1
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Jäger N, Pöhlmann S, Rodnina MV, Ayyub SA. Interferon-Stimulated Genes that Target Retrovirus Translation. Viruses 2024; 16:933. [PMID: 38932225 PMCID: PMC11209297 DOI: 10.3390/v16060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.
Collapse
Affiliation(s)
- Niklas Jäger
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| | - Shreya Ahana Ayyub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| |
Collapse
|
3
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
4
|
Ren L, Meng X, Sun J, Shao X, Shao M, Wang S, Li Z, Chen Y. Prokaryotic expression of soluble IFN-λ1 recombinant protein with cold-shock system. Protein Expr Purif 2024; 215:106413. [PMID: 38065246 DOI: 10.1016/j.pep.2023.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
Interferon (IFN)-λ1, a member of type III IFN, possesses unique antiviral, anti-tumor, and immune modulation properties. IFN-λ alone or combined with other drugs is considered an essential therapeutic regimen in the clinic. Obtaining high-quality, biologically-active recombinant human IFN-λ1 (rhIFN-λ1) is of great practical significance. In this study, pCold-II-IFN-λ1 expression plasmid was correctly constructed, the rhIFN-λ1 was expressed in BL21(DE3) E.coli and reached the highest level under the optimal condition of 15 °C culture temperature and at 1 μg/L IPTG induction for 12 h. The soluble rhIFN-λ1 was purified by Ni-NTA affinity chromatography. The purified rhIFN-λ1 can effectively activate the JAK1-STAT1 signaling pathway and induce the expression of a large number of interferon-stimulated genes (ISG) including ISG15, ISG54, ISG56, TRAIL, OAS1, MX1, IRF7 and IRF9. In addition, rhIFN-λ1 can effectively inhibit the growth/proliferation of cervical cancer HeLa cells in a dose-dependent pattern. Collectively, the soluble rhIFN-λ1 was successfully expressed in BL21(DE3) E.coli with the cold-shock system, and the purified rhIFN-λ1 demonstrated excellent biological activity. This study lays a solid basis for acquiring high-quality rhIFN-λ1 and its clinical application.
Collapse
Affiliation(s)
- Leiying Ren
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Xueqiong Meng
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China; Luoyang Vocational and Technical College, Luoyang, China
| | - Jie Sun
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Xiaoya Shao
- The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Mengyu Shao
- Luoyang Vocational and Technical College, Luoyang, China
| | - Shuo Wang
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Zhitao Li
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China; Luoyang Vocational and Technical College, Luoyang, China.
| |
Collapse
|
5
|
Liu Y, Lu T, Li C, Wang X, Chen F, Yue L, Jiang C. Comparative transcriptome analysis of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E identifying potential IFN/ISGs targets for inhibiting virus replication. Front Med (Lausanne) 2023; 10:1267903. [PMID: 38143441 PMCID: PMC10739311 DOI: 10.3389/fmed.2023.1267903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Since its outbreak in December 2019, SARS-CoV-2 has spread rapidly across the world, posing significant threats and challenges to global public health. SARS-CoV-2, together with SARS-CoV and MERS-CoV, is a highly pathogenic coronavirus that contributes to fatal pneumonia. Understanding the similarities and differences at the transcriptome level between SARS-CoV-2, SARS-CoV, as well as MERS-CoV is critical for developing effective strategies against these viruses. Methods In this article, we comparatively analyzed publicly available transcriptome data of human cell lines infected with highly pathogenic SARS-CoV-2, SARS-CoV, MERS-CoV, and lowly pathogenic HCoV-229E. The host gene expression profiles during human coronavirus (HCoV) infections were generated, and the pathways and biological functions involved in immune responses, antiviral efficacy, and organ damage were intensively elucidated. Results Our results indicated that SARS-CoV-2 induced a stronger immune response versus the other two highly pathogenic HCoVs. Specifically, SARS-CoV-2 induced robust type I and type III IFN responses, marked by higher upregulation of type I and type III IFNs, as well as numerous interferon-stimulated genes (ISGs). Further Ingenuity Pathway Analysis (IPA) revealed the important role of ISGs for impeding SARS-CoV-2 infection, and the interferon/ISGs could be potential targets for therapeutic interventions. Moreover, our results uncovered that SARS-CoV-2 infection was linked to an enhanced risk of multi-organ toxicity in contrast to the other two highly pathogenic HCoVs. Discussion These findings provided valuable insights into the pathogenic mechanism of SARS-CoV-2, which showed a similar pathological feature but a lower fatality rate compared to SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
