1
|
Korec E, Ungrová L, Kalvas J, Hejnar J. Identification of genes associated with longevity in dogs: 9 candidate genes described in Cavalier King Charles Spaniel. Vet Anim Sci 2025; 27:100420. [PMID: 39823074 PMCID: PMC11737349 DOI: 10.1016/j.vas.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
In the past years, dogs have served as a convenient natural model organism for longevity due to their similarity with humans concerning not only their environment but also the diseases and complications occurring in older age. Since many dog breeds have significantly shorter lifespan than their closely related breeds, identification of genes associated with longevity may help to elucidate its background and serve as a possible tool for selective breeding of long-living dogs. This genome-wide association study (GWAS) was undertaken to identify the candidate genes associated with longevity in Cavalier King Charles Spaniel individuals that have reached the age of more than 13 years. We described 15 SNPs localized in nine genes: B3GALNT1, NLRP1 like, PARP14, IQCJ-SCHIP1, COL9A1, COL19A1, SDHAF4, B3GAT2, and DIRC2 that are associated with longevity in purebred Cavalier King Charles Spaniels. These results are promising for future research and possible selective breeding of companion dogs with extended lifespan.
Collapse
Affiliation(s)
- Evžen Korec
- ZOO Tábor a.s., Dukelských Hrdinů 19, 170 00 Prague 7, Czech Republic
| | - Lenka Ungrová
- ZOO Tábor a.s., Dukelských Hrdinů 19, 170 00 Prague 7, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Josef Kalvas
- ZOO Tábor a.s., Dukelských Hrdinů 19, 170 00 Prague 7, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
2
|
Mariner BL, McCoy BM, Greenier A, Brassington L, Slikas E, Adjangba C, Marye A, Harrison BR, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. DNA methylation of transposons pattern aging differences across a diverse cohort of dogs from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617286. [PMID: 39416178 PMCID: PMC11482827 DOI: 10.1101/2024.10.08.617286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Within a species, larger individuals often have shorter lives and higher rates of age-related disease. Despite this well-known link, we still know little about underlying age-related epigenetic differences, which could help us better understand inter-individual variation in aging and the etiology, onset, and progression of age-associated disease. Dogs exhibit this negative correlation between size, health, and longevity and thus represent an excellent system in which to test the underlying mechanisms. Here, we quantified genome-wide DNA methylation in a cohort of 864 dogs in the Dog Aging Project. Age strongly patterned the dog epigenome, with the majority (66% of age-associated loci) of regions associating age-related loss of methylation. These age effects were non-randomly distributed in the genome and differed depending on genomic context. We found the LINE1 (long interspersed elements) class of TEs (transposable elements) were the most frequently hypomethylated with age (FDR < 0.05, 40% of all LINE1 regions). This LINE1 pattern differed in magnitude across breeds of different sizes- the largest dogs lost 0.26% more LINE1 methylation per year than the smallest dogs. This suggests that epigenetic regulation of TEs, particularly LINE1s, may contribute to accelerated age and disease phenotypes within a species. Since our study focused on the methylome of immune cells, we looked at LINE1 methylation changes in golden retrievers, a breed highly susceptible to hematopoietic cancers, and found they have accelerated age-related LINE1 hypomethylation compared to other breeds. We also found many of the LINE1s hypomethylated with age are located on the X chromosome and are, when considering X chromosome inactivation, counter-intuitively more methylated in males. These results have revealed the demethylation of LINE1 transposons as a potential driver of intra-species, demographic-dependent aging variation.
Collapse
|
3
|
Carney A, Williamson P, Taylor RM. The Demography, Longevity and Mortality of Bullmastiffs Attending Veterinary Practices in Australia. Animals (Basel) 2024; 14:3419. [PMID: 39682384 DOI: 10.3390/ani14233419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The Bullmastiff is a giant breed of dog, and there is evidence the breed is predisposed to cancer and musculoskeletal disorders, though the disease investigation of the breed is limited. This study reports on the demography, longevity and mortality of Bullmastiffs attending veterinary practices in Australia over a ten-year period. VetCompass Australia collects patient data from veterinary practices across Australia for epidemiological analysis. All patient records of Bullmastiffs available in the VetCompass Australia database during this decade period were reviewed, with demographic information on the breed inclusive of coat colour, sex, neuter status, weight and location collated. Standardised veterinary diagnostic (VeNom) codes for the most appropriate cause of death were assigned to deceased dogs. The population comprised 2771 Bullmastiffs with an overall median age of 2.8 years. Within the group, 1259 were female (45.4%), 1491 were male (53.8%), and 21 dogs (0.8%) had no recorded sex or neuter status. Dogs grew rapidly in their first year, with an average gain of approximately 1 kg every 10 days. A slower growth rate continued in their second year, and growth plateaued as adulthood was reached, with the mean body weight of adult male dogs (46.6 kg) being heavier than that of females (40.5 kg). The age at death for the group was 8.5 years. The most common causes of death in the breed were mass lesions (28.2%), old age (9.9%), musculoskeletal-related disease (9.9%) and neurological (5.3%) and behavioural disorders (4.8%). Neutering was protective against mortality from urogenital causes (OR: 0.14; CI: 0.02-0.52; p = 0.003) and had a positive effect on longevity. This study provides demographic and health information on a population of Bullmastiffs attending veterinary practices in Australia, which will benefit evidence-based veterinary decisions for this breed. Additionally, the results may assist owners and breeders in making informed decisions on health risks and breeding programmes in the population.
Collapse
Affiliation(s)
- Abigail Carney
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter Williamson
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
| | - Rosanne M Taylor
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
4
|
Ko WH, Kim S, Catry A, Cho JY, Shin S. Genome-wide statistical evidence elucidates candidate factors of life expectancy in dogs. Mol Cells 2024; 48:100162. [PMID: 39580055 PMCID: PMC11721540 DOI: 10.1016/j.mocell.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
It is well-established that large and heavy dogs tend to live shorter lives. In this study, we aimed to determine whether traits other than body size are associated with the life expectancy of dogs. We compiled a dataset of 20 phenotypes, including body size, lifespan, snout ratio, and shedding, into a single matrix for 149 dog breeds using data from the American Kennel Club and other peer-reviewed sources. The analysis revealed that drooling might be associated with both the lifespan and body mass index of dogs. Furthermore, a genome-wide association study with adjusted phenotypes and statistical verification methods, such as Mendelian randomization. Additionally, conducting differential gene expression analysis with the salivary gland for the 2 cases, hypersalivation/less drooling vs various body sizes, we could observe the hypersalivation-related proteins. This genetic analysis suggests that body size and drooling might be candidate factors influencing lifespan. Consequently, we identified several candidate genes, including IGSF1, PACSIN2, PIK3R1, and MCCC2, as potential genetic factors influencing longevity-related phenotypes.
Collapse
Affiliation(s)
- Won Hee Ko
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul 08826, Republic of Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangil Kim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul 08826, Republic of Korea; Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alix Catry
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Je-Yoel Cho
- Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Republic of Korea; Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seunggwan Shin
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul 08826, Republic of Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
McCoy BM, Mariner BL, Cheng CF, Slikas E, Adjangba C, Greenier A, Brassington L, Marye A, Harrison BR, Partida-Aguilar M, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. Aging at scale: Younger dogs and larger breeds from the Dog Aging Project show accelerated epigenetic aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616519. [PMID: 39553930 PMCID: PMC11565713 DOI: 10.1101/2024.10.03.616519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Dogs exhibit striking within-species variability in lifespan, with smaller breeds often living more than twice as long as larger breeds. This longevity discrepancy also extends to health and aging-larger dogs show higher rates of age-related diseases. Despite this well-established phenomenon, we still know little about the biomarkers and molecular mechanisms that might underlie breed differences in aging and survival. To address this gap, we generated an epigenetic clock using DNA methylation from over 3 million CpG sites in a deeply phenotyped cohort of 864 companion dogs from the Dog Aging Project, including some dogs sampled annually for 2-3 years. We found that the largest breed size tends to have epigenomes that are, on average, 0.37 years older per chronological year compared to the smallest breed size. We also found that higher residual epigenetic age was significantly associated with increased mortality risk, with dogs experiencing a 34% higher risk of death for each year increase in residual epigenetic age. These findings not only broaden our understanding of how aging manifests within a diverse species but also highlight the significant role that demographic factors play in modulating the biological mechanisms underlying aging. Additionally, they highlight the utility of DNA methylation as both a biomarker for healthspan-extending interventions, a mortality predictor, and a mechanism for understanding inter-individual variation in aging in dogs.
Collapse
|
6
|
Hopper RG, Bromberg RB, Salzman MM, Peterson KD, Rogers C, Cameron S, Mowat FM. Dual sensory impairments in companion dogs: Prevalence and relationship to cognitive impairment. PLoS One 2024; 19:e0310299. [PMID: 39413072 PMCID: PMC11482676 DOI: 10.1371/journal.pone.0310299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/18/2024] Open
Abstract
PURPOSE Many older dogs (Canis lupus familiaris) develop cognitive impairment. Dog owners often describe impairments in multiple sensory functions, yet the relationships between sensory and cognitive function in older dogs is not well understood. METHODS We performed assessments of dog vision and hearing, both clinically (n = 91, electroretinography and brainstem auditory evoked potential) and via validated questionnaire (n = 238). We determined prevalence of sole and dual hearing/vision impairments in younger (<8 years) and older (≥8 years) dogs. Impairment cutoffs were determined using data from young dogs. We assessed the relationships between questionnaire-assessed vision and/or hearing impairments and cognitive impairment using logistic regression. RESULTS Younger and older dog groups had similar distributions of sex and purebred/mixed breed status. Sex had no relationship to prevalence of sensory impairments. Older dogs had higher prevalence of hearing, vision, and dual sensory impairments, assessed both clinically and by questionnaire (P<0.001), and cognitive impairment assessed by questionnaire (P<0.001). Dogs had higher prevalence of reported cognitive impairment when owners reported dual vision and hearing impairments (79-94%, versus 25-27% in dogs with no sensory impairments), which was most consistent in dogs aged ≥8 years. In these older dogs, dual vision/hearing impairments were associated with a significantly increased risk of cognitive impairment (1.8-2.0 odds ratio). CONCLUSION Dogs aged ≥8 years are at higher risk for dual hearing/vision impairments and associated cognitive impairments. The causal relationship between these impairments is not defined, but clinical consideration of these multimorbidity risks should be made in older dogs.
