1
|
van der Schans JJ, Katsarou A, Kladis G, Bar C, Ramirez MM, Themeli M, Mutis T. A convenient viral transduction based method for advanced multi-engineering of primary human (CAR) T-cells. J Genet Eng Biotechnol 2024; 22:100446. [PMID: 39674638 PMCID: PMC11629549 DOI: 10.1016/j.jgeb.2024.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
The past decades have illustrated the power of T-cell engineering in the development of new and successful cell therapies, such as chimeric antigen receptor (CAR) T-cells. Despite clinical success in hematological malignancies, it also becomes increasingly clear that additional T-cell engineering will be required to improve efficacy and safety and expand the application to solid tumors. Engineering is most often achieved by viral delivery of transgenes, however, viral vector capacity limitations make efficient and reproducible generation of multi transgene expressing T-cell therapeutics technically challenging. We here describe a convenient and efficient method for the delivery of up to three γ-retroviral CAR vectors in T-cells. We achieved this using virus vector mixtures that are simultaneously produced at high titers by double- or triple- transduced stable virus producer cells. We show that this method is superior in overall efficiency and reproducibility to conventional double or triple CAR transductions, in which separate viral batches are used. Due to its robustness, this method can facilitate the research and the development for advanced T-cell engineering towards more effective and safe therapies.
Collapse
Affiliation(s)
- Jort J van der Schans
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands.
| | - Afroditi Katsarou
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - George Kladis
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Citlali Bar
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Max Medina Ramirez
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
2
|
Stock S, Fertig L, Menkhoff VD, Strzalkowski T, Caruso M, Kobold S. Retrovirus-based manufacturing of chimeric antigen receptor-modified T cells for cancer therapy research. Methods Cell Biol 2024; 191:329-352. [PMID: 39824562 DOI: 10.1016/bs.mcb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population. Among others, CAR T cell therapy has evolved regarding vector design and manufacturing process. Optimal production of CAR T cells is not yet defined, far from being standardized. Quality, cellular composition and immunophenotype of the administered CAR T cells are influenced by the manufacturing protocol and therefore play a crucial role for therapeutic success. For the gene transfer, viral and non-viral strategies are available. Retrovirus-based protocols for CAR T cell production offer advantages in terms of stable gene integration, sufficient transduction efficiency, proven clinical success, and scalability. Here, we detail a retrovirus-based generation protocol of human CAR-modified T cells for experimental immunotherapeutic treatment of cancer cells. For the CAR generation, HEK-293-based packaging cell lines, CD3+ selection, CD3/CD28-coated bead-based activation and IL-2/IL-15-mediated expansion were used. This protocol can be applied for every possible CAR construct after being successfully transfected in HEK-293-based packaging cell lines.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Retroviridae/genetics
- T-Lymphocytes/immunology
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- HEK293 Cells
- Genetic Vectors/genetics
- Transduction, Genetic/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Sophia Stock
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany.
| | - Luisa Fertig
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vivien Doreen Menkhoff
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Thaddäus Strzalkowski
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
3
|
Hammer Q, Perica K, Mbofung RM, van Ooijen H, Martin KE, Momayyezi P, Varady E, Pan Y, Jelcic M, Groff B, Abujarour R, Krokeide SZ, Lee T, Williams A, Goodridge JP, Valamehr B, Önfelt B, Sadelain M, Malmberg KJ. Genetic ablation of adhesion ligands mitigates rejection of allogeneic cellular immunotherapies. Cell Stem Cell 2024; 31:1376-1386.e8. [PMID: 38981470 DOI: 10.1016/j.stem.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Allogeneic cellular immunotherapies hold promise for broad clinical implementation but face limitations due to potential rejection of donor cells by the host immune system. Silencing of beta-2 microglobulin (B2M) expression is commonly employed to evade T cell-mediated rejection by the host, although the absence of B2M is expected to trigger missing-self responses by host natural killer (NK) cells. Here, we demonstrate that genetic deletion of the adhesion ligands CD54 and CD58 in B2M-deficient chimeric antigen receptor (CAR) T cells and multi-edited induced pluripotent stem cell (iPSC)-derived CAR NK cells reduces their susceptibility to rejection by host NK cells in vitro and in vivo. The absence of adhesion ligands limits rejection in a unidirectional manner in B2M-deficient and B2M-sufficient settings without affecting the antitumor functionality of the engineered donor cells. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection by host immune cells, facilitating the implementation of universal immunotherapy.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Karlo Perica
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hanna van Ooijen
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Karen E Martin
- Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Yijia Pan
- Fate Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | - Silje Z Krokeide
- Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom Lee
- Fate Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | - Björn Önfelt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Renner A, Stahringer A, Ruppel KE, Fricke S, Koehl U, Schmiedel D. Development of KoRV-pseudotyped lentiviral vectors for efficient gene transfer into freshly isolated immune cells. Gene Ther 2024; 31:378-390. [PMID: 38684788 PMCID: PMC11257948 DOI: 10.1038/s41434-024-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Allogeneic cell therapies, such as those involving macrophages or Natural Killer (NK) cells, are of increasing interest for cancer immunotherapy. However, the current techniques for genetically modifying these cell types using lenti- or gamma-retroviral vectors present challenges, such as required cell pre-activation and inefficiency in transduction, which hinder the assessment of preclinical efficacy and clinical translation. In our study, we describe a novel lentiviral pseudotype based on the Koala Retrovirus (KoRV) envelope protein, which we identified based on homology to existing pseudotypes used in cell therapy. Unlike other pseudotyped viral vectors, this KoRV-based envelope demonstrates remarkable efficiency in transducing freshly isolated primary human NK cells directly from blood, as well as freshly obtained monocytes, which were differentiated to M1 macrophages as well as B cells from multiple donors, achieving up to 80% reporter gene expression within three days post-transduction. Importantly, KoRV-based transduction does not compromise the expression of crucial immune cell receptors, nor does it impair immune cell functionality, including NK cell viability, proliferation, cytotoxicity as well as phagocytosis of differentiated macrophages. Preserving immune cell functionality is pivotal for the success of cell-based therapeutics in treating various malignancies. By achieving high transduction rates of freshly isolated immune cells before expansion, our approach enables a streamlined and cost-effective automated production of off-the-shelf cell therapeutics, requiring fewer viral particles and less manufacturing steps. This breakthrough holds the potential to significantly reduce the time and resources required for producing e.g. NK cell therapeutics, expediting their availability to patients in need.
Collapse
Affiliation(s)
- Alexander Renner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Anika Stahringer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany.
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
5
|
Stock S, Fertig L, Gottschlich A, Dörr J, Märkl F, Majed L, Menkhoff VD, Grünmeier R, Rejeski K, Cordas Dos Santos DM, Theurich S, von Bergwelt-Baildon M, Endres S, Subklewe M, Kobold S. Comparative performance of scFv-based anti-BCMA CAR formats for improved T cell therapy in multiple myeloma. Cancer Immunol Immunother 2024; 73:100. [PMID: 38630291 PMCID: PMC11024081 DOI: 10.1007/s00262-024-03688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 (41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional optimum regarding the known structural variations of the scFv linker.
Collapse
Affiliation(s)
- Sophia Stock
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany.
| | - Luisa Fertig
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Janina Dörr
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Märkl
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lina Majed
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vivien D Menkhoff
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ruth Grünmeier
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Kai Rejeski
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - David M Cordas Dos Santos
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany
- Cancer- and Immunometabolism Research Group, LMU Gene Center, Munich, Germany
| | - Sebastian Theurich
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany
- Cancer- and Immunometabolism Research Group, LMU Gene Center, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Marion Subklewe
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany
- Laboratory of Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the LMU University Hospital, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
6
|
Märkl F, Schultheiß C, Ali M, Chen SS, Zintchenko M, Egli L, Mietz J, Chijioke O, Paschold L, Spajic S, Holtermann A, Dörr J, Stock S, Zingg A, Läubli H, Piseddu I, Anz D, Minden MDV, Zhang T, Nerreter T, Hudecek M, Minguet S, Chiorazzi N, Kobold S, Binder M. Mutation-specific CAR T cells as precision therapy for IGLV3-21 R110 expressing high-risk chronic lymphocytic leukemia. Nat Commun 2024; 15:993. [PMID: 38307904 PMCID: PMC10837166 DOI: 10.1038/s41467-024-45378-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
The concept of precision cell therapy targeting tumor-specific mutations is appealing but requires surface-exposed neoepitopes, which is a rarity in cancer. B cell receptors (BCR) of mature lymphoid malignancies are exceptional in that they harbor tumor-specific-stereotyped sequences in the form of point mutations that drive self-engagement of the BCR and autologous signaling. Here, we use a BCR light chain neoepitope defined by a characteristic point mutation (IGLV3-21R110) for selective targeting of a poor-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. We develop murine and humanized CAR constructs expressed in T cells from healthy donors and CLL patients that eradicate IGLV3-21R110 expressing cell lines and primary CLL cells, but neither cells expressing the non-pathogenic IGLV3-21G110 light chain nor polyclonal healthy B cells. In vivo experiments confirm epitope-selective cytolysis in xenograft models in female mice using engrafted IGLV3-21R110 expressing cell lines or primary CLL cells. We further demonstrate in two humanized mouse models lack of cytotoxicity towards human B cells. These data provide the basis for advanced approaches of resistance-preventive and biomarker-guided cellular targeting of functionally relevant lymphoma driver mutations sparing normal B cells.