- Yuzhuang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaotong Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhou P, Liu D, Zhang Q, Wu W, Chen D, Luo R. Antiviral effects of duck type I and type III interferons against Duck Tembusu virus in vitro and in vivo. Vet Microbiol 2023; 287:109889. [PMID: 37913673 DOI: 10.1016/j.vetmic.2023.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Duck Tembusu Virus (DTMUV) is a newly emerging avian flavivirus that causes substantial economic losses to the duck industry in Asia by causing severe egg drop syndrome and fatal encephalitis in domestic ducks. During viral replication, host cells recognize the RNA structures produced by DTMUV, which triggers the production of interferons (IFNs) to inhibit viral replication. However, the function of duck type I and type III IFNs in inhibiting DTMUV infection remains largely unknown. In this study, we expressed and purified recombinant duck IFN-β (duIFN-β) and IFN-λ (duIFN-λ) in Escherichia coli and evaluated their antiviral activity against vesicular stomatitis virus (VSV). Furthermore, we found that both duIFN-β and duIFN-λ activated the ISRE promoter and induced the expression of ZAP, OAS, and RNaseL in duck embryo fibroblasts (DEFs). Notably, duIFN-β showed faster and more potent induction of ISGs in vitro and in vivo compared to duIFN-λ. Moreover, both duIFN-β and duIFN-λ showed high potential to inhibit DTMUV infection in DEFs, with duIFN-β demonstrating better antiviral efficacy than duIFN-λ against DTMUV in ducks. In conclusion, our results revealed that both duIFN-β and duIFN-λ can induce ISGs production and exhibit significant antiviral activity against DTMUV in vitro and in vivo, providing new insights for the development of antiviral therapeutic strategies in ducks.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Wanrong Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Angelim CC, Martins LD, Andrade ÁAF, Moreira FC, Guerreiro JF, de Assumpção PP, dos Santos SEB, Costa GDLC. Variants of IFNL4 Gene in Amazonian and Northern Brazilian Populations. Genes (Basel) 2023; 14:2075. [PMID: 38003018 PMCID: PMC10671175 DOI: 10.3390/genes14112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Since the discovery of the polymorphic nature of the IFNL4 gene, its variants have been investigated and associated with several viral diseases, with an emphasis on hepatitis C. However, the impacts of these variants on mixed-race and native populations in the northern region of Brazil are scarce. We investigated three variants of the IFNL4 gene in populations from this location, which were among the 14 most frequent variants in worldwide populations, and compared the frequencies obtained to populational data from the 1000 Genomes Project, gnomAD and ABraOM databases. Our results demonstrate that mixed-race and native populations from the northern region of Brazil present frequencies like those of European and Asian groups for the rs74597329 and rs11322783 variants, and like all populations presented for the rs4803221 variant. These data reinforce the role of world populations in shaping the genetic profile of Brazilian populations, indicate patterns of illness according to the expressed genotype, and infer an individual predisposition to certain diseases.
Collapse
Affiliation(s)
- Carolina Cabral Angelim
- Programa de Pós-Graduação em Agentes Infecciosos e Parasitários, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (C.C.A.); (L.D.M.); (Á.A.F.A.); (S.E.B.d.S.)
| | - Letícia Dias Martins
- Programa de Pós-Graduação em Agentes Infecciosos e Parasitários, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (C.C.A.); (L.D.M.); (Á.A.F.A.); (S.E.B.d.S.)
- Programa de Pós-Graduação em Virologia, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
| | - Álesson Adam Fonseca Andrade
- Programa de Pós-Graduação em Agentes Infecciosos e Parasitários, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (C.C.A.); (L.D.M.); (Á.A.F.A.); (S.E.B.d.S.)
| | - Fabiano Cordeiro Moreira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (F.C.M.); (J.F.G.)
- Núcleo de Pesquisa em Oncologia, Federal University of Pará, Belém 66073-000, PA, Brazil;
| | - João Farias Guerreiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (F.C.M.); (J.F.G.)
| | | | - Sidney Emanuel Batista dos Santos
- Programa de Pós-Graduação em Agentes Infecciosos e Parasitários, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (C.C.A.); (L.D.M.); (Á.A.F.A.); (S.E.B.d.S.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (F.C.M.); (J.F.G.)
| | - Greice de Lemos Cardoso Costa
- Programa de Pós-Graduação em Agentes Infecciosos e Parasitários, Laboratório de Genética Humana e Médica, Federal University of Pará, Belém 66073-000, PA, Brazil; (C.C.A.); (L.D.M.); (Á.A.F.A.); (S.E.B.d.S.)
