1
|
Chen Y, Zhang H, Ge Y, Zhu Z, Ji J, Luo D, Lu S. Perchlorate in foodstuffs from South China and its implication for human dietary exposure. Food Chem Toxicol 2024; 191:114876. [PMID: 39033870 DOI: 10.1016/j.fct.2024.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Perchlorate, an aqueous-soluble compound resistant to degradation, is mainly used in the synthesis of pyrotechnics, herbicides, and other products. It serves as a pivotal component in the production of fireworks, rocket fuel, and explosives. Perchlorate was recognized as a pollutant owing to the potential toxic risk to thyroid function, which could pose a potential threat to the nervous system of infants and pregnant women. Some study had found that perchlorate existed in food, water and air. This study aimed to investigate the levels of perchlorate in six types of foods (n = 570) from South China, and evaluate potential exposure risks for residents. Vegetables were found to have the highest median levels of foods, attributed to elevated water content in leafy vegetables and facile solubility of perchlorate in water. The relatively low levels of perchlorate in food compared to other studies could attribute to the fact that the period of food we purchased in this study was during the wet season while the contaminants, such as perchlorate, were diluted. The maximum hazard quotient (HQ) values for all residents consuming different foods and water were all higher than 1 This suggested that there is a potential health risk of perchlorate to residents in South China. Those may be attributed to the high levels of perchlorate in some individual samples of meat and eggs. However, the 95th percentile of HQ values in all residents was less than 1, indicating that there is no potential health risk of perchlorate to most residents in South China.
Collapse
Affiliation(s)
- Yining Chen
- China Waterborne Transport Research Institute, Beijing, 100088, China; School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Han Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Zhanjiang, 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, 521000, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Guo H, Zong S, Yong L, Jiang Y, Qin L, Zhou L, Ren Q, Gao X, Kang F, Huang W, Chen J, Zhang L. The association between perchlorate in drinking water and height and weight of children and adolescents in Southwest China: a retrospective cross-sectional study. Front Public Health 2023; 11:1260612. [PMID: 37860794 PMCID: PMC10582749 DOI: 10.3389/fpubh.2023.1260612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Objective To investigate the association between the concentration of perchlorate in drinking water and the height and weight of children and adolescents in Sichuan Province. Methods Perchlorate in the drinking water of 24 counties in Sichuan Province from 2021 to 2022 was detected and analyzed, 66 drinking water samples were collected, and the content of perchlorate in drinking water during the wet season and dry season was detected by ultra-high performance liquid chromatography in series. The linear mixed effect model was used to estimate the relationship between perchlorate in drinking water and the height and weight of 144,644 children and adolescents, and 33 pieces of local average wage data were used as confounding factors for quality control. Results After controlling the age, gender, and local economic situation, we found that the concentration of perchlorate in drinking water increased by 10 μg/L is associated with a 1.0 cm decrease in height and a 1.6 kg decrease in weight in children and adolescents (p < 0.05). Conclusion The concentration of perchlorate in drinking water may be negatively correlated with the height and weight of children.
Collapse
Affiliation(s)
- Hongyu Guo
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Shimiao Zong
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Li Yong
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Yang Jiang
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Ling Qin
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Liang Zhou
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Qiaoqiao Ren
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Fayang Kang
- Guangyuan Center for Disease Control and Prevention, Guangyuan, China
| | - Wei Huang
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Jianyu Chen
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Li Zhang
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| |
Collapse
|
3
|
King L, Wang Q, Xia L, Wang P, Jiang G, Li W, Huang Y, Liang X, Peng X, Li Y, Chen L, Liu L. Environmental exposure to perchlorate, nitrate and thiocyanate, and thyroid function in Chinese adults: A community-based cross-sectional study. ENVIRONMENT INTERNATIONAL 2023; 171:107713. [PMID: 36565572 DOI: 10.1016/j.envint.2022.107713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Evidence on environmental exposure to perchlorate, nitrate, and thiocyanate, three thyroidal sodium iodine symporter (NIS) inhibitors, and thyroid function in the Chinese population remains limited. OBJECTIVE To investigate the associations of environmental exposure to perchlorate, nitrate, and thiocyanate with markers of thyroid function in Chinese adults. METHODS A total of 2441 non-pregnant adults (mean age 50.4 years and 39.1% male) with a median urinary iodine of 180.1 μg/L from four communities in Shenzhen were included in this cross-sectional study. Urinary perchlorate, nitrate, thiocyanate, and thyroid profiles, including serum free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine (FT3), total triiodothyronine (TT3), and thyroid stimulating hormone (TSH), were measured. Generalized linear model was applied to investigate the single-analyte associations. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were used to examine the association between the co-occurrence of three anions and thyroid profile. RESULTS The median levels of urinary perchlorate, nitrate, and thiocyanate were 5.8 μg/g, 76.4 mg/g, and 274.1 μg/g, respectively. After adjusting for confounders, higher urinary perchlorate was associated with lower serum FT4, TT4, and TT3, and higher serum FT3 and TSH (all P < 0.05). Comparing extreme tertiles, subjects in the highest nitrate tertile had marginally elevated TT3 (β: 0.02, 95% CI: 0.00-0.04). Each 1-unit increase in log-transformed urinary thiocyanate was associated with a 0.04 (95% CI: 0.02-0.06) pmol/L decrease in serum FT3. The WQS indices were inversely associated with serum FT4, TT4, and FT3 (all P < 0.05). In the BKMR model, the mixture of three anions was inversely associated with serum FT4, TT4, and FT3. CONCLUSIONS Our study provides evidence that individual and combined environmental exposure to perchlorate, nitrate, and thiocyanate are associated with significant changes in thyroid function markers in the Chinese population with adequate iodine intake.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xia
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Serrano-Nascimento C, Nunes MT. Perchlorate, nitrate, and thiocyanate: Environmental relevant NIS-inhibitors pollutants and their impact on thyroid function and human health. Front Endocrinol (Lausanne) 2022; 13:995503. [PMID: 36339434 PMCID: PMC9633673 DOI: 10.3389/fendo.2022.995503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid disruptors are found in food, atmosphere, soil, and water. These contaminants interfere with the thyroid function through the impairment of thyroid hormone synthesis, plasma transport, peripheral metabolism, transport into the target cells, and thyroid hormone action. It is well known that iodide uptake mediated by the sodium-iodide symporter (NIS) is the first limiting step involved in thyroid hormones production. Therefore, it has been described that several thyroid disruptors interfere with the thyroid function through the regulation of NIS expression and/or activity. Perchlorate, nitrate, and thiocyanate competitively inhibit the NIS-mediated iodide uptake. These contaminants are mainly found in food, water and in the smoke of cigarettes. Although the impact of the human exposure to these anions is highly controversial, some studies indicated their deleterious effects in the thyroid function, especially in individuals living in iodine deficient areas. Considering the critical role of thyroid function and the production of thyroid hormones for growth, metabolism, and development, this review summarizes the impact of the exposure to these NIS-inhibitors on thyroid function and their consequences for human health.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
- Laboratório de Endocrinologia Molecular e Translacional (LEMT), Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Petersen AM, Small CM, Yan Y, Wilson C, Batzel P, Bremiller RA, Buck CL, von Hippel FA, Cresko WA, Postlethwait JH. Evolution and developmental expression of the sodium-iodide symporter ( NIS, slc5a5) gene family: Implications for perchlorate toxicology. Evol Appl 2022; 15:1079-1098. [PMID: 35899258 PMCID: PMC9309457 DOI: 10.1111/eva.13424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The vertebrate sodium-iodide symporter (NIS or SLC5A5) transports iodide into the thyroid follicular cells that synthesize thyroid hormone. The SLC5A protein family includes transporters of vitamins, minerals, and nutrients. Disruption of SLC5A5 function by perchlorate, a pervasive environmental contaminant, leads to human pathologies, especially hypothyroidism. Perchlorate also disrupts the sexual development of model animals, including threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), but the mechanism of action is unknown. To test the hypothesis that SLC5A5 paralogs are expressed in tissues necessary for the development of reproductive organs, and therefore are plausible candidates to mediate the effects of perchlorate on sexual development, we first investigated the evolutionary history of Slc5a paralogs to better understand potential functional trajectories of the gene family. We identified two clades of slc5a paralogs with respect to an outgroup of sodium/choline cotransporters (slc5a7); these clades are the NIS clade of sodium/iodide and lactate cotransporters (slc5a5, slc5a6, slc5a8, slc5a8, and slc5a12) and the SGLT clade of sodium/glucose cotransporters (slc5a1, slc5a2, slc5a3, slc5a4, slc5a10, and slc5a11). We also characterized expression patterns of slc5a genes during development. Stickleback embryos and early larvae expressed NIS clade genes in connective tissue, cartilage, teeth, and thyroid. Stickleback males and females expressed slc5a5 and its paralogs in gonads. Single-cell transcriptomics (scRNA-seq) on zebrafish sex-genotyped gonads revealed that NIS clade-expressing cells included germ cells (slc5a5, slc5a6a, and slc5a6b) and gonadal soma cells (slc5a8l). These results are consistent with the hypothesis that perchlorate exerts its effects on sexual development by interacting with slc5a5 or its paralogs in reproductive tissues. These findings show novel expression domains of slc5 genes in stickleback and zebrafish, which suggest similar functions across vertebrates including humans, and provide candidates to mediate the effects of perchlorate on sexual development.