Collapse
Affiliation(s)
- Florian Märkl
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Murtaza Ali
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | | - Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastijan Spajic
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Anne Holtermann
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Janina Dörr
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Sophia Stock
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Andreas Zingg
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Heinz Läubli
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Ignazio Piseddu
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - David Anz
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | | | - Tianjiao Zhang
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Gottschlich A, Thomas M, Grünmeier R, Lesch S, Rohrbacher L, Igl V, Briukhovetska D, Benmebarek MR, Vick B, Dede S, Müller K, Xu T, Dhoqina D, Märkl F, Robinson S, Sendelhofert A, Schulz H, Umut Ö, Kavaka V, Tsiverioti CA, Carlini E, Nandi S, Strzalkowski T, Lorenzini T, Stock S, Müller PJ, Dörr J, Seifert M, Cadilha BL, Brabenec R, Röder N, Rataj F, Nüesch M, Modemann F, Wellbrock J, Fiedler W, Kellner C, Beltrán E, Herold T, Paquet D, Jeremias I, von Baumgarten L, Endres S, Subklewe M, Marr C, Kobold S. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat Biotechnol 2023; 41:1618-1632. [PMID: 36914885 PMCID: PMC7615296 DOI: 10.1038/s41587-023-01684-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.
Collapse
Affiliation(s)
- Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Thomas
- Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ruth Grünmeier
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefanie Lesch
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lisa Rohrbacher
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Veronika Igl
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mohamed-Reda Benmebarek
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Sertac Dede
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Müller
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Tao Xu
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Dario Dhoqina
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Florian Märkl
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sophie Robinson
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Heiko Schulz
- Institute of Pathology, LMU Munich, Munich, Germany
| | - Öykü Umut
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Christina Angeliki Tsiverioti
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sayantan Nandi
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thaddäus Strzalkowski
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Theo Lorenzini
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sophia Stock
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Philipp Jie Müller
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Janina Dörr
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Seifert
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bruno L Cadilha
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruben Brabenec
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany
| | - Natalie Röder
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Felicitas Rataj
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Manuel Nüesch
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Franziska Modemann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Eduardo Beltrán
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Louisa von Baumgarten
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Neurosurgery, LMU Munich, Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
8
|
Hammer Q, Perica K, van Ooijen H, Mbofung R, Momayyezi P, Varady E, Martin KE, Pan Y, Jelcic M, Groff B, Abujarour R, Krokeide S, Lee T, Williams A, Goodridge JP, Valamehr B, Önfelt B, Sadelain M, Malmberg KJ. Genetic ablation of adhesion ligands averts rejection of allogeneic immune cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.557143. [PMID: 37873468 PMCID: PMC10592662 DOI: 10.1101/2023.10.09.557143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Allogeneic cell therapies hold promise for broad clinical implementation, but face limitations due to potential rejection by the recipient immune system. Silencing of beta-2-microglobulin ( B2M ) expression is commonly employed to evade T cell-mediated rejection, although absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesion ligands CD54 and CD58 on targets cells robustly dampens NK cell reactivity across all sub-populations. Genetic deletion of CD54 and CD58 in B2M -deficient allogeneic chimeric antigen receptor (CAR) T and multi-edited induced pluripotent stem cell (iPSC)-derived NK cells reduces their susceptibility to rejection by NK cells in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection of allogeneic immune cells for immunotherapy.
Collapse
|
9
|
Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, Yu R, Chandra AK, Waters T, Ruan J, Amisaki M, Zebboudj A, Odgerel Z, Payne G, Derhovanessian E, Müller F, Rhee I, Yadav M, Dobrin A, Sadelain M, Łuksza M, Cohen N, Tang L, Basturk O, Gönen M, Katz S, Do RK, Epstein AS, Momtaz P, Park W, Sugarman R, Varghese AM, Won E, Desai A, Wei AC, D'Angelica MI, Kingham TP, Mellman I, Merghoub T, Wolchok JD, Sahin U, Türeci Ö, Greenbaum BD, Jarnagin WR, Drebin J, O'Reilly EM, Balachandran VP. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023; 618:144-150. [PMID: 37165196 PMCID: PMC10171177 DOI: 10.1038/s41586-023-06063-y] [Citation(s) in RCA: 518] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is lethal in 88% of patients1, yet harbours mutation-derived T cell neoantigens that are suitable for vaccines 2,3. Here in a phase I trial of adjuvant autogene cevumeran, an individualized neoantigen vaccine based on uridine mRNA-lipoplex nanoparticles, we synthesized mRNA neoantigen vaccines in real time from surgically resected PDAC tumours. After surgery, we sequentially administered atezolizumab (an anti-PD-L1 immunotherapy), autogene cevumeran (a maximum of 20 neoantigens per patient) and a modified version of a four-drug chemotherapy regimen (mFOLFIRINOX, comprising folinic acid, fluorouracil, irinotecan and oxaliplatin). The end points included vaccine-induced neoantigen-specific T cells by high-threshold assays, 18-month recurrence-free survival and oncologic feasibility. We treated 16 patients with atezolizumab and autogene cevumeran, then 15 patients with mFOLFIRINOX. Autogene cevumeran was administered within 3 days of benchmarked times, was tolerable and induced de novo high-magnitude neoantigen-specific T cells in 8 out of 16 patients, with half targeting more than one vaccine neoantigen. Using a new mathematical strategy to track T cell clones (CloneTrack) and functional assays, we found that vaccine-expanded T cells comprised up to 10% of all blood T cells, re-expanded with a vaccine booster and included long-lived polyfunctional neoantigen-specific effector CD8+ T cells. At 18-month median follow-up, patients with vaccine-expanded T cells (responders) had a longer median recurrence-free survival (not reached) compared with patients without vaccine-expanded T cells (non-responders; 13.4 months, P = 0.003). Differences in the immune fitness of the patients did not confound this correlation, as responders and non-responders mounted equivalent immunity to a concurrent unrelated mRNA vaccine against SARS-CoV-2. Thus, adjuvant atezolizumab, autogene cevumeran and mFOLFIRINOX induces substantial T cell activity that may correlate with delayed PDAC recurrence.
Collapse
Affiliation(s)
- Luis A Rojas
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin C Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cristina Olcese
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nan Pang
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Patterson
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayon Lihm
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Ceglia
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Chu
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Yu
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Kaya Chandra
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Waters
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Ruan
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Masataka Amisaki
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abderezak Zebboudj
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zagaa Odgerel
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Payne
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Ina Rhee
- Genentech, San Francisco, CA, USA
| | | | - Anton Dobrin
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marta Łuksza
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noah Cohen
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seth Katz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Kinh Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew S Epstein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parisa Momtaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wungki Park
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Sugarman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna M Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Won
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Avni Desai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice C Wei
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Taha Merghoub
- Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jedd D Wolchok
- Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Özlem Türeci
- BioNTech, Mainz, Germany
- HI-TRON, Helmholtz Institute for Translational Oncology, Mainz, Germany
| | - Benjamin D Greenbaum
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - William R Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey Drebin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Märkl F, Benmebarek MR, Keyl J, Cadilha BL, Geiger M, Karches C, Obeck H, Schwerdtfeger M, Michaelides S, Briukhovetska D, Stock S, Jobst J, Müller PJ, Majed L, Seifert M, Klüver AK, Lorenzini T, Grünmeier R, Thomas M, Gottschlich A, Klaus R, Marr C, von Bergwelt-Baildon M, Rothenfusser S, Levesque MP, Heppt MV, Endres S, Klein C, Kobold S. Bispecific antibodies redirect synthetic agonistic receptor modified T cells against melanoma. J Immunother Cancer 2023; 11:jitc-2022-006436. [PMID: 37208128 DOI: 10.1136/jitc-2022-006436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Melanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens. METHODS Human as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo. RESULTS MCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model. CONCLUSION The SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.
Collapse
Affiliation(s)
- Florian Märkl
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Julius Keyl
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Bruno L Cadilha
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Martina Geiger
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Clara Karches
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Hannah Obeck
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Melanie Schwerdtfeger
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Stefanos Michaelides
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Daria Briukhovetska
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Sophia Stock
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jakob Jobst
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Philipp Jie Müller
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Lina Majed
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Matthias Seifert
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Anna-Kristina Klüver
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Theo Lorenzini
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Ruth Grünmeier
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Moritz Thomas
- Institute of AI for Health, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Freising, Germany
| | - Adrian Gottschlich
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Richard Klaus
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Simon Rothenfusser
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Endres
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Sebastian Kobold
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
11
|
Plewa N, Poncette L, Blankenstein T. Generation of TGFβR2(-1) neoantigen-specific HLA-DR4-restricted T cell receptors for cancer therapy. J Immunother Cancer 2023; 11:jitc-2022-006001. [PMID: 36822673 PMCID: PMC9950979 DOI: 10.1136/jitc-2022-006001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Adoptive transfer of patient's T cells, engineered to express a T cell receptor (TCR) with defined novel antigen specificity, is a convenient form of cancer therapy. In most cases, major histocompatibility complex (MHC) I-restricted TCRs are expressed in CD8+ T cells and the development of CD4+ T cells engineered to express an MHC II-restricted TCR lacks behind. Critical is the choice of the target antigen, whether the epitope is efficiently processed and binds with high affinity to MHC molecules. A mutation in the transforming growth factor β receptor 2 (TGFβR2(-1)) gene creates a frameshift peptide caused by the deletion of one adenine (-1) within a microsatellite sequence. This somatic mutation is recurrent in microsatellite instable colorectal and gastric cancers and, therefore, is a truly tumor-specific antigen detected in many patients. METHODS ABabDR4 mice, which express a diverse human TCR repertoire restricted to human MHC II molecule HLA-DRA/DRB1*0401 (HLA-DR4), were immunized with the TGFβR2(-1) peptide and TGFβR2(-1)-specific TCRs were isolated from responding CD4+ T cells. The TGFβR2(-1)-specific TCRs were expressed in human CD4+ T cells and their potency and safety profile were assessed by co-cultures and other functional assays. RESULTS We demonstrated that TGFβR2(-1) neoantigen is immunogenic and elicited CD4+ T cell responses in ABabDR4 mice. When expressed in human CD4+ T cells, the HLA-DR4 restricted TGFβR2(-1)-specific TCRs induced IFNy expression at low TGFβR2(-1) peptide amounts. The TGFβR2(-1)-specific TCRs recognized HLA-DR4+ lymphoblastoid cells, which endogenously processed and presented the neoantigen, and colorectal cancer cell lines SW48 and HCT116 naturally expressing the TGFβR2(-1) mutation. No MHC II alloreactivity or cross-reactivity to peptides with a similar TCR-recognition motif were observed, indicating the safety of the TCRs. CONCLUSIONS The data suggest that HLA-DR4-restricted TCRs specific for the TGFβR2(-1) recurrent neoantigen can be valuable candidates for adoptive T cell therapy of a sizeable number of patients with cancer.