Collapse
Affiliation(s)
- Ryan G. Hopper
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rachel B. Bromberg
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michele M. Salzman
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyle D. Peterson
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Callie Rogers
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Starr Cameron
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Freya M. Mowat
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Fonti N, Parisi F, Lachi A, Dhein ES, Guscetti F, Poli A, Millanta F. Age at Tumor Diagnosis in 14,636 Canine Cases from the Pathology-Based UNIPI Animal Cancer Registry, Italy: One Size Doesn't Fit All. Vet Sci 2024; 11:485. [PMID: 39453077 PMCID: PMC11512385 DOI: 10.3390/vetsci11100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer is the most common cause of death in adult dogs. All dogs would benefit from early diagnosis, but there are no specific guidelines regarding the schedule of cancer screening in companion animals. The aim of this study was to retrospectively evaluate the age at diagnosis in Italian oncological canine patients. A total of 14,636 canine histologically confirmed neoplastic cases were coded according to the Vet-ICD-O-canine-1 and stratified by malignancy, sex, neutering status, breed, cephalic index, body size, and tumor type. Differences in age distribution were analyzed and the influence of these variables on the time of first malignancy diagnosis was assessed using an event history analysis model. The median age at diagnosis for benign and malignant tumors was 9 and 10 years, respectively. Intact and purebred dogs were diagnosed earlier, but the median age differed significantly by breed. The earliest age at diagnosis was recorded for lymphomas and mast cell tumors. The model showed an accelerating effect of large size, brachy- and dolichocephaly, and sexual integrity in female dogs on the time of malignancy diagnosis. Our results confirm that a "one-size-fits-all" approach to cancer screening is not accurate in dogs and provide relevant data that may lead to the establishment of breed-based screening schedules.
Collapse
Affiliation(s)
- Niccolò Fonti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy; (F.P.); (A.P.); (F.M.)
| | - Francesca Parisi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy; (F.P.); (A.P.); (F.M.)
| | - Alessio Lachi
- Saint Camillus International University of Health and Medical Sciences (UniCamillus), Via Sant’Alessandro n. 8, 00131 Rome, Italy;
- Department of Statistics, Computer Science, Applications “Giuseppe Parenti” (DiSIA), University of Florence, Viale Giovanni Battista Morgagni 59, 50134 Florence, Italy
| | - Elena Sophie Dhein
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland; (E.S.D.); (F.G.)
| | - Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland; (E.S.D.); (F.G.)
| | - Alessandro Poli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy; (F.P.); (A.P.); (F.M.)
| | - Francesca Millanta
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy; (F.P.); (A.P.); (F.M.)
| |
Collapse
|
8
|
Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, Garland G, Donato H, Vincent M, Schott W, Wright KM, Raj A, Prateek GV, Mullis M, Hill WG, Zeidel ML, Peters LL, Harding F, Botstein D, Korstanje R, Thaiss CA, Freund A, Churchill GA. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 2024; 634:684-692. [PMID: 39385029 PMCID: PMC11485257 DOI: 10.1038/s41586-024-08026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Caloric restriction extends healthy lifespan in multiple species1. Intermittent fasting, an alternative form of dietary restriction, is potentially more sustainable in humans, but its effectiveness remains largely unexplored2-8. Identifying the most efficacious forms of dietary restriction is key for developing interventions to improve human health and longevity9. Here we performed an extensive assessment of graded levels of caloric restriction (20% and 40%) and intermittent fasting (1 and 2 days fasting per week) on the health and survival of 960 genetically diverse female mice. We show that caloric restriction and intermittent fasting both resulted in lifespan extension in proportion to the degree of restriction. Lifespan was heritable and genetics had a larger influence on lifespan than dietary restriction. The strongest trait associations with lifespan included retention of body weight through periods of handling-an indicator of stress resilience, high lymphocyte proportion, low red blood cell distribution width and high adiposity in late life. Health effects differed between interventions and exhibited inconsistent relationships with lifespan extension. 40% caloric restriction had the strongest lifespan extension effect but led to a loss of lean mass and changes in the immune repertoire that could confer susceptibility to infections. Intermittent fasting did not extend the lifespan of mice with high pre-intervention body weight, and two-day intermittent fasting was associated with disruption of erythroid cell populations. Metabolic responses to dietary restriction, including reduced adiposity and lower fasting glucose, were not associated with increased lifespan, suggesting that dietary restriction does more than just counteract the negative effects of obesity. Our findings indicate that improving health and extending lifespan are not synonymous and raise questions about which end points are the most relevant for evaluating aging interventions in preclinical models and clinical trials.
Collapse
Affiliation(s)
| | | | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | - Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Actio Biosciences, San Diego, CA, USA
| | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - G V Prateek
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Martin Mullis
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Warren G Hill
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Fiona Harding
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Arda Therapeutics, San Carlos, CA, USA
| | | |
Collapse
|
9
|
Kolkmeyer CA, Zambrano Cardona AM, Gansloßer U. Personality Unleashed: Surveying Correlation of Neuter Status and Social Behaviour in Mixed-Breed Male Dogs across Weight Classes. Animals (Basel) 2024; 14:2445. [PMID: 39199978 PMCID: PMC11350830 DOI: 10.3390/ani14162445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigates the behavioural differences between neutered and intact dogs. A total of 230 questionnaires of neutered (n = 115) and intact (n = 115) mixed-breed male dogs were collected. Small, medium, large, and giant dogs were analysed to investigate a possible influence of body size. The results showed neuters were significantly more stressed than intacts (multinomial logistic regression, p = 0.001). In terms of stress by influences (such as separation anxiety and anxiety at car rides), neutered small, medium, and large dogs were more stressed than giant dogs (multinomial logistic regression, p = 0.05). Neuters were also found to be more aggressive in general (multinomial logistic regression, p = 0.04) and more aggressive on the walk (multinomial logistic regression, p = 0.02). In addition, personality questionnaires revealed significant differences in all characteristics. Neuters were less emotionally calm (multiple ordinal regression, p = 0.03), less trainable and less sociable (each multiple ordinal regression, p < 0.001). They also scored lower on extraversion (multiple ordinal regression, p = 0.04). These findings highlight the importance of further research into the behavioural effects of neutering dogs, as well as the need for evidence-based guidelines for neutering practices.
Collapse
Affiliation(s)
- Carina A. Kolkmeyer
- Institut für Zoologie & Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Erbertstr. 1, 07743 Jena, Germany;
- Department of Biology, University of Vechta, Driverstrasee 22, 49377 Vechta, Germany
| | - Ana M. Zambrano Cardona
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Altensteinstraße 6, 14195 Berlin, Germany;
| | - Udo Gansloßer
- Institut für Zoologie & Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Erbertstr. 1, 07743 Jena, Germany;
- Department of Biology, University of Vechta, Driverstrasee 22, 49377 Vechta, Germany
| |
Collapse
|
10
|
Hargrave SH, Bray EE, McGrath S, Alexander GE, Block TA, Chao N, Darvas M, Douglas LELC, Galante J, Kennedy BS, Kusick B, Moreno JA, Promislow DEL, Raichlen DA, Switzer LR, Tees L, Underwood Aguilar M, Urfer SR, MacLean EL. Characterizing dog cognitive aging using spontaneous problem-solving measures: development of a battery of tests from the Dog Aging Project. GeroScience 2024:10.1007/s11357-024-01278-x. [PMID: 39106023 DOI: 10.1007/s11357-024-01278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Companion dogs are a valuable model for aging research, including studies of cognitive decline and dementia. With advanced age, some dogs spontaneously develop cognitive impairments and neuropathology resembling features of Alzheimer's disease. These processes have been studied extensively in laboratory beagles, but the cognitive assays used in that context-which rely on time-consuming operant procedures-are not easily scalable to large samples of community-dwelling companion dogs. We developed a battery of five short-form tasks targeting three aspects of cognition that are impaired in Alzheimer's disease: spatial memory, executive functions, and social cognition. In Experiment 1, we tested a cross-sectional sample of dogs (N = 123) and estimated associations between age and task performance. Older dogs scored lower on measures of spatial learning, memory, and response flexibility, and spent less time near, but more time gazing at, the experimenter. We found no differences in associations between age and performance across dogs of different body masses, a proxy for expected lifespan. In Experiment 2, we demonstrated the feasibility of these measures in clinical settings (N = 35). Dogs meeting clinical criteria for moderate or severe cognitive impairment scored lower, on average, than dogs characterized as mildly impaired and healthy agers, although these distributions overlapped. However, few dogs in our study cohort met the criteria for moderate or severe impairment. The measures presented here show promise for deployment in large-scale longitudinal studies of companion dogs, such as the Dog Aging Project.
Collapse
Affiliation(s)
- Stephanie H Hargrave
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA
| | - Emily E Bray
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA
- Canine Companions, National Headquarters, Santa Rosa, CA, USA
| | - Stephanie McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gene E Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | | | - Naomi Chao
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA
| | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Breonna Kusick
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
- Current affiliation: Jean Mayer USDA Human Nutrition Research Center On Aging, Tufts University, Boston, MA, USA
| | - David A Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
| | - Lorelei R Switzer
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA
| | - Lily Tees
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Silvan R Urfer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Evan L MacLean
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Spiller V, Vetter M, Dettmer-Richardt C, Grammel T. Prospective study of successful autologous dendritic cell therapy in dogs with splenic stage II hemangiosarcoma. Vet J 2024; 306:106196. [PMID: 39004264 DOI: 10.1016/j.tvjl.2024.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Hemangiosarcoma is an aggressive tumour that most frequently occurs in larger, middle-aged dogs of certain breeds. The spleen is the most commonly affected organ. The aim of this prospective therapy study was to evaluate the clinical effect of autologous, monocyte-derived dendritic cell (DC) therapy in canine hemangiosarcoma stage II after splenectomy. Dogs (n=452) diagnosed with splenic hemangiosarcoma that underwent splenectomy were enrolled. Of these, 42 dogs with stage II entered the DC therapy study. The median survival time for the total group of 42 dogs was 203 days. The median survival for the group (n=34) that received the full DC therapy (≥3 vaccines) was 256 days, with a 29 % one-year survival rate and a hazard ratio of 0.30, adjusted to age and bodyweight (P=0.010). We further observed a significant increase in DC yield after each application and demonstrated that DC yield at the beginning of treatment is significantly related to patient survival. While further evidence is needed, we conclude that autologous, monocyte-derived DC therapy is a viable alternative to standard treatment methods of canine splenic stage II hemangiosarcoma.