Collapse
Affiliation(s)
- Ann M. Petersen
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
- J.J. Howard Marine Lab, Northeast Fisheries Science CenterNational Oceanographic and Atmospheric AdministrationSandy HookNew JerseyUSA
| | - Clayton M. Small
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Yi‐Lin Yan
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Catherine Wilson
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Peter Batzel
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Ruth A. Bremiller
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - C. Loren Buck
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
| | - William A. Cresko
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - John H. Postlethwait
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
6
|
King L, Huang Y, Li T, Wang Q, Li W, Shan Z, Yin J, Chen L, Wang P, Dun C, Zhuang L, Peng X, Liu L. Associations of urinary perchlorate, nitrate and thiocyanate with central sensitivity to thyroid hormones: A US population-based cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 164:107249. [PMID: 35468408 DOI: 10.1016/j.envint.2022.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Perchlorate, nitrate, and thiocyanate are three well-known sodium iodine symporter inhibitors, however, associations of their individual and concurrent exposure with central thyroid hormones sensitivity remain unclear. OBJECTIVES To investigate the associations of urinary perchlorate, nitrate, thiocyanate, and their co-occurrence with central thyroid hormones sensitivity among US general adults. METHODS A total of 7598 non-pregnant adults (weighted mean age 45.9 years and 52.9% men) from National Health and Nutritional Examination Survey 2007-2012 were included in this cross-sectional study. Central sensitivity to thyroid hormones was estimated with the Parametric Thyroid Feedback Quantile-based Index (PTFQI). Ordinary least-squares regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were performed to examine the associations of three anions and their co-occurrence with PTFQI. RESULTS The weighted mean values of urinary perchlorate, nitrate, thiocyanate, and perchlorate equivalent concentration (PEC) were 5.48 μg/L, 57.59 mg/L, 2.65 mg/L, and 539.8 μg/L, respectively. Compared with the lowest quartile, the least-square means difference (LSMD) of PTFQI was -0.0516 (LSMD ± SE: -0.0516 ± 0.0185, P < 0.01) in the highest perchlorate quartile. On average, PTFQI decreased by 0.0793 (LSMD ± SE: -0.0793 ± 0.0205, P < 0.001) between the highest and lowest thiocyanate quartile. Compared with those in the lowest quartile, participants in the highest PEC quartile had significantly decreased PTFQI levels (LSMD ± SE: -0.0862 ± 0.0188, P < 0.001). The WQS of three goitrogens, was inversely associated with PTFQI (β: -0.051, 95% CI: -0.068, -0.034). In BKMR model, PTFQI significantly decreased when the levels of three anions were at or above their 60th percentiles compared to the median values. CONCLUSIONS Higher levels of urinary perchlorate, thiocyanate, and co-occurrence of three goitrogens were associated with increased central thyroid hormones sensitivity among US general adults. Further studies are warranted to replicate our results and elucidate the underlying causative mechanistic links.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changchang Dun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Litao Zhuang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Wang H, Jiang Y, Song J, Liang H, Liu Y, Huang J, Yin P, Wu D, Zhang H, Liu X, Zhou D, Wei W, Lei L, Peng J, Zhang J. The risk of perchlorate and iodine on the incidence of thyroid tumors and nodular goiter: a case-control study in southeastern China. Environ Health 2022; 21:4. [PMID: 34980104 PMCID: PMC8725411 DOI: 10.1186/s12940-021-00818-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The incidence rates of thyroid tumors and nodular goiter show an upward trend worldwide. There are limited reports on the risk of perchlorate and iodine on thyroid tumors, but evidence from population studies is scarce, and their impact on thyroid function is still uncertain. Therefore, the objective of this study was to investigate the association of perchlorate and iodine with the risk of nodular goiter (NG), papillary thyroid microcarcinoma (PTMC), and papillary thyroid carcinoma (PTC) and to assess the correlation between perchlorate and iodine with thyroid function indicators. METHODS A case-control population consisting of 184 pairs of thyroid tumors and nodular goiter matched by gender and age (±2 years) was recruited in this study. Serum and urine samples were collected from each participant. Thyroid function indicators in serum were tested by automatic chemical immunofluorescence, and perchlorate and iodine levels in urine were determined by ultra-high performance liquid chromatography tandem-mass spectrometry and inductively coupled plasma-mass spectrometry, respectively. Conditional logistic regressions and multiple linear regressions were used to analyze the associations. RESULTS Urinary perchlorate concentration was significantly higher in total cases, NG and PTC than in the corresponding controls (P < 0.05). Perchlorate was positively associated with PTC (OR = 1.058, 95% CI: 1.009, 1.110) in a non-linear dose-response relationship, but there was no association between perchlorate and NG or PTMC. Iodine was not associated with the risk of thyroid tumors and NG and did not correlate with the thyroid function indicators. Furthermore, perchlorate showed a positive correlation with thyroid stimulating hormone (TSH) at iodine adequate levels (P < 0.05), and a negative correlation with free triiodothyronine (FT3) and a positive correlation with thyroglobulin antibody (TgAb) at iodine more than adequate or excess levels (P < 0.05). CONCLUSIONS Perchlorate can increase the risk of PTC in a non-linear dose-response relationship and disturb the thyroid hormone homeostasis and thyroid autoantibody levels.
Collapse
Affiliation(s)
- Huirong Wang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
- School of Public Health, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515 China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Jiayi Song
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Huiwen Liang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Jiewu Huang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Pengliang Yin
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Dongting Wu
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, the Second Affiliated Hospital of Jinan University, No.18 Zetian Road, Futian District, Shenzhen, 518040 China
| | - Hang Zhang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| | - Xinjie Liu
- Shenzhen People’s Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, 518020 China
| | - Dongxian Zhou
- Shenzhen People’s Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, 518020 China
| | - Wei Wei
- Peking University Shenzhen Hospital, No.1120 Lianhua Road, Futian District, Shenzhen, 518036 China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control, No.2021 Buxin Road, Luohu District, Shenzhen, 518020 China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control, No.2021 Buxin Road, Luohu District, Shenzhen, 518020 China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Nanshan District, Shenzhen, 518055 China
| |
Collapse
|
8
|
Ali MM, Khater SA, Fayed AA, Sabry D, Ibrahim SF. Apoptotic endocrinal toxic effects of perchlorate in human placental cells. Toxicol Rep 2021; 8:863-870. [PMID: 33948439 PMCID: PMC8079966 DOI: 10.1016/j.toxrep.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/22/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perchlorate is a strong oxidizing agent and has many adverse health effects. This study investigated the potential oxidative, apoptotic, and endocrinal toxic effects of perchlorate in human placenta-derived mesenchymal stem cells (HP-MSCs). METHODS HP-MSCs were treated with two doses of perchlorate (5 and 15 μg/L) for three days. The perchlorate's effects were detected by histopathological examination, aromatase/CYP19 A1 activity, reactive oxygen species production (ROS), and Caspase-3 expression. RESULTS The highest perchlorate concentration (15 μg/L) caused significant placental histopathological changes. The placental cell viability was significantly affected by a significant increase in ROS generation; caspase-3 expression, and a significant reduction of CYP 19 activity. Despite the slight induction effect of the lowest perchlorate concentration (5 μg/L) on caspase 3 expression, CYP 19 activity, and ROS generation, it did not affect placental cellular viability. CONCLUSION This study suggested that perchlorate could modulate aromatase activity and placental cytotoxicity. The continuous monitoring of the actual perchlorate exposure is needed and could be cost-effective.
Collapse
Affiliation(s)
- Mona M. Ali
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Forensic Medicine and Clinical Toxicology, Taif University, Saudi Arabia
| | - Sarah A. Khater
- Forensic Medicine and Clinical Toxicology- Misr University for Science and Technology, Egypt
| | - Amel Ahmed Fayed
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
- Medical Biochemistry and Molecular Biology Departement, Faculty of Medicine, Badr University, Egypt
| | - Samah F. Ibrahim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| |
Collapse
|
9
|
Haber LT, Schoeny RS, Allen BC. Impact of updated BMD modeling methods on perchlorate and chlorate assessments of human health hazard. Toxicol Lett 2021; 340:89-100. [PMID: 33429012 DOI: 10.1016/j.toxlet.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/09/2020] [Accepted: 01/01/2021] [Indexed: 11/26/2022]
Abstract
Several exposure limits for perchlorate have been developed based on an early key event, inhibition of radioactive iodide uptake (RAIU) by the thyroid. These assessments have used a variety of definitions of the point of departure. The current assessment revisited the modeling for inhibition of RAIU, using state of the science methods. Bayesian hierarchical modeling was used to account for the repeated measures on the same individuals in the key dataset, and the underlying Beta distribution used for the modeling correctly reflected the bounding of RAIU between 0 and 1. We defined the BMR as a point value of 8% RAIU (rather than a change in RAIU), based on descriptions in the medical literature that RAIU below this value is considered abnormal. Because a definition of the BMR based on the mean response would correspond to about 50% of the population with a response below the BMR at the benchmark dose, we used a hybrid definition of the BMR. That is, the BMD was defined as the dose at which it was estimated that there would be a 10% extra risk in the population of having RAIU of 8% or lower. The resulting point of departure based on the BMDL was 0.03 mg/kg-day.
