosphoprotein (P), is responsible for genome transcription and replication by catalyzing NTP polymerization, mRNA capping and cap methylation. Here, we determine the cryo-electron microscopy (cryo-EM) structure of fully bioactive NiV L-P polymerase complex at a resolution of 3.19 Å. The L-P complex displays a conserved architecture like other NNS RNA virus polymerases and L interacts with the oligomerization domain and the extreme C-terminus region of P tetramer. Moreover, we elucidate that NiV is naturally resistant to the allosteric L-targeting inhibitor GHP-88309 due to the conformational change in the drug binding site. We also find that the non-nucleotide drug suramin can inhibit the NiV L-P polymerase activity at both the enzymatic and cellular levels. Our findings have greatly enhanced the molecular understanding of NiV genome replication and transcription and provided the rationale for broad-spectrum polymerase-targeted drug design.
Collapse
Affiliation(s)
- Qi Peng
- Beijing Life Science Academy, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingying Dong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shandong First Medical University, Jinan, China
| | - Mingzhu Jia
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qiannv Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- Beijing Life Science Academy, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- Beijing Life Science Academy, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
7
|
Bergeron É, Chiang CF, Lo MK, Karaaslan E, Satter SM, Rahman MZ, Hossain ME, Aquib WR, Rahman DI, Sarwar SB, Montgomery JM, Klena JD, Spiropoulou CF. Streamlined detection of Nipah virus antibodies using a split NanoLuc biosensor. Emerg Microbes Infect 2024; 13:2398640. [PMID: 39194145 PMCID: PMC11391874 DOI: 10.1080/22221751.2024.2398640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Nipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological diseases in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations.
Collapse
Affiliation(s)
- Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, USA
| | - Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | | | | | | | | | | | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - John D Klena
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
8
|
Chan XHS, Haeusler IL, Choy BJK, Hassan MZ, Takata J, Hurst TP, Jones LM, Loganathan S, Harriss E, Dunning J, Tarning J, Carroll MW, Horby PW, Olliaro PL. Therapeutics for Nipah virus disease: a systematic review to support prioritisation of drug candidates for clinical trials. THE LANCET. MICROBE 2024:101002. [PMID: 39549708 DOI: 10.1016/j.lanmic.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024]
Abstract
Nipah virus disease is a bat-borne zoonosis with person-to-person transmission, a case-fatality rate of 38-75%, and well recognised potential to cause a pandemic. The first reported outbreak of Nipah virus disease occurred in Malaysia and Singapore in 1998, which has since been followed by multiple outbreaks in Bangladesh and India. To date, no therapeutics or vaccines have been approved to treat Nipah virus disease, and only few such candidates are in development. In this Review, we aim to assess the safety and efficacy of the therapeutic options (monoclonal antibodies and small molecules) for Nipah virus disease and other henipaviral diseases to support prioritisation of drug candidates for further evaluation in clinical trials. At present, sufficient evidence exists to suggest trialling 1F5, m102.4, and remdesivir (alone or in combination) for prophylaxis and early treatment of Nipah virus disease. In addition to well designed clinical efficacy trials, in-vivo pharmacokinetic-pharmacodynamic studies are needed to optimise the selection and dosing of therapeutic candidates in animal challenge and natural human infection.
Collapse
Affiliation(s)
- Xin Hui S Chan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Ilsa L Haeusler
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bennett J K Choy
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Md Zakiul Hassan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Junko Takata
- Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tara P Hurst
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luke M Jones
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Elinor Harriss
- Bodleian Health Care Libraries University of Oxford, Oxford, UK
| | - Jake Dunning
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Miles W Carroll
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter W Horby
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| | - Piero L Olliaro
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Paliwal S, Shinu S, Saha R. An emerging zoonotic disease to be concerned about - a review of the nipah virus. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:171. [PMID: 39468679 PMCID: PMC11514798 DOI: 10.1186/s41043-024-00666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
The Nipah Virus (NiV) was discovered in 1999 in the Sungai Nipah region of Malaysia. It is one of many emerging bat-borne zoonotic viruses that threaten global health security. The Pteropus fruit bats are identified as the natural reservoirs for the virus. NiV belongs to the family of Paramyxoviridae and is mostly present in locations surrounded by water, vegetation, and controlled or protected religious areas. To date, cases of NiV have been identified in Southeast Asian regions, with the highest number of cases in Bangladesh, totalling 305, with a fatality rate of 65%. The highest mortality has been observed in the Indian region, at 73%. NiV is an emerging zoonotic disease that needs to be focused on. The median incubation period is 9.5 days and the clinical features primarily lead to either progressive encephalitis or Acute Respiratory Distress Syndrome.The diagnosis is conducted in Bio-safety level 3 or level 4 labs through Polymerase chain reaction. Human nasal swabs, throat swabs, urine, blood, and cerebrospinal fluid (CSF) are collected for diagnostic purposes. At present, there is no approved treatment or vaccine for the prevention of the disease. However, research on a vaccine against NiV is being investigated, and a subunit vaccine with NiV-G protein is found to produce potential efficacy. An outbreak in Kerala, a state in India, led to the implementation of an action plan involving lead agencies to combat the sudden surge of the virus. In the current scenario, appropriate preventive strategies are more effective in controlling the virus. However, emphasis should be placed on affordable and efficient diagnostic methods, treatment options, and vaccines to better manage the virus, considering the highest fatality caused by the virus.
Collapse
Affiliation(s)
- Sumit Paliwal
- All India Institute of Medical Sciences, Bibinagar, India
| | - Suneet Shinu
- All India Institute of Medical Sciences, Bibinagar, India
| | - Rubina Saha
- ESIC Medical College & Hospital, Sanathnagar, Hyderabad, India.
| |
Collapse
|
10
|
Naik PA, Farman M, Jamil K, Nisar KS, Hashmi MA, Huang Z. Modeling and analysis using piecewise hybrid fractional operator in time scale measure for ebola virus epidemics under Mittag-Leffler kernel. Sci Rep 2024; 14:24963. [PMID: 39443508 PMCID: PMC11500182 DOI: 10.1038/s41598-024-75644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
This emerging infectious disease poses one of the most severe threats to public health in these locations, but there are not many reliable therapies yet. In this work, we developed the Ebola virus dynamics and control factors epidemic model with a piecewise hybrid fractional Operator in time scale measure insight of Mittag-Leffler kernel. Patterns and structures that repeat at various scales are the focus of fractal analysis, which has applications in complex systems such as biological ones. Both qualitatively and statistically, a proposed model with the Lipschitz criteria and linear growth is examined, considering positive solutions, boundedness, and uniqueness at equilibrium points with Leray-Schauder results under time scale ideas. The regulation for linear responses approach will be used by Chaos Control to stabilize the system after its equilibrium points. A fractional-order framework with a controlled design will be considered, where solutions are bounded in the feasible domain of relations of different compartments. Ulam-Hyers stability results in the solution are treated when function (constant or rising) for the component of qualitative inquiry in generalized form. The dynamical behaviors of the suggested model are discussed with the Newton polynomial approach used to implement on model in the sense of classical piecewise and Mittag-Leffler kernel at different fractional order values. The model shows that solutions are stable and confined within a feasible range, ensuring reliability. Through detailed simulations, it effectively captures how different interventions and infection rates influence Ebola spread. This fractional-order model enhances understanding of Ebola transmission, providing a strong basis for predicting outbreaks and planning effective control measures, with practical applications for analyzing real-world data.
Collapse
Affiliation(s)
- Parvaiz Ahmad Naik
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| | - Muhammad Farman
- Faculty of Arts and Sciences, Department of Mathematics, Near East University, Northern Cyprus, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, 1102-2801, Beirut, Lebanon
| | - Khadija Jamil
- Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | - Muntazim Abbas Hashmi
- Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Zhengxin Huang
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| |
Collapse
|
11
|
Avanzato VA, Bushmaker T, Oguntuyo KY, Yinda CK, Duyvesteyn HME, Stass R, Meade-White K, Rosenke R, Thomas T, van Doremalen N, Saturday G, Doores KJ, Lee B, Bowden TA, Munster VJ. A monoclonal antibody targeting the Nipah virus fusion glycoprotein apex imparts protection from disease. J Virol 2024; 98:e0063824. [PMID: 39240113 PMCID: PMC11494970 DOI: 10.1128/jvi.00638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies. Here, we describe a vaccination-derived neutralizing monoclonal antibody, mAb92, that targets NiV-F. Structural characterization of the Fab region bound to NiV-F (NiV-F-Fab92) by cryo-electron microscopy analysis reveals an epitope in the DIII domain at the membrane distal apex of NiV-F, an established site of vulnerability on the NiV surface. Further, prophylactic treatment of hamsters with mAb92 offered complete protection from NiV disease, demonstrating beneficial activity of mAb92 in vivo. This work provides support for targeting NiV-F in the development of vaccines and therapeutics against NiV.IMPORTANCENipah virus (NiV) is a highly lethal henipavirus (HNV) that causes severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, highlighting a need to develop countermeasures. The NiV surface displays the receptor binding protein (NiV-G, or RBP) and the fusion protein (NiV-F), which allow the virus to attach and enter cells. These proteins can be targeted by vaccines and antibodies to prevent disease. This work describes a neutralizing antibody (mAb92) that targets NiV-F. Structural characterization by cryo-electron microscopy analysis reveals where the antibody binds to NiV-F to neutralize the virus. This study also shows that prophylactic treatment of hamsters with mAb92 completely protected against developing NiV disease. This work shows how targeting NiV-F can be useful to preventing NiV disease, supporting future studies in the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Victoria A. Avanzato
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie J. Doores
- Department of Infectious Diseases, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
12
|
Saha S, Bhattacharya M, Lee SS, Chakraborty C. Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement. J Microbiol 2024; 62:811-828. [PMID: 39292378 DOI: 10.1007/s12275-024-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024]
Abstract
The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.