Collapse
Affiliation(s)
- V Spiller
- PetBioCell GmbH, Schillerstr. 17, Osterode am Harz 37520, Germany
| | - M Vetter
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube Str. 40, Halle (Saale) 06120, Germany.
| | | | - T Grammel
- Tiergesundheitszentrum Südharz, Schillerstr. 17, Osterode am Harz 37520, Germany
| |
Collapse
|
12
|
Harinath G, Zalzala S, Nyquist A, Wouters M, Isman A, Moel M, Verdin E, Kaeberlein M, Kennedy B, Bischof E. The role of quality of life data as an endpoint for collecting real-world evidence within geroscience clinical trials. Ageing Res Rev 2024; 97:102293. [PMID: 38574864 DOI: 10.1016/j.arr.2024.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
With geroscience research evolving at a fast pace, the need arises for human randomized controlled trials to assess the efficacy of geroprotective interventions to prevent age-related adverse outcomes, disease, and mortality in normative aging cohorts. However, to confirm efficacy requires a long-term and costly approach as time to the event of morbidity and mortality can be decades. While this could be circumvented using sensitive biomarkers of aging, current molecular, physiological, and digital endpoints require further validation. In this review, we discuss how collecting real-world evidence (RWE) by obtaining health data that is amenable for collection from large heterogeneous populations in a real-world setting can help speed up validation of geroprotective interventions. Further, we propose inclusion of quality of life (QoL) data as a biomarker of aging and candidate endpoint for geroscience clinical trials to aid in distinguishing healthy from unhealthy aging. We highlight how QoL assays can aid in accelerating data collection in studies gathering RWE on the geroprotective effects of repurposed drugs to support utilization within healthy longevity medicine. Finally, we summarize key metrics to consider when implementing QoL assays in studies, and present the short-form 36 (SF-36) as the most well-suited candidate endpoint.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Brian Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore
| | - Evelyne Bischof
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai University of Medicine and Health Sciences, Shanghai, China; Sheba Longevity Center, Sheba Medical Center, Tel Aviv, Israel.
| |
Collapse
|
13
|
Grula CC, Rinehart JD, Anacleto A, Kittilson JD, Heidinger BJ, Greenlee KJ, Rinehart JP, Bowsher JH. Telomere length is longer following diapause in two solitary bee species. Sci Rep 2024; 14:11208. [PMID: 38755232 PMCID: PMC11099051 DOI: 10.1038/s41598-024-61613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.
Collapse
Affiliation(s)
- Courtney C Grula
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA.
| | - Joshua D Rinehart
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Angelo Anacleto
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 E. Catherine St., Ann Arbor, MI, 48109, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Britt J Heidinger
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Joseph P Rinehart
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| |
Collapse
|
14
|
Gómez-Armenta JR, Pérez-Espinosa H, Fernández-Zepeda JA, Reyes-Meza V. Automatic classification of dog barking using deep learning. Behav Processes 2024; 218:105028. [PMID: 38648990 DOI: 10.1016/j.beproc.2024.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2022] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Barking and other dog vocalizations have acoustic properties related to emotions, physiological reactions, attitudes, or some particular internal states. In the field of intelligent audio analysis, researchers use methods based on signal processing and machine learning to analyze the digitized acoustic signals' properties and obtain relevant information. The present work describes a method to classify the identity, breed, age, sex, and context associated with each bark. This information can support the decisions of people who regularly interact with animals, such as dog trainers, veterinarians, rescuers, police, people with visual impairment. Our approach uses deep neural networks to generate trained models for each classification task. We worked with 19,643 barks recorded from 113 dogs of different breeds, ages and sexes. Our methodology consists of three stages. First, the pre-processing stage prepares the data and transforms it into the appropriate format for each classification model. Second, the characterization stage evaluates different representation models to identify the most suitable for each task. Third, the classification stage trains each classification model and selects the best hyperparameters. After tuning and training each model, we evaluated its performance. We analyzed the most relevant features extracted from the audio and the most appropriate deep neural network architecture for that feature type. Even if the application of our method is not ready for being used in ethological practice, our evaluation showed an outstanding performance of the proposed method, surpassing previous research results on this topic, providing the basis for further technological development.
Collapse
Affiliation(s)
- José Ramón Gómez-Armenta
- CICESE, Zona Playitas, Carretera Ensenada-Tijuana #3918, Ensenada, Baja California, CP. 22860, Mexico
| | - Humberto Pérez-Espinosa
- Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) Luis Enrique Erro #1, Sta María Tonanzintla, Puebla, CP 72840, Mexico; CICESE-UT3, Andador 10 #109, Tepic, Nayarit, CP 63173, Mexico.
| | | | - Verónica Reyes-Meza
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala. Av. Universidad #1, Tlaxcala, Tlaxcala, CP 90070, Mexico.
| |
Collapse
|
15
|
Jin K, McCoy BM, Goldman EA, Usova V, Tkachev V, Chitsazan AD, Kakebeen A, Jeffery U, Creevy KE, Wills A, Snyder‐Mackler N, Promislow DEL. DNA methylation and chromatin accessibility predict age in the domestic dog. Aging Cell 2024; 23:e14079. [PMID: 38263575 PMCID: PMC11019125 DOI: 10.1111/acel.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Across mammals, the epigenome is highly predictive of chronological age. These "epigenetic clocks," most of which have been built using DNA methylation (DNAm) profiles, have gained traction as biomarkers of aging and organismal health. While the ability of DNAm to predict chronological age has been repeatedly demonstrated, the ability of other epigenetic features to predict age remains unclear. Here, we use two types of epigenetic information-DNAm, and chromatin accessibility as measured by ATAC-seq-to develop age predictors in peripheral blood mononuclear cells sampled from a population of domesticated dogs. We measured DNAm and ATAC-seq profiles for 71 dogs, building separate predictive clocks from each, as well as the combined dataset. We also use fluorescence-assisted cell sorting to quantify major lymphoid populations for each sample. We found that chromatin accessibility can accurately predict chronological age (R2 ATAC = 26%), though less accurately than the DNAm clock (R2 DNAm = 33%), and the clock built from the combined datasets was comparable to both (R2 combined = 29%). We also observed various populations of CD62L+ T cells significantly correlated with dog age. Finally, we found that all three clocks selected features that were in or near at least two protein-coding genes: BAIAP2 and SCARF2, both previously implicated in processes related to cognitive or neurological impairment. Taken together, these results highlight the potential of chromatin accessibility as a complementary epigenetic resource for modeling and investigating biologic age.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Brianah M. McCoy
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | | | - Viktoria Usova
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Victor Tkachev
- Division of Pediatric Hematology/OncologyBoston Children's HospitalBostonMassachusettsUSA
- Dana Farber Cancer InstituteBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Alex D. Chitsazan
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Anneke Kakebeen
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Unity Jeffery
- College of Veterinary MedicineTexas A & M UniversityCollege StationTexasUSA
| | - Kate E. Creevy
- College of Veterinary MedicineTexas A & M UniversityCollege StationTexasUSA
| | - Andrea Wills
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Noah Snyder‐Mackler
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
16
|
Roccaro M, Salini R, Pietra M, Sgorbini M, Gori E, Dondi M, Crisi PE, Conte A, Dalla Villa P, Podaliri M, Ciaramella P, Di Palma C, Passantino A, Porciello F, Gianella P, Guglielmini C, Alborali GL, Rota Nodari S, Sabatelli S, Peli A. Factors related to longevity and mortality of dogs in Italy. Prev Vet Med 2024; 225:106155. [PMID: 38394961 DOI: 10.1016/j.prevetmed.2024.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Besides its translational value, an improved understanding of dog longevity and mortality is necessary to guide health management decisions, breed selection, and improve dog welfare. In order to analyse the lifespan of dogs in Italy, identify the most common causes of death, and evaluate possible risk factors, anonymised medical records were collected from 9 veterinary teaching hospitals and 2 public health institutions. Data regarding breed, sex, neuter status, age, diagnosis, and mechanism of death were retrieved. Cause of death (COD) was classified by pathophysiologic process (PP) and organ system (OS). Of the 4957 dogs that died between 2004 and 2020 included in the study, 2920 (59.0%) were purebred, 2293 (46.2%) were female, 3005 (60.6%) were intact, 2883 (58.2%) were euthanised. Overall median longevity was 10.0 years. Median longevity was significantly longer for crossbreds, females, neutered dogs, and small-sized breeds. The breeds with the highest median age at death were the Yorkshire terrier, English cocker spaniel, West Highland white terrier, Italian volpino, and Shih Tzu, whilst the American bulldog, English bulldog, American pit bull terrier, Bernese mountain dog and the Maremma and the Abruzzes sheepdog had the lowest median age at death. The most frequent COD by PP was neoplasia (34.0%), which occurred more frequently in large breeds, namely German shepherd, Labrador retriever and Boxer. Degenerative diseases mostly affected small-sized dogs like Miniature pinscher and Dachshund. Regarding the OS involved, diseases of the renal/urinary system were most frequently responsible for COD (15.0%), prevalently degenerative and inflammatory/infectious. Substantial variation in median longevity according to causes of death by PP and OS was observed. These data are relevant for breeders, veterinary practitioners, and owners, to assist breed selection, facilitate early diagnosis, guide choice when purchasing a purebred dog and making health management decisions, and ultimately improve dog welfare.
Collapse
Affiliation(s)
- Mariana Roccaro
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso D'Augusto 237, Rimini 47921, Italy.
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G.Caporale", Campo Boario, Teramo 64100, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, Ozzano dell'Emilia 40064, Italy
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, via Livornese, San Piero a Grado, Pisa 56122, Italy
| | - Eleonora Gori
- Department of Veterinary Sciences, University of Pisa, via Livornese, San Piero a Grado, Pisa 56122, Italy
| | - Maurizio Dondi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, Parma 43126, Italy
| | - Paolo E Crisi
- Faculty of Veterinary Medicine, University of Teramo, Via Villa Romita snc, Teramo 64100, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G.Caporale", Campo Boario, Teramo 64100, Italy
| | - Paolo Dalla Villa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G.Caporale", Campo Boario, Teramo 64100, Italy.
| | - Michele Podaliri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G.Caporale", Campo Boario, Teramo 64100, Italy
| | - Paolo Ciaramella
- Department of Veterinary Clinical Science, University of Naples Federico II, Via Delpino 1, Naples 80137, Italy
| | - Cristina Di Palma
- Department of Veterinary Clinical Science, University of Naples Federico II, Via Delpino 1, Naples 80137, Italy.