Collapse
Affiliation(s)
- Natalia Plewa
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | - Lucia Poncette
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
12
|
Chow A, Uddin FZ, Liu M, Dobrin A, Nabet BY, Mangarin L, Lavin Y, Rizvi H, Tischfield SE, Quintanal-Villalonga A, Chan JM, Shah N, Allaj V, Manoj P, Mattar M, Meneses M, Landau R, Ward M, Kulick A, Kwong C, Wierzbicki M, Yavner J, Egger J, Chavan SS, Farillas A, Holland A, Sridhar H, Ciampricotti M, Hirschhorn D, Guan X, Richards AL, Heller G, Mansilla-Soto J, Sadelain M, Klebanoff CA, Hellmann MD, Sen T, de Stanchina E, Wolchok JD, Merghoub T, Rudin CM. The ectonucleotidase CD39 identifies tumor-reactive CD8 + T cells predictive of immune checkpoint blockade efficacy in human lung cancer. Immunity 2023; 56:93-106.e6. [PMID: 36574773 PMCID: PMC9887636 DOI: 10.1016/j.immuni.2022.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.
Collapse
Affiliation(s)
- Andrew Chow
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Fathema Z Uddin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Liu
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton Dobrin
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barzin Y Nabet
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Levi Mangarin
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yonit Lavin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hira Rizvi
- Druckenmiler Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sam E Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alvaro Quintanal-Villalonga
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph M Chan
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai Shah
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viola Allaj
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa Mattar
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maximiliano Meneses
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Landau
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariana Ward
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Kulick
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlene Kwong
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Wierzbicki
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Yavner
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacklynn Egger
- Druckenmiler Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shweta S Chavan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abigail Farillas
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aliya Holland
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harsha Sridhar
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Metamia Ciampricotti
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Hirschhorn
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiangnan Guan
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Glenn Heller
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Klebanoff
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Hellmann
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triparna Sen
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Druckenmiler Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Lesch S, Nottebrock A, Rataj F, Heise C, Endres S, Kobold S. PD-1-CD28 fusion protein strengthens mesothelin-specific TRuC T cells in preclinical solid tumor models. Cell Oncol (Dordr) 2023; 46:227-235. [PMID: 36409438 PMCID: PMC9947055 DOI: 10.1007/s13402-022-00747-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND T cell receptor fusion constructs (TRuC) consist of an antibody-based single chain variable fragment (scFv) fused to a T cell receptor chain (TCR) and allow recognition of cancer cells in an HLA-independent manner. Unlike chimeric antigen receptors (CAR), TRuC are integrated into the TCR complex resulting in a functional chimera with novel specificity, whilst retaining TCR signaling. To further enhance anti-tumor function, we expressed a PD-1-CD28 fusion receptor in TRuC T cells aiming to prevent tumor-induced immune suppression and T cell anergy. METHODS The activation level of engineered T cells was investigated in co-culture experiments with tumor cells followed by quantification of released cytokines using ELISA. To study T cell-mediated tumor cell lysis in vitro, impedance-based real-time tumor cell killing and LDH release was measured. Finally, two xenograft mouse cancer models were employed to explore the therapeutic potential of engineered T cells. RESULTS In co-culture assays, co-expression of PD-1-CD28 enhanced cytokine production of TRuC T cells. This effect was dependent on PD-L1 to PD-1-CD28 interactions, as blockade of PD-L1 amplified IFN-γ production in unmodified TRuC T cells to a greater level compared to TRuC-PD-1-CD28 T cells. In vivo, PD-1-CD28 co-expression supported the anti-tumor efficacy of TRuC T cells in two xenograft mouse cancer models. CONCLUSION Together, these results demonstrate the therapeutic potential of PD-1-CD28 co-expression in TRuC T cells to prevent PD-L1-induced T cell hypofunction.
Collapse
Affiliation(s)
- Stefanie Lesch
- grid.411095.80000 0004 0477 2585Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alessia Nottebrock
- grid.411095.80000 0004 0477 2585Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felicitas Rataj
- grid.411095.80000 0004 0477 2585Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Heise
- grid.411095.80000 0004 0477 2585Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Endres
- grid.411095.80000 0004 0477 2585Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany ,German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Germany, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany. .,German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany. .,Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Germany, Research Center for Environmental Health (HMGU), Neuherberg, Germany. .,Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstraße 2a, 80337, Munich, Germany.
| |
Collapse
|
14
|
Immisch L, Papafotiou G, Gallarín Delgado N, Scheuplein V, Paschen A, Blankenstein T, Willimsky G. Targeting the recurrent Rac1P29S neoepitope in melanoma with heterologous high-affinity T cell receptors. Front Immunol 2023; 14:1119498. [PMID: 36875127 PMCID: PMC9978334 DOI: 10.3389/fimmu.2023.1119498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Recurrent neoepitopes are cancer-specific antigens common among groups of patients and therefore ideal targets for adoptive T cell therapy. The neoepitope FSGEYIPTV carries the Rac1P29S amino acid change caused by a c.85C>T missense mutation, which is the third most common hotspot mutation in melanoma. Here, we isolated and characterized TCRs to target this HLA-A*02:01-binding neoepitope by adoptive T cell therapy. Peptide immunization elicited immune responses in transgenic mice expressing a diverse human TCR repertoire restricted to HLA-A*02:01, which enabled isolation of high-affinity TCRs. TCR-transduced T cells induced cytotoxicity against Rac1P29S expressing melanoma cells and we observed regression of Rac1P29S expressing tumors in vivo after adoptive T cell therapy (ATT). Here we found that a TCR raised against a heterologous mutation with higher peptide-MHC affinity (Rac2P29L) more efficiently targeted the common melanoma mutation Rac1P29S. Overall, our study provides evidence for the therapeutic potential of Rac1P29S-specific TCR-transduced T cells and reveal a novel strategy by generating more efficient TCRs by heterologous peptides.
Collapse
Affiliation(s)
- Lena Immisch
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - George Papafotiou
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - Nerea Gallarín Delgado
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vivian Scheuplein
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium, partner site Essen, Essen, Germany
| | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, partner site Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
van Heuvel Y, Schatz S, Hein M, Dogra T, Kazenmaier D, Tschorn N, Genzel Y, Stitz J. Novel suspension retroviral packaging cells generated by transposition using transposase encoding mRNA advance vector yields and enable production in bioreactors. Front Bioeng Biotechnol 2023; 11:1076524. [PMID: 37082212 PMCID: PMC10112512 DOI: 10.3389/fbioe.2023.1076524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
To date, the establishment of high-titer stable viral packaging cells (VPCs) at large scale for gene therapeutic applications is very time- and cost-intensive. Here we report the establishment of three human suspension 293-F-derived ecotropic MLV-based VPCs. The classic stable transfection of an EGFP-expressing transfer vector resulted in a polyclonal VPC pool that facilitated cultivation in shake flasks of 100 mL volumes and yielded high functional titers of more than 1 × 106 transducing units/mL (TU/mL). When the transfer vector was flanked by transposon terminal inverted repeats (TIRs) and upon co-transfection of a plasmid encoding for the transposase, productivities could be slightly elevated to more than 3 × 106 TU/mL. In contrast and using mRNA encoding for the transposase, as a proof of concept, productivities were drastically improved by more than ten-fold exceeding 5 × 107 TU/mL. In addition, these VPC pools were generated within only 3 weeks. The production volume was successfully scaled up to 500 mL employing a stirred-tank bioreactor (STR). We anticipate that the stable transposition of transfer vectors employing transposase transcripts will be of utility for the future establishment of high-yield VPCs producing pseudotype vector particles with a broader host tropism on a large scale.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Stefanie Schatz
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Marc Hein
- Chair of Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Tanya Dogra
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Daniel Kazenmaier
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Faculty of Biotechnology, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Natalie Tschorn
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Jörn Stitz
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- *Correspondence: Jörn Stitz,
| |
Collapse
|
16
|
Mekkaoui L, Tejerizo JG, Abreu S, Rubat L, Nikoniuk A, Macmorland W, Horlock C, Matsumoto S, Williams S, Smith K, Price J, Srivastava S, Hussain R, Banani MA, Day W, Stevenson E, Madigan M, Chen J, Khinder R, Miah S, Walker S, Ade-Onojobi M, Domining S, Sillibourne J, Sabatino M, Slepushkin V, Farzaneh F, Pule M. Efficient clinical-grade γ-retroviral vector purification by high-speed centrifugation for CAR T cell manufacturing. Mol Ther Methods Clin Dev 2022; 28:116-128. [PMID: 36620071 PMCID: PMC9808014 DOI: 10.1016/j.omtm.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
γ-Retroviral vectors (γ-RV) are powerful tools for gene therapy applications. Current clinical vectors are produced from stable producer cell lines which require minimal further downstream processing, while purification schemes for γ-RV produced by transient transfection have not been thoroughly investigated. We aimed to develop a method to purify transiently produced γ-RV for early clinical studies. Here, we report a simple one-step purification method by high-speed centrifugation for γ-RV produced by transient transfection for clinical application. High-speed centrifugation enabled the concentration of viral titers in the range of 107-108 TU/mL with >80% overall recovery. Analysis of research-grade concentrated vector revealed sufficient reduction in product- and process-related impurities. Furthermore, product characterization of clinical-grade γ-RV by BioReliance demonstrated two-logs lower impurities per transducing unit compared with regulatory authority-approved stable producer cell line vector for clinical application. In terms of CAR T cell manufacturing, clinical-grade γ-RV produced by transient transfection and purified by high-speed centrifugation was similar to γ-RV produced from a clinical-grade stable producer cell line. This method will be of value for studies using γ-RV to bridge vector supply between early- and late-stage clinical trials.