Collapse
Affiliation(s)
- Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
13
|
Vasudevan SS, Subash A, Mehta F, Kandrikar TY, Desai R, Khan K, Khanduja S, Pitliya A, Raavi L, Kanagala SG, Gondaliya P. Global and regional mortality statistics of nipah virus from 1994 to 2023: a comprehensive systematic review and meta-analysis. Pathog Glob Health 2024; 118:471-480. [PMID: 39030703 PMCID: PMC11441053 DOI: 10.1080/20477724.2024.2380131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The mortality rate of Nipah virus (NiV) can vary in different regions, and its pattern across timelines has yet to be assessed. The primary objective is to perform a comparative analysis of mortality rates across different timelines and countries. Articles reporting NiV mortality from inception to November 2023 were analyzed in PubMed, Ovid Embase, Scopus, and Web of Science databases. A meta-analysis utilizing random-effects models determined the mortality rate secondary to NiV complications. The initial search strategy yielded 1213 records, of which 36 articles met the inclusion criteria, comprising 2736 NiV patients. The Global mortality rate of the Nipah virus in the 2014-2023 decade was 80.1% (CI: 68.7-88.1%), indicating a significant 24% increase compared to the preceding decade (2004-2013) with a mortality rate of 54.1% (CI: 35.5-71.6%). Among the countries analyzed for overall mortality from 1994-2023, India experienced the highest mortality rate at 82.7% (CI: 74.6-88.6%), followed by Bangladesh at 62.1% (CI: 45.6-76.2%), Philippines at 52.9% (CI: 30-74.5%), Malaysia at 28.9% (CI: 21.4-37.9%), and Singapore at 21% (CI: 8-45%). Subgroup analysis revealed that India consistently had the highest mortality rate for the past two decades (91.7% and 89.3%). The primary complication leading to mortality was encephalitis, accounting for 95% of cases. This systematic review and meta-analysis revealed a noteworthy surge in NiV mortality rates, particularly in the current decade (2014-2023). The escalation, with India reporting a concerning level of mortality of 89.3-91.7% in the past decades, signifies a pressing public health challenge.
Collapse
Affiliation(s)
| | - Arun Subash
- Department of Academics, Dow University of Health Sciences, Karachi, Pakistan
| | - Fena Mehta
- Department of Academics, Smt. NHL Municipal Medical College, Ahmedabad, Gujarat, India
| | - Tiba Yamin Kandrikar
- Department of Dermatology and Venerology, Yerevan State Medical University, Yerevan, Armenia
| | | | - Kaif Khan
- Department of Biosciences, Jamia Millia Islamia, Delhi, India
| | - Sneha Khanduja
- Department of Academics, Dr. Baba Saheb Ambedkar Medical College and Hospital, New Delhi, India
| | - Aakanksha Pitliya
- Department of Medicine, Pamnani Hospital and Research Center, Mandsaur, MP, India
| | - Lekhya Raavi
- Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Piyush Gondaliya
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
14
|
Saleem MU, Farman M, Nisar KS, Ahmad A, Munir Z, Hincal E. Investigation and application of a classical piecewise hybrid with a fractional derivative for the epidemic model: Dynamical transmission and modeling. PLoS One 2024; 19:e0307732. [PMID: 39208269 PMCID: PMC11361697 DOI: 10.1371/journal.pone.0307732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
In this research, we developed an epidemic model with a combination of Atangana-Baleanu Caputo derivative and classical operators for the hybrid operator's memory effects, allowing us to observe the dynamics and treatment effects at different time phases of syphilis infection caused by sex. The developed model properties, which take into account linear growth and Lipschitz requirements relating the rate of effects within its many sub-compartments according to the equilibrium points, include positivity, unique solution, exitance, and boundedness in the feasible domain. After conducting sensitivity analysis with various parameters influencing the model for the piecewise fractional operator, the reproductive number R0 for the biological viability of the model is determined. Generalized Ulam-Hyers stability results are employed to preserve global stability. The investigated model thus has a unique solution in the specified subinterval in light of the Banach conclusion, and contraction as a consequence holds for the Atangana-Baleanu Caputo derivative with classical operators. The piecewise model that has been suggested has a maximum of one solution. For numerical solutions, piecewise fractional hybrid operators at various fractional order values are solved using the Newton polynomial interpolation method. A comparison is also made between Caputo operator and the piecewise derivative proposed operator. This work improves our knowledge of the dynamics of syphilis and offers a solid framework for assessing the effectiveness of interventions for planning and making decisions to manage the illness.
Collapse
Affiliation(s)
| | - Muhammad Farman
- Mathematics Research Center, Near East University, Nicosia, North Cyprus, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- Saveetha School of Engineering, SIMATS, Chennai, India
| | - Aqeel Ahmad
- Mathematics Research Center, Near East University, Nicosia, North Cyprus, Turkey
- Department of Mathematics, Ghazi University, D G Khan, Pakistan
| | - Zainab Munir
- Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Evren Hincal
- Mathematics Research Center, Near East University, Nicosia, North Cyprus, Turkey
| |
Collapse
|
15
|
Saha O, Siddiquee NH, Akter R, Sarker N, Bristi UP, Sultana KF, Remon SMLR, Sultana A, Shishir TA, Rahaman MM, Ahmed F, Hossen F, Amin MR, Akter MS. Antiviral Activity, Pharmacoinformatics, Molecular Docking, and Dynamics Studies of Azadirachta indica Against Nipah Virus by Targeting Envelope Glycoprotein: Emerging Strategies for Developing Antiviral Treatment. Bioinform Biol Insights 2024; 18:11779322241264145. [PMID: 39072258 PMCID: PMC11283663 DOI: 10.1177/11779322241264145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
The Nipah virus (NiV) belongs to the Henipavirus genus is a serious public health concern causing numerous outbreaks with higher fatality rate. Unfortunately, there is no effective medication available for NiV. To investigate possible inhibitors of NiV infection, we used in silico techniques to discover treatment candidates in this work. As there are not any approved treatments for NiV infection, the NiV-enveloped attachment glycoprotein was set as target for our study, which is responsible for binding to and entering host cells. Our in silico drug design approach included molecular docking, post-docking molecular mechanism generalised born surface area (MM-GBSA), absorption, distribution, metabolism, excretion/toxicity (ADME/T), and molecular dynamics (MD) simulations. We retrieved 418 phytochemicals associated with the neem plant (Azadirachta indica) from the IMPPAT database, and molecular docking was used to ascertain the compounds' binding strength. The top 3 phytochemicals with binding affinities of -7.118, -7.074, and -6.894 kcal/mol for CIDs 5280343, 9064, and 5280863, respectively, were selected for additional study based on molecular docking. The post-docking MM-GBSA of those 3 compounds was -47.56, -47.3, and -43.15 kcal/mol, respectively. As evidence of their efficacy and safety, all the chosen drugs had favorable toxicological and pharmacokinetic (Pk) qualities. We also performed MD simulations to confirm the stability of the ligand-protein complex structures and determine whether the selected compounds are stable at the protein binding site. All 3 phytochemicals, Quercetin (CID: 5280343), Cianidanol (CID: 9064), and Kaempferol (CID: 5280863), appeared to have outstanding binding stability to the target protein than control ribavirin, according to the molecular docking, MM-GBSA, and MD simulation outcomes. Overall, this work offers a viable approach to developing novel medications for treating NiV infection.