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Francesco Porciello
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Paola Gianella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco 10095, Italy
| | - Carlo Guglielmini
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Giovanni L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, Brescia 25124, Italy
| | - Sara Rota Nodari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, Brescia 25124, Italy.
| | - Sonia Sabatelli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, Ozzano dell'Emilia 40064, Italy
| | - Angelo Peli
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso D'Augusto 237, Rimini 47921, Italy
| |
Collapse
|
17
|
Turcsán B, Kubinyi E. Differential behavioral aging trajectories according to body size, expected lifespan, and head shape in dogs. GeroScience 2024; 46:1731-1754. [PMID: 37740140 PMCID: PMC10828231 DOI: 10.1007/s11357-023-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The twofold life expectancy difference between dog breeds predicts differential behavioral and cognitive aging patterns between short- and long-lived dogs. To investigate this prediction, we conducted a cross-sectional analysis using survey data from over 15,000 dogs. We examined the effect of expected lifespan and three related factors (body size, head shape, and purebred status) on the age trajectory of various behavioral characteristics and the prevalence of canine cognitive dysfunction (CCD). Our findings reveal that, although age-related decline in most behavioral characteristics began around 10.5 years of age, the proportion of dogs considered "old" by their owners began to increase uniformly around 6 years of age. From the investigated factors, only body size had a systematic, although not gradual, impact on the aging trajectories of all behavioral characteristics. Dogs weighing over 30 kg exhibited an earlier onset of decline by 2-3 years and a slower rate of decline compared to smaller dogs, probably as a byproduct of their faster age-related physical decline. Larger sized dogs also showed a lower prevalence of CCD risk in their oldest age group, whereas smaller-sized dogs, dolichocephalic breeds, and purebreds had a higher CCD risk prevalence. The identification of differential behavioral and cognitive aging trajectories across dog groups, and the observed associations between body size and the onset, rate, and degree of cognitive decline in dogs have significant translational implications for human aging research, providing valuable insights into the interplay between morphology, physiological ageing, and cognitive decline, and unravelling the trade-off between longevity and relative healthspan.
Collapse
Affiliation(s)
- Borbála Turcsán
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
| | - Enikő Kubinyi
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
18
|
Santovito A, Saracco M, Scarfo' M, Nota A, Bertolino S. Purebred dogs show higher levels of genomic damage compared to mixed breed dogs. Mamm Genome 2024; 35:90-98. [PMID: 37864685 PMCID: PMC10884103 DOI: 10.1007/s00335-023-10020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023]
Abstract
Inbreeding is a common phenomenon in small, fragmented or isolated populations, typical conditions of many threatened species. In the present paper, we used a new non-invasive approach based on the buccal micronucleus assay to evaluate the possible relationships between inbreeding and genomic damage using the dog as model species. In particular, we assessed the frequencies of micronuclei and other nuclear aberrations in a group of purebred dogs (n = 77), comparing the obtained data with those from a control group represented by mixed breed dogs (n = 75). We found a significant increase of micronuclei, nuclear buds and total nuclear aberrations frequencies in purebred dogs compared to mixed-bred dogs. The absence of significant differences in the frequency of micronuclei and other nuclear aberrations amongst different breeds reinforces the hypothesis that the observed increased genomic damage amongst purebred dogs may not be due to a different genomic instability typical of a particular breed, but to inbreeding itself. This hypothesis is further confirmed by the fact that other endogen confounding factors, such as sex, age and weight, do not contribute significantly to the increase of genomic damage observed amongst purebred dogs. In conclusion, results presented in this study showed that, in purebred dogs, inbreeding may increase the levels of genomic damage. Considering that genomic damage is associated with increased physiological problems affecting animal health, the results we obtained may represent a stimulus to discourage the use of intensive inbreeding practices in captive populations and to reduce the fragmentation of wild populations.
Collapse
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy.
| | - Martina Saracco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Manuel Scarfo'
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Alessandro Nota
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| |
Collapse
|
19
|
McMillan KM, Bielby J, Williams CL, Upjohn MM, Casey RA, Christley RM. Longevity of companion dog breeds: those at risk from early death. Sci Rep 2024; 14:531. [PMID: 38302530 PMCID: PMC10834484 DOI: 10.1038/s41598-023-50458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
The companion dog is one of the most phenotypically diverse species. Variability between breeds extends not only to morphology and aspects of behaviour, but also to longevity. Despite this fact, little research has been devoted to assessing variation in life expectancy between breeds or evaluating the potential for phylogenetic characterisation of longevity. Using a dataset of 584,734 unique dogs located within the UK, including 284,734 deceased, we present variation in longevity estimates within the following: parental lineage (purebred = 1 breed, crossbred ≥ 2 breeds), breed (n = 155), body size (large, medium, small), sex (male, female) and cephalic index (brachycephalic, mesocephalic, dolichocephalic). Survival estimates were then partitioned amongst phylogenetic clades: providing evidence that canine evolutionary history (via domestication and associated artificial selection) is associated with breed lifespan. This information provides evidence to inform discussions regarding pedigree health, whilst helping current/prospective owners, breeders, policy makers, funding bodies and welfare organisations improve decision making regarding canine welfare.
Collapse
Affiliation(s)
| | - Jon Bielby
- Liverpool John Moores University, Liverpool, UK
| | | | | | | | | |
Collapse
|
20
|
Jiménez AG. A revisiting of "the hallmarks of aging" in domestic dogs: current status of the literature. GeroScience 2024; 46:241-255. [PMID: 37594598 PMCID: PMC10828135 DOI: 10.1007/s11357-023-00911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
A progressive decline in biological function and fitness is, generally, how aging is defined. However, in 2013, a description on the "hallmarks of aging" in mammals was published, and within it, it described biological processes that are known to alter the aging phenotype. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication (inflammation), and changes within the microbiome. This mini-review provides a detailed account of the progress on each of these hallmarks of aging in the domestic dog within the last 5 years. Additionally, when there are gaps in the literature between other mammalian species and dogs, I highlight the aging biomarkers that may be missing for dogs as aging models. I also argue for the importance of dog aging studies to include several breeds of dogs at differing ages and for age corrections for breeds with differing mean lifespans throughout.
Collapse
Affiliation(s)
- Ana Gabriela Jiménez
- Department of Biology, Colgate University, 13 Oak Dr, Hamilton, NY, 133546, USA.
| |
Collapse
|
21
|
Nam Y, White M, Karlsson EK, Creevy KE, Promislow DEL, McClelland RL. Dog size and patterns of disease history across the canine age spectrum: Results from the Dog Aging Project. PLoS One 2024; 19:e0295840. [PMID: 38232117 PMCID: PMC10793924 DOI: 10.1371/journal.pone.0295840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Age in dogs is associated with the risk of many diseases, and canine size is a major factor in that risk. However, the size patterns are complex. While small size dogs tend to live longer, some diseases are more prevalent among small dogs. In this study we seek to quantify how the pattern of disease history varies across the spectrum of dog size, dog age, and their interaction. Utilizing owner-reported data on disease history from a substantial number of companion dogs enrolled in the Dog Aging Project, we investigate how body size, as measured by weight, associates with the lifetime prevalence of a reported condition and its pattern across age for various disease categories. We found significant positive associations between dog size and the lifetime prevalence of skin, bone/orthopedic, gastrointestinal, ear/nose/throat, cancer/tumor, brain/neurologic, endocrine, and infectious diseases. Similarly, dog size was negatively associated with lifetime prevalence of ocular, cardiac, liver/pancreas, and respiratory disease categories. Kidney/urinary disease prevalence did not vary by size. We also found that the association between age and lifetime disease prevalence varied by dog size for many conditions including ocular, cardiac, orthopedic, ear/nose/throat, and cancer. Controlling for sex, purebred vs. mixed-breed status, and geographic region made little difference in all disease categories we studied. Our results align with the reduced lifespan in larger dogs for most of the disease categories and suggest potential avenues for further examination.
Collapse
Affiliation(s)
- Yunbi Nam
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Michelle White
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Elinor K. Karlsson
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States of America
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States of America
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Robyn L. McClelland
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | | |
Collapse
|
22
|
Ng D, Pawling J, Dennis JW. Gene purging and the evolution of Neoave metabolism and longevity. J Biol Chem 2023; 299:105409. [PMID: 37918802 PMCID: PMC10722388 DOI: 10.1016/j.jbc.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto Ontario, Canada.