Collapse
Affiliation(s)
- Leila Mekkaoui
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Jose G. Tejerizo
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Sara Abreu
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Lydie Rubat
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | | | | | - Claire Horlock
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Sofia Matsumoto
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Sarah Williams
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Koval Smith
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Juliet Price
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Saket Srivastava
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Rehan Hussain
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | | | - William Day
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Elena Stevenson
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
| | - Meghan Madigan
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | - Jie Chen
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | - Ravin Khinder
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | - Shahed Miah
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | - Simon Walker
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | - Michael Ade-Onojobi
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | - Sabine Domining
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | | | | | | | - Farzin Farzaneh
- Cell and Gene Therapy, Kings (CGT-K), King’s College London, London SE5 9NU, UK
| | - Martin Pule
- Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK
- Deparment of Haematology, Cancer Institute, University College London, London WC1E 6BT, UK
- Corresponding author: Martin Pule, Autolus Limited, The MediaWorks, 191 Wood Lane, London W12 7FP, UK.
| |
Collapse
|
17
|
Impact of the selective A2 AR and A2 BR dual antagonist AB928/etrumadenant on CAR T cell function. Br J Cancer 2022; 127:2175-2185. [PMID: 36266575 PMCID: PMC9726885 DOI: 10.1038/s41416-022-02013-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic response. METHODS Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was assessed in a syngeneic mouse model of colon carcinoma. RESULTS We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour cells in vitro and augmented CAR T cell activation in vivo. CONCLUSIONS Together our results suggest that combination therapy with AB928 represents a promising approach to improve adoptive cell therapy.
Collapse
|
18
|
Le TA, Chu VT, Lino AC, Schrezenmeier E, Kressler C, Hamo D, Rajewsky K, Dörner T, Dang VD. Efficient CRISPR-Cas9-mediated mutagenesis in primary human B cells for identifying plasma cell regulators. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:621-632. [PMID: 36514352 PMCID: PMC9722396 DOI: 10.1016/j.omtn.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Human B lymphocytes are attractive targets for immunotherapies in autoantibody-mediated diseases. Gene editing technologies could provide a powerful tool to determine gene regulatory networks regulating B cell differentiation into plasma cells, and identify novel therapeutic targets for prevention and treatment of autoimmune disorders. Here, we describe a new approach that uses CRISPR-Cas9 technology to target genes in primary human B cells in vitro for identifying plasma cell regulators. We found that sgRNA and Cas9 components can be efficiently delivered into primary human B cells through RD114-pseudotyped retroviral vectors. Using this system, we achieved approximately 80% of gene knockout efficiency. We disrupted expression of a triad of transcription factors, IRF4, PRDM1, and XBP1, and showed that human B cell survival and plasma cell differentiation are severely impaired. Specifically, that IRF4, PRDM1, and XBP1 were expressed at different stages during plasma cell differentiation, IRF4, PRDM1, and XBP1-targeted B cells failed to progress to the pre-plasmablast, plasma cell state, and plasma cell survival, respectively. Our method opens a new avenue to study gene functions in primary human B cells and identify novel plasma cell regulators for therapeutic applications.
Collapse
Affiliation(s)
- Tuan Anh Le
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Van Trung Chu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, 13125 Berlin, Germany
| | - Andreia C. Lino
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Christopher Kressler
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dania Hamo
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, 13125 Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Corresponding author Thomas Dörner, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- Corresponding author Van Duc Dang, Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
19
|
Oner A, Kobold S. Transwell migration assay to interrogate human CAR-T cell chemotaxis. STAR Protoc 2022; 3:101708. [PMID: 36136753 PMCID: PMC9508471 DOI: 10.1016/j.xpro.2022.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023] Open
Abstract
A major impediment to effective cellular therapies in solid tumors is the limited access of therapeutic cells to the tumor site. One strategy to overcome this challenge is to endow T cells with chemotactic properties required to access tumor tissue. Here, we present a chimeric antigen receptor (CAR)-modified T cell strategy centered around enhanced T cell trafficking. We outline isolation, activation, and transduction of human T cells, as well as techniques for assessing migratory and cytotoxic capacity of CAR-T cells. For complete details on the use and execution of this protocol, please refer to Lesch et al. (2021).
Collapse
Affiliation(s)
- Arman Oner
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany,Corresponding author
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany,Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany,Corresponding author
| |
Collapse
|
20
|
Birtel M, Voss RH, Reinhard K, Rengstl B, Ouchan Y, Michel K, Hayduk N, Tillmann B, Becker R, Suchan M, Theobald M, Oehm P, Türeci Ö, Sahin U. A TCR-like CAR Promotes Sensitive Antigen Recognition and Controlled T-cell Expansion Upon mRNA Vaccination. CANCER RESEARCH COMMUNICATIONS 2022; 2:827-841. [PMID: 36923303 PMCID: PMC10010320 DOI: 10.1158/2767-9764.crc-21-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR) T cells are efficacious in patients with B-cell malignancies, while their activity is limited in patients with solid tumors. We developed a novel heterodimeric TCR-like CAR (TCAR) designed to achieve optimal chain pairing and integration into the T-cell CD3 signaling complex. The TCAR mediated high antigen sensitivity and potent antigen-specific T-cell effector functions in short-term in vitro assays. Both persistence and functionality of TCAR T cells were augmented by provision of costimulatory signals, which improved proliferation in vitro and in vivo. Combination with a nanoparticulate RNA vaccine, developed for in vivo expansion of CAR T cells, promoted tightly controlled expansion, survival, and antitumor efficacy of TCAR T cells in vivo. Significance A novel TCAR is tightly controlled by RNA vaccine-mediated costimulation and may provide an alternative to second-generation CARs for the treatment of solid tumors.
Collapse
Affiliation(s)
- Matthias Birtel
- TRON – Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH (non-profit), Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Ralf-Holger Voss
- TRON – Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH (non-profit), Mainz, Germany
- Department of Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
| | - Katharina Reinhard
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Benjamin Rengstl
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Yasmina Ouchan
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Kristina Michel
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Nina Hayduk
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Bodo Tillmann
- TRON – Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH (non-profit), Mainz, Germany
| | - René Becker
- TRON – Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH (non-profit), Mainz, Germany
| | - Martin Suchan
- TRON – Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH (non-profit), Mainz, Germany
| | - Matthias Theobald
- Department of Hematology, Oncology, and Pneumology, University Cancer Center (UCT), University Medical Center (UMC) of Johannes Gutenberg University, Mainz, Germany
| | - Petra Oehm
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Ugur Sahin
- TRON – Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH (non-profit), Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
- Department of Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
21
|
Stock S, Benmebarek MR, Kluever AK, Darowski D, Jost C, Stubenrauch KG, Benz J, Freimoser-Grundschober A, Moessner E, Umana P, Subklewe M, Endres S, Klein C, Kobold S. Chimeric antigen receptor T cells engineered to recognize the P329G-mutated Fc part of effector-silenced tumor antigen-targeting human IgG1 antibodies enable modular targeting of solid tumors. J Immunother Cancer 2022; 10:jitc-2022-005054. [PMID: 35902133 PMCID: PMC9341194 DOI: 10.1136/jitc-2022-005054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has proven its clinical utility in hematological malignancies. Optimization is still required for its application in solid tumors. Here, the lack of cancer-specific structures along with tumor heterogeneity represent a critical barrier to safety and efficacy. Modular CAR T cells indirectly binding the tumor antigen through CAR-adaptor molecules have the potential to reduce adverse events and to overcome antigen heterogeneity. We hypothesized that a platform utilizing unique traits of clinical grade antibodies for selective CAR targeting would come with significant advantages. Thus, we developed a P329G-directed CAR targeting the P329G mutation in the Fc part of tumor-targeting human antibodies containing P329G L234A/L235A (LALA) mutations for Fc silencing. METHODS A single chain variable fragment-based second generation P329G-targeting CAR was retrovirally transduced into primary human T cells. These CAR T cells were combined with IgG1 antibodies carrying P329G LALA mutations in their Fc part targeting epidermal growth factor receptor (EGFR), mesothelin (MSLN) or HER2/neu. Mesothelioma, pancreatic and breast cancer cell lines expressing the respective antigens were used as target cell lines. Efficacy was evaluated in vitro and in vivo in xenograft mouse models. RESULTS Unlike CD16-CAR T cells, which bind human IgG in a non-selective manner, P329G-targeting CAR T cells revealed specific effector functions only when combined with antibodies carrying P329G LALA mutations in their Fc part. P329G-targeting CAR T cells cannot be activated by an excess of human IgG. P329G-directed CAR T cells combined with a MSLN-targeting P329G-mutated antibody mediated pronounced in vitro and in vivo antitumor efficacy in mesothelioma and pancreatic cancer models. Combined with a HER2-targeting antibody, P329G-targeting CAR T cells showed substantial in vitro activation, proliferation, cytokine production and cytotoxicity against HER2-expressing breast cancer cell lines and induced complete tumor eradication in a breast cancer xenograft mouse model. The ability of the platform to target multiple antigens sequentially was shown in vitro and in vivo. CONCLUSIONS P329G-targeting CAR T cells combined with antigen-binding human IgG1 antibodies containing the P329G Fc mutation mediate pronounced in vitro and in vivo effector functions in different solid tumor models, warranting further clinical translation of this concept.