Collapse
Affiliation(s)
- Lynne T Haber
- University of Cincinnati, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Rita S Schoeny
- Rita Schoeny LLC, 726 5th St NE, Washington DC, 20002, USA
| | - Bruce C Allen
- Independent Consultant, 101 Corbin Hill Circle, Chapel Hill, NC 27514, USA
| |
Collapse
|
10
|
Gallardo-Carreño I, Moreno-Paz M, Aguirre J, Blanco Y, Alonso-Pintado E, Raymond-Bouchard I, Maggiori C, Rivas LA, Engelbrektson A, Whyte L, Parro V. A Multiplex Immunosensor for Detecting Perchlorate-Reducing Bacteria for Environmental Monitoring and Planetary Exploration. Front Microbiol 2021; 11:590736. [PMID: 33391207 PMCID: PMC7772991 DOI: 10.3389/fmicb.2020.590736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.
Collapse
Affiliation(s)
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Centro Nacional de Biotecnología, CSIC, Madrid, Spain.,Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis A Rivas
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Inmunología y Genética Aplicada, S.A. (INGENASA), Madrid, Spain
| | - Anna Engelbrektson
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
11
|
Eder S, Hermann C, Lamkowski A, Kinoshita M, Yamamoto T, Abend M, Shinomiya N, Port M, Rump A. A comparison of thyroidal protection by stable iodine or perchlorate in the case of acute or prolonged radioiodine exposure. Arch Toxicol 2020; 94:3231-3247. [PMID: 32656655 PMCID: PMC7415763 DOI: 10.1007/s00204-020-02809-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
In the case of a nuclear power plant accident, repetitive/prolonged radioiodine release may occur. Radioiodine accumulates in the thyroid and by irradiation enhances the risk of cancer. Large doses of non-radioactive iodine may protect the thyroid by inhibiting radioiodine uptake into the gland (iodine blockade). Protection is based on a competition at the active carrier site in the cellular membrane and the Wolff-Chaikoff effect, the latter being, however, only transient (24-48 h). Perchlorate may alternatively provide protection by a carrier competition mechanism only. Perchlorate has, however, a stronger affinity to the carrier than iodide. Based on an established biokinetic-dosimetric model developed to study iodine blockade, and after its extension to describe perchlorate pharmacokinetics and the inhibition of iodine transport through the carrier, we computed the protective efficacies that can be achieved by stable iodine or perchlorate in the case of an acute or prolonged radioiodine exposure. In the case of acute radioiodine exposure, perchlorate is less potent than stable iodine considering its ED50. A dose of 100 mg stable iodine has roughly the same protective efficacy as 1000 mg perchlorate. For prolonged exposures, single doses of protective agents, whether stable iodine or perchlorate, offer substantially lower protection than after acute radioiodine exposure, and thus repetitive administrations seem necessary. In case of prolonged exposure, the higher affinity of perchlorate for the carrier in combination with the fading Wolff-Chaikoff effect of iodine confers perchlorate a higher protective efficacy compared to stable iodine. Taking into account the frequency and seriousness of adverse effects, iodine and perchlorate at equieffective dosages seem to be alternatives in case of short-term acute radioiodine exposure, whereas preference should be given to perchlorate in view of its higher protective efficacy in the case of longer lasting radioiodine exposures.
Collapse
Affiliation(s)
- Stefan Eder
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - Andreas Lamkowski
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - Manabu Kinoshita
- Japan Self Defense Forces National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Tetsuo Yamamoto
- Japan Ground Self Defense Forces Military Medicine Research Unit and Ministry of Defense Clinic, Tokyo, Japan
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - Nariyoshi Shinomiya
- Japan Self Defense Forces National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - Alexis Rump
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany.
| |
Collapse
|
12
|
Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020; 12:E1669. [PMID: 32512711 PMCID: PMC7352877 DOI: 10.3390/nu12061669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perchlorate-induced natrium-iodide symporter (NIS) interference is a well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term. Thus, the aim of this review was to overview and summarize literature results in order to clarify this issue. METHODS Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional websites and Google until April 2020 for relevant information about the fundamental mechanism of the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical consequences. RESULTS Food and drinking water should be considered relevant sources of perchlorate. Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy leads to a worse neurocognitive and behavioral development outcome in infants, regardless of maternal thyroid hormone levels. DISCUSSION AND CONCLUSION The effects of a chronic low-dose perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define strategies of detection and prevention.
Collapse
Affiliation(s)
- Giuseppe Lisco
- ASL Brindisi, Unit of Endocrinology, Metabolism & Clinical Nutrition, Hospital “A. Perrino”, Strada per Mesagne 7, 72100 Brindisi, Puglia, Italy;
| | - Anna De Tullio
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
- Clinic of Endocrinology and Metabolic Disease, Conversano Hospital, Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy;
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| |
Collapse
|
13
|
Pleus RC, Corey LM. Environmental exposure to perchlorate: A review of toxicology and human health. Toxicol Appl Pharmacol 2018; 358:102-109. [PMID: 30184474 DOI: 10.1016/j.taap.2018.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 11/19/2022]
Abstract
Perchlorate pharmacology and toxicology studies date back at least 65 years in the peer-reviewed literature. Repeated studies in animals and humans have demonstrated perchlorate's mechanism of action, dose-response, and adverse effects over a range of doses. The first measurable effect of perchlorate is inhibition of iodine uptake to the thyroid gland. Adequate levels of thyroid hormones are critical for the development of the fetal nervous system. With sufficient dose and exposure duration, perchlorate can reduce thyroid hormones in the pregnant or non-pregnant woman via this mechanism. The developing fetus is the most sensitive life stage for chemical agents that affect iodide uptake to the thyroid. Perchlorate has a half-life of eight hours, is not metabolized, does not bioaccumulate, is not a mutagen or carcinogen, and is not reprotoxic or immunotoxic. More recently, epidemiological and biomonitoring studies have been published in the peer-reviewed literature characterizing the thyroidal effects of perchlorate and other goitrogens. While the results from most populations report no consistent association, a few studies report thyroidal effects at environmentally relevant levels of perchlorate. We reviewed the literature on health effects of perchlorate at environmental exposure levels, with a focus on exposures during pregnancy and neurodevelopmental effects. Based on the studies we reviewed, health effects are expected to only occur at doses substantially higher than environmental levels.
Collapse
Affiliation(s)
- Richard C Pleus
- Intertox, Inc., 600 Stewart Street, Suite 1101 Seattle, WA 98101, United States.
| | - Lisa M Corey
- Intertox, Inc., 600 Stewart Street, Suite 1101 Seattle, WA 98101, United States
| |
Collapse
|
14
|
Determination of Thresholds of Radioactive Iodine Uptake Response With Clinical Exposure to Perchlorate. J Occup Environ Med 2018; 60:e199-e206. [DOI: 10.1097/jom.0000000000001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Serrano-Nascimento C, Calil-Silveira J, Dalbosco R, Zorn TT, Nunes MT. Evaluation of hypothalamus-pituitary-thyroid axis function by chronic perchlorate exposure in male rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:209-219. [PMID: 29139221 DOI: 10.1002/tox.22509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Perchlorate is a widespread endocrine disruptor that was previously correlated with increased serum TSH levels and decreased thyroid hormones production both in animals and humans. Even so, the regulation of gene/protein expression in the hypothalamus, pituitary and thyroid by chronic perchlorate exposure was not completely elucidated. Therefore, this study aimed to investigate the underlying mechanisms involved in the disruption of hypothalamus-pituitary-thyroid axis by chronic perchlorate exposure. Male Wistar rats were treated or not with NaClO4 in the drinking water (35 mg/Kg/day) for 60 days. Thereafter, hormone/cytokines serum levels were measured through multiplex assays; genes/proteins expression were investigated by qPCR/Western Blotting and thyroid morphology was evaluated through histological analysis. Serum TSH levels were increased and serum T4 /T3 levels were decreased in perchlorate-treated animals. This treatment also altered the thyrotropin-releasing hormone mRNA/protein content in the hypothalamus. Additionally, the expression of both subunits of TSH were increased in the pituitary of perchlorate-treated rats, which also presented significant alterations in the thyroid morphology/gene expression. Furthermore, perchlorate exposure reduced liver Dio1 mRNA expression and increased the content of pro-inflammatory cytokines in the thyroid and the serum. In conclusion, our study adds novel findings about the perchlorate-induced disruption of the hypothalamus-pituitary-thyroid axis gene/protein expression in male rats. The data presented herein also suggest that perchlorate induces thyroid and systemic inflammation through the increased production of cytokines. Taken together, our results suggest that perchlorate contamination should be monitored, especially in the individuals most susceptible to the deleterious effects of reduced levels of thyroid hormones.