| |
Collapse
|
23
|
Paudel M, Kafle S, Gompo TR, Khatri KB, Aryal A. Microbiological and hematological aspects of canine pyometra and associated risk factors. Heliyon 2023; 9:e22368. [PMID: 38076069 PMCID: PMC10709193 DOI: 10.1016/j.heliyon.2023.e22368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 11/18/2024] Open
Abstract
Canine Pyometra, also known as cystic endometrial hyperplasia complex, is a common reproductive issue in bitches. This study aimed to identify associated risk factors, hematological variation, bacteria involved, and the most potent anti-bacterial against bacterial isolates of canine pyometra. Forty-five bitches of different habitats, breeds, and ages infected with pyometra were included in the study. The samples were cultured to isolate bacteria associated with the pyometra and antibiotic sensitivity was done for each bacterial isolates to get antibiogram. The study findings showed that potential risk factors such as age group, medroxyprogesterone acetate administration, and changes in the white blood cells parameters were significantly associated (P < 0.05) with the type of pyometra. Closed cervix pyometra in dogs showed significantly higher prevalence of clinical signs including depression, vomiting, abdominal enlargement, and fever compared to the open cervix pyometra. Low levels of red blood cells, pack cell volume, and hemoglobin indicated that the pyometra-infected dogs were more likely to have normocytic, normochromic, and non-regenerative anemia. Pyometra was attributed to an increase in AST (Aspertate aminotransferase), ALT (Alanine transaminase), ALP (Alkaline phosphatase), BUN (Blood Urea Nitrogen), and Creatinine while a decrease in serum albumin. Of the all bacterial isolates, E. coli (35.55%) was the most common pathogen isolated from canine pyometra, followed by Pseudomonas spp. (26.66%). E coli and Pseudomonas spp. were susceptible to Imipenem, Amikacin, and Gentamicin while highly resistant to Ampicillin and Erythromycin. Imipenem, Amikacin, and Gentamicin were the most sensitive antibiotics, while Ampicillin and Erythromycin were the most resistant antibiotics for the bacterial strain isolated from canine pyometra. Multidrug resistant was observed in 26 of the isolated bacteria, indicating acquired resistance due to improper and uncontrolled use. Hence early diagnosis and close monitoring of antimicrobial susceptibility before therapeutic intervention is indispensable in preventing the global threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Madhav Paudel
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Chitwan, Rampur, Nepal
| | - Sujan Kafle
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Chitwan, Rampur, Nepal
| | | | - Kham Bahadur Khatri
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Chitwan, Rampur, Nepal
| | - Arjun Aryal
- Central Referral Veterinary Hospital, Kathmandu, Nepal
| |
Collapse
|
24
|
Yuan R, Hascup E, Hascup K, Bartke A. Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity - Trade-Offs and Pace-Of-Life. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1692-1703. [PMID: 38105191 PMCID: PMC10792675 DOI: 10.1134/s0006297923110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying "theories of aging" have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species. We now propose that longevity and presumably also the rate of aging are related to the "pace-of-life." A slow pace-of-life including slow growth, late sexual maturation, and a small number of offspring, predicts slow aging and long life. The fast pace of life (rapid growth, early sexual maturation, and major reproductive effort) is associated with faster aging and shorter life, presumably due to underlying trade-offs. The proposed relationships between the pace-of-life and longevity apply to both inter- and intra-species comparisons as well as to dietary, genetic, and pharmacological interventions that extend life and to evidence for early life programming of the trajectory of aging. Although available evidence suggests the causality of at least some of these associations, much further work will be needed to verify this interpretation and to identify mechanisms that are responsible.
Collapse
Affiliation(s)
- Rong Yuan
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| | - Erin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
| | - Kevin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| |
Collapse
|
25
|
Kapsetaki SE, Basile AJ, Compton ZT, Rupp SM, Duke EG, Boddy AM, Harrison TM, Sweazea KL, Maley CC. The relationship between diet, plasma glucose, and cancer prevalence across vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551378. [PMID: 37577544 PMCID: PMC10418110 DOI: 10.1101/2023.07.31.551378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Could diet and mean plasma glucose concentration (MPGluC) explain the variation in cancer prevalence across species? We collected diet, MPGluC, and neoplasia data for 160 vertebrate species from existing databases. We found that MPGluC negatively correlates with cancer and neoplasia prevalence, mostly of gastrointestinal organs. Trophic level positively correlates with cancer and neoplasia prevalence even after controlling for species MPGluC. Most species with high MPGluC (50/78 species = 64.1%) were birds. Most species in high trophic levels (42/53 species = 79.2%) were reptiles and mammals. Our results may be explained by the evolution of insulin resistance in birds which selected for loss or downregulation of genes related to insulin-mediated glucose import in cells. This led to higher MPGluC, intracellular caloric restriction, production of fewer reactive oxygen species and inflammatory cytokines, and longer telomeres contributing to longer longevity and lower neoplasia prevalence in extant birds relative to other vertebrates.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Tufts University, School of Arts and Sciences, Department of Biology, Medford, MA, USA
| | - Anthony J Basile
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, 427 East Tyler Mall, Arizona State University, Tempe, Arizona, USA
| | - Zachary T Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shawn M Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Elizabeth G Duke
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607 USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, 27607 USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Anthropology, University of California Santa Barbara, CA, USA
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607 USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, 27607 USA
| | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
26
|
Chen FL, Ullal TV, Graves JL, Ratcliff ER, Naka A, McKenzie B, Carttar TA, Super KM, Austriaco J, Weber SY, Vaughn J, LaCroix-Fralish ML. Evaluating instruments for assessing healthspan: a multi-center cross-sectional study on health-related quality of life (HRQL) and frailty in the companion dog. GeroScience 2023; 45:2089-2108. [PMID: 36781597 PMCID: PMC10651603 DOI: 10.1007/s11357-023-00744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Developing valid tools that assess key determinants of canine healthspan such as frailty and health-related quality of life (HRQL) is essential to characterizing and understanding aging in dogs. Additionally, because the companion dog is an excellent translational model for humans, such tools can be applied to evaluate gerotherapeutics and investigate mechanisms underlying longevity in both dogs and humans. In this multi-center, cross-sectional study, we investigated the use of a clinical questionnaire (Canine Frailty Index; CFI; Banzato et al., 2019) to assess frailty and an owner assessment tool (VetMetrica HRQL) to evaluate HRQL in 451 adult companion dogs. Results demonstrated validity of the tools by confirming expectations that frailty score increases and HRQL scores deteriorate with age. CFI scores were significantly higher (higher frailty) and HRQL scores significantly lower (worse HRQL) in old dogs (≥ 7 years of age) compared to young dogs (≥ 2 and < 6 years of age). Body size (small < 11.3 kg (25 lbs) or large > 22.7 kg (50 lbs)) was not associated with CFI or total HRQL score. However, older, larger dogs showed faster age-related decline in HRQL scores specific to owner-reported activity and comfort. Findings suggest that the clinician-assessed CFI and owner-reported VetMetrica HRQL are useful tools to evaluate two determinants of healthspan in dogs: the accumulation of frailty and the progressive decline in quality of life. Establishing tools that operationalize the assessment of canine healthspan is critical for the advancement of geroscience and the development of gerotherapeutics that benefit both human and veterinary medicine. Graphical summary of the design, results, and conclusions of the study.
Collapse
Affiliation(s)
- Frances L Chen
- Cellular Longevity Inc., San Francisco, CA, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Tarini V Ullal
- Cellular Longevity Inc., San Francisco, CA, USA
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dall'Ara P, Lauzi S, Turin L, Castaldelli G, Servida F, Filipe J. Effect of Aging on the Immune Response to Core Vaccines in Senior and Geriatric Dogs. Vet Sci 2023; 10:412. [PMID: 37505818 PMCID: PMC10385316 DOI: 10.3390/vetsci10070412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Elderly dogs are steadily increasing worldwide as well as veterinarians' and owners' interest in their health and wellness. Aging is not a disease, but a combination of changes negatively affecting the organism in general and the immune system in particular, resulting in a decline in protection over time. The aim of this study was to measure the specific serum antibody titers against the main dangerous and widespread viral diseases preventable by core vaccinations in senior and geriatric dogs using the in-practice test VacciCheck. A cohort of three hundred fifty elderly dogs was analyzed for Protective Antibody Titers (PATs) against CPV-2, CDV and CAdV-1. The age ranged from 5 to 19 years, with two hundred fifty-eight seniors (73.7%) and ninety-two geriatrics (26.3%), and 97.4% of them were vaccinated at least once in their lives. More than half of the entire study population (52.9%) had PATs simultaneously for all three diseases, with 80.5% seniors and 19.5% geriatrics. Specific PATs were found in 88.6% of aging dogs for CPV-2, 82.3% for CadV-1 and 66.0% for CDV, demonstrating that unprotected aging dogs represent a minority. Unexpectedly, the larger elderly dogs resulted as more protected than smaller ones for CPV-2. Protection then decreases over time, with geriatric dogs less protected than senior ones. Veterinary practitioners should therefore always consider whether to maintain core vaccinations in aging dogs as in adults on a three-year basis or opt instead for closer boosters (every 1 or 2 years). PATs for core vaccines could then represent a good biomarker of protection and their titration could become a standard of care, especially in such a sensitive period of the dogs' life.
Collapse
Affiliation(s)
- Paola Dall'Ara
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulia Castaldelli
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Francesco Servida
- Clinica Veterinaria Pegaso, Via Dante Alighieri 169, 22070 Rovello Porro, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
28
|
Mondino A, Khan M, Case B, Fefer G, Panek WK, Gruen ME, Olby NJ. Winning the race with aging: age-related changes in gait speed and its association with cognitive performance in dogs. Front Vet Sci 2023; 10:1150590. [PMID: 37396989 PMCID: PMC10309205 DOI: 10.3389/fvets.2023.1150590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction In humans, gait speed is a crucial component in geriatric evaluation since decreasing speed can be a harbinger of cognitive decline and dementia. Aging companion dogs can suffer from age-related mobility impairment, cognitive decline and dementia known as canine cognitive dysfunction syndrome. We hypothesized that there would be an association between gait speed and cognition in aging dogs. Methods We measured gait speed on and off leash in 46 adult and 49 senior dogs. Cognitive performance in senior dogs was assessed by means of the Canine Dementia Scale and a battery of cognitive tests. Results We demonstrated that dogs' food-motivated gait speed off leash is correlated with fractional lifespan and cognitive performance in dogs, particularly in the domains of attention and working memory. Discussion Food-motivated gait speed off leash represents a relatively easy variable to measure in clinical settings. Moreover, it proves to be a more effective indicator of age-related deterioration and cognitive decline than gait speed on leash.
Collapse
|
29
|
Kim HS, Jang S, Kim J. Genome-Wide Integrative Transcriptional Profiling Identifies Age-Associated Signatures in Dogs. Genes (Basel) 2023; 14:1131. [PMID: 37372311 DOI: 10.3390/genes14061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mammals experience similar stages of embryonic development, birth, infancy, youth, adolescence, maturity, and senescence. While embryonic developmental processes have been extensively researched, many molecular mechanisms regulating the different life stages after birth, such as aging, remain unresolved. We investigated the conserved and global molecular transitions in transcriptional remodeling with age in dogs of 15 breeds, which revealed that genes underlying hormone level regulation and developmental programs were differentially regulated during aging. Subsequently, we show that the candidate genes associated with tumorigenesis also exhibit age-dependent DNA methylation patterns, which might have contributed to the tumor state through inhibiting the plasticity of cell differentiation processes during aging, and ultimately suggesting the molecular events that link the processes of aging and cancer. These results highlight that the rate of age-related transcriptional remodeling is influenced not only by the lifespan, but also by the timing of critical physiological milestones.