Collapse
Affiliation(s)
- Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rahima Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nikkon Sarker
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Uditi Paul Bristi
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - SM Lutfor Rahman Remon
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Afroza Sultana
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Ruhul Amin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mir Salma Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
17
|
Hassan MZ, Shirin T, Satter SM, Rahman MZ, Bourner J, Cheyne A, Torreele E, Horby P, Olliaro P. Nipah virus disease: what can we do to improve patient care? THE LANCET. INFECTIOUS DISEASES 2024; 24:e463-e471. [PMID: 38185127 DOI: 10.1016/s1473-3099(23)00707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The year 2023 marked the 25th anniversary of the first detected outbreak of Nipah virus disease. Despite Nipah virus being a priority pathogen in the WHO Research and Development blueprint, the disease it causes still carries high mortality, unchanged since the first reported outbreaks. Although candidate vaccines for Nipah virus disease exist, developing new therapeutics has been underinvested. Nipah virus disease illustrates the typical market failure of medicine development for a high-consequence pathogen. The unpredictability of outbreaks and low number of infections affecting populations in low-income countries does not make an attractive business case for developing treatments for Nipah virus disease-a situation compounded by methodological challenges in clinical trial design. Nipah virus therapeutics development is not motivated by commercial interest. Therefore, we propose a regionally led, patient-centred, and public health-centred, end-to-end framework that articulates a public health vision and a roadmap for research, development, manufacturing, and access towards the goal of improving patient outcomes. This framework includes co-creating a regulatory-compliant, clinically meaningful, and context-specific clinical development plan and establishing quality standards in clinical care and research capabilities at sites where the disease occurs. The success of this approach will be measured by the availability and accessibility of improved Nipah virus treatments in affected communities and reduced mortality.
Collapse
Affiliation(s)
- Md Zakiul Hassan
- Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh; Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK.
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Syed M Satter
- Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Mohammed Z Rahman
- Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Josephine Bourner
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| | - Ashleigh Cheyne
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| | - Els Torreele
- Institute for Innovation and Public Purpose, University College London, London, UK; Independent Researcher and Advisor, Geneva, Switzerland
| | - Peter Horby
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| | - Piero Olliaro
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Sharma N, Jamwal VL, Nagial S, Ranjan M, Rath D, Gandhi SG. Current status of diagnostic assays for emerging zoonotic viruses: Nipah and Hendra. Expert Rev Mol Diagn 2024; 24:473-485. [PMID: 38924448 DOI: 10.1080/14737159.2024.2368591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses. AREAS COVERED This review comprehensively covers a spectrum of diagnostic techniques for Nipah and Hendra virus infections, discussed in conjunction with appropriate type of samples during the progression of infection. Serological assays, reverse transcriptase Real-Time PCR assays, and isothermal amplification assays are discussed in detail, along with a listing of few commercially available detection kits. Patents protecting inventions in Nipah and Hendra virus detection are also covered. EXPERT OPINION Despite several outbreaks of Nipah and Hendra infections in the past decade, in-depth research into their pathogenesis, Point-of-Care diagnostics, specific therapies, and human vaccines is lacking. A prompt and accurate diagnosis is pivotal for efficient outbreak management, patient treatment, and the adoption of preventative measures. The emergence of rapid point-of-care tests holds promise in enhancing diagnostic capabilities in real-world settings. The patent landscape emphasizes the importance of innovation and collaboration within the legal and business realms.
Collapse
Affiliation(s)
- Nancy Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Lakshmi Jamwal
- Microfluidics Design and Bioengineering Lab, Chemical Engineering Department, Indian Institute of Technology Jammu (IIT), Jammu, India
| | - Sakshi Nagial
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Manish Ranjan
- Department of Microbiology, All India Institute of Medical Sciences Jammu (AIIMS), Jammu, India
| | - Dharitri Rath
- Microfluidics Design and Bioengineering Lab, Chemical Engineering Department, Indian Institute of Technology Jammu (IIT), Jammu, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
19
|
Nisar KS, Farman M, Jamil K, Akgul A, Jamil S. Computational and stability analysis of Ebola virus epidemic model with piecewise hybrid fractional operator. PLoS One 2024; 19:e0298620. [PMID: 38625847 PMCID: PMC11021000 DOI: 10.1371/journal.pone.0298620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/27/2024] [Indexed: 04/18/2024] Open
Abstract
In this manuscript, we developed a nonlinear fractional order Ebola virus with a novel piecewise hybrid technique to observe the dynamical transmission having eight compartments. The existence and uniqueness of a solution of piecewise derivative is treated for a system with Arzel'a-Ascoli and Schauder conditions. We investigate the effects of classical and modified fractional calculus operators, specifically the classical Caputo piecewise operator, on the behavior of the model. A model shows that a completely continuous operator is uniformly continuous, and bounded according to the equilibrium points. The reproductive number R0 is derived for the biological feasibility of the model with sensitivity analysis with different parameters impact on the model. Sensitivity analysis is an essential tool for comprehending how various model parameters affect the spread of illness. Through a methodical manipulation of important parameters and an assessment of their impact on Ro, we are able to learn more about the resiliency and susceptibility of the model. Local stability is established with next Matignon method and global stability is conducted with the Lyapunov function for a feasible solution of the proposed model. In the end, a numerical solution is derived with Newton's polynomial technique for a piecewise Caputo operator through simulations of the compartments at various fractional orders by using real data. Our findings highlight the importance of fractional operators in enhancing the accuracy of the model in capturing the intricate dynamics of the disease. This research contributes to a deeper understanding of Ebola virus dynamics and provides valuable insights for improving disease modeling and public health strategies.
Collapse
Affiliation(s)
- Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser, Saudi Arabia
| | - Muhammad Farman
- Faculty of Arts and Sciences, Department of Mathematics, Near East University, Nicosia, Northern Cyprus, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Khadija Jamil
- Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Ali Akgul
- Faculty of Arts and Science, Department of Mathematics, Siirt University, Siirt, Turkey
| | - Saba Jamil
- Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
20
|
Cui C, Hao P, Jin C, Xu W, Liu Y, Li L, Du S, Shang L, Jin X, Jin N, Wang J, Li C. Interaction of Nipah Virus F and G with the Cellular Protein Cortactin Discovered by a Proximity Interactome Assay. Int J Mol Sci 2024; 25:4112. [PMID: 38612921 PMCID: PMC11012870 DOI: 10.3390/ijms25074112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic virus with a potential large-scale outbreak, which poses a great threat to world health and security. In order to explore more potential factors associated with NiV, a proximity labeling method was applied to investigate the F, G, and host protein interactions systematically. We screened 1996 and 1524 high-confidence host proteins that interacted with the NiV fusion (F) glycoprotein and attachment (G) glycoprotein in HEK293T cells by proximity labeling technology, and 863 of them interacted with both F and G. The results of GO and KEGG enrichment analysis showed that most of these host proteins were involved in cellular processes, molecular binding, endocytosis, tight junction, and other functions. Cytoscape software (v3.9.1) was used for visual analysis, and the results showed that Cortactin (CTTN), Serpine mRNA binding protein 1 (SERBP1), and stathmin 1 (STMN1) were the top 20 proteins and interacted with F and G, and were selected for further validation. We observed colocalization of F-CTTN, F-SERBP1, F-STMN1, G-CTTN, G-SERBP1, and G-STMN1 using confocal fluorescence microscopy, and the results showed that CTTN, SERBP1, and STMN1 overlapped with NiV F and NiV G in HEK293T cells. Further studies found that CTTN can significantly inhibit the infection of the Nipah pseudovirus (NiVpv) into host cells, while SERBP1 and STMN1 had no significant effect on pseudovirus infection. In addition, CTTN can also inhibit the infection of the Hendra pseudovirus (HeVpv) in 293T cells. In summary, this study revealed that the potential host proteins interacted with NiV F and G and demonstrated that CTTN could inhibit NiVpv and HeVpv infection, providing new evidence and targets for the study of drugs against these diseases.
Collapse
Affiliation(s)
- Chunmei Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
- Preventive Veterinary Medicine Laboratory of Agricultural College, Yanbian University, Yanji 133000, China;
| | - Pengfei Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Wang Xu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Letian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Shouwen Du
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Limin Shang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Xin Jin
- Preventive Veterinary Medicine Laboratory of Agricultural College, Yanbian University, Yanji 133000, China;
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (C.J.); (Y.L.); (L.S.)
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.C.); (P.H.); (W.X.); (L.L.); (S.D.); (N.J.)
| |
Collapse
|
21
|
Zeitlin L, Cross RW, Woolsey C, West BR, Borisevich V, Agans KN, Prasad AN, Deer DJ, Stuart L, McCavitt-Malvido M, Kim DH, Pettitt J, Crowe JE, Whaley KJ, Veesler D, Dimitrov A, Abelson DM, Geisbert TW, Broder CC. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. Sci Transl Med 2024; 16:eadl2055. [PMID: 38569014 DOI: 10.1126/scitranslmed.adl2055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | | | - Do H Kim
- Mapp Biopharmaceutical, San Diego, CA 92121, USA
| | | | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Antony Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | | | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
22
|
Faus-Cotino J, Reina G, Pueyo J. Nipah Virus: A Multidimensional Update. Viruses 2024; 16:179. [PMID: 38399954 PMCID: PMC10891541 DOI: 10.3390/v16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus to which is attributed numerous high mortality outbreaks in South and South-East Asia; Bangladesh's Nipah belt accounts for the vast majority of human outbreaks, reporting regular viral emergency events. The natural reservoir of NiV is the Pteropus bat species, which covers a wide geographical distribution extending over Asia, Oceania, and Africa. Occasionally, human outbreaks have required the presence of an intermediate amplification mammal host between bat and humans. However, in Bangladesh, the viral transmission occurs directly from bat to human mainly by ingestion of contaminated fresh date palm sap. Human infection manifests as a rapidly progressive encephalitis accounting for extremely high mortality rates. Despite that, no therapeutic agents or vaccines have been approved for human use. An updated review of the main NiV infection determinants and current potential therapeutic and preventive strategies is exposed.