Collapse
Affiliation(s)
| | - Jamile Calil-Silveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Rafael Dalbosco
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Telma Tenorio Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
16
|
McMullen J, Ghassabian A, Kohn B, Trasande L. Identifying Subpopulations Vulnerable to the Thyroid-Blocking Effects of Perchlorate and Thiocyanate. J Clin Endocrinol Metab 2017; 102:2637-2645. [PMID: 28430972 DOI: 10.1210/jc.2017-00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT Common environmental contaminants can disrupt normal thyroid function, which plays essential but varying roles at different ages. OBJECTIVE To evaluate the relationship of perchlorate, thiocyanate, and nitrate, three sodium-iodide symporter (NIS) inhibitors, and thyroid function in different age-sex-stratified populations. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION This was a cross-sectional analysis of data from the 2009 to 2012 National Health and Nutrition Examination Survey evaluating the exposure to perchlorate, thiocyanate, and nitrate in 3151 participants aged 12 to 80. MAIN OUTCOME MEASURE Blood serum free thyroxine (FT4) as both a continuous and categorical variable. We also assessed blood serum thyroid stimulating hormone. RESULTS Controlling for serum cotinine, body mass index, total daily energy consumption, race/ethnicity, and poverty-to-income ratio, for each log unit increase in perchlorate, FT4 decreased by 0.03 ng/dL in both the general population (P = 0.004) and in all women (P = 0.005), and by 0.06 ng/dL in adolescent girls (P = 0.029), corresponding to 4% and 8% decreases relative to median FT4, respectively. For each log unit increase thiocyanate, FT4 decreased by 0.07 ng/dL in adolescent boys (P = 0.003), corresponding to a 9% decrease relative to median FT4, respectively. CONCLUSIONS Our results indicate that adolescent boys and girls represent vulnerable subpopulations to the thyroid-blocking effects of NIS symporter inhibitors. These results suggest a valuable screening and intervention opportunity.
Collapse
Affiliation(s)
- Jenica McMullen
- School of Medicine, New York University, New York, New York 10003
| | - Akhgar Ghassabian
- School of Medicine, New York University, New York, New York 10003
- Department of Pediatrics, School of Medicine, New York University, New York, New York 10003
| | - Brenda Kohn
- School of Medicine, New York University, New York, New York 10003
- Department of Pediatrics, School of Medicine, New York University, New York, New York 10003
| | - Leonardo Trasande
- School of Medicine, New York University, New York, New York 10003
- Department of Pediatrics, School of Medicine, New York University, New York, New York 10003
- Wagner School of Public Service, New York University, New York, New York 10003
- College of Global Public Health, New York University, New York, New York 10003
| |
Collapse
|
17
|
Schanze N, Jacobi SF, Rijntjes E, Mergler S, Del Olmo M, Hoefig CS, Khajavi N, Lehmphul I, Biebermann H, Mittag J, Köhrle J. 3-Iodothyronamine Decreases Expression of Genes Involved in Iodide Metabolism in Mouse Thyroids and Inhibits Iodide Uptake in PCCL3 Thyrocytes. Thyroid 2017; 27:11-22. [PMID: 27788620 DOI: 10.1089/thy.2016.0182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND 3-Iodothyronamine (3-T1AM) is an endogenous decarboxylated thyroid hormone (TH) metabolite. Pharmacological doses of 3-T1AM decrease heart rate, body temperature, and metabolic rate in rodents-effects that are contrary to classic TH excess. Furthermore, a single dose of 3-T1AM was shown to suppress the hypothalamic-pituitary-thyroid (HPT) axis in rats. It was hypothesized that 3-T1AM might play a role in the fine-tuning of TH action and might have a direct regulatory effect on the thyroid gland. METHODS This study tested whether repeated 3-T1AM treatment interfered with thyroid function and the HPT axis in mice. Therefore, male C57BL/6 mice were intraperitoneally injected with 5 mg/kg of 3-T1AM or vehicle daily for seven days. Additionally, the effects of 3-T1AM on the differentiated rat thyrocyte cell line PCCL3 were analyzed. RESULTS Repeated administration of 3-T1AM decreased thyroidal mRNA content of the sodium iodide symporter (Nis), thyroglobulin, and pendrin in mice. No interference with the HPT axis was observed, as determined by unaltered pituitary mRNA levels of triiodothyronine-responsive genes, including thyrotropin subunit β. Furthermore, 3-T1AM treatment did not change transcript levels of hepatic triiodothyronine-responsive genes, such as deiodinase 1. In line with this, serum TH concentrations were not changed after the treatment period of seven days. In concordance with the in vivo findings, 3-T1AM decreased the thyrotropin-dependent expression of Nis and functional iodide uptake in PCCL3 cells in vitro. Additionally, uptake and metabolism of 3-T1AM by PCCL3 cells was observed, as well as 3-T1AM-dependent changes in intracellular Ca2+ concentration that might be involved in mediating the reported effects. CONCLUSIONS In conclusion, 3-T1AM application decreased expression of selected TH synthesis genes by acting directly on the thyroid gland, and it might therefore affect TH synthesis without involvement of the HPT axis.
Collapse
Affiliation(s)
- Nancy Schanze
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | - Simon Friedrich Jacobi
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
- 3 Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Eddy Rijntjes
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Stefan Mergler
- 4 Experimentelle Ophthalmologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Marta Del Olmo
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Carolin Stephanie Hoefig
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | - Noushafarin Khajavi
- 3 Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Ina Lehmphul
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Heike Biebermann
- 3 Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Jens Mittag
- 2 Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
- 5 Molecular Endocrinology, Universitätsklinikum Schleswig-Holstein , Medizinische Klinik I/CBBM, Lübeck, Germany
| | - Josef Köhrle
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
18
|
Weterings PJ, Loftus C, Lewandowski TA. Derivation of the critical effect size/benchmark response for the dose-response analysis of the uptake of radioactive iodine in the human thyroid. Toxicol Lett 2016; 257:38-43. [DOI: 10.1016/j.toxlet.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022]
|
19
|
Khan MA, Fenton SE, Swank AE, Hester SD, Williams A, Wolf DC. A Mixture of Ammonium Perchlorate and Sodium Chlorate Enhances Alterations of the Pitutary-Thyroid Axis Caused by the Individual Chemicals in Adult Male F344 Rats. Toxicol Pathol 2016; 33:776-83. [PMID: 16392172 DOI: 10.1080/01926230500449832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ammonium perchlorate (AP) and sodium chlorate (SC) have been detected in public drinking water supplies in many parts of the United States. These chemicals cause perturbations in pituitary-thyroid homeostasis in animals by competitively inhibiting iodide uptake, thus hindering the synthesis of thyroglobulin and reducing circulating T4 (thyroxine). Little is known about the short-term exposure effects of mixtures of perchlorate and chlorate. The present study investigated the potential for the response to a mixture of these chemicals on the pituitary-thyroid axis in rats to be greater than that induced by the individual chemicals. Adult male F-344 rats were exposed, via their drinking water, to the nominal concentrations of 0.1, 1.0, 10 mg/L AP or 10, 100, 1000 mg/L SC and their mixtures for 7 days. Serum T4 levels were significantly ( p < 0.05) reduced in rats following exposure to the mixtures, but not after exposure to the individual chemicals. Serum T3 (triiodothyronine) was not altered by treatment and TSH (thyroid stimulating hormone) was only increased after the high-dose chlorate treatment. Histological examination of the thyroid gland showed colloid depletion and hypertrophy of follicular epithelial cells in high-dose single chemical and all mixture-treated rats, while hyperplasia was observed only in some of the rats treated with mixtures (AP 10 + SC 100, AP 0.1 + SC 1000, and AP 10 + SC 1000 mg/L). These data suggest that short-term exposure to the mixture of AP and SC enhances the effect of either chemical alone on the pituitary-thyroid axis in rats.
Collapse
Affiliation(s)
- Moazzam A Khan
- National Research Council, Environmental Carcinogenesis Divisions, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Perchlorate exposure occurs from ingestion of natural or man-made perchlorate in food or water. Perchlorate is used in a variety of industrial products including missile fuel, fireworks, and fertilizers, and industrial contamination of drinking water supplies has occurred in a number of areas. Perchlorate blocks iodide uptake into the thyroid and decreases the production of thyroid hormone, a critical hormone for metabolism, neurodevelopment, and other physiologic functions. Occupational and clinical dosing studies have not identified clear adverse effects, but may be limited by small sample sizes, short study durations, and the inclusion of mostly healthy adults. Expanding evidence suggests that young children, pregnant women, fetuses, and people co-exposed to similarly acting agents may be especially susceptible to perchlorate. Given the ubiquitous nature of perchlorate exposure, and the importance of thyroid hormone for brain development, studying the impact of perchlorate on human health could have far-reaching public health implications.