| |
Collapse
|
8
|
Zahid W, Farooqui N, Zahid N, Ahmed K, Anwar MF, Rizwan-ul-Hasan S, Hussain AR, Sarría-Santamera A, Abidi SH. Association of Interferon Lambda 3 and 4 Gene SNPs and Their Expression with COVID-19 Disease Severity: A Cross-Sectional Study. Infect Drug Resist 2023; 16:6619-6628. [PMID: 37840831 PMCID: PMC10576565 DOI: 10.2147/idr.s422095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Expression and certain SNPs of interferon lambda 3 and 4 (IFNL3 and 4) have been associated with variable outcomes in COVID-19 patients in different regions, suggesting population-specific differences in the disease outcome. This study examined the association of INFL3 and INFL4 SNPs (rs12979860 and rs368234815, respectively) and nasopharyngeal expression with COVID-19 disease severity in Pakistani patients. Methods For this study, 117 retrospectively collected nasopharyngeal swab samples were used from individuals with mild and severe COVID-19 disease. qPCR assays were used to determine the viral loads and mRNA expression of IFNL3 and 4 through the Ct and delta Ct methods, respectively. Due to funding limitations, only one SNP each in INFL3 and INFL4 (found to be most significant through literature search) was analyzed using tetra-arm PCR and RFLP-PCR strategies, respectively. The Mann-Whitney U-test was applied to evaluate the statistical differences in the expression of IFNL3/4 genes in the mild and severe groups, while for SNPs, a Chi-square test was employed. A multivariate Cox regression test was performed to assess the relationship of different variables with COVID-19 severity. Results Comparative analysis of SNPs between mild and severe groups showed only the difference in SNP of the IFNL4 gene to be statistically significant (p = 0.001). Similarly, nasopharyngeal expression of IFNL3 and IFNL4 genes, respectively, was found to be 3.48-fold less and 3.48-fold higher in the severe group as compared to the mild group. Multivariate analysis revealed SNP in the IFNL4 gene and age to have a significant association with COVID-19 severity. Conclusion Despite the small sample size, IFNL4 gene SNP and patient age were associated with COVID-19 severity. Age, IFNL3/IFNL4 mRNA expression in the nasopharyngeal milieu, and the presence of SNP in the IFNL4 (rs368234815) gene in COVID-19 patients may be biomarkers for infection severity and help improve SARS-CoV-2 infection management.
Collapse
Affiliation(s)
- Warisha Zahid
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Nida Farooqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Nida Zahid
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhammad Faraz Anwar
- Department of Biochemistry, Bahria University Medical and Dental College, Karachi, Pakistan
| | | | - Azhar R Hussain
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
9
|
Baker FS, Wang J, Florez-Vargas O, Brand NR, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Chagaluka G, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Prokunina-Olsson L, Mbulaiteye SM. IFNL4 Genotypes and Risk of Childhood Burkitt Lymphoma in East Africa. J Interferon Cytokine Res 2023; 43:394-402. [PMID: 37366802 PMCID: PMC10623078 DOI: 10.1089/jir.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 06/28/2023] Open
Abstract
Interferon lambda 4 (IFN-λ4) is a novel type-III interferon that can be expressed only by carriers of the genetic variant rs368234815-dG within the first exon of the IFNL4 gene. Genetic inability to produce IFN-λ4 (in carriers of the rs368234815-TT/TT genotype) has been associated with improved clearance of hepatitis C virus (HCV) infection. The IFN-λ4-expressing rs368234815-dG allele (IFNL4-dG) is most common (up to 78%) in West sub-Saharan Africa (SSA), compared to 35% of Europeans and 5% of individuals from East Asia. The negative selection of IFNL4-dG outside Africa suggests that its retention in African populations could provide survival benefits, most likely in children. To explore this hypothesis, we conducted a comprehensive association analysis between IFNL4 genotypes and the risk of childhood Burkitt lymphoma (BL), a lethal infection-associated cancer most common in SSA. We used genetic, epidemiologic, and clinical data for 4,038 children from the Epidemiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) and the Malawi Infections and Childhood Cancer case-control studies. Generalized linear mixed models fit with the logit link controlling for age, sex, country, P. falciparum infection status, population stratification, and relatedness found no significant association between BL risk and 3 coding genetic variants within IFNL4 (rs368234815, rs117648444, and rs142981501) and their combinations. Because BL occurs in children 6-9 years of age who survived early childhood infections, our results suggest that additional studies should explore the associations of IFNL4-dG allele in younger children. This comprehensive study represents an important baseline in defining the health effects of IFN-λ4 in African populations.