Collapse
Affiliation(s)
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Javier Pueyo
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Anesthesia and Intensive Care, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
23
|
Hoffman SA, Maldonado YA. Emerging and re-emerging pediatric viral diseases: a continuing global challenge. Pediatr Res 2024; 95:480-487. [PMID: 37940663 PMCID: PMC10837080 DOI: 10.1038/s41390-023-02878-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The twenty-first century has been marked by a surge in viral epidemics and pandemics, highlighting the global health challenge posed by emerging and re-emerging pediatric viral diseases. This review article explores the complex dynamics contributing to this challenge, including climate change, globalization, socio-economic interconnectedness, geopolitical tensions, vaccine hesitancy, misinformation, and disparities in access to healthcare resources. Understanding the interactions between the environment, socioeconomics, and health is crucial for effectively addressing current and future outbreaks. This scoping review focuses on emerging and re-emerging viral infectious diseases, with an emphasis on pediatric vulnerability. It highlights the urgent need for prevention, preparedness, and response efforts, particularly in resource-limited communities disproportionately affected by climate change and spillover events. Adopting a One Health/Planetary Health approach, which integrates human, animal, and ecosystem health, can enhance equity and resilience in global communities. IMPACT: We provide a scoping review of emerging and re-emerging viral threats to global pediatric populations This review provides an update on current pediatric viral threats in the context of the COVID-19 pandemic This review aims to sensitize clinicians, epidemiologists, public health practitioners, and policy stakeholders/decision-makers to the role these viral diseases have in persistent pediatric morbidity and mortality.
Collapse
Affiliation(s)
- Seth A Hoffman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yvonne A Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Mohandas S, Shete A, Sarkale P, Kumar A, Mote C, Yadav P. Genomic characterization, transcriptome analysis, and pathogenicity of the Nipah virus (Indian isolate). Virulence 2023; 14:2224642. [PMID: 37312405 PMCID: PMC10281463 DOI: 10.1080/21505594.2023.2224642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Nipah virus (NiV) is a high-risk pathogen which can cause fatal infections in humans. The Indian isolate from the 2018 outbreak in the Kerala state of India showed ~ 4% nucleotide and amino acid difference in comparison to the Bangladesh strains of NiV and the substitutions observed were mostly not present in the region of any functional significance except for the phosphoprotein gene. The differential expression of viral genes was observed following infection in Vero (ATCC® CCL-81™) and BHK-21 cells. Intraperitoneal infection in the 10-12-week-old, Syrian hamster model induced dose dependant multisystemic disease characterized by prominent vascular lesions in lungs, brain, kidney and extra vascular lesions in brain and lungs. Congestion, haemorrhages, inflammatory cell infiltration, thrombosis and rarely endothelial syncitial cell formation were seen in the blood vessels. Intranasal infection resulted in respiratory tract infection characterised by pneumonia. The model showed disease characteristics resembling the human NiV infection except that of myocarditis similar to that reported by NiV-Malaysia and NiV-Bangladesh isolates in hamster model. The variation observed in the genome of the Indian isolate at the amino acid levels should be explored further for any functional significance.
Collapse
Affiliation(s)
- Sreelekshmy Mohandas
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Anita Shete
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Prasad Sarkale
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Abhinendra Kumar
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Chandrasekhar Mote
- Department of Veterinary Pathology, Krantisinh Nana Patil College of Veterinary Science, Shirwal, Maharashtra, India
| | - Pragya Yadav
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| |
Collapse
|
25
|
Kaza B, Aguilar HC. Pathogenicity and virulence of henipaviruses. Virulence 2023; 14:2273684. [PMID: 37948320 PMCID: PMC10653661 DOI: 10.1080/21505594.2023.2273684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Paramyxoviruses are a family of single-stranded negative-sense RNA viruses, many of which are responsible for a range of respiratory and neurological diseases in humans and animals. Among the most notable are the henipaviruses, which include the deadly Nipah (NiV) and Hendra (HeV) viruses, the causative agents of outbreaks of severe disease and high case fatality rates in humans and animals. NiV and HeV are maintained in fruit bat reservoirs primarily in the family Pteropus and spillover into humans directly or by an intermediate amplifying host such as swine or horses. Recently, non-chiropteran associated Langya (LayV), Gamak (GAKV), and Mojiang (MojV) viruses have been discovered with confirmed or suspected ability to cause disease in humans or animals. These viruses are less genetically related to HeV and NiV yet share many features with their better-known counterparts. Recent advances in surveillance of wild animal reservoir viruses have revealed a high number of henipaviral genome sequences distributed across most continents, and mammalian orders previously unknown to harbour henipaviruses. In this review, we summarize the current knowledge on the range of pathogenesis observed for the henipaviruses as well as their replication cycle, epidemiology, genomics, and host responses. We focus on the most pathogenic viruses, including NiV, HeV, LayV, and GAKV, as well as the experimentally non-pathogenic CedV. We also highlight the emerging threats posed by these and potentially other closely related viruses.
Collapse
Affiliation(s)
- Benjamin Kaza
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Hector C. Aguilar
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University
| |
Collapse
|
26
|
Garbuglia AR, Lapa D, Pauciullo S, Raoul H, Pannetier D. Nipah Virus: An Overview of the Current Status of Diagnostics and Their Role in Preparedness in Endemic Countries. Viruses 2023; 15:2062. [PMID: 37896839 PMCID: PMC10612039 DOI: 10.3390/v15102062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Nipah virus (NiV) is a paramyxovirus responsible for a high mortality rate zoonosis. As a result, it has been included in the list of Blueprint priority pathogens. Bats are the main reservoirs of the virus, and different clinical courses have been described in humans. The Bangladesh strain (NiV-B) is often associated with severe respiratory disease, whereas the Malaysian strain (NiV-M) is often associated with severe encephalitis. An early diagnosis of NiV infection is crucial to limit the outbreak and to provide appropriate care to the patient. Due to high specificity and sensitivity, qRT-PCR is currently considered to be the optimum method in acute NiV infection assessment. Nasal swabs, cerebrospinal fluid, urine, and blood are used for RT-PCR testing. N gene represents the main target used in molecular assays. Different sensitivities have been observed depending on the platform used: real-time PCR showed a sensitivity of about 103 equivalent copies/reaction, SYBRGREEN technology's sensitivity was about 20 equivalent copies/reaction, and in multiple pathogen card arrays, the lowest limit of detection (LOD) was estimated to be 54 equivalent copies/reaction. An international standard for NiV is yet to be established, making it difficult to compare the sensitivity of the different methods. Serological assays are for the most part used in seroprevalence studies owing to their lower sensitivity in acute infection. Due to the high epidemic and pandemic potential of this virus, the diagnosis of NiV should be included in a more global One Health approach to improve surveillance and preparedness for the benefit of public health. Some steps need to be conducted in the diagnostic field in order to become more efficient in epidemic management, such as development of point-of-care (PoC) assays for the rapid diagnosis of NiV.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Hervé Raoul
- French National Agency for Research on AIDS—Emerging Infectious Diseases (ANRS MIE), Maladies Infectieuses Émergentes, 75015 Paris, France;
| | - Delphine Pannetier
- Institut National de la Santé et de la Recherche Médicale, Jean Mérieux BSL4 Laboratory, 69002 Lyon, France;
| |
Collapse
|
27
|
Diederich S, Babiuk S, Boshra H. A Survey of Henipavirus Tropism-Our Current Understanding from a Species/Organ and Cellular Level. Viruses 2023; 15:2048. [PMID: 37896825 PMCID: PMC10611353 DOI: 10.3390/v15102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Henipaviruses are single-stranded RNA viruses that have been shown to be virulent in several species, including humans, pigs, horses, and rodents. Isolated nearly 30 years ago, these viruses have been shown to be of particular concern to public health, as at least two members (Nipah and Hendra viruses) are highly virulent, as well as zoonotic, and are thus classified as BSL4 pathogens. Although only 5 members of this genus have been isolated and characterized, metagenomics analysis using animal fluids and tissues has demonstrated the existence of other novel henipaviruses, suggesting a far greater degree of phylogenetic diversity than is currently known. Using a variety of molecular biology techniques, it has been shown that these viruses exhibit varying degrees of tropism on a species, organ/tissue, and cellular level. This review will attempt to provide a general overview of our current understanding of henipaviruses, with a particular emphasis on viral tropism.