Collapse
Affiliation(s)
- Sophia Stock
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany .,Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Anna-Kristina Kluever
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland.,Innovent Biologics (Suzhou) Co., Ltd, Suzhou, Jiangsu, China
| | - Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland.,Athebio AG, Schlieren, Switzerland
| | | | - Joerg Benz
- Roche Innovation Center Basel, Basel, Switzerland
| | | | - Ekkehard Moessner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Pablo Umana
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Stefan Endres
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Sebastian Kobold
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany .,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
22
|
CD81 costimulation skews CAR transduction toward naive T cells. Proc Natl Acad Sci U S A 2022; 119:1910844119. [PMID: 35091467 PMCID: PMC8812682 DOI: 10.1073/pnas.1910844119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptors (CARs) are engineered, artificial T cell receptors that can redirect cytotoxic immune T cells to eliminate cancer. Previous reports describe the benefit of less differentiated naive T cell subtypes for the purpose of CAR therapy. Here we test CD81, a T cell costimulator that preferentially activates naive T cells, for CAR engineering. We show that CD81 costimulation of naive T cells prior to CAR transduction can lead to enhanced CAR expression in this T cell subset. Adoptive cellular therapy using chimeric antigen receptors (CARs) has revolutionized our treatment of relapsed B cell malignancies and is currently being integrated into standard therapy. The impact of selecting specific T cell subsets for CAR transduction remains under investigation. Previous studies demonstrated that effector T cells derived from naive, rather than central memory T cells mediate more potent antitumor effects. Here, we investigate a method to skew CAR transduction toward naive T cells without physical cell sorting. Viral-mediated CAR transduction requires ex vivo T cell activation, traditionally achieved using antibody-mediated strategies. CD81 is a T cell costimulatory molecule that when combined with CD3 and CD28 enhances naive T cell activation. We interrogate the effect of CD81 costimulation on resultant CAR transduction. We identify that upon CD81-mediated activation, naive T cells lose their identifying surface phenotype and switch to a memory phenotype. By prelabeling naive T cells and tracking them through T cell activation and CAR transduction, we document that CD81 costimulation enhanced naive T cell activation and resultantly generated a CAR T cell product enriched with naive-derived CAR T cells.
Collapse
|
23
|
Bunse M, Höpken UE. Generation of Redirected Engineered Human Chimeric Antigen Receptor (CAR) T Cells. Methods Mol Biol 2022; 2521:67-83. [PMID: 35732993 DOI: 10.1007/978-1-0716-2441-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy that involves genetic engineering a patient's own immune cells with antigen-specific receptors has shown remarkable efficacy in blood cancer treatment. Numerous clinical studies with CAR T cells targeting the blood cell surface protein CD19 led to the FDA 's first approval of a genetically engineered cell therapy. The process of generating potent CAR T cells involves several carefully performed manufacturing steps. Here, we describe the generation of redirected engineered human CAR T cells for preclinical studies starting with the CAR design, retroviral gene transfer, detection of CAR expression, and expansion of transduced T cells.
Collapse
Affiliation(s)
- Mario Bunse
- Department of Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Uta E Höpken
- Department of Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.
| |
Collapse
|
24
|
Centner CS, Moore JT, Baxter ME, Long ZT, Miller JM, Kovatsenko ES, Xie B, Menze MA, Berson RE, Bates PJ, Yaddanapudi K, Kopechek JA. Acoustofluidic-mediated molecular delivery to human T cells with a three-dimensional-printed flow chamber. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4534. [PMID: 34972278 DOI: 10.1121/10.0009054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cell-based therapies have garnered significant interest to treat cancer and other diseases. Acoustofluidic technologies are in development to improve cell therapy manufacturing by facilitating rapid molecular delivery across the plasma membrane via ultrasound and microbubbles (MBs). In this study, a three-dimensional (3D) printed acoustofluidic device was used to deliver a fluorescent molecule, calcein, to human T cells. Intracellular delivery of calcein was assessed after varying parameters such as MB face charge, MB concentration, flow channel geometry, ultrasound pressure, and delivery time point after ultrasound treatment. MBs with a cationic surface charge caused statistically significant increases in calcein delivery during acoustofluidic treatment compared to MBs with a neutral surface charge (p < 0.001). Calcein delivery was significantly higher with a concentric spiral channel geometry compared to a rectilinear channel geometry (p < 0.001). Additionally, calcein delivery was significantly enhanced at increased ultrasound pressures of 5.1 MPa compared to lower ultrasound pressures between 0-3.8 MPa (p < 0.001). These results demonstrate that a 3D-printed acoustofluidic device can significantly enhance intracellular delivery of biomolecules to T cells, which may be a viable approach to advance cell-based therapies.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - John T Moore
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Mary E Baxter
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Zachary T Long
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jacob M Miller
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | | | - Benjamin Xie
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - R Eric Berson
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Paula J Bates
- School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Kavitha Yaddanapudi
- Department of Surgery, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
25
|
Lesch S, Blumenberg V, Stoiber S, Gottschlich A, Ogonek J, Cadilha BL, Dantes Z, Rataj F, Dorman K, Lutz J, Karches CH, Heise C, Kurzay M, Larimer BM, Grassmann S, Rapp M, Nottebrock A, Kruger S, Tokarew N, Metzger P, Hoerth C, Benmebarek MR, Dhoqina D, Grünmeier R, Seifert M, Oener A, Umut Ö, Joaquina S, Vimeux L, Tran T, Hank T, Baba T, Huynh D, Megens RTA, Janssen KP, Jastroch M, Lamp D, Ruehland S, Di Pilato M, Pruessmann JN, Thomas M, Marr C, Ormanns S, Reischer A, Hristov M, Tartour E, Donnadieu E, Rothenfusser S, Duewell P, König LM, Schnurr M, Subklewe M, Liss AS, Halama N, Reichert M, Mempel TR, Endres S, Kobold S. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat Biomed Eng 2021; 5:1246-1260. [PMID: 34083764 PMCID: PMC7611996 DOI: 10.1038/s41551-021-00737-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.
Collapse
Affiliation(s)
- Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Blumenberg
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Gottschlich
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Justyna Ogonek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klara Dorman
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Lutz
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clara H Karches
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias Kurzay
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin M Larimer
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Rapp
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alessia Nottebrock
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Kruger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicholas Tokarew
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Metzger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christine Hoerth
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dario Dhoqina
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ruth Grünmeier
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Seifert
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arman Oener
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Öykü Umut
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sandy Joaquina
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Lene Vimeux
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Thi Tran
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
- Université de Paris, PARCC, INSERM U970, Paris, France
| | - Thomas Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Taisuke Baba
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Duc Huynh
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Department of BioMedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Svenja Ruehland
- LMU Biocenter, Department Biology II, Ludwig Maximilians-Universität München, Munich, Germany
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jasper N Pruessmann
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Moritz Thomas
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Reischer
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eric Tartour
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
- Université de Paris, PARCC, INSERM U970, Paris, France
- Service d'Immunologie Biologique, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Emmanuel Donnadieu
- Université de Paris, Institute Cochin, INSERM, CNRS, Paris, France
- Equipe labellisée Ligue Contre le Cancer, Toulouse, France
| | - Simon Rothenfusser
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Duewell
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Lars M König
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Center for Functional Protein Assemblies (CPA), Technische Universität München, Garching, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
| |
Collapse
|
26
|
Klopp A, Schreiber S, Kosinska AD, Pulé M, Protzer U, Wisskirchen K. Depletion of T cells via Inducible Caspase 9 Increases Safety of Adoptive T-Cell Therapy Against Chronic Hepatitis B. Front Immunol 2021; 12:734246. [PMID: 34691041 PMCID: PMC8527178 DOI: 10.3389/fimmu.2021.734246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
T-cell therapy with T cells that are re-directed to hepatitis B virus (HBV)-infected cells by virus-specific receptors is a promising therapeutic approach for treatment of chronic hepatitis B and HBV-associated cancer. Due to the high number of target cells, however, side effects such as cytokine release syndrome or hepatotoxicity may limit safety. A safeguard mechanism, which allows depletion of transferred T cells on demand, would thus be an interesting means to increase confidence in this approach. In this study, T cells were generated by retroviral transduction to express either an HBV-specific chimeric antigen receptor (S-CAR) or T-cell receptor (TCR), and in addition either inducible caspase 9 (iC9) or herpes simplex virus thymidine kinase (HSV-TK) as a safety switch. Real-time cytotoxicity assays using HBV-replicating hepatoma cells as targets revealed that activation of both safety switches stopped cytotoxicity of S-CAR- or TCR-transduced T cells within less than one hour. In vivo, induction of iC9 led to a strong and rapid reduction of transferred S-CAR T cells adoptively transferred into AAV-HBV-infected immune incompetent mice. One to six hours after injection of the iC9 dimerizer, over 90% reduction of S-CAR T cells in the blood and the spleen and of over 99% in the liver was observed, thereby limiting hepatotoxicity and stopping cytokine secretion. Simultaneously, however, the antiviral effect of S-CAR T cells was diminished because remaining S-CAR T cells were mostly non-functional and could not be restimulated with HBsAg. A second induction of iC9 was only able to deplete T cells in the liver. In conclusion, T cells co-expressing iC9 and HBV-specific receptors efficiently recognize and kill HBV-replicating cells. Induction of T-cell death via iC9 proved to be an efficient means to deplete transferred T cells in vitro and in vivo containing unwanted hepatotoxicity.