Collapse
Affiliation(s)
- Craig M Steinmaus
- School of Public Health, University of California Berkeley, 1950 Addison St, Suite #204, Berkeley, CA, 94704, USA.
| |
Collapse
|
21
|
Assessing the potential impact on the thyroid axis of environmentally relevant food constituents/contaminants in humans. Arch Toxicol 2016; 90:1841-57. [PMID: 27169853 DOI: 10.1007/s00204-016-1735-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022]
Abstract
Occurrence and mode of action of potentially relevant goitrogens in human nutrition and their mode of action (MOA) are reviewed, with special focus on the anionic iodine uptake inhibitors perchlorate (PER), thiocyanate (SCN) and nitrate (NO3). Epidemiological studies suggest persistent halogenated organic contaminants and phthalates as well as certain antimicrobials to deserve increased attention. This also applies to natural goitrogens, including polyphenols and glucosinolates, food constituents with limited data density concerning human exposure. Glucosinolates present in animal feed are presumed to contribute to SCN transfer into milk and milk products. PER, SCN and NO3 are well-investigated environmental goitrogens in terms of MOA and relative potency. There is compelling evidence from biomarker monitoring that the exposure to the goitrogens SCN and NO3 via human nutrition exceeds that of PER by orders of magnitude. The day-to-day variation in dietary intake of these substances (and of iodide) is concluded to entail corresponding variations in thyroidal iodide uptake, not considered as adverse to health or toxicologically relevant. Such normal variability of nutritional goitrogen uptake provides an obvious explanation for the variability in radioactive iodine uptake (RAIU) measurements observed in healthy individuals. Based on available data, a 20 % change in the thyroidal uptake of iodide is derived as threshold value for a biologically meaningful change induced by perchlorate and other goitrogens with the same MOA. We propose this value to be used as the critical effect size or benchmark response in benchmark dose analysis of human RAIU data. The resulting BMDL20 is 0.0165 mg/kg bw/day or 16.5 μg/kg bw/day. Applying a factor of 4, to allow for inter-human differences in toxicokinetics, leads to a TDI for perchlorate of 4 μg/kg bw/day.
Collapse
|
22
|
Gorrochategui E, Lacorte S, Tauler R, Martin FL. Perfluoroalkylated Substance Effects in Xenopus laevis A6 Kidney Epithelial Cells Determined by ATR-FTIR Spectroscopy and Chemometric Analysis. Chem Res Toxicol 2016; 29:924-32. [PMID: 27078751 PMCID: PMC4870675 DOI: 10.1021/acs.chemrestox.6b00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The effects of four perfluoroalkylated
substances (PFASs), namely,
perfluorobutanesulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonate
(PFOS), and perfluorononanoic acid (PFNA) were assessed in Xenopus laevis A6 kidney epithelial cells by attenuated
total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy
and chemometric analysis. Principal component analysis–linear
discriminant analysis (PCA-LDA) was used to visualize wavenumber-related
alterations and ANOVA-simultaneous component analysis (ASCA) allowed
data processing considering the underlying experimental design. Both
analyses evidenced a higher impact of low-dose PFAS-treatments (10–9 M) on A6 cells forming monolayers, while there was
a larger influence of high-dose PFAS-treatments (10–5 M) on A6 cells differentiated into dome structures. The observed
dose–response PFAS-induced effects were to some extent related
to their cytotoxicity: the EC50-values of most influential
PFAS-treatments increased (PFOS < PFNA < PFOA ≪ PFBS),
and higher-doses of these chemicals induced a larger impact. Major
spectral alterations were mainly attributed to DNA/RNA, secondary
protein structure, lipids, and fatty acids. Finally, PFOS and PFOA
caused a decrease in A6 cell numbers compared to controls, whereas
PFBS and PFNA did not significantly change cell population levels.
Overall, this work highlights the ability of PFASs to alter A6 cells,
whether forming monolayers or differentiated into dome structures,
and the potential of PFOS and PFOA to induce cell death.
Collapse
Affiliation(s)
- Eva Gorrochategui
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona 08034, Catalonia, Spain
| | - Sílvia Lacorte
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona 08034, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona 08034, Catalonia, Spain
| | - Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, U.K.,School of Pharmacy and Biomedical Sciences, University of Central Lancashire , Preston, U.K
| |
Collapse
|
23
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
24
|
Gardell AM, Dillon DM, Smayda LC, von Hippel FA, Cresko WA, Postlethwait JH, Buck CL. Perchlorate exposure does not modulate temporal variation of whole-body thyroid and androgen hormone content in threespine stickleback. Gen Comp Endocrinol 2015; 219:45-52. [PMID: 25733204 PMCID: PMC4508209 DOI: 10.1016/j.ygcen.2015.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Previously we showed that exposure of threespine stickleback (Gasterosteus aculeatus) to the endocrine disruptor perchlorate results in pronounced structural changes in thyroid and gonad, while surprisingly, whole-body thyroid hormone concentrations remain unaffected. To test for hormone titer variations on a finer scale, we evaluated the interactive effects of time (diel and reproductive season) and perchlorate exposure on whole-body contents of triiodothyronine (T3), thyroxine (T4), and 11-ketotestosterone (11-KT) in captive stickleback. Adult stickleback were exposed to 100ppm perchlorate or control water and sampled at 4-h intervals across the 24-hday and at one time-point (1100h) weekly across the reproductive season (May-July). Neither whole-body T3 nor T4 concentration significantly differed across the day in control or perchlorate treated stickleback. Across the reproductive season, whole-body T3 concentration remained stable while T4 significantly increased. However, neither hormone concentration was significantly affected by perchlorate, verifying our previous studies. The concentration of whole-body 11-KT, a major fish androgen, displayed significant diel variation and also steadily declined across the reproductive season in untreated males; perchlorate exposure did not influence the concentration of 11-KT in either diel or reproductive season schedules. Diel and reproductive season variations in 11-KT content in male stickleback are likely related to reproductive physiology and behavior. The observed increase in T4 content across the reproductive season may be reflective of increased energy investment in reproduction near the end of the life cycle.
Collapse
Affiliation(s)
- Alison M Gardell
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Danielle M Dillon
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Lauren C Smayda
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| |
Collapse
|
25
|
Petersen AM, Dillon D, Bernhardt RR, Torunsky R, Postlethwait JH, von Hippel FA, Loren Buck C, Cresko WA. Perchlorate disrupts embryonic androgen synthesis and reproductive development in threespine stickleback without changing whole-body levels of thyroid hormone. Gen Comp Endocrinol 2015; 210:130-44. [PMID: 25448260 PMCID: PMC4280913 DOI: 10.1016/j.ygcen.2014.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/08/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms.
Collapse
Affiliation(s)
- Ann M Petersen
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Danielle Dillon
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Richard R Bernhardt
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Roberta Torunsky
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - John H Postlethwait
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - William A Cresko
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
26
|
Sijimol MR, Mohan M. Environmental impacts of perchlorate with special reference to fireworks--a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:7203-10. [PMID: 25004859 DOI: 10.1007/s10661-014-3921-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/30/2014] [Indexed: 05/03/2023]
Abstract
Perchlorate is an inorganic anion that is used in solid rocket propellants, fireworks, munitions, signal flares, etc. The use of fireworks is identified as one of the main contributors in the increasing environmental perchlorate contamination. Although fireworks are displayed for entertainment, its environmental costs are dire. Perchlorates are also emerging as potent thyroid disruptors, and they have an impact on the ecology too. Many studies have shown that perchlorate contaminates the groundwater and the surface water, especially in the vicinity of fireworks manufacturing sites and fireworks display sites. The health and ecological impacts of perchlorate released in fireworks are yet to be fully assessed. This paper reviews fireworks as a source of perchlorate contamination and its expected adverse impacts.
Collapse
Affiliation(s)
- M R Sijimol
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | |
Collapse
|
27
|
Suh M, Abraham L, Hixon JG, Proctor DM. The effects of perchlorate, nitrate, and thiocyanate on free thyroxine for potentially sensitive subpopulations of the 2001-2002 and 2007-2008 National Health and Nutrition Examination Surveys. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:579-587. [PMID: 24149973 DOI: 10.1038/jes.2013.67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
Among women with urinary iodine concentration <100 μg/l in the 2001-2002 National Health and Nutrition Examination Survey (NHANES), urinary perchlorate was associated with significant changes in thyroid stimulating hormone and total thyroxine (T4). Although perchlorate, nitrate, and thiocyanate all potentially act to inhibit iodide uptake, free T4 was not found to be associated with exposure to these chemicals in the same data. Fetuses of pregnant mothers with iodine deficiency are thought to be a sensitive subpopulation for perchlorate exposure, but the potential associations between free T4 and exposure to these chemicals among pregnant mothers in NHANES 2001-2002 and 2007-2008 have not been specifically evaluated to date. This study investigates the potential associations between urinary perchlorate, nitrate, and thiocyanate and serum free T4 in individuals with low urinary iodine levels and pregnant women. Multivariate regression models of free T4 were conducted and included urinary perchlorate, nitrate, thiocyanate, and covariates known to have an impact on the thyroid (anti-thyroid peroxidase (TPO) antibodies, age, race/ethnicity, body mass index, and hours of fasting). Meta-analyses were also conducted on non-pregnant and on pregnant women from the two survey cycles. Urinary nitrate was associated with serum free T4 in non-pregnant women of NHANES 2001-2002 who had urinary iodine ≥100 μg/l. In the meta-analysis, urinary perchlorate, nitrate, and thiocyanate were significant predictors of serum free T4 in non-pregnant women. No association was found in men and pregnant women. TPO antibodies were significant predictors of free T4 among non-pregnant women only when the models included urinary perchlorate, nitrate, or thiocyanate. Risk assessment for perchlorate exposure should consider co-exposure to nitrate and thiocyanate.