Collapse
Affiliation(s)
- Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E EM4, Canada;
| | - Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
28
|
Pigeaud DD, Geisbert TW, Woolsey C. Animal Models for Henipavirus Research. Viruses 2023; 15:1980. [PMID: 37896758 PMCID: PMC10610982 DOI: 10.3390/v15101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Declan D. Pigeaud
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
29
|
Monath TP, Nichols R, Feldmann F, Griffin A, Haddock E, Callison J, Meade-White K, Okumura A, Lovaglio J, Hanley PW, Clancy CS, Shaia C, Rida W, Fusco J. Immunological correlates of protection afforded by PHV02 live, attenuated recombinant vesicular stomatitis virus vector vaccine against Nipah virus disease. Front Immunol 2023; 14:1216225. [PMID: 37731485 PMCID: PMC10507387 DOI: 10.3389/fimmu.2023.1216225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Immune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection. Methods Two approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine. Results Reduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutralizing antibodies (geometric mean titer, 71.3). AGMs vaccinated at 7 or 14 days before challenge had either undetectable or low neutralizing antibody titers pre-challenge but had a rapid rise in titers after challenge that abrogated the NiV infection. A simple logistic regression model of the combined studies was used, in which the sole explanatory variable was pre-challenge neutralizing antibody titers. For a pre-challenge titer of 1:5, the predicted survival probability is 100%. The majority of animals with pre-challenge neutralizing titer of ≥1:20 were protected against pulmonary infiltrates on thoracic radiograms, and a majority of those with titers ≥1:40 were protected against clinical signs of illness and against a ≥fourfold antibody increase following challenge (indicating sterile immunity). Controls receiving rVSV-Ebola vaccine rapidly succumbed to NiV challenge, eliminating the innate immunity stimulated by the rVSV vector as a contributor to survival in monkeys challenged as early as 7 days after vaccination. Discussion and conclusion It was concluded that PHV02 vaccine elicited a rapid onset of protection and that any detectable level of neutralizing antibody was a functional immune correlate of survival.
Collapse
Affiliation(s)
- Thomas P. Monath
- Crozet Biopharma LLC, Lexington, MA, United States
- Public Health Vaccines Inc., Cambridge, MA, United States
| | | | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Amanda Griffin
- Laboratory of Virology, Division of Intramural Studies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Studies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Studies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Studies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Studies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Wasima Rida
- Biostatistics Consultant, Arlington, VA, United States
| | - Joan Fusco
- Public Health Vaccines Inc., Cambridge, MA, United States
| |
Collapse
|
30
|
Satter SM, Aquib WR, Sultana S, Sharif AR, Nazneen A, Alam MR, Siddika A, Akther Ema F, Chowdhury KIA, Alam AN, Rahman M, Klena JD, Rahman MZ, Banu S, Shirin T, Montgomery JM. Tackling a global epidemic threat: Nipah surveillance in Bangladesh, 2006-2021. PLoS Negl Trop Dis 2023; 17:e0011617. [PMID: 37756301 PMCID: PMC10529576 DOI: 10.1371/journal.pntd.0011617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Human Nipah virus (NiV) infection is an epidemic-prone disease and since the first recognized outbreak in Bangladesh in 2001, human infections have been detected almost every year. Due to its high case fatality rate and public health importance, a hospital-based Nipah sentinel surveillance was established in Bangladesh to promptly detect Nipah cases and respond to outbreaks at the earliest. The surveillance has been ongoing till present. The hospital-based sentinel surveillance was conducted at ten strategically chosen tertiary care hospitals distributed throughout Bangladesh. The surveillance staff ensured that routine screening, enrollment, data, and specimen collection from suspected Nipah cases were conducted daily. The specimens were then processed and transported to the reference laboratory of Institute of Epidemiology, Disease Control and Research (IEDCR) and icddr,b for confirmation of diagnosis through serology and molecular detection. From 2006 to 2021, through this hospital-based surveillance platform, 7,150 individuals were enrolled and tested for Nipah virus. Since 2001, 322 Nipah infections were identified in Bangladesh, 75% of whom were laboratory confirmed cases. Half of the reported cases were primary cases (162/322) having an established history of consuming raw date palm sap (DPS) or tari (fermented date palm sap) and 29% were infected through person-to-person transmission. Since the initiation of surveillance, 68% (218/322) of Nipah cases from Bangladesh have been identified from various parts of the country. Fever, vomiting, headache, fatigue, and increased salivation were the most common symptoms among enrolled Nipah patients. Till 2021, the overall case fatality rate of NiV infection in Bangladesh was 71%. This article emphasizes that the overall epidemiology of Nipah virus infection in Bangladesh has remained consistent throughout the years. This is the only systematic surveillance to detect human NiV infection globally. The findings from this surveillance have contributed to early detection of NiV cases in hospital settings, understanding of Nipah disease epidemiology, and have enabled timely public health interventions for prevention and containment of NiV infection. Although we still have much to learn regarding the transmission dynamics and risk factors of human NiV infection, surveillance has played a significant role in advancing our knowledge in this regard.
Collapse
Affiliation(s)
| | | | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Ahmad Raihan Sharif
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | | | | | | | | | - Ahmed Nawsher Alam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | | | | | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| |
Collapse
|
31
|
Stevens CS, Lowry J, Juelich T, Atkins C, Johnson K, Smith JK, Panis M, Ikegami T, tenOever B, Freiberg AN, Lee B. Nipah Virus Bangladesh Infection Elicits Organ-Specific Innate and Inflammatory Responses in the Marmoset Model. J Infect Dis 2023; 228:604-614. [PMID: 36869692 PMCID: PMC10469344 DOI: 10.1093/infdis/jiad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is increasingly recognized as an ideal nonhuman primate (NHP) at high biocontainment due to its smaller size and relative ease of handling. Here, we evaluated the susceptibility and pathogenesis of Nipah virus Bangladesh strain (NiVB) infection in marmosets at biosafety level 4. Infection via the intranasal and intratracheal route resulted in fatal disease in all 4 infected marmosets. Three developed pulmonary edema and hemorrhage as well as multifocal hemorrhagic lymphadenopathy, while 1 recapitulated neurologic clinical manifestations and cardiomyopathy on gross pathology. Organ-specific innate and inflammatory responses were characterized by RNA sequencing in 6 different tissues from infected and control marmosets. Notably, a unique transcriptome was revealed in the brainstem of the marmoset exhibiting neurological signs. Our results provide a more comprehensive understanding of NiV pathogenesis in an accessible and novel NHP model, closely reflecting clinical disease as observed in NiV patients.
Collapse
Affiliation(s)
- Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jake Lowry
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas, USA
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kendra Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maryline Panis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, New York University, New York, New YorkUSA
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Benjamin tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, New York University, New York, New YorkUSA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Müller M, Fischer K, Woehnke E, Zaeck LM, Prönnecke C, Knittler MR, Karger A, Diederich S, Finke S. Analysis of Nipah Virus Replication and Host Proteome Response Patterns in Differentiated Porcine Airway Epithelial Cells Cultured at the Air-Liquid Interface. Viruses 2023; 15:v15040961. [PMID: 37112941 PMCID: PMC10143807 DOI: 10.3390/v15040961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory tract epithelium infection plays a primary role in Nipah virus (NiV) pathogenesis and transmission. Knowledge about infection dynamics and host responses to NiV infection in respiratory tract epithelia is scarce. Studies in non-differentiated primary respiratory tract cells or cell lines indicate insufficient interferon (IFN) responses. However, studies are lacking in the determination of complex host response patterns in differentiated respiratory tract epithelia for the understanding of NiV replication and spread in swine. Here we characterized infection and spread of NiV in differentiated primary porcine bronchial epithelial cells (PBEC) cultivated at the air-liquid interface (ALI). After the initial infection of only a few apical cells, lateral spread for 12 days with epithelium disruption was observed without releasing substantial amounts of infectious virus from the apical or basal sides. Deep time course proteomics revealed pronounced upregulation of genes related to type I/II IFN, immunoproteasomal subunits, transporter associated with antigen processing (TAP)-mediated peptide transport, and major histocompatibility complex (MHC) I antigen presentation. Spliceosomal factors were downregulated. We propose a model in which NiV replication in PBEC is slowed by a potent and broad type I/II IFN host response with conversion from 26S proteasomes to immunoproteasomal antigen processing and improved MHC I presentation for adaptive immunity priming. NiV induced cytopathic effects could reflect the focal release of cell-associated NiV, which may contribute to efficient airborne viral spread between pigs.