Collapse
Affiliation(s)
- Hyun Seung Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Subin Jang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
30
|
McCoy BM, Brassington L, Jin K, Dolby GA, Shrager S, Collins D, Dunbar M, Ruple A, Snyder-Mackler N. Social determinants of health and disease in companion dogs: a cohort study from the Dog Aging Project. Evol Med Public Health 2023; 11:187-201. [PMID: 37388194 PMCID: PMC10306367 DOI: 10.1093/emph/eoad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/03/2023] [Indexed: 07/01/2023] Open
Abstract
Exposure to social environmental adversity is associated with health and survival across many social species, including humans. However, little is known about how these health and mortality effects vary across the lifespan and may be differentially impacted by various components of the environment. Here, we leveraged a relatively new and powerful model for human aging, the companion dog, to investigate which components of the social environment are associated with dog health and how these associations vary across the lifespan. We drew on comprehensive survey data collected on 21,410 dogs from the Dog Aging Project and identified five factors that together explained 33.7% of the variation in a dog's social environment. Factors capturing financial and household adversity were associated with poorer health and lower physical mobility in companion dogs, while factors that captured social support, such as living with other dogs, were associated with better health when controlling for dog age and weight. Notably, the effects of each environmental component were not equal: the effect of social support was 5× stronger than financial factors. The strength of these associations depended on the age of the dog, including a stronger relationship between the owner's age and the dog's health in younger as compared to older dogs. Taken together, these findings suggest the importance of income, stability and owner's age on owner-reported health outcomes in companion dogs and point to potential behavioral and/or environmental modifiers that can be used to promote healthy aging across species.
Collapse
Affiliation(s)
- Brianah M McCoy
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Layla Brassington
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Greer A Dolby
- Department of Biology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Sandi Shrager
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Devin Collins
- Department of Sociology, University of Washington, Seattle, WA, USA
| | - Matthew Dunbar
- Center for Studies in Demography & Ecology, University of Washington, Seattle, WA, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
31
|
Dall'Ara P, Filipe J, Pilastro C, Turin L, Lauzi S, Gariboldi EM, Stefanello D. Can Chemotherapy Negatively Affect the Specific Antibody Response toward Core Vaccines in Canine Cancer Patients? Vet Sci 2023; 10:vetsci10040303. [PMID: 37104458 PMCID: PMC10143758 DOI: 10.3390/vetsci10040303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
The life expectancy of our pets has been getting longer in recent years due to new therapeutic opportunities, better nutrition, and better diagnostic approaches. This positive effect, however, has been accompanied by a concomitant increase in neoplasms, particularly in canine patients. Therefore, veterinarians inevitably face new issues related to these diseases, poorly or never investigated in the past, such as the possible side effects resulting from chemotherapy. The aim of this study was to investigate whether and how chemotherapy influences the antibody response against CPV-2, CDV, and CAdV-1 in dogs vaccinated before starting chemotherapy. Twenty-one canine patients with different types of malignancies were sampled before, during, and after different chemotherapy protocols to determine their actual levels of seroprotection against CPV-2, CDV, and CadV-1 by using the in-practice test VacciCheck. Differences related to sex, breed size, type of tumor, and chemotherapy protocol were evaluated. No statistically significant changes in antibody protection emerged for any of the chemotherapy protocol used, suggesting that, contrary to expectation, chemotherapy does not have a marked immunosuppressive effect on the post-vaccine antibody response. These results, although preliminary, may be useful in improving the clinical approach to the canine cancer patient, helping veterinarians fully manage their patients, and enabling owners to feel more confident about their pets' quality of life.
Collapse
Affiliation(s)
- Paola Dall'Ara
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università 6, 26900 Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università 6, 26900 Lodi, Italy
| | - Chiara Pilastro
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università 6, 26900 Lodi, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università 6, 26900 Lodi, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università 6, 26900 Lodi, Italy
| | - Elisa Maria Gariboldi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università 6, 26900 Lodi, Italy
| | - Damiano Stefanello
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
32
|
Kraus C, Snyder-Mackler N, Promislow DEL. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience 2023; 45:627-643. [PMID: 36066765 PMCID: PMC9886701 DOI: 10.1007/s11357-022-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 02/03/2023] Open
Abstract
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Collapse
Affiliation(s)
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, School for Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
33
|
LoGiudice RJ, Rivera PL. Veterinary Spinal Manipulative Therapy or Animal Chiropractic in Veterinary Rehabilitation. Vet Clin North Am Small Anim Pract 2023; 53:757-774. [PMID: 36997408 DOI: 10.1016/j.cvsm.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Veterinary rehabilitation is a multimodal diagnostic and treatment approach that is recommended and provided to patients daily. One therapeutic modality that may be beneficial (diagnostically and therapeutically) is veterinary spinal manipulative therapy or animal chiropractic (AC). AC is a receptor-based health-care modality being provided more frequently in veterinary practices. All clinicians should strive to understand the mode of action, indications, contraindications, how it affects the patient from the neuro-anatomical and biomechanical point of view, and most importantly, when not to provide the requested modality, as further diagnostics may be indicated.
Collapse
|
34
|
Prevalence of Serum Antibody Titers against Core Vaccine Antigens in Italian Dogs. Life (Basel) 2023; 13:life13020587. [PMID: 36836944 PMCID: PMC9961557 DOI: 10.3390/life13020587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Canine vaccination is the main tool for preventing dangerous and widespread diseases. The strongly recommended (core) dog vaccines are against Canine Parvovirus type 2 (CPV-2), Canine Distemper Virus (CDV), and Canine Adenovirus (CAdV-1), but vaccination protocols should be tailored to dog lifestyles. Vaccination guidelines suggest vaccinating adult dogs no more frequently than every 3 years using modified live (attenuated) vaccines (MLV), thus obtaining a long-lasting (sometimes throughout life) specific protection in many but not all animals. The aim of this study was to determine the actual levels of seroprotection against CPV-2, CDV and CAdV-1 in a cohort of Italian dogs by using the in-practice test VacciCheck. A total of 1,027 dogs (951 vaccinated and 76 unvaccinated) were analyzed for Protective Antibody Titers (PATs) against CPV-2, CDV, and CAdV-1. Differences related to sex, age, breed size, health status, and time elapsed since last vaccination were evaluated. Half of the entire canine cohort (50.6%) had PATs for all three viruses (68.5% considering only vaccinated dogs). In particular, 90.8% of dogs were protected against CPV-2, 68.6% against CDV, and 79.8% against CAdV-1. Most dogs remained protected for 3 years after vaccination or longer. Revaccination on a 3-year basis can then be recommended for core MLV vaccines without altering individual's seroprotection or even herd immunity.
Collapse
|
35
|
Mondino A, Khan M, Case B, Giovagnoli S, Thomson A, Lascelles BDX, Gruen M, Olby N. Activity patterns are associated with fractional lifespan, memory, and gait speed in aged dogs. Sci Rep 2023; 13:2588. [PMID: 36788306 PMCID: PMC9929073 DOI: 10.1038/s41598-023-29181-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Maintaining an active lifestyle is considered a hallmark of successful aging. Physical activity significantly reduces the risk of cognitive decline and Alzheimer's disease in humans. However, pain and lack of motivation are important barriers to exercise. Dogs are a remarkable model for translational studies in aging and cognition as they are prone to Canine Cognitive Dysfunction syndrome, which has many similarities with Alzheimer's disease. According to owner reports, changes in activity levels are characteristic of this syndrome, with decreased daytime activity, but also excessive pacing, especially at sleep time. We used physical activity monitors to record the activity of 27 senior dogs and evaluated the association between activity level and age, fractional lifespan, cognitive status measured by an owner questionnaire and cognitive tests. We also assessed the relationship between activity and joint/spinal pain, and the off/on leash gait speed ratio (a potential marker of gait speed reserve and motivation). We found that activity patterns in dogs are associated with fractional lifespan and working memory. Additionally, dogs with higher on/off leash gait speed are more active in the afternoon of weekdays. These results encourage future studies evaluating how physical activity can improve or delay cognitive impairment in senior dogs.
Collapse
Affiliation(s)
- Alejandra Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael Khan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Beth Case
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sara Giovagnoli
- Department of Psychology "Renzo Canestrari", University of Bologna, Bologna, Italy
| | - Andrea Thomson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - B Duncan X Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Comparative Pain Research and Education Centre, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA
- Department of Anesthesiology, Center for Translational Pain Research, Duke University, Durham, NC, USA
| | - Margaret Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Natasha Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
36
|
Gergely R, Tökölyi J. Resource availability modulates the effect of body size on reproductive development. Ecol Evol 2023; 13:e9722. [PMID: 36620418 PMCID: PMC9817193 DOI: 10.1002/ece3.9722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Within-species variation in animal body size predicts major differences in life history, for example, in reproductive development, fecundity, and even longevity. Purely from an energetic perspective, large size could entail larger energy reserves, fuelling different life functions, such as reproduction and survival (the "energy reserve" hypothesis). Conversely, larger body size could demand more energy for maintenance, and larger individuals might do worse in reproduction and survival under resource shortage (the "energy demand" hypothesis). Disentangling these alternative hypotheses is difficult because large size often correlates with better resource availability during growth, which could mask direct effects of body size on fitness traits. Here, we used experimental body size manipulation in the freshwater cnidarian Hydra oligactis, coupled with manipulation of resource (food) availability to separate direct effects of body size from resource availability on fitness traits (sexual development time, fecundity, and survival). We found significant interaction between body size and food availability in sexual development time in both males and females, such that large individuals responded less strongly to variation in resource availability. These results are consistent with an energy reserve effect of large size in Hydra. Surprisingly, the response was different in males and females: small and starved females delayed their reproduction, while small and starved males developed reproductive organs faster. In case of fecundity and survival, both size and food availability had significant effects, but we detected no interaction between them. Our observations suggest that in Hydra, small individuals are sensitive to fluctuations in resource availability, but these small individuals are able to adjust their reproductive development to maintain fitness.