Collapse
MESH Headings
- Adoptive Transfer/adverse effects
- Animals
- Caspase 9/biosynthesis
- Caspase 9/genetics
- Cell Death
- Cell Line
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Enzyme Induction
- Female
- Hepatitis B Antigens/immunology
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Humans
- Interleukin Receptor Common gamma Subunit/genetics
- Interleukin Receptor Common gamma Subunit/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Simplexvirus/enzymology
- Simplexvirus/genetics
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
- Thymidine Kinase/genetics
- Thymidine Kinase/metabolism
- Transduction, Genetic
- Mice
Collapse
Affiliation(s)
- Alexandre Klopp
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Sophia Schreiber
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Anna D. Kosinska
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Martin Pulé
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Ulrike Protzer
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Karin Wisskirchen
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
27
|
Cadilha BL, Benmebarek MR, Dorman K, Oner A, Lorenzini T, Obeck H, Vänttinen M, Di Pilato M, Pruessmann JN, Stoiber S, Huynh D, Märkl F, Seifert M, Manske K, Suarez-Gosalvez J, Zeng Y, Lesch S, Karches CH, Heise C, Gottschlich A, Thomas M, Marr C, Zhang J, Pandey D, Feuchtinger T, Subklewe M, Mempel TR, Endres S, Kobold S. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. SCIENCE ADVANCES 2021; 7:eabi5781. [PMID: 34108220 PMCID: PMC8189699 DOI: 10.1126/sciadv.abi5781] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 05/11/2023]
Abstract
CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-β (TGF-β). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-β receptor 2 (DNR) can simultaneously shield them from TGF-β. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-β shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.
Collapse
Affiliation(s)
- Bruno L Cadilha
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany.
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Klara Dorman
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
- Department of Internal Medicine III, University of Munich, Munich, Germany
| | - Arman Oner
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Theo Lorenzini
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Hannah Obeck
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Mira Vänttinen
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jasper N Pruessmann
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Allergology, and Venerology, University of Lübeck, Lübeck, Germany
| | - Stefan Stoiber
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Duc Huynh
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Florian Märkl
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Matthias Seifert
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Katrin Manske
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Javier Suarez-Gosalvez
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Yi Zeng
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Stefanie Lesch
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Clara H Karches
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Adrian Gottschlich
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Moritz Thomas
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jin Zhang
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Dharmendra Pandey
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich
- German Center for Infection Research (DZIF), Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, University of Munich, Munich, Germany
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefan Endres
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
28
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
29
|
A stable platform for the production of virus-like particles pseudotyped with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein. Virus Res 2021; 295:198305. [PMID: 33482242 PMCID: PMC7817443 DOI: 10.1016/j.virusres.2021.198305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
In this study, we showed that a codon optimized version of the spike (S) protein of SARS-CoV-2 can migrate to the cell membrane. However, efficient production of Moloney murine leukemia (MLV) infectious viral particles was only achieved with stable expression of a shorter S version in C-terminal (ΔS) in MLV Gag-pol expressing cells. As compared to transient transfections, this platform generated viruses with a 1000-fold higher titer. ΔS was 15-times more efficiently incorporated into VLPs as compared to S, and that was not due to steric interference between the cytoplasmic tail and the MLV capsid, as similar differences were also observed with extracellular vesicles. The amount of ΔS incorporated into VLPs released from producer cells was high and estimated at 1.25 μg/mL S2 equivalent (S is comprised of S1 and S2). The resulting VLPs could potentially be used alone or as a boost of other immunization strategies for COVID-19.
Collapse
|
30
|
Benmebarek MR, Cadilha BL, Herrmann M, Lesch S, Schmitt S, Stoiber S, Darwich A, Augsberger C, Brauchle B, Rohrbacher L, Oner A, Seifert M, Schwerdtfeger M, Gottschlich A, Rataj F, Fenn NC, Klein C, Subklewe M, Endres S, Hopfner KP, Kobold S. A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia 2021; 35:2243-2257. [PMID: 33414484 PMCID: PMC7789085 DOI: 10.1038/s41375-020-01109-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.
Collapse
Affiliation(s)
- Mohamed-Reda Benmebarek
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Bruno L. Cadilha
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Monika Herrmann
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefanie Lesch
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Saskia Schmitt
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Stoiber
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Abbass Darwich
- grid.417728.f0000 0004 1756 8807Mucosal Immunology and Microbiota Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Christian Augsberger
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Bettina Brauchle
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Lisa Rohrbacher
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Arman Oner
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Matthias Seifert
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Melanie Schwerdtfeger
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Adrian Gottschlich
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Felicitas Rataj
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Nadja C. Fenn
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Christian Klein
- grid.417570.00000 0004 0374 1269Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marion Subklewe
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany
| | - Stefan Endres
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | | | - Sebastian Kobold
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
31
|
Sadeqi Nezhad M, Seifalian A, Bagheri N, Yaghoubi S, Karimi MH, Adbollahpour-Alitappeh M. Chimeric Antigen Receptor Based Therapy as a Potential Approach in Autoimmune Diseases: How Close Are We to the Treatment? Front Immunol 2020; 11:603237. [PMID: 33324420 PMCID: PMC7727445 DOI: 10.3389/fimmu.2020.603237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite significant breakthroughs in understanding of immunological and physiological features of autoimmune diseases, there is currently no specific therapeutic option with prolonged remission. Cell-based therapy using engineered-T cells has attracted tremendous attention as a practical treatment for autoimmune diseases. Genetically modified-T cells armed with chimeric antigen receptors (CARs) attack autoreactive immune cells such as B cells or antibody-secreting plasma cells. CARs can further guide the effector and regulatory T cells (Tregs) to the autoimmune milieu to traffic, proliferate, and exert suppressive functions. The genetically modified-T cells with artificial receptors are a promising option to suppress autoimmune manifestation and autoinflammatory events. Interestingly, CAR-T cells are modified to a new chimeric auto-antibody receptor T (CAAR-T) cell. This cell, with its specific-antigen, recognizes and binds to the target autoantibodies expressing autoreactive cells and, subsequently, destroy them. Preclinical studies of CAR-T cells demonstrated satisfactory outcomes against autoimmune diseases. However, the lack of target autoantigens remains one of the pivotal problems in the field of CAR-T cells. CAR-based therapy has to pass several hurdles, including stability, durability, trafficking, safety, effectiveness, manufacturing, and persistence, to enter clinical use. The primary goal of this review was to shed light on CAR-T immunotherapy, CAAR-T cell therapy, and CAR-Treg cell therapy in patients with immune system diseases.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Department of Clinical Laboratory Science, Young Researchers and Elites Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Gorgan, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | | |
Collapse
|
32
|
Magnani CF, Tettamanti S, Alberti G, Pisani I, Biondi A, Serafini M, Gaipa G. Transposon-Based CAR T Cells in Acute Leukemias: Where are We Going? Cells 2020; 9:cells9061337. [PMID: 32471151 PMCID: PMC7349235 DOI: 10.3390/cells9061337] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy has become a new therapeutic reality for refractory and relapsed leukemia patients and is also emerging as a potential therapeutic option in solid tumors. Viral vector-based CAR T-cells initially drove these successful efforts; however, high costs and cumbersome manufacturing processes have limited the widespread clinical implementation of CAR T-cell therapy. Here we will discuss the state of the art of the transposon-based gene transfer and its application in CAR T immunotherapy, specifically focusing on the Sleeping Beauty (SB) transposon system, as a valid cost-effective and safe option as compared to the viral vector-based systems. A general overview of SB transposon system applications will be provided, with an update of major developments, current clinical trials achievements and future perspectives exploiting SB for CAR T-cell engineering. After the first clinical successes achieved in the context of B-cell neoplasms, we are now facing a new era and it is paramount to advance gene transfer technology to fully exploit the potential of CAR T-cells towards next-generation immunotherapy.
Collapse
|
33
|
Ghani K, Boivin-Welch M, Roy S, Dakiw-Piaceski A, Barbier M, Pope E, Germain L, Caruso M. Generation of High-Titer Self-Inactivated γ-Retroviral Vector Producer Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:90-99. [PMID: 31312667 PMCID: PMC6610700 DOI: 10.1016/j.omtm.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 12/01/2022]
Abstract
The γ-retroviral vector is a gene delivery vehicle that is commonly used in gene therapy. Despite its efficacy, its strong enhancers contributed to malignant transformations in some hematopoietic stem cell (HSC) gene therapy trials. A safer version without viral enhancers (SIN) is available, but its production is cumbersome, as high titers can only be obtained in transient transfection. Our aim was to develop a system that could easily generate high-titer SIN vectors from stable producer cells. The use of the cytomegalovirus enhancer-promoter sequence to generate the full-length genomic RNA combined to sequences that decrease transcriptional readthrough (WPRE and strong polyadenylation sequences) led to 6 × 106 infectious units (IU)/mL of a SIN GFP vector in transient transfection. The incorporation of a blasticidin selection cassette to the retroviral plasmid allowed the generation of stable clones in the 293Vec packaging cells that release 2 × 107 IU/mL and 1.4 × 107 IU/mL of a SIN GFP and a SIN PIGA vector, respectively. A titer of 1.8 × 106 IU/mL was obtained with a SIN vector containing the long 8.9-kb COL7A1 cDNA. Thus, an efficient process was established for the generation of stable 293Vec-derived retrovirus producer cells that release high-titer SIN vectors.