Collapse
Affiliation(s)
- Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Elisabeth Woehnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Luca M Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, 04103 Leipzig, Germany
| | - Michael R Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
33
|
Yang S, Kar S. Are we ready to fight the Nipah virus pandemic? An overview of drug targets, current medications, and potential leads. Struct Chem 2023:1-19. [PMID: 37363045 PMCID: PMC9993391 DOI: 10.1007/s11224-023-02148-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
Nipah virus (NiV) is a high-lethality RNA virus from the family of Paramyxoviridae and genus Henipavirus, classified under Biosafety Level-4 (BSL-4) pathogen due to the severity of pathogenicity and lack of medications and vaccines. Direct contacts or the body fluids of infected animals are the major factor of transmission of NiV. As it is not an airborne infection, the transmission rate is relatively low. Still, mutations of the NiV in the animal reservoir over the years, followed by zoonotic transfer, can make the deadliness of the virus manifold in upcoming years. Therefore, there is no denial of the possibility of a pandemic after COVID-19 considering the severe pathogenicity of NiV, and that is why we need to be prepared with possible drugs in upcoming days. Considering the time constraints, computational aided drug design (CADD) is an efficient way to study the virus and perform the drug design and test the HITs to lead experimentally. Therefore, this review focuses primarily on NiV target proteins (covering NiV and human), experimentally tested repurposed drug details, and latest computational studies on potential lead molecules, which can be explored as potential drug candidates. Computationally identified drug candidates, including their chemical structures, docking scores, amino acid level interaction with corresponding protein, and the platform used for the studies, are thoroughly discussed. The review will offer a one-stop study to access what had been performed and what can be performed in the CADD of NiV.
Collapse
Affiliation(s)
- Siyun Yang
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| |
Collapse
|
34
|
Rangacharya O, Parab A, Adkine S, Nagargoje R. A study on the design of an in silico self-amplifying mRNA vaccine against Nipah virus using immunoinformatics. J Biomol Struct Dyn 2023; 41:12777-12788. [PMID: 36744525 DOI: 10.1080/07391102.2023.2175256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/06/2023] [Indexed: 02/07/2023]
Abstract
The scientific community continues to be impressed with RNA-based vaccines with great efficacy, quick synthesis and speed-to-market. The traditional vaccine may require large doses or repeat injections to achieve an expression for protection against the virus; the self-amplifying mRNA vaccine addresses this limitation. Therefore, a thorough examination of the most antigenic component of the Nipah virus was carried out to design the coding sequence of an antigen, which will provoke a virus-specific immune response. After that, we predicted and evaluated epitopes from NiV G-protein. We employed 8 HTL, 2 CTL and 3 B-cell epitopes. The study of structural compatibility was done by performing docking between HLA alleles and epitopes to get insights into the immune response of epitopes. The entire peptide coding sequence of an antigen was linked using a linker to design the structure of the vaccine. Physicochemical parameters of the designed vaccine constructs were assessed using a protparam server. Later, the vaccine sequence was converted into cDNA. We inserted a gene-expressing replicase at the start of a coding sequence for self-amplification. Next, to formulate the final version of vaccine signal sequences were added. Based on these findings, this mRNA vaccine appears to be a promising option against the Nipah virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Om Rangacharya
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Avanti Parab
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Shrikant Adkine
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Rahul Nagargoje
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| |
Collapse
|
35
|
Talukdar P, Dutta D, Ghosh E, Bose I, Bhattacharjee S. Molecular Pathogenesis of Nipah Virus. Appl Biochem Biotechnol 2023; 195:2451-2462. [PMID: 36656534 PMCID: PMC9869300 DOI: 10.1007/s12010-022-04300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Viral diseases are causing mayhem throughout the world. One of the zoonotic viruses that have emerged as a potent threat to community health in the past few decades is Nipah virus. Nipah viral sickness is a zoonotic disease whose main carrier is bat. This disease is caused by Nipah virus (NiV). It belongs to the henipavirous group and of the family paramyxoviridae. Predominantly Pteropus spp. is the carrier of this virus. It was first reported from the Kampung Sungai Nipah town of Malaysia in 1998. Human-to-human transmission can also occur. Several repeated outbreaks were reported from South and Southeast Asia in the recent past. In humans, the disease is responsible for rapid development of acute illness, which can result in severe respiratory illness and serious encephalitis. Therefore, this calls for an urgent need for health authorities to conduct clinical trials to establish possible treatment regimens to prevent any further outbreaks.
Collapse
Affiliation(s)
- Pratik Talukdar
- Department of Biotechnology, University of Engineering and Management, Kolkata University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal 700156 India
| | - Debankita Dutta
- Department of Biotechnology, University of Engineering and Management, Kolkata University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal 700156 India
| | - Elija Ghosh
- Department of Biotechnology, University of Engineering and Management, Kolkata University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal 700156 India
| | - Indrani Bose
- Department of Biotechnology, University of Engineering and Management, Kolkata University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal 700156 India
| | - Sourish Bhattacharjee
- Department of Biotechnology, University of Engineering and Management, Kolkata University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal 700156 India
| |
Collapse
|
36
|
Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection. Methods Mol Biol 2023; 2682:1-22. [PMID: 37610570 DOI: 10.1007/978-1-0716-3283-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic paramyxoviruses, which have emerged in recent decades and cause sporadic outbreaks of respiratory and encephalitic disease in Australia and Southeast Asia, respectively. Over two billion people currently live in regions potentially at risk due to the wide range of the Pteropus fruit bat reservoir, yet there are no approved vaccines or therapeutics to protect against or treat henipavirus disease. In recent years, significant progress has been made toward developing various experimental vaccine platforms and therapeutics. Here, we describe these advances for both human and livestock vaccine candidates and discuss the numerous preclinical studies and the few that have progressed to human phase 1 clinical trial and the one approved veterinary vaccine.
Collapse
Affiliation(s)
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, NY, USA.
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
37
|
Satter SM, Nazneen A, Aquib WR, Sultana S, Rahman MZ, Klena JD, Montgomery JM, Shirin T. Vertical Transfer of Humoral Immunity against Nipah Virus: A Novel Evidence from Bangladesh. Trop Med Infect Dis 2022; 8:16. [PMID: 36668923 PMCID: PMC9866109 DOI: 10.3390/tropicalmed8010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
A major obstacle to in-depth investigation of the immune response against Nipah virus (NiV) infection is its rapid progression and high mortality rate. This paper described novel information on the vertical transfer of immune properties. In January 2020, a female aged below five years and her mother from Faridpur district of Bangladesh were infected. Both had a history of raw date palm sap consumption and were diagnosed as confirmed NiV cases. The daughter passed away, and the mother survived with significant residual neurological impairment. She conceived one and a half year later and was under thorough antenatal follow-up by the surveillance authority. A healthy male baby was born. As part of routine survivor follow-up, specimens were collected from the newborn and tested for NiV infection at the reference laboratory to exclude vertical transmission. Although testing negative for anti-Nipah IgM and PCR for NiV, a high titre of anti-Nipah IgG was observed. The transfer of humoral immunity against NiV from mother to neonate was confirmed for the first time. The article will serve as a reference for further exploration regarding NiV-specific antibodies that are transferred through the placenta, their potential to protect newborns, and how this may influence vaccine recommendations.
Collapse
Affiliation(s)
- Syed Moinuddin Satter
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Arifa Nazneen
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Wasik Rahman Aquib
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control & Research, 44 Mohakhali, Dhaka 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - John D. Klena
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control & Research, 44 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
38
|
The pathogenesis of Nipah virus: A review. Microb Pathog 2022; 170:105693. [DOI: 10.1016/j.micpath.2022.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
|
39
|
Khan SA, Imtiaz MA, Islam MM, Tanzin AZ, Islam A, Hassan MM. Major bat-borne zoonotic viral epidemics in Asia and Africa: A systematic review and meta-analysis. Vet Med Sci 2022; 8:1787-1801. [PMID: 35537080 PMCID: PMC9297750 DOI: 10.1002/vms3.835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bats are the natural reservoir host for many pathogenic and non-pathogenic viruses, potentially spilling over to humans and domestic animals directly or via an intermediate host. The ongoing COVID-19 pandemic is the continuation of virus spillover events that have taken place over the last few decades, particularly in Asia and Africa. Therefore, these bat-associated epidemics provide a significant number of hints, including respiratory cellular tropism, more intense susceptibility to these cell types, and overall likely to become a pandemic for the next spillover. In this systematic review, we analysed data to insight, through bat-originated spillover in Asia and Africa. We used STATA/IC-13 software for descriptive statistics and meta-analysis. The random effect of meta-analysis showed that the pooled estimates of case fatality rates of bat-originated viral zoonotic diseases were higher in Africa (61.06%, 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001). Moreover, estimates of case fatality rates were higher in Ebola (61.06%; 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001) followed by Nipah (55.19%; 95%CI: 39.29 to 71.09, l2 % = 94.2, p < 0.001), MERS (18.49%; 95%CI: 8.19 to 28.76, l2 % = 95.4, p < 0.001) and SARS (10.86%; 95%CI: 6.02 to 15.71, l2 % = 85.7, p < 0.001) with the overall case fatality rates of 29.86 (95%CI: 29.97 to 48.58, l2 % = 99.0, p < 0.001). Bat-originated viruses have caused several outbreaks of deadly diseases, including Nipah, Ebola, SARS and MERS in Asia and Africa in a sequential fashion. Nipah virus emerged first in Malaysia, but later, periodic outbreaks were noticed in Bangladesh and India. Similarly, the Ebola virus was detected in the African continent with neurological disorders in humans, like Nipah, seen in the Asian region. Two important coronaviruses, MERS and SARS, were introduced, both with the potential to infect respiratory passages. This paper explores the dimension of spillover events within and/or between bat-human and the epidemiological risk factors, which may lead to another pandemic occurring. Further, these processes enhance the bat-originated virus, which utilises an intermediate host to jump into human species.