Collapse
Affiliation(s)
- Réka Gergely
- MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
- Pál Juhász‐Nagy Doctoral SchoolUniversity of DebrecenDebrecenHungary
| | - Jácint Tökölyi
- MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
| |
Collapse
|
37
|
Montoya M, Morrison JA, Arrignon F, Spofford N, Charles H, Hours MA, Biourge V. Life expectancy tables for dogs and cats derived from clinical data. Front Vet Sci 2023; 10:1082102. [PMID: 36896289 PMCID: PMC9989186 DOI: 10.3389/fvets.2023.1082102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
There are few recent and methodologically robust life expectancy (LE) tables for dogs or cats. This study aimed to generate LE tables for these species with clinical records from >1,000 Banfield Pet hospitals in the USA. Using Sullivan's method, LE tables were generated across survey years 2013-2019, by survey year, and for subpopulations defined by sex, adult body size group (purebred dogs only: toy, small, medium, large and giant), and median body condition score (BCS) over life. The deceased population for each survey year comprised animals with a recorded date of death in that year; survivors had no death date in that year and were confirmed living by a veterinary visit in a subsequent year. The dataset totaled 13,292,929 unique dogs and 2,390,078 unique cats. LE at birth (LEbirth) was 12.69 years (95% CI: 12.68-12.70) for all dogs, 12.71 years (12.67-12.76) for mixed-breed dogs, 11.18 years (11.16-11.20) for cats, and 11.12 (11.09-11.14) for mixed-breed cats. LEbirth increased with decreasing dog size group and increasing survey year 2013 to 2018 for all dog size groups and cats. Female dogs and cats had significantly higher LEbirth than males: 12.76 years (12.75-12.77) vs. 12.63 years (12.62-12.64), and 11.68 years (11.65-11.71) vs. 10.72 years (10.68-10.75), respectively. Obese dogs (BCS 5/5) had a significantly lower LEbirth [11.71 years (11.66-11.77)] than overweight dogs (BCS 4/5) [13.14 years (13.12-13.16)] and dogs with ideal BCS 3/5 [13.18 years (13.16-13.19)]. The LEbirth of cats with BCS 4/5 [13.67 years (13.62-13.71)] was significantly higher than cats with BCS 5/5 [12.56 years (12.45-12.66)] or BCS 3/5 [12.18 years (12.14-12.21)]. These LE tables provide valuable information for veterinarians and pet owners and a foundation for research hypotheses, as well as being a stepping-stone to disease-associated LE tables.
Collapse
|
38
|
Dias-Pereira P. Morbidity and mortality in elderly dogs - a model for human aging. BMC Vet Res 2022; 18:457. [PMID: 36581919 PMCID: PMC9798575 DOI: 10.1186/s12917-022-03518-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022] Open
Abstract
Over the last decades, canines have experienced a marked increase in their lifespan, mirroring human populations. Several authors have pointed out the domestic dog as a suitable animal model for geropathology translational research. The aim of this study is to assess age-related morbidities and mortality in a population of 269 elderly canines (130 males and 139 females) submitted to necropsy. The organic systems exhibiting the higher number of age-related morbidities were the reproductive, cardiovascular and urinary systems and, in females, also the mammary gland. The prevalence of cardiovascular and urinary disease was significantly higher in males and mammary lesions were exclusively found in females. Urinary disease was more frequent in small breeds dogs, while peritoneum and male genital morbidities were significantly higher in larger breeds. Hyperplastic and degenerative lesions were common morbidities found in this elderly dog population. The main cause of death was neoplasia, which accounted for almost half of the deaths. Cardiovascular and urinary pathology also emerged as a frequent cause of mortality. These findings partially parallel data obtained for human species, displaying cancer and cardiovascular pathology as major causes of disease and death in elderlies. Our data reinforce the potential of the domestic dog for further translational investigations on gerontology, meeting the concept of One Health.
Collapse
Affiliation(s)
- Patrícia Dias-Pereira
- grid.5808.50000 0001 1503 7226Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
39
|
Lidsky PV, Yuan J, Rulison JM, Andino-Pavlovsky R. Is Aging an Inevitable Characteristic of Organic Life or an Evolutionary Adaptation? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1413-1445. [PMID: 36717438 PMCID: PMC9839256 DOI: 10.1134/s0006297922120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
Aging is an evolutionary paradox. Several hypotheses have been proposed to explain it, but none fully explains all the biochemical and ecologic data accumulated over decades of research. We suggest that senescence is a primitive immune strategy which acts to protect an individual's kin from chronic infections. Older organisms are exposed to pathogens for a longer period of time and have a higher likelihood of acquiring infectious diseases. Accordingly, the parasitic load in aged individuals is higher than in younger ones. Given that the probability of pathogen transmission is higher within the kin, the inclusive fitness cost of infection might exceed the benefit of living longer. In this case, programmed lifespan termination might be an evolutionarily stable strategy. Here, we discuss the classical evolutionary hypotheses of aging and compare them with the pathogen control hypothesis, discuss the consistency of these hypotheses with existing empirical data, and present a revised conceptual framework to understand the evolution of aging.
Collapse
Affiliation(s)
- Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| | - Jing Yuan
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
| | - Jacob M Rulison
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
- University of California Berkeley, CA, USA
| | - Raul Andino-Pavlovsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| |
Collapse
|
40
|
Pepke ML, Kvalnes T, Rønning B, Jensen H, Boner W, Saether BE, Monaghan P, Ringsby TH. Artificial size selection experiment reveals telomere length dynamics and fitness consequences in a wild passerine. Mol Ecol 2022; 31:6224-6238. [PMID: 34997994 DOI: 10.1111/mec.16340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/31/2023]
Abstract
Telomere dynamics could underlie life-history trade-offs among growth, size and longevity, but our ability to quantify such processes in natural, unmanipulated populations is limited. We investigated how 4 years of artificial selection for either larger or smaller tarsus length, a proxy for body size, affected early-life telomere length (TL) and several components of fitness in two insular populations of wild house sparrows over a study period of 11 years. The artificial selection was expected to shift the populations away from their optimal body size and increase the phenotypic variance in body size. Artificial selection for larger individuals caused TL to decrease, but there was little evidence that TL increased when selecting for smaller individuals. There was a negative correlation between nestling TL and tarsus length under both selection regimes. Males had longer telomeres than females and there was a negative effect of harsh weather on TL. We then investigated whether changes in TL might underpin fitness effects due to the deviation from the optimal body size. Mortality analyses indicated disruptive selection on TL because both short and long early-life telomeres tended to be associated with the lowest mortality rates. In addition, there was a tendency for a negative association between TL and annual reproductive success, but only in the population where body size was increased experimentally. Our results suggest that natural selection for optimal body size in the wild may be associated with changes in TL during growth, which is known to be linked to longevity in some bird species.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bernt Rønning
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
41
|
Could aging evolve as a pathogen control strategy? Trends Ecol Evol 2022; 37:1046-1057. [PMID: 36096982 DOI: 10.1016/j.tree.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Aging is often attributed to the detrimental side effects of beneficial traits but not a programmed adaptive process. Alternatively, the pathogen control hypothesis posits that defense against infectious diseases may provide a strong selection force for restriction of lifespan. Aging might have evolved to remove older individuals who carry chronic diseases that may transmit to their younger kin. Thus, selection for shorter lifespans may benefit kin's fitness. The pathogen control hypothesis addresses arguments typically raised against adaptive aging concepts: it explains the benefit of shorter lifespan and the absence of mutant variants that do not age. We discuss the consistency and explanatory power of this hypothesis and compare it with classic hypotheses of aging.
Collapse
|
42
|
MacQuiddy B, Moreno JA, Kusick B, McGrath S. Assessment of risk factors in dogs with presumptive advanced canine cognitive dysfunction. Front Vet Sci 2022; 9:958488. [PMID: 36330158 PMCID: PMC9622924 DOI: 10.3389/fvets.2022.958488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/30/2022] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVES The aim of this study was to investigate the potential risk factors involved in the development of presumptive advanced canine cognitive dysfunction (pACCD). MATERIALS AND METHODS A questionnaire was developed to identify dogs with presumptive canine cognitive dysfunction (CCD) based on an adapted Canine Dementia Scale and to evaluate for potential risk factors among the presumptive advanced cognitive dysfunction group. The questionnaire was distributed to 7,574 owners of dogs (≥8 years of age) who presented to the CSU VTH between 2017 and 2020. Dogs were classified into four groups based on the Canine Dementia Scale score (normal, mild, moderate, and severe cognitive impairment) and two subgroups for the cognitively impaired groups based on the presence or absence of underlying medical conditions. Comparisons between normal and presumptive advanced cognitively impaired groups, with and without underlying medical conditions, were made against various risk factors. Chi-square tests and logistic regression analysis were used to determine associations between categorical variables and a p-value of <0.05 was considered indicative of evidence of association. RESULTS The completed response rate for the questionnaire was 14.2% (1,079/7,574). Among those, 231 dogs were classified as having presumptive advanced cognitive dysfunction. The prevalence of presumptive advanced cognitive dysfunction in the included age groups was 8.1% in ages 8 to <11 years, 18.8% in ages 11 to <13 years, 45.3% in ages 13 to <15 years, 67.3% in ages 15 to <17 years, and 80% in ages >17 years. Dogs with a thin body condition score had the largest contribution to the chi-square statistic. Based on the logistic regression model, both age (p < 0.001) and BCS (p = 0.0057) are associated with presumptive ACCD. CONCLUSION AND RELEVANCE The chi-square test and logistic regression analysis both suggested an association between a thin body condition and an increased chance of cognitive decline. However, it is difficult to determine if the thin BCS in this group could be secondary to another confounding factor. The prevalence of cognitive dysfunction rapidly increased with age in this study. These findings warrant continued studies including veterinary evaluations to explore risk factors of canine dementia.
Collapse
Affiliation(s)
- Brittany MacQuiddy
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Breonna Kusick
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stephanie McGrath
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
43
|
Brown TJ, Dugdale HL, Hammers M, Komdeur J, Richardson DS. Seychelles warblers with silver spoons: Juvenile body mass is a lifelong predictor of annual survival, but not annual reproduction or senescence. Ecol Evol 2022; 12:e9049. [PMID: 35813920 PMCID: PMC9251861 DOI: 10.1002/ece3.9049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
The environment experienced during development, and its impact on intrinsic condition, can have lasting outcomes for individual phenotypes and could contribute to variation in adult senescence trajectories. However, the nature of this relationship in wild populations remains uncertain, owing to the difficulties in summarizing natal conditions and in long-term monitoring of individuals from free-roaming long-lived species. Utilizing a closely monitored, closed population of Seychelles warblers (Acrocephalus sechellensis), we determine whether juvenile body mass is associated with natal socioenvironmental factors, specific genetic traits linked to fitness in this system, survival to adulthood, and senescence-related traits. Juveniles born in seasons with higher food availability and into smaller natal groups (i.e., fewer competitors) were heavier. In contrast, there were no associations between juvenile body mass and genetic traits. Furthermore, size-corrected mass-but not separate measures of natal food availability, group size, or genetic traits-was positively associated with survival to adulthood, suggesting juvenile body mass is indicative of natal condition. Heavier juveniles had greater body mass and had higher rates of annual survival as adults, independent of age. In contrast, there was no association between juvenile mass and adult telomere length attrition (a measure of somatic stress) nor annual reproduction. These results indicate that juvenile body mass, while not associated with senescence trajectories, can influence the likelihood of surviving to old age, potentially due to silver-spoon effects. This study shows that measures of intrinsic condition in juveniles can provide important insights into the long-term fitness of individuals in wild populations.