Collapse
Affiliation(s)
- Karim Ghani
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC G1R 2J6, Canada
| | - Michael Boivin-Welch
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC G1R 2J6, Canada.,CHU de Québec-Université Laval Research Center (Regenerative Medicine Division) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, and Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, G1J 1Z4, Canada
| | - Sylvie Roy
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC G1R 2J6, Canada
| | - Angela Dakiw-Piaceski
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, and Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, G1J 1Z4, Canada
| | - Martin Barbier
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, and Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, G1J 1Z4, Canada
| | - Elena Pope
- Section of Dermatology, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Lucie Germain
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, and Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, G1J 1Z4, Canada
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, and Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC G1R 2J6, Canada
| |
Collapse
|
34
|
Wisskirchen K, Kah J, Malo A, Asen T, Volz T, Allweiss L, Wettengel JM, Lütgehetmann M, Urban S, Bauer T, Dandri M, Protzer U. T cell receptor grafting allows virological control of Hepatitis B virus infection. J Clin Invest 2019; 129:2932-2945. [PMID: 31039136 DOI: 10.1172/jci120228] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T cell therapy is a promising means to treat chronic HBV infection and HBV-associated hepatocellular carcinoma. T cells engineered to express an HBV-specific T cell receptor (TCR) may achieve cure of HBV infection upon adoptive transfer. We investigated the therapeutic potential and safety of T cells stably expressing high affinity HBV envelope- or core-specific TCRs recognizing European and Asian HLA-A2 subtypes. Both CD8+ and CD4+ T cells from healthy donors and from chronic hepatitis B patients became polyfunctional effector cells when grafted with HBV-specific TCRs and eliminated HBV from infected HepG2-NTCP cell cultures. A single transfer of TCR-grafted T cells into HBV-infected, humanized mice controlled HBV infection and virological markers declined 4-5 log or below detection limit. When - as in a typical clinical setting - only a minority of hepatocytes were infected, engineered T cells specifically cleared infected hepatocytes without damaging non-infected cells. Cell death was compensated by hepatocyte proliferation and alanine amino transferase levels peaking at day 5 to 7 normalized again thereafter. Co-treatment with the entry inhibitor Myrcludex B ensured long-term control of HBV infection. Thus, T cells stably transduced with highly functional TCRs have the potential to mediate clearance of HBV-infected cells causing limited liver injury.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany
| | - Janine Kah
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Malo
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Theresa Asen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Tassilo Volz
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen M Wettengel
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marc Lütgehetmann
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,Institute of Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Urban
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany
| | - Maura Dandri
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany
| |
Collapse
|
35
|
Poncette L, Chen X, Lorenz FK, Blankenstein T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest 2018; 129:324-335. [PMID: 30530988 DOI: 10.1172/jci120391] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/25/2018] [Indexed: 02/01/2023] Open
Abstract
Adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells is a promising approach in cancer therapy but needs improvement for more effective treatment of solid tumors. While most clinical approaches have focused on CD8+ T cells, the importance of CD4+ T cells in mediating tumor regression has become apparent. Regarding shared (self) tumor antigens, it is unclear whether the human CD4+ T cell repertoire has been shaped by tolerance mechanisms and lacks highly functional TCRs suitable for therapy. Here, TCRs against the tumor-associated antigen NY-ESO-1 were isolated either from human CD4+ T cells or from mice that express a diverse human TCR repertoire with HLA-DRA/DRB1*0401 restriction and are NY-ESO-1 negative. NY-ESO-1-reactive TCRs from the mice showed superior recognition of tumor cells and higher functional activity compared with TCRs from humans. We identified a candidate TCR, TCR-3598_2, which was expressed in CD4+ T cells and caused tumor regression in combination with NY-ESO-1-redirected CD8+ T cells in a mouse model of adoptive T cell therapy. These data suggest that MHC II-restricted TCRs against NY-ESO-1 from a nontolerant nonhuman host are of optimal affinity and that the combined use of MHC I- and II-restricted TCRs against NY-ESO-1 can make adoptive T cell therapy more effective.
Collapse
Affiliation(s)
- Lucia Poncette
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xiaojing Chen
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| | | | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Straetemans T, Kierkels GJJ, Doorn R, Jansen K, Heijhuurs S, dos Santos JM, van Muyden ADD, Vie H, Clemenceau B, Raymakers R, de Witte M, Sebestyén Z, Kuball J. GMP-Grade Manufacturing of T Cells Engineered to Express a Defined γδTCR. Front Immunol 2018; 9:1062. [PMID: 29899740 PMCID: PMC5988845 DOI: 10.3389/fimmu.2018.01062] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022] Open
Abstract
γ9δ2T cells play a critical role in daily cancer immune surveillance by sensing cancer-mediated metabolic changes. However, a major limitation of the therapeutic application of γ9δ2T cells is their diversity and regulation through innate co-receptors. In order to overcome natural obstacles of γ9δ2T cells, we have developed the concept of T cells engineered to express a defined γδT cell receptor (TEGs). This next generation of chimeric antigen receptor engineered T (CAR-T) cells not only allows for targeting of hematological but also of solid tumors and, therefore, overcomes major limitations of many CAR-T and γδT cell strategies. Here, we report on the development of a robust manufacturing procedure of T cells engineered to express the high affinity Vγ9Vδ2T cell receptor (TCR) clone 5 (TEG001). We determined the best concentration of anti-CD3/CD28 activation and expansion beads, optimal virus titer, and cell density for retroviral transduction, and validated a Good Manufacturing Practice (GMP)-grade purification procedure by utilizing the CliniMACS system to deplete non- and poorly-engineered T cells. To the best of our knowledge, we have developed the very first GMP manufacturing procedure in which αβTCR depletion is used as a purification method, thereby delivering untouched clinical grade engineered immune cells. This enrichment method is applicable to any engineered T cell product with a reduced expression of endogenous αβTCRs. We report on release criteria and the stability of TEG001 drug substance and TEG001 drug product. The GMP-grade production procedure is now approved by Dutch authorities and allows TEG001 to be generated in cell numbers sufficient to treat patients within the approved clinical trial NTR6541. NTR6541 will investigate the safety and tolerability of TEG001 in patients with relapsed/refractory acute myeloid leukemia, high-risk myelodysplastic syndrome, and relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Trudy Straetemans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Guido J. J. Kierkels
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ruud Doorn
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Koen Jansen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sabine Heijhuurs
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joao M. dos Santos
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Henri Vie
- CRCINA, INSERM 1232, CNRS, Université d’Angers, Université de Nantes, Nantes, France
- CHU de Nantes, Hôtel Dieu, UTCG, Nantes, France
| | - Béatrice Clemenceau
- CRCINA, INSERM 1232, CNRS, Université d’Angers, Université de Nantes, Nantes, France
- CHU de Nantes, Hôtel Dieu, UTCG, Nantes, France
| | - Reinier Raymakers
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Moniek de Witte
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Zsolt Sebestyén
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
37
|
Rafiq S, Purdon TJ, Daniyan AF, Koneru M, Dao T, Liu C, Scheinberg DA, Brentjens RJ. Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms Tumor 1 antigen. Leukemia 2017; 31:1788-1797. [PMID: 27924074 PMCID: PMC5495623 DOI: 10.1038/leu.2016.373] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Abstract
CD19-directed chimeric antigen receptor (CAR) T cells are clinically effective in a limited set of leukemia patients. However, CAR T-cell therapy thus far has been largely restricted to targeting extracellular tumor-associated antigens (TAA). Herein, we report a T-cell receptor-mimic (TCRm) CAR, termed WT1-28z, that is reactive to a peptide portion of the intracellular onco-protein Wilms Tumor 1(WT1), as it is expressed on the surface of the tumor cell in the context of HLA-A*02:01. T cells modified to express WT1-28z specifically targeted and lysed HLA-A*02:01+ WT1+ tumors and enhanced survival of mice engrafted with HLA-A*02:01+, WT1+ leukemia or ovarian tumors. This in vivo functional validation of TCRm CAR T cells provides the proof-of-concept necessary to expand the range of TAA that can be effectively targeted for immunotherapy to include attractive intracellular targets, and may hold great potential to expand on the success of CAR T-cell therapy.
Collapse
Affiliation(s)
- S Rafiq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - TJ Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - AF Daniyan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Koneru
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Dao
- Molecular Pharmacology Program, Sloan Kettering Institute; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Liu
- Eureka Therapeutics, Emeryville, CA, USA
| | - DA Scheinberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute; Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - RJ Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
38
|
Masked Chimeric Antigen Receptor for Tumor-Specific Activation. Mol Ther 2017; 25:274-284. [PMID: 28129121 DOI: 10.1016/j.ymthe.2016.10.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Abstract
Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs.
Collapse
|
39
|
Wang X, Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16015. [PMID: 27347557 PMCID: PMC4909095 DOI: 10.1038/mto.2016.15] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality.
Collapse
Affiliation(s)
- Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Isabelle Rivière
- Cell Therapy and Cell Engineering Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
40
|
Abstract
Supplemental Digital Content is available in the text. The successful genetic engineering of patient T cells with γ-retroviral vectors expressing chimeric antigen receptors or T-cell receptors for phase II clinical trials and beyond requires the large-scale manufacture of high-titer vector stocks. The production of retroviral vectors from stable packaging cell lines using roller bottles or 10- to 40-layer cell factories is limited by a narrow harvest window, labor intensity, open-system operations, and the requirement for significant incubator space. To circumvent these shortcomings, we optimized the production of vector stocks in a disposable fixed-bed bioreactor using good manufacturing practice–grade packaging cell lines. High-titer vector stocks were harvested over 10 days, representing a much broader harvest window than the 3-day harvest afforded by cell factories. For PG13 and 293Vec packaging cells, the average vector titer and the vector stocks’ yield in the bioreactor were higher by 3.2- to 7.3-fold, and 5.6- to 13.1-fold, respectively, than those obtained in cell factories. The vector production was 10.4 and 18.6 times more efficient than in cell factories for PG13 and 293Vec cells, respectively. Furthermore, the vectors produced from the fixed-bed bioreactors passed the release test assays for clinical applications. Therefore, a single vector lot derived from 293Vec is suitable to transduce up to 500 patients cell doses in the context of large clinical trials using chimeric antigen receptors or T-cell receptors. These findings demonstrate for the first time that a robust fixed-bed bioreactor process can be used to produce γ-retroviral vector stocks scalable up to the commercialization phase.