Collapse
Affiliation(s)
- Shahneaz Ali Khan
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | - Mohammed Ashif Imtiaz
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | | | - Abu Zubayer Tanzin
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | - Ariful Islam
- EcoHealth AllianceNew YorkNew York
- Centre for Integrative EcologyDeakin UniversityGeelong CampusVictoriaAustralia
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
- Queensland Alliance for One Health SciencesSchool of Veterinary ScienceThe University of QueenslandQueenslandAustralia
| |
Collapse
|
40
|
McKee CD, Islam A, Rahman MZ, Khan SU, Rahman M, Satter SM, Islam A, Yinda CK, Epstein JH, Daszak P, Munster VJ, Hudson PJ, Plowright RK, Luby SP, Gurley ES. Nipah Virus Detection at Bat Roosts after Spillover Events, Bangladesh, 2012-2019. Emerg Infect Dis 2022; 28:1384-1392. [PMID: 35731130 PMCID: PMC9239894 DOI: 10.3201/eid2807.212614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Knowledge of the dynamics and genetic diversity of Nipah virus circulating in bats and at the human-animal interface is limited by current sampling efforts, which produce few detections of viral RNA. We report a series of investigations at Pteropus medius bat roosts identified near the locations of human Nipah cases in Bangladesh during 2012–2019. Pooled bat urine was collected from 23 roosts; 7 roosts (30%) had >1 sample in which Nipah RNA was detected from the first visit. In subsequent visits to these 7 roosts, RNA was detected in bat urine up to 52 days after the presumed exposure of the human case-patient, although the probability of detection declined rapidly with time. These results suggest that rapidly deployed investigations of Nipah virus shedding from bat roosts near human cases could increase the success of viral sequencing compared with background surveillance and could enhance understanding of Nipah virus ecology and evolution.
Collapse
|
41
|
Nipah Virus Mystery: Insight into Transmission and Mechanism of Disease Progression. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) belongs to the biosafety level four (BSL-4) group of human pathogens of zoonotic origin. It is an emerging pathogen capable of causing a variety of clinical presentations, including encephalitis and severe acute respiratory illness, which can be fatal. Interestingly, it can also cause asymptomatic infections, which can relapse after a long period of time ranging from months to years following initial infection. Zoonotic transmission involves bats or pigs. In addition, transmission via contaminated food and occasional human to human direct transmission may also occur. It can have diverse epidemiological features and can have a very high case fatality ratio. Although a variety of immunological and molecular assays have been developed and epidemiological monitoring procedures for this disease have been introduced, there are no drugs available for this virus. Vaccines are at different stages of development. In this mini-review, we present the latest information on the Nipah virus; primarily focusing on emergence, transmission, pathogenic mechanisms and possible prophylactic and treatment options.
Collapse
|
42
|
Hoque MN, Faisal GM, Chowdhury FR, Haque A, Islam T. The urgency of wider adoption of one health approach for the prevention of a future pandemic. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.20-33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recurring outbreaks of emerging and re-emerging zoonoses serve as a reminder that the health of humans, animals, and the environment are interconnected. Therefore, multisectoral, transdisciplinary, and collaborative approaches are required at local, regional, and global levels to tackle the ever-increasing zoonotic threat. The ongoing pandemic of COVID-19 zoonosis has been posing tremendous threats to global human health and economies. The devastation caused by the COVID-19 pandemic teaches us to adopt a "One Health Approach (OHA)" to tackle a possible future pandemic through a concerted effort of the global scientific community, human health professionals, public health experts, veterinarians and policymakers through open science and open data sharing practices. The OHA is an integrated, holistic, collaborative, multisectoral, and transdisciplinary approach to tackle potential pandemic zoonotic diseases. It includes expanding scientific inquiry into zoonotic infections; monitoring, and regulating traditional food markets, transforming existing food systems, and incentivizing animal husbandry and legal wildlife trade to adopt effective zoonotic control measures. To adopt an OHA globally, research and academic institutions, governments and non-government sectors at the local, regional, and international levels must work together. This review aimed to provide an overview of the major pandemics in human history including the COVID-19, anthropogenic drivers of zoonoses, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) reverse zoonoses, the concept of OHA and how an OHA could be utilized to prevent future pandemic threats to the human-animal-ecosystem interfaces. In addition, this review article discusses the strategic framework of OHA and possible challenges to implement OHA in practice to prevent any future pandemics. The practices of open data sharing, open science, and international collaboration should be included in the OHA to prevent and/or rapidly tackle any health emergencies in the future.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh; Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Golam Mahbub Faisal
- Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Farhan Rahman Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Amlan Haque
- School of Business and Law, CQUniversity, Sydney Campus, Australia
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
43
|
Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol 2022; 32:e2326. [PMID: 35060214 DOI: 10.1002/rmv.2326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Zoonotic diseases are a burden on healthcare systems globally, particularly underdeveloped nations. Numerous vertebrate animals (e.g., birds, mammals and reptiles) serve as amplifier hosts or reservoirs for viral zoonoses. The spread of zoonotic disease is associated with environmental factors, climate change, animal health as well as other human activities including globalization, urbanization and travel. Diseases at the human-animal environment interface (e.g., zoonotic diseases, vector-borne diseases, food/water borne diseases) continue to pose risk to animals and humans with a great significant mortality and morbidity. It is estimated that of 1400 infectious diseases known to affect humans, 60% of them are of animal origin. In addition, 75% of the emerging infectious diseases have a zoonotic nature, worldwide. The one health concept plays an important role in the control and prevention of zoonoses by integrating animal, human, and environmental health through collaboration and communication among osteopaths, wildlife, physicians, veterinarians professionals, public health and environmental experts, nurses, dentists, physicists, biomedical engineers, plant pathologists, biochemists, and others. No one sector, organization, or person can address issues at the animal-human-ecosystem interface alone.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
44
|
Gabra MD, Ghaith HS, Ebada MA. Nipah Virus: An Updated Review and Emerging Challenges. Infect Disord Drug Targets 2022; 22:e170122200296. [PMID: 35078400 DOI: 10.2174/1871526522666220117120859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Many hospitals are teetering on the edge of being overwhelmed, with many already there because of the COVID-19 pandemic. Moreover, a recent report has also warned about the Nipah virus (NiV). NiV is a pleomorphic enveloped virus that belongs to the Paramyxoviridae family (genus Henipavirus); it affects both the respiratory and central nervous systems, with a fatality rate ranging from 40% to 75%, as documented by the World Health Organization. The first reported NiV outbreak was in early 1999 in Malaysia among people who contacted infected pigs. NiV also affected Bangladesh and India, where the main infection route was the consumption of raw date palm sap contaminated by bats. The World Health Organization has listed NiV as one of the emerging pathogens that can lead to severe outbreaks at any moment in the future with limited medical preparations and only a few projects in pharmaceutical firms. There is no licensed treatment for human use against NiV until now, and the management is limited to supportive care and symptomatic treatment. In severe cases with neurologic and respiratory complications, intensive care is needed. This article reviews the published literature and highlights the latest updates about this emerging pathogen and the methods to avoid the spread of this disease during this critical period.
Collapse
Affiliation(s)
| | | | - Mahmoud Ahmed Ebada
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
- Internal Medicine Resident, Ministry of Health and Population of Egypt, Cairo, Egypt
- Department of Internal Medicine and Endocrinology, National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| |
Collapse
|
45
|
Abstract
Over the past 20 years, Nipah virus (NiV) has emerged as a significant, highly pathogenic bat-borne paramyxovirus causing severe respiratory disease and encephalitis in humans, and human-to-human transmission has been demonstrated in multiple outbreaks. In addition to causing serious illness in humans, NiV is a zoonotic pathogen capable of infecting a wide range of other mammalian species, including pigs and horses. While NiV has caused less than 700 human cases since its discovery in 1998/1999, the involvement of intermediate agricultural hosts can result in significant economic consequences. Owing to the severity of disease, capacity for human-to-human transmission, zoonotic potential, and lack of available approved therapeutic treatment options, NiV has been listed by the World Health Organization in their Blueprint list of priority pathogens as one of the eight most dangerous pathogens to monitor and prepare countermeasures to prevent a pandemic. Here, we discuss progress towards the development of therapeutic measures for the treatment of NiV infection and disease.