Collapse
Affiliation(s)
- Mina Suh
- ToxStrategies, Inc., Mission Viejo, California, USA
| | | | | | | |
Collapse
|
28
|
Scientific Opinion on the risks to public health related to the presence of perchlorate in food, in particular fruits and vegetables. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3869] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
29
|
Marcello MA, Malandrino P, Almeida JFM, Martins MB, Cunha LL, Bufalo NE, Pellegriti G, Ward LS. The influence of the environment on the development of thyroid tumors: a new appraisal. Endocr Relat Cancer 2014; 21:T235-54. [PMID: 24948559 DOI: 10.1530/erc-14-0131] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most epidemiological studies concerning differentiated thyroid cancers (DTC) indicate an increasing incidence over the last two decades. This increase might be partially explained by the better access to health services worldwide, but clinicopathological analyses do not fully support this hypothesis, indicating that there are carcinogenetic factors behind this noticeable increasing incidence. Although we have undoubtedly understood the biology and molecular pathways underlying thyroid carcinogenesis in a better way, we have made very little progresses in identifying a risk profile for DTC, and our knowledge of risk factors is very similar to what we knew 30-40 years ago. In addition to ionizing radiation exposure, the most documented and established risk factor for DTC, we also investigated the role of other factors, including eating habits, tobacco smoking, living in a volcanic area, xenobiotics, and viruses, which could be involved in thyroid carcinogenesis, thus, contributing to the increase in DTC incidence rates observed.
Collapse
Affiliation(s)
- M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - P Malandrino
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M B Martins
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - G Pellegriti
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Chen H, Wu L, Wang X, Liu Q, Ding M, Peng K, Meng Z. Perchlorate exposure and thyroid function in ammonium perchlorate workers in Yicheng, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4926-4938. [PMID: 24810578 PMCID: PMC4053892 DOI: 10.3390/ijerph110504926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/22/2022]
Abstract
The impact of low level dust on the thyroid function of workers chronically exposed to ammonium perchlorate (AP) is uncertain and controversial. The aim of this study was to examine whether workers in China with long-term (>3 years) occupational exposure to low levels of AP dust had affected thyroid homeostasis. Mean occupational exposures to AP dust ranged from 0.43 to 1.17 mg/m3. Geometric means of post-shift urinary perchlorate levels were 20.5 µg/L for those exposed and 12.8 µg/L for the controls. No significant differences were found for thyroid function parameters of FT3, FT4, or log TSH or for TPO prevalence or thyroglobulin levels. Additionally, no differences in findings were observed for complete blood count (CBC), serum biochemical profile, or pulmonary function test. Median urinary iodine levels of 172 and 184 µg/L showed that the workers had sufficient iodine intake. This study found no effect on thyroid function from long term, low-level documented exposure to ammonium perchlorate. It is the first study to report both thyroid status parameters and urinary perchlorate, a biomarker of internal perchlorate exposure, in occupationally exposed workers in China.
Collapse
Affiliation(s)
- Hongxia Chen
- Institute of Biomedicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Libing Wu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Xia Wang
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan 250012, China.
| | - Qin Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Miaohong Ding
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kailiang Peng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhongji Meng
- Institute of Biomedicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
31
|
Gold EB, Blount BC, O'Neill Rasor M, Lee JS, Alwis U, Srivastav A, Kim K. Thyroid hormones and thyroid disease in relation to perchlorate dose and residence near a superfund site. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:399-408. [PMID: 22968349 PMCID: PMC3907373 DOI: 10.1038/jes.2012.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped.
Collapse
Affiliation(s)
- Ellen B Gold
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2012] [Impact Index Per Article: 167.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mervish N, Blount B, Valentin-Blasini L, Brenner B, Galvez MP, Wolff MS, Teitelbaum SL. Temporal variability in urinary concentrations of perchlorate, nitrate, thiocyanate and iodide among children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:212-8. [PMID: 22166811 PMCID: PMC3288286 DOI: 10.1038/jes.2011.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Perchlorate, nitrate and thiocyanate are ubiquitous in the environment, and human exposure to these chemicals is accurately measured in urine. Biomarkers of these chemicals represent a person's recent exposure, however, little is known on the temporal variability of the use of a single measurement of these biomarkers. Healthy Hispanic and Black children (6-10-year-old) donated urine samples over 6 months. To assess temporal variability, we used three statistical methods (n=29; 153 urine samples): intraclass correlation coefficient (ICC), Spearman's correlation coefficient between concentrations measured at different timepoints and surrogate category analysis to assess how well tertile ranking by a single biomarker measurement represented the average concentration over 6 months. The ICC measure of reproducibility was poor (0.10-0.12) for perchlorate, nitrate and iodide; and fair for thiocyanate (0.36). The correlations for each biomarker across multiple sampling times ranged from 0.01-0.57. Surrogate analysis showed consistent results for almost every surrogate tertile. Results demonstrate fair temporal reliability in the spot urine concentrations of the three NIS inhibitors and iodide. Surrogate analysis show that single-spot urine samples reliably categorize participant's exposure providing support for the use of a single sample as an exposure measure in epidemiological studies that use relative ranking of exposure.
Collapse
Affiliation(s)
- Nancy Mervish
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Fisher J, Lumen A, Latendresse J, Mattie D. Extrapolation of hypothalamic-pituitary-thyroid axis perturbations and associated toxicity in rodents to humans: case study with perchlorate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:81-105. [PMID: 22458857 DOI: 10.1080/10590501.2012.653889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Functional aspects of the Hypothalamic-Pituitary-Thyroid (HPT) axis in rats and humans are compared, exposing why extrapolation of toxicant-induced perturbations in the rat HPT axis to the human HPT axis cannot be accomplished using default risk assessment methodology. Computational tools, such as biologically based dose response models for the HPT axis, are recommended to perform complex animal to human extrapolations involving the HPT axis. Experimental and computational evidence are presented that suggest perchlorate acts directly on the thyroid gland in rats. The apparent escape from perchlorate-induced inhibition of thyroidal uptake of radioactive iodide in humans is discussed along with "rebound" or increased thyroidal uptake of radioactive iodide observed after discontinued clinical treatment with perchlorate.
Collapse
Affiliation(s)
- Jeffrey Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|
35
|
Hartoft-Nielsen ML, Boas M, Bliddal S, Rasmussen AK, Main K, Feldt-Rasmussen U. Do Thyroid Disrupting Chemicals Influence Foetal Development during Pregnancy? J Thyroid Res 2011; 2011:342189. [PMID: 21918727 PMCID: PMC3170895 DOI: 10.4061/2011/342189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/13/2011] [Accepted: 06/02/2011] [Indexed: 11/20/2022] Open
Abstract
Maternal euthyroidism during pregnancy is crucial for normal development and, in particular, neurodevelopment of the foetus. Up to 3.5 percent of pregnant women suffer from hypothyroidism. Industrial use of various chemicals—endocrine disrupting chemicals (EDCs)—has been shown to cause almost constant exposure of humans with possible harmful influence on health and hormone regulation. EDCs may affect thyroid hormone homeostasis by different mechanisms, and though the effect of each chemical seems scarce, the added effects may cause inappropriate consequences on, for example, foetal neurodevelopment.
This paper focuses on thyroid hormone influence on foetal development in relation to the chemicals suspected of thyroid disrupting properties with possible interactions with maternal thyroid homeostasis. Knowledge of the effects is expected to impact the general debate on the use of these chemicals. However, more studies are needed to elucidate the issue, since human studies are scarce.
Collapse
Affiliation(s)
- Marie-Louise Hartoft-Nielsen
- Department of Medical Endocrinology PE-2131, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. Appl Environ Microbiol 2011; 77:7401-4. [PMID: 21856823 DOI: 10.1128/aem.05758-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comparative analysis of the genomes of four dissimilatory (per)chlorate-reducing bacteria has revealed a genomic island associated with perchlorate reduction. In addition to the characterized metabolic genes for perchlorate reductase and chlorite dismutase, the island contains multiple conserved uncharacterized genes possibly involved in electron transport and regulation.