Collapse
Affiliation(s)
- Thomas J. Brown
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Nature SeychellesVictoria, MahéSeychelles
| |
Collapse
|
44
|
Horvath S, Lu AT, Haghani A, Zoller JA, Li CZ, Lim AR, Brooke RT, Raj K, Serres-Armero A, Dreger DL, Hogan AN, Plassais J, Ostrander EA. DNA methylation clocks for dogs and humans. Proc Natl Acad Sci U S A 2022; 119:e2120887119. [PMID: 35580182 PMCID: PMC9173771 DOI: 10.1073/pnas.2120887119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
DNA methylation profiles have been used to develop biomarkers of aging known as epigenetic clocks, which predict chronological age with remarkable accuracy and show promise for inferring health status as an indicator of biological age. Epigenetic clocks were first built to monitor human aging, but their underlying principles appear to be evolutionarily conserved, as they have now been successfully developed for many mammalian species. Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93 domestic dog breeds. The methylation profiles were generated using the mammalian methylation array, which utilizes DNA sequences that are conserved across all mammalian species. Canine epigenetic clocks were constructed to estimate age and also average time to death. We also present two highly accurate human–dog dual species epigenetic clocks (R = 0.97), which may facilitate the ready translation from canine to human use (or vice versa) of antiaging treatments being developed for longevity and preventive medicine. Finally, epigenome-wide association studies here reveal individual methylation sites that may underlie the inverse relationship between breed weight and lifespan. Overall, we describe robust biomarkers to measure aging and, potentially, health status in canines.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Andrea R. Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot OX11 0RQ, United Kingdom
| | | | - Dayna L. Dreger
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Andrew N. Hogan
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Jocelyn Plassais
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | | |
Collapse
|
45
|
Four novel genes associated with longevity found in Cane corso purebred dogs. BMC Vet Res 2022; 18:188. [PMID: 35590325 PMCID: PMC9118790 DOI: 10.1186/s12917-022-03290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background Longevity-related genes have been found in several animal species as well as in humans. The goal of this study was to perform genetic analysis of long-lived Cane corso dogs with the aim to find genes that are associated with longevity. Results SNPs with particular nucleotides were significantly overrepresented in long-lived dogs in four genes, TDRP, MC2R, FBXO25 and FBXL21. In FBXL21, the longevity-associated SNP localises to the exon. In the FBXL21 protein, tryptophan in long-lived dogs replaced arginine present in reference dogs. Conclusions Four SNPs associated with longevity in dogs were identified using GWAS and validated by DNA sequencing. We conclude that genes TDRP, MC2R, FBXO25 and FBXL21 are associated with longevity in Cane corso dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03290-9.
Collapse
|
46
|
Rubbi L, Zhang H, Feng J, He C, Kurnia P, Ratan P, Tammana A, House S, Thompson M, Farrell C, Snir S, Stahler D, Ostrander EA, vonHoldt BM, Pellegrini M. The effects of age, sex, weight, and breed on canid methylomes. Epigenetics 2022; 17:1497-1512. [PMID: 35502722 PMCID: PMC9586589 DOI: 10.1080/15592294.2022.2069385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Unlike genomes, which are static throughout the lifespan of an organism, DNA methylomes are dynamic. To study these dynamics, we developed quantitative models that measure the effect of multiple factors on DNA methylomes including, age, sex, weight, and genetics. We conducted our study in canids, which prove to be an ideal species to assess epigenetic moderators due to their extreme variability in size and well-characterized genetic structure. We collected buccal swabs from 217 canids (207 domestic dogs and 10 grey wolves) and used targeted bisulphite sequencing to measure methylomes. We also measured genotypes at over one thousand single nucleotide polymorphisms (SNPs). As expected, we found that DNA methylomes are strongly associated with age, enabling the construction of epigenetic clocks. However, we also identify novel associations between methylomes and sex, weight, and sterilization status, leading to accurate models that predict these factors. Methylomes are also affected by genetics, and we observe multiple associations between SNP loci and methylated CpGs. Finally, we show that several factors moderate the relationship between epigenetic ages and real ages, such as body weight, which increases epigenetic ageing. In conclusion, we demonstrate that the plasticity of DNA methylomes is impacted by myriad genetics and physiological factors, and that DNA methylation biomarkers are accurate predictors of age, sex and sterilization status.
Collapse
Affiliation(s)
- Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haoxuan Zhang
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Junxi Feng
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher He
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Kurnia
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Prashansa Ratan
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aakash Tammana
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sabina House
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Colin Farrell
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sagi Snir
- Department Evolutionary and Environmental Biology, University of Haifa, Israel
| | - Daniel Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyo, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, CA, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
47
|
McKenzie BA, Chen F, LaCroix-Fralish ML. The phenotype of aging in the dog: how aging impacts the health and well-being of dogs and their caregivers. J Am Vet Med Assoc 2022; 260:963-970. [DOI: 10.2460/javma.22.02.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging is the single most important cause of disease, disability, and death in adult dogs. Contrary to the common view of aging as a mysterious and inevitable natural event, it is more usefully understood as a set of complex but comprehensible biological processes that are highly conserved across species. Although the phenotypic expression of these processes is variable, there are consistent patterns both within and between species.
The purpose of this feature is to describe the patterns currently recognized in the physical and behavioral manifestations of aging in the dog and how these impact the health and welfare of companion dogs and their human caregivers. Important gaps in our knowledge of the canine aging phenotype will be identified, and current research efforts to better characterize aging in the dog will be discussed. This will help set the context for future efforts to develop clinical assessments and treatments to mitigate the negative impact of aging on dogs and humans.
Collapse
Affiliation(s)
| | - Frances Chen
- Cellular Longevity Inc dba Loyal, San Francisco, CA
| | | |
Collapse
|
48
|
Lemaître J, Rey B, Gaillard J, Régis C, Gilot‐Fromont E, Débias F, Duhayer J, Pardonnet S, Pellerin M, Haghani A, Zoller JA, Li CZ, Horvath S. DNA methylation as a tool to explore ageing in wild roe deer populations. Mol Ecol Resour 2022; 22:1002-1015. [PMID: 34665921 PMCID: PMC9297961 DOI: 10.1111/1755-0998.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation-based biomarkers of ageing (epigenetic clocks) promise to lead to new insights into evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic ageing effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois-Fontaines, France) facing different ecological contexts, to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n = 94 blood samples, from which we extracted leucocyte DNA, using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age using sex-specific epigenetic clocks. Our results highlight that old females may display a lower degree of biological ageing than males. Further, we identify the main sites of epigenetic alteration that have distinct ageing patterns between the two sexes. These findings open the door to promising avenues of research at the crossroads of evolutionary biology and biogerontology.
Collapse
Affiliation(s)
- Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Corinne Régis
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
- Université de LyonVetAgro SupMarcy‐l'EtoileFrance
| | - François Débias
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jeanne Duhayer
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Sylvia Pardonnet
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Maryline Pellerin
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéUnité Ongulés SauvagesGapFrance
| | - Amin Haghani
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Steve Horvath
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
49
|
Sándor S, Jónás D, Tátrai K, Czeibert K, Kubinyi E. Poly(A) RNA sequencing reveals age-related differences in the prefrontal cortex of dogs. GeroScience 2022; 44:1269-1293. [PMID: 35288843 PMCID: PMC9213612 DOI: 10.1007/s11357-022-00533-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Dogs may possess a unique translational potential to investigate neural aging and dementia because they are prone to age-related cognitive decline, including an Alzheimer’s disease–like pathological condition. Yet very little is known about the molecular mechanisms underlying canine cognitive decline. The goal of the current study was to explore the transcriptomic differences between young and old dogs’ frontal cortex, which is a brain region often affected by various forms of age-related dementia in humans. RNA isolates from the frontal cortical brain area of 13 pet dogs, which represented 7 different breeds and crossbreds, were analyzed. The dogs were euthanized for medical reasons, and their bodies had been donated by their owners for scientific purposes. The poly(A) tail RNA subfraction of the total transcriptome was targeted in the sequencing analysis. Cluster analyses, differential gene expression analyses, and gene ontology analyses were carried out to assess which genes and genetic regulatory mechanisms were mostly affected by aging. Age was the most prominent factor in the clustering of the animals, indicating the presence of distinct gene expression patterns related to aging in a genetically variable population. A total of 3436 genes were found to be differentially expressed between the age groups, many of which were linked to neural function, immune system, and protein synthesis. These findings are in accordance with previous human brain aging RNA sequencing studies. Some genes were found to behave more similarly to humans than to rodents, further supporting the applicability of dogs in translational aging research.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.
| | - Dávid Jónás
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kitti Tátrai
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.,Department of Genetics, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kálmán Czeibert
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| |
Collapse
|
50
|
Abstract
As the most phenotypically diverse mammalian species that shares human environments and access to sophisticated healthcare, domestic dogs have unique potential to inform our understanding of the determinants of aging. Here we outline key concepts in the study of aging and illustrate the value of research with dogs, which can improve dog health and support translational discoveries. We consider similarities and differences in aging and age-related diseases in dogs and humans and summarize key advances in our understanding of genetic and environmental risk factors for morbidity and mortality in dogs. We address health outcomes ranging from cancer to cognitive function and highlight emerging research opportunities from large-scale cohort studies in companion dogs. We conclude that studying aging in dogs could overcome many limitations of laboratory models, most notably, the ability to assess how aging-associated pathways influence aging in real-world environments similar to those experienced by humans.
Collapse
Affiliation(s)
- Audrey Ruple
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA;
| | - Evan MacLean
- School of Anthropology and College of Veterinary Medicine, University of Arizona, Tucson, Arizona, USA;
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, and School for Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA;
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Daniel Promislow
- Department of Laboratory Medicine & Pathology and Department of Biology, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|