Collapse
Affiliation(s)
- Kendra Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michelle Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
46
|
Yeo YY, Buchholz DW, Gamble A, Jager M, Aguilar HC. Headless Henipaviral Receptor Binding Glycoproteins Reveal Fusion Modulation by the Head/Stalk Interface and Post-receptor Binding Contributions of the Head Domain. J Virol 2021; 95:e0066621. [PMID: 34288734 PMCID: PMC8475510 DOI: 10.1128/jvi.00666-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Cedar virus (CedV) is a nonpathogenic member of the Henipavirus (HNV) genus of emerging viruses, which includes the deadly Nipah (NiV) and Hendra (HeV) viruses. CedV forms syncytia, a hallmark of henipaviral and paramyxoviral infections and pathogenicity. However, the intrinsic fusogenic capacity of CedV relative to NiV or HeV remains unquantified. HNV entry is mediated by concerted interactions between the attachment (G) and fusion (F) glycoproteins. Upon receptor binding by the HNV G head domain, a fusion-activating G stalk region is exposed and triggers F to undergo a conformational cascade that leads to viral entry or cell-cell fusion. Here, we demonstrate quantitatively that CedV is inherently significantly less fusogenic than NiV at equivalent G and F cell surface expression levels. We then generated and tested six headless CedV G mutants of distinct C-terminal stalk lengths, surprisingly revealing highly hyperfusogenic cell-cell fusion phenotypes 3- to 4-fold greater than wild-type CedV levels. Additionally, similarly to NiV, a headless HeV G mutant yielded a less pronounced hyperfusogenic phenotype compared to wild-type HeV. Further, coimmunoprecipitation and cell-cell fusion assays revealed heterotypic NiV/CedV functional G/F bidentate interactions, as well as evidence of HNV G head domain involvement beyond receptor binding or G stalk exposure. All evidence points to the G head/stalk junction being key to modulating HNV fusogenicity, supporting the notion that head domains play several distinct and central roles in modulating stalk domain fusion promotion. Further, this study exemplifies how CedV may help elucidate important mechanistic underpinnings of HNV entry and pathogenicity. IMPORTANCE The Henipavirus genus in the Paramyxoviridae family includes the zoonotic Nipah (NiV) and Hendra (HeV) viruses. NiV and HeV infections often cause fatal encephalitis and pneumonia, but no vaccines or therapeutics are currently approved for human use. Upon viral entry, Henipavirus infections yield the formation of multinucleated cells (syncytia). Viral entry and cell-cell fusion are mediated by the attachment (G) and fusion (F) glycoproteins. Cedar virus (CedV), a nonpathogenic henipavirus, may be a useful tool to gain knowledge on henipaviral pathogenicity. Here, using homotypic and heterotypic full-length and headless CedV, NiV, and HeV G/F combinations, we discovered that CedV G/F are significantly less fusogenic than NiV or HeV G/F, and that the G head/stalk junction is key to modulating cell-cell fusion, refining the mechanism of henipaviral membrane fusion events. Our study exemplifies how CedV may be a useful tool to elucidate broader mechanistic understanding for the important henipaviruses.
Collapse
Affiliation(s)
- Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Mason Jager
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
47
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| |
Collapse
|
48
|
Al-Halhouli A, Albagdady A, Alawadi J, Abeeleh MA. Monitoring Symptoms of Infectious Diseases: Perspectives for Printed Wearable Sensors. MICROMACHINES 2021; 12:620. [PMID: 34072174 PMCID: PMC8229808 DOI: 10.3390/mi12060620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Infectious diseases possess a serious threat to the world's population, economies, and healthcare systems. In this review, we cover the infectious diseases that are most likely to cause a pandemic according to the WHO (World Health Organization). The list includes COVID-19, Crimean-Congo Hemorrhagic Fever (CCHF), Ebola Virus Disease (EBOV), Marburg Virus Disease (MARV), Lassa Hemorrhagic Fever (LHF), Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), Nipah Virus diseases (NiV), and Rift Valley fever (RVF). This review also investigates research trends in infectious diseases by analyzing published research history on each disease from 2000-2020 in PubMed. A comprehensive review of sensor printing methods including flexographic printing, gravure printing, inkjet printing, and screen printing is conducted to provide guidelines for the best method depending on the printing scale, resolution, design modification ability, and other requirements. Printed sensors for respiratory rate, heart rate, oxygen saturation, body temperature, and blood pressure are reviewed for the possibility of being used for disease symptom monitoring. Printed wearable sensors are of great potential for continuous monitoring of vital signs in patients and the quarantined as tools for epidemiological screening.
Collapse
Affiliation(s)
- Ala’aldeen Al-Halhouli
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
- Faculty of Engineering, Middle East University, Amman 11831, Jordan
| | - Ahmed Albagdady
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Ja’far Alawadi
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Mahmoud Abu Abeeleh
- Department of Surgery, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
49
|
Anticipation of Antigenic Sites for the Goal of Vaccine Designing Against Nipah Virus: An Immunoinformatics Inquisitive Quest. Int J Pept Res Ther 2021; 27:1899-1911. [PMID: 33994898 PMCID: PMC8112743 DOI: 10.1007/s10989-021-10219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022]
Abstract
With time, the Nipah virus has been proved as a fatal and dangerous pathogen for humanity. Nipah virus has its origin from bats and severely affects the respiratory as well as neurological organs. Regular outbreaks and unavailability of proper treatment for Nipah virus infection, demands the designing of vaccine for this disease. This prediction study was conducted to explore B cell epitopes from the Nipah virus’s proteome using the immunoinformatics approach. In this curious quest of anticipation of antigenic sites for the Insilico peptide vaccine for the Nipah virus, nine NV-B strain proteins were retrieved for further series of investigations. After sequential refining through immunoinformatics approaches, a total of 26 epitopes was selected to perform molecular modeling and docking. PEPstrMOD and Swiss model, respectively performed 3D modeling of epitopes with their respective alleles. Based on minimum binding energy, four epitopes viz. LHLGNFVRR, LNLSPLIQR, YHNMSPINR and FRRNNAIAF were predicted as promiscuous B cell epitopes. Based on low binding affinity and high population coverage worldwide, epitope LHLGNFVRR was finally selected. Increased Stability of the LHLGNFVRR- HLA DRB_1301 complex during simulation studies exhibit it as the most promising vaccine bidder. So complex of LHLGNFVRR- HLA DRB_1301 has shown most significance result for vaccine and for further validation and confirmation, wet lab and clinical trials can provide the potential of predicted peptides for the subunit vaccine.
Collapse
|
50
|
Chandni R, Renjith TP, Fazal A, Yoosef N, Ashhar C, Thulaseedharan NK, Suraj KP, Sreejith MK, Sajeeth Kumar KG, Rajendran VR, Remla Beevi A, Sarita RL, Sugunan AP, Arunkumar G, Mourya DT, Murhekar M. Clinical Manifestations of Nipah Virus-Infected Patients Who Presented to the Emergency Department During an Outbreak in Kerala State in India, May 2018. Clin Infect Dis 2021; 71:152-157. [PMID: 31627214 DOI: 10.1093/cid/ciz789] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/17/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND An outbreak of Nipah virus (NiV) disease occurred in the Kozhikode district of Kerala State in India in May 2018. Several cases were treated at the emergency medicine department (ED) of the Government Medical College, Kozhikode (GMCK). The clinical manifestations and outcome of these cases are described. METHODS The study included 12 cases treated in the ED of GMCK. Detailed clinical examination, laboratory investigations, and molecular testing for etiological diagnosis were performed. RESULTS The median age of the patients was 30 years and the male to female ratio was 1.4:1.0. All the cases except the index case contracted the infection from hospitals. The median incubation period was 10 days, and the case fatality ratio was 83.3%. Ten (83.3%) patients had encephalitis and 9 out of 11 patients whose chest X-rays were obtained had bilateral infiltrates. Three patients had bradycardia and intractable hypotension requiring inotropes. Encephalitis, acute respiratory distress syndrome, and myocarditis were the clinical prototypes, but there were large overlaps between these. Ribavirin therapy was given to a subset of the patients. Although there was a 20% reduction in NiV encephalitis cases treated with the drug, the difference was not statistically significant. The outbreak ended soon after the introduction of total isolation of patients and barrier nursing. CONCLUSION The outbreak of NiV disease in Kozhikode in May 2018 presented as encephalitis, acute respiratory distress and myocarditis or combinations of these. The CFR was high. Ribavirin therapy was tried but no evidence for its benefit could be obtained.
Collapse
Affiliation(s)
| | - T P Renjith
- Government Medical College, Kozhikode, Kerala, India
| | - Arshad Fazal
- Government Medical College, Kozhikode, Kerala, India
| | - Noufel Yoosef
- Government Medical College, Kozhikode, Kerala, India
| | - C Ashhar
- Government Medical College, Kozhikode, Kerala, India
| | | | - K P Suraj
- Government Medical College, Kozhikode, Kerala, India
| | - M K Sreejith
- Government Medical College, Kozhikode, Kerala, India
| | | | - V R Rajendran
- Government Medical College, Kozhikode, Kerala, India
| | - A Remla Beevi
- Directorate of Medical Education, Thiruvananthapuram, Kerala, India
| | - R L Sarita
- Directorate of Health Services, Thiruvananthapuram, Kerala, India
| | - Attayur P Sugunan
- Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Port Blair, Andaman & Nicobar Islands, India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education (Institute of Eminence Deemed to be University), Manipal, Karnataka, India
| | - D T Mourya
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Manoj Murhekar
- ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| |
Collapse
|