Collapse
|
37
|
Huber DR, Blount BC, Mage DT, Letkiewicz FJ, Kumar A, Allen RH. Estimating perchlorate exposure from food and tap water based on US biomonitoring and occurrence data. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2011; 21:395-407. [PMID: 20571527 DOI: 10.1038/jes.2010.31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 04/05/2010] [Indexed: 05/29/2023]
Abstract
Human biomonitoring data show that exposure to perchlorate is widespread in the United States. The predominant source of intake is food, whereas drinking water is a less frequent and far smaller contributor. We used spot urine samples for over 2700 subjects and estimated 24 h intake using new creatinine adjustment equations. Merging data from surveys of national health (NHANES) with drinking water monitoring (UCMR), we categorized survey participants according to their potential exposure through drinking water or food. By subtracting daily food doses of perchlorate from the oral reference dose (RfD), we derive an allowances for perchlorate in tap water for several populations. The calculated mean food perchlorate dose in the United States was 0.081 μg/kg/day compared to 0.101 μg/kg/day for those who also had a potential drinking water component. The calculated 95th percentile doses, typically falling between 0.2 and 0.4 μg/kg/day, were well below the RfD (0.7 μg/kg/day) in all populations analyzed. Children aged 6-11 years had the highest mean perchlorate doses in food (0.147 μg/kg/day), with an additional water contribution of only 0.003 μg/kg/day representing just 2% of exposure. Pregnant women had a mean food dose of 0.093 vs 0.071 μg/kg/day for all women of reproductive age. At the 95th percentile intake for both the total population and women of child-bearing age (15-44), the perchlorate contribution from food was 86% and from drinking water 14% (respectively, 30% and 5% of the RfD). At the mean for the same groups, the food to water contribution ratio is approximately 80:20. We calculate that an average 66 kg pregnant woman consuming a 90th percentile food dose (0.198 μg/kg/day) could also drink the 90th percentile of community water for pregnant women (0.033 l/kg/day) containing 15 μg/l perchlorate without exceeding the 0.7 μg/kg/day reference dose.
Collapse
Affiliation(s)
- David R Huber
- US EPA, Office of Ground Water and Drinking Water, Washington, DC 20460-0001, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Ozpinar A, Golub MS, Poppenga RH, Blount BC, Gillespie JR. Thyroid status of female rhesus monkeys and preliminary information on impact of perchlorate administration. Lab Anim 2011; 45:209-14. [DOI: 10.1258/la.2011.010047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thyroid status was assessed in adult female rhesus monkey breeders at the California National Primate Research Center at the beginning of the breeding season. The 95% confidence intervals for thyrotropin (TSH), thyroxine (T4) and triiodothyronine (T3) ( n = 66–80) were similar to those previously reported in smaller samples of macaque monkeys. Based on human criteria, 10 of 80 monkeys (12%) were hypothyroid (TSH > 2.0 µIU/mL). Because hypothyroxinaemia can be a risk factor in pregnancy, T4 status was compared with past breeding history, breeding outcome for that season and general health records in a subset of 42 breeders. Age, weight and parity did not differ between monkeys in the lowest T4 quartile as compared with those in the upper three quartiles. However, T4 concentrations were significantly associated with the number of missed menstrual cycles during the previous breeding season. In additional work, three healthy lactating rhesus monkeys were given three different doses of environmental contaminant and thyroid iodine uptake inhibitor, ammonium perchlorate (0.006, 0.34, 12.8 mg/kg/day, respectively) in food for two weeks. Thyroid status variables (TSH, T4, T3, thyroid radioactive iodine uptake) were then measured. In the monkey receiving the highest perchlorate dose, iodine uptake was suppressed relative to baseline. The study shows the availability of tools to study thyroid status in rhesus monkeys, the variability of thyroid status in the breeder colony and the potential ability of environmental factors to influence thyroid status.
Collapse
Affiliation(s)
- Aysel Ozpinar
- Department of Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Mari S Golub
- CNPRC, BMB, University of California, Davis, CA 95616, USA
| | - Robert H Poppenga
- California Animal Health & Food Safety Laboratory (CAHFS), School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Benjamin C Blount
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Mail Stop F47, Atlanta, GA 30341, USA
| | - Jerry R Gillespie
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
Abstract
Iodine is a necessary element for the production of thyroid hormone. We will review the impact of dietary iodine status on thyroid function in pregnancy. We will discuss iodine metabolism, homeostasis, and nutritional recommendations for pregnancy. We will also discuss the possible effects of environmental contaminants on iodine utilization in pregnant women.
Collapse
Affiliation(s)
- Christina Yarrington
- Department of Obstetrics and Gynecology, Boston Medical Center, Boston, MA 02118, USA
| | - Elizabeth N. Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, 88 East Newton Street, Evans 201, Boston, MA 02118, USA
| |
Collapse
|
40
|
McDougal JN, Jones KL, Fatuyi B, Gray KJ, Blount BC, Valentin-Blasini L, Fisher JW. The effects of perchlorate on thyroidal gene expression are different from the effects of iodide deficiency. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:917-926. [PMID: 21623536 DOI: 10.1080/15287394.2011.573740] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Perchlorate (ClO₄⁻), which is a ubiquitous and persistent ion, competitively interferes with iodide (I) accumulation in the thyroid, producing I deficiency (ID), which may result in reduced thyroid hormone synthesis and secretion. Human studies suggest that ClO₄⁻ presents little risk in healthy individuals; however, the precautionary principle demands that the sensitive populations of ID adults and mothers require extra consideration. In an attempt to determine whether the effects on gene expression were similar, the thyroidal effects of ClO₄⁻ (10 mg/kg) treatment for 14 d in drinking water were compared with those produced by 8 wk of ID in rats. The thyroids were collected (n = 3 each group) and total mRNA was analyzed using the Affymetrix Rat Genome 230 2.0 GeneChip. Changes in gene expression were compared with appropriate control groups. The twofold gene changes due to ID were compared with alterations due to ClO₄⁻ treatment. One hundred and eighty-nine transcripts were changed by the ID diet and 722 transcripts were altered by the ClO₄⁻ treatment. Thirty-four percent of the transcripts changed by the I-deficient diet were also altered by ClO₄⁻ and generally in the same direction. Three specific transporter genes, AQP1, NIS, and SLC22A3, were changed by both treatments, indicating that the membrane-specific changes were similar. Iodide deficiency primarily produced alterations in retinol and calcium signaling pathways and ClO₄⁻ primarily produced changes related to the accumulation of extracellular matrix proteins. This study provides evidence that ClO₄⁻, at least at this dose level, changes more genes and alters different genes compared to ID.
Collapse
Affiliation(s)
- James N McDougal
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zoeller RT. Endocrine Disruption of the Thyroid and its Consequences in Development. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2011. [DOI: 10.1007/978-3-642-22775-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Cao Y, Blount BC, Valentin-Blasini L, Bernbaum JC, Phillips TM, Rogan WJ. Goitrogenic anions, thyroid-stimulating hormone, and thyroid hormone in infants. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1332-7. [PMID: 20439182 PMCID: PMC2944098 DOI: 10.1289/ehp.0901736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/27/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Environmental exposure of infants to perchlorate, thiocyanate, nitrate, might interfere with thyroid function. U.S. women with higher background perchlorate exposure have higher thyroid-stimulating hormone (TSH) and lower thyroxine (T4). There are no studies with individual measures of thyroid function and these goitrogens available in infants. OBJECTIVE We examined the association of urinary perchlorate, nitrate, iodide, and thiocyanate with urinary T4 and TSH in infants and whether that association differed by sex or iodide status. METHODS We used data and samples from the Study of Estrogen Activity and Development, which assessed hormone levels of full-term infants over the first 12 months of life. The study included 92 full-term infants between birth and 1 year of age seen up to four times. Perchlorate, thiocyanate, nitrate, and iodide were measured in 206 urine samples; TSH and T4 and were measured in urines and in 50 blood samples. RESULTS In separate mixed models, adjusting for creatinine, age, sex, and body mass index, infants with higher urinary perchlorate, nitrate or thiocyanate had higher urinary TSH. With all three modeled, children with higher nitrate and thiocyanate had higher TSH, but higher perchlorate was associated with TSH only in children with low iodide. Unexpectedly, exposure to the three chemicals was generally associated with higher T4. CONCLUSIONS The association of perchlorate exposure with increased urinary TSH in infants with low urinary iodide is consistent with previous findings. Higher thiocyanate and nitrate exposure were also associated with higher TSH in infants.