Collapse
|
41
|
Petiot E, Cuperlovic-Culf M, Shen CF, Kamen A. Influence of HEK293 metabolism on the production of viral vectors and vaccine. Vaccine 2015; 33:5974-81. [DOI: 10.1016/j.vaccine.2015.05.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022]
|
42
|
Abstract
Twenty-five years after its inception, the genetic engineering of T cells is now a therapeutic modality pursued at an increasing number of medical centers. This immunotherapeutic strategy is predicated on gene transfer technology to instruct T lymphocytes to recognize and reject tumor cells. Chimeric antigen receptors (CARs) are synthetic receptors that mediate antigen recognition, T cell activation, and - in the case of second-generation CARs - costimulation to augment T cell functionality and persistence. We demonstrated over a decade ago that human T cells engineered with a CD19-specific CAR eradicated B cell malignancies in mice. Several phase I clinical trials eventually yielded dramatic results in patients with leukemia or lymphoma, especially acute lymphoblastic leukemia (ALL). This review recounts the milestones of CD19 CAR therapy and summarizes lessons learned from the CD19 paradigm.
Collapse
|
43
|
Condomines M, Arnason J, Benjamin R, Gunset G, Plotkin J, Sadelain M. Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition. PLoS One 2015; 10:e0130518. [PMID: 26110267 PMCID: PMC4482147 DOI: 10.1371/journal.pone.0130518] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022] Open
Abstract
Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR) recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z) displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1) costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.
Collapse
Affiliation(s)
- Maud Condomines
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
- * E-mail: (MC); (MS)
| | - Jon Arnason
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Reuben Benjamin
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Gertrude Gunset
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Jason Plotkin
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Michel Sadelain
- Center for Cell Engineering and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States of America
- * E-mail: (MC); (MS)
| |
Collapse
|
44
|
Miyaho RN, Nakagawa S, Hashimoto-Gotoh A, Nakaya Y, Shimode S, Sakaguchi S, Yoshikawa R, Takahashi MU, Miyazawa T. Susceptibility of domestic animals to a pseudotype virus bearing RD-114 virus envelope protein. Gene 2015; 567:189-95. [PMID: 25936996 DOI: 10.1016/j.gene.2015.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/18/2023]
Abstract
Retroviral vectors are used for gene transduction into cells and have been applied to gene therapy. Retroviral vectors using envelope protein (Env) of RD-114 virus, a feline endogenous retrovirus, have been used for gene transduction. In this study, we investigated the susceptibility to RD-114 Env-pseudotyped virus in twelve domestic animals including cattle, sheep, horse, pig, dog, cat, ferret, mink, rabbit, rat, mouse, and quail. Comparison of nucleotide sequences of ASCT2 (SLC1A5), a receptor of RD-114 virus, in 10 mammalian and 2 avian species revealed that insertion and deletion events at the region C of ASCT2 where RD-114 viral Env interacts occurred independently in the mouse and rat lineage and in the chicken and quail lineage. By the pseudotype virus infection assay, we found that RD-114 Env-pseudotyped virus could efficiently infect all cell lines except those from mouse and rat. Furthermore, we confirmed that bovine ASCT2 (bASCT2) functions as a receptor for RD-114 virus infection. We also investigated bASCT2 mRNA expression in cattle tissues and found that it is expressed in various tissues including lung, spleen and kidney. These results indicate that retrovirus vectors with RD-114 virus Env can be used for gene therapy in large domestic animals in addition to companion animals such as cat and dog.
Collapse
Affiliation(s)
- Rie Nakaoka Miyaho
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
| | - Akira Hashimoto-Gotoh
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 606-8566, Japan
| | - Sayumi Shimode
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shoichi Sakaguchi
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Rokusuke Yoshikawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mahoko Ueda Takahashi
- Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
45
|
Wang X, Rivière I. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 2015; 22:85-94. [PMID: 25721207 DOI: 10.1038/cgt.2014.81] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 12/19/2022]
Abstract
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic.
Collapse
Affiliation(s)
- X Wang
- 1] Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - I Rivière
- 1] Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA [3] Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
46
|
Curran KJ, Seinstra BA, Nikhamin Y, Yeh R, Usachenko Y, van Leeuwen DG, Purdon T, Pegram HJ, Brentjens RJ. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol Ther 2015; 23:769-78. [PMID: 25582824 DOI: 10.1038/mt.2015.4] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/02/2015] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40(+) tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40(+) tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19(+) systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Kevin J Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Beatrijs A Seinstra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yan Nikhamin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raymond Yeh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yelena Usachenko
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dayenne G van Leeuwen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Terence Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hollie J Pegram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
47
|
Hennig K, Raasch L, Kolbe C, Weidner S, Leisegang M, Uckert W, Titeux M, Hovnanian A, Kuehlcke K, Loew R. HEK293-Based Production Platform for γ-Retroviral (Self-Inactivating) Vectors: Application for Safe and Efficient Transfer ofCOL7A1cDNA. HUM GENE THER CL DEV 2014; 25:218-28. [DOI: 10.1089/humc.2014.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | | | | | - Wolfgang Uckert
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
- Institute of Biology, Humboldt University Berlin, 13092 Berlin, Germany
| | - Matthias Titeux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases: From Disease Mechanism to Therapies, 75730 Paris, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, 75730 Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases: From Disease Mechanism to Therapies, 75730 Paris, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, 75730 Paris, France
- Department of Genetics, Necker Hospital, 75730 Paris, France
| | | | | |
Collapse
|
48
|
Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014; 124:1221-31. [PMID: 24951430 DOI: 10.1182/blood-2014-02-558163] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character. Summarizing all these disadvantages, alternatives to VSV-G-LVs are urgently needed. We generated here high-titer LVs pseudotyped with a baboon retroviral envelope glycoprotein (BaEV-LVs), resistant to human complement. Under mild cytokine prestimulation to preserve the HSC characteristics, a single BaEV-LV application at a low dose, resulted in up to 90% of hCD34(+) cell transduction. Even more striking was that these new BaEV-LVs allowed, at low doses, efficient transduction of up to 30% of quiescent hCD34(+) cells, whereas high-dose VSV-G-LVs were insufficient. Importantly, reconstitution of NOD/Lt-SCID/γc(-/-) (NSG) mice with BaEV-LV-transduced hCD34(+) cells maintained these high transduction levels in all myeloid and lymphoid lineages, including early progenitors. This transduction pattern was confirmed or even increased in secondary NSG recipient mice. This suggests that BaEV-LVs efficiently transduce true HSCs and could improve HSC-based gene therapy, for which high-level HSC correction is needed for life-long cure.
Collapse
|
49
|
Drakopoulou E, Papanikolaou E, Anagnou NP. The Ongoing Challenge of Hematopoietic Stem Cell-Based Gene Therapy for β-Thalassemia. Stem Cells Int 2011; 2011:987980. [PMID: 22190966 PMCID: PMC3236367 DOI: 10.4061/2011/987980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/04/2011] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia is characterized by reduced or absence of β-globin production, resulting in anemia. Current therapies include blood transfusion combined with iron chelation. BM transplantation, although curative, is restricted by the matched donor limitation. Gene therapy, on the other hand, is promising, and its success lies primarily on designing efficient globin vectors that can effectively and stably transduce HSCs. The major breakthrough in β-thalassemia gene therapy occurred a decade ago with the development of globin LVs. Since then, researchers focused on designing efficient and safe vectors, which can successfully deliver the therapeutic transgene, demonstrating no insertional mutagenesis. Furthermore, as human HSCs have intrinsic barriers to HIV-1 infection, attention is drawn towards their ex vivo manipulation, aiming to achieve higher yield of genetically modified HSCs. This paper presents the current status of gene therapy for β-thalassemia, its success and limitations, and the novel promising strategies available involving the therapeutic role of HSCs.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece
| | | | | |
Collapse
|
50
|
Feldman SA, Goff SL, Xu H, Black MA, Kochenderfer JN, Johnson LA, Yang JC, Wang Q, Parkhurst MR, Cross S, Morgan RA, Cornetta K, Rosenberg SA. Rapid production of clinical-grade gammaretroviral vectors in expanded surface roller bottles using a "modified" step-filtration process for clearance of packaging cells. Hum Gene Ther 2011; 22:107-15. [PMID: 20662590 PMCID: PMC3026655 DOI: 10.1089/hum.2010.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/27/2010] [Indexed: 11/12/2022] Open
Abstract
Production of clinical-grade gammaretroviral vectors for ex vivo gene delivery requires a scalable process that can rapidly generate large amounts of vector supernatant, clear large numbers of residual packaging cells with minimal decreases in vector titer, and satisfy all current regulatory guidelines regarding product biosafety. To that end, we have developed a simplified method that is compliant with current good manufacturing practices for the production of clinical-grade gammaretroviral vectors in a clinical research environment. We validated a large-scale production platform utilizing 1,700-cm(2) expanded surface roller bottles and a "modified" step-filtration process consisting of a 40/150-μm dual-screen filter for aggregate removal followed by a Sepacell 500II leukocyte reduction filter for removal of residual packaging cells. This clarification process can clear at least 2 × 10(9) viable producer cells using a single filter set-up without any significant loss of titer post-filtration. This platform typically generates 18 liters of vector supernatant to support small-scale clinical trials, but can easily be scaled up to 70 liters during a single manufacturing run. To date, this platform has generated five clinical-grade gammaretroviral vector products, four of which are now being used in adoptive cell therapy clinical trials for the treatment of a variety of solid cancers.
Collapse
Affiliation(s)
- Steven A Feldman
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|