Collapse
Affiliation(s)
- Yang Cao
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Department of Health Statistics, Faculty of Health Services, Second Military Medical University, Shanghai, China
| | - Benjamin C. Blount
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Liza Valentin-Blasini
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Judy C. Bernbaum
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Terry M. Phillips
- Ultramicro Immunodiagnostics Laboratory, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, USA
| | - Walter J. Rogan
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to W.J. Rogan, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop A3-05, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-4578. Fax: (919) 541-2511. E-mail:
| |
Collapse
|
43
|
Pearce EN, Lazarus JH, Smyth PPA, He X, Dall'amico D, Parkes AB, Burns R, Smith DF, Maina A, Bestwick JP, Jooman M, Leung AM, Braverman LE. Perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant women. J Clin Endocrinol Metab 2010; 95:3207-15. [PMID: 20427488 DOI: 10.1210/jc.2010-0014] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CONTEXT Thyroid hormone, requiring adequate maternal iodine intake, is critical for fetal neurodevelopment. Perchlorate decreases thyroidal iodine uptake by competitively inhibiting the sodium/iodide symporter. It is unclear whether environmental perchlorate exposure adversely affects thyroid function in pregnant women. Thiocyanate, derived from foods and cigarette smoke, is a less potent competitive sodium/iodide symporter inhibitor than perchlorate. OBJECTIVE Our objective was to determine whether environmental perchlorate and/or thiocyanate exposure is associated with alterations in thyroid function in pregnancy. DESIGN AND SETTING We conducted a cross-sectional study at health centers in Cardiff, Wales, and Turin, Italy. PATIENTS During 2002-2006, 22,000 women at less than 16 wk gestation were enrolled in the Controlled Antenatal Thyroid Screening Study. Subsets of 261 hypothyroid/hypothyroxinemic and 526 euthyroid women from Turin and 374 hypothyroid/hypothyroxinemic and 480 euthyroid women from Cardiff were selected based on availability of stored urine samples and thyroid function data. MAIN OUTCOME MEASURES Urinary iodine, thiocyanate, and perchlorate and serum TSH, free T(4) (FT(4)), and thyroperoxidase antibody were measured. RESULTS Urinary iodine was low: median 98 microg/liter in Cardiff and 52 microg/liter in Turin. Urine perchlorate was detectable in all women. The median (range) urinary perchlorate concentration was 5 microg/liter (0.04-168 microg/liter) in Turin and 2 microg/liter (0.02-368 microg/liter) in Cardiff. There were no associations between urine perchlorate concentrations and serum TSH or FT(4) in the individual euthyroid or hypothyroid/hypothyroxinemic cohorts. In multivariable linear analyses, log perchlorate was not a predictor of serum FT(4) or TSH. CONCLUSIONS Low-level perchlorate exposure is ubiquitous but did not affect thyroid function in this cohort of iodine-deficient pregnant women.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University Medical Center, 88 East Newton Street, Evans 201, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ozpinar A, Bruss M, Shelton D, Gillespie J. Thyroidal radioactive iodide uptake in the lactating rhesus monkey. Lab Anim 2010; 44:155-8. [DOI: 10.1258/la.2009.009014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although radioactive iodide uptake (RAIU) is one of the reliable diagnostic methods for thyroid function in adult humans, especially in the diagnosis of thyrotoxicosis, there are limited data for RAIU during pregnancy and lactation in humans and animals. Therefore, we proposed to validate RAIU for the lactating rhesus monkey to further human model studies in thyroid disease. RAIU was performed at 6 and 24 h using 100 µCi of 123I orally in four lactating monkeys. The thyroid and thigh were counted using a scintillation probe and multichannel analyser. A dose/standard ratio of counts/minute was calculated to compensate for background, utilizing differences in the activity between the dose administered and a standard. Thyroidal RAIU varied significantly among monkeys: 6.71 ± 2.40% for the 6 h uptake and 15.44 ± 7.71% for the 24 h uptake. These data showed that the RAIU test may allow a rational clinical approach to thyroid function testing for lactating rhesus monkeys. Additional studies are needed for assessing thyroid function in rhesus monkeys of varying ages and gender with clinical abnormalities.
Collapse
Affiliation(s)
- Aysel Ozpinar
- Department of Biochemistry, School of Medicine, University of Acibadem, Istanbul, Turkey
| | - Michael Bruss
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David Shelton
- Department of Radiology, Nuclear Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Jerry Gillespie
- Western Institute for Food Safety and Security, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Abstract
Perchlorate inhibits the uptake of iodide into the thyroid gland, thereby possibly affecting the synthesis of thyroid hormones. Pregnant women and their fetuses and newborns have the greatest potential for risk of adverse health effects following exposure to perchlorate. Perchlorate is present in some foods and in drinking water in certain areas of the United States. Based on the available information, the United States Food and Drug Administration (FDA) is not recommending that consumers of any age alter their diet or eating habits due to perchlorate exposure. If one eats a healthy diet that is consistent with the Dietary Guidelines for Americans, taking iodine supplements is not necessary for protection against health effects associated with perchlorate at the levels present in water and foods.
Collapse
Affiliation(s)
- Paula R Trumbo
- Division of Nutrition Programs and Labeling, United States Food and Drug Administration, College Park, Maryland, USA.
| |
Collapse
|
46
|
Abstract
In pharmacologic doses, perchlorate inhibits thyroidal iodine uptake and subsequently decreases thyroid hormone production. Although pharmacologic doses may be used in the treatment of hyperthyroidism, recent literature has focussed on the detection of low levels of perchlorate in the environment, groundwater and foodstuffs and their potential adverse effects on human thyroid function. This is of particular concern to the developing foetus and infant, whose normal neurodevelopment depends on adequate iodine intake for the production of thyroid hormones. Further research is needed to clarify the potential health effects of low-level chronic environmental perchlorate exposure. The health impact of environmental perchlorate may be dependent upon adequate iodine intake and should be interpreted in combination with other environmental exposures that are also potential thyroidal endocrine disruptors.
Collapse
Affiliation(s)
| | - Elizabeth N. Pearce
- Corresponding author. Tel.: +1 617 414 1348; Fax: +1 617 638 7221. (E.N. Pearce)
| | | |
Collapse
|
47
|
Abstract
Common environmental exposures may affect thyroid function in humans. Foetuses and infants are most vulnerable to these effects because they need thyroid hormone for normal neurodevelopment. Perchlorate, thiocyanate and nitrate are all competitive inhibitors of the sodium/iodine symporter (NIS) in pharmacologic doses, but their effects on human thyroid function at environmental exposure levels remain unclear. Many compounds, including polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs), bisphenol-A (BPA) and triclosan, may have direct actions on the thyroid hormone receptor, but these effects are complex and are not yet well understood. Isoflavones inhibit thyroperoxidase (TPO) activity, and, therefore, may cause goitre and hypothyroidism if ingested at high levels, particularly in iodine-deficient individuals. Organochlorine pesticides and dioxins may decrease serum T(4) half-life by activating hepatic enzymes. Additional studies are needed to further elucidate the risk posed by these and other potentially thyroid-disrupting compounds.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University Medical Center, 88 East Newton street, Evans 201, Boston, MA 02118, USA.
| | | |
Collapse
|
48
|
Jugan ML, Levi Y, Blondeau JP. Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol 2009; 79:939-47. [PMID: 19913515 DOI: 10.1016/j.bcp.2009.11.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/25/2009] [Accepted: 11/03/2009] [Indexed: 02/07/2023]
Abstract
Endocrine disruptors are man-made chemicals that can disrupt the synthesis, circulating levels, and peripheral action of hormones. The disruption of sex hormones was subject of intensive research, but thyroid hormone synthesis and signaling are now also recognized as important targets of endocrine disruptors. The neurological development of mammals is largely dependent on normal thyroid hormone homeostasis, and it is likely to be particularly sensitive to disruption of the thyroid axis. Here, we survey the main thyroid-disrupting chemicals, such as polychlorinated biphenyls, perchlorates, and brominated flame-retardants, that are characteristic disruptors of thyroid hormone homeostasis, and look at their suspected relationships to impaired development of the human central nervous system. The review then focuses on disrupting mechanisms known to be directly or indirectly related to the transcriptional activity of the thyroid hormone receptors.
Collapse
Affiliation(s)
- Mary-Line Jugan
- Univ Paris-Sud 11, Faculté de Pharmacie, Laboratoire Santé Publique-Environnement, 92290 Châtenay-Malabry, France.
| | | | | |
Collapse
|
49
|
Oldi JF, Kannan K. Perchlorate in human blood serum and plasma: Relationship to concentrations in saliva. CHEMOSPHERE 2009; 77:43-7. [PMID: 19564037 DOI: 10.1016/j.chemosphere.2009.05.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/26/2009] [Accepted: 05/29/2009] [Indexed: 05/11/2023]
Abstract
The perchlorate anion (ClO(4)(-),MW=99) is present in food, drinking water, groundwater, and surface waters. Exposure to perchlorate is of concern, due to the ability of the anion to disrupt the function of the thyroid gland, and affect the synthesis of thyroid hormones. In this study, liquid chromatography - tandem mass spectrometry (LC-MS/MS) method has been optimized to analyze for perchlorate in blood sera and plasma samples from 84 US donors. In addition, 15 volunteers provided saliva and serum samples concurrently, to enable assessment of the ratio of perchlorate in these two matrices. Recoveries of perchlorate from fortified blanks and from serum/plasma samples were between 92% and 97%. Replicate analysis of blood-matrix spikes had a relative standard deviation (RSD) of <3%, and the relative percent difference (RPD) of repeat analysis of samples was <4%. Perchlorate concentrations in serum and plasma ranged from below the limit of quantitation (0.05ngmL(-1)) to a maximum of 7.7ngmL(-1). Perchlorate concentrations in serum and plasma were log-normally distributed. The mean and median concentrations of perchlorate in 84 serum and plasma samples were 0.32 and 0.17ngmL(-1), respectively. No significant difference existed in perchlorate concentrations between serum and plasma. Analysis of paired saliva and serum samples showed a significant positive correlation for log-normalized perchlorate concentrations (r(2)=0.60) and perchlorate concentrations themselves (r(2)=0.86). The mean saliva:serum concentration ratio of perchlorate was 14:1 (after exclusion of two pairs of outliers). This is the first report to provide measurement data for perchlorate in blood sera and plasma of populations in the US.
Collapse
Affiliation(s)
- John F Oldi
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, 12201-0509, USA
| | | |
Collapse
|
50
|
Affiliation(s)
- Lewis E Braverman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| |
Collapse
|