Collapse
Affiliation(s)
- Francine S. Baker
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| | - Jeanny Wang
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| | - Nathan R. Brand
- Department of Surgery, University of California, San Francisco, California, USA
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Pamela A. Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary's Hospital, Lacor, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - George Chagaluka
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Eric Borgstein
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - George N. Liomba
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Steve Kamiza
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nyengo Mkandawire
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Elizabeth M. Molyneux
- Department of Pediatrics and Surgery, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | | | - Sam M. Mbulaiteye
- Laboratory of Translational Genomics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
10
|
Donnelly RP, Prokunina-Olsson L. The Interferon-Lambda Family Celebrates 20 Years of Scientific Discovery. J Interferon Cytokine Res 2023; 43:359-362. [PMID: 37725009 PMCID: PMC10623059 DOI: 10.1089/jir.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023] Open
Abstract
It has now been 20 years since the original discovery of the interferon λ (IFN-λ) family (Kotenko et al., 2003; Sheppard et al., 2003) and 10 years since the subsequent discovery of IFN-λ4 (Prokunina-Olsson et al., 2013). The IFN-λ family (type III IFNs) includes 4 members: IFN-λ1, 2, 3, and 4, and all 4 of these proteins signal through the same heterodimeric receptor complex: IFN-λR1 plus IL-10R2. Throughout the past 20 years, much has been learned about the IFN-λ family and the important role of these cytokines in antiviral responses against viruses such as hepatitis C virus, influenza A virus, and SARS-CoV-2. This special issue of the Journal of Interferon & Cytokine Research (JICR) features a group of new reports that highlight recent developments regarding various aspects of IFN-λ-mediated responses. Many of these reports were first presented during the Interferon Lambda 2022 Satellite Meeting after the "Cytokines 2022" meeting in Hawaii. These articles underscore the fact that our understanding of the IFN-λ family continues to evolve and remains a critical subject area for additional future research.
Collapse
Affiliation(s)
- Raymond P. Donnelly
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Paulis A, Tramontano E. Unlocking STING as a Therapeutic Antiviral Strategy. Int J Mol Sci 2023; 24:ijms24087448. [PMID: 37108610 PMCID: PMC10138487 DOI: 10.3390/ijms24087448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Invading pathogens have developed weapons that subvert physiological conditions to weaken the host and permit the spread of infection. Cells, on their side, have thus developed countermeasures to maintain cellular physiology and counteract pathogenesis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) is a pattern recognition receptor that recognizes viral DNA present in the cytosol, activating the stimulator of interferon genes (STING) protein and leading to the production of type I interferons (IFN-I). Given its role in innate immunity activation, STING is considered an interesting and innovative target for the development of broad-spectrum antivirals. In this review, we discuss the function of STING; its modulation by the cellular stimuli; the molecular mechanisms developed by viruses, through which they escape this defense system; and the therapeutical strategies that have been developed to date to inhibit viral replication restoring STING functionality.
Collapse
Affiliation(s)
- Annalaura Paulis
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
12
|
Chamani S, Moossavi M, Naghizadeh A, Abbasifard M, Kesharwani P, Sathyapalan T, Sahebkar A. Modulatory properties of curcumin in cancer: A narrative review on the role of interferons. Phytother Res 2023; 37:1003-1014. [PMID: 36744753 DOI: 10.1002/ptr.7734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/07/2023]
Abstract
The immune network is an effective network of cell types and chemical compounds established to maintain the body's homeostasis from foreign threats and to prevent the risk of a wide range of diseases; hence, its proper functioning and balance are essential. A dysfunctional immune system can contribute to various disorders, including cancer. Therefore, there has been considerable interest in molecules that can modulate the immune network. Curcumin, the active ingredient of turmeric, is one of these herbal remedies with many beneficial effects, including modulation of immunity. Curcumin is beneficial in managing various chronic inflammatory conditions, improving brain function, lowering cardiovascular disease risk, prevention and management of dementia, and prevention of aging. Several clinical studies have supported this evidence, suggesting curcumin to have an immunomodulatory and anti-inflammatory function; nevertheless, its mechanism of action is still not clear. In the current review, we aim to explore the modulatory function of curcumin through interferons in cancers.
Collapse
Affiliation(s)
- Sajjad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research Jamia Hamdard, New Delhi, India
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Influence of Canonical and Non-Canonical IFNLR1 Isoform Expression on Interferon Lambda Signaling. Viruses 2023; 15:v15030632. [PMID: 36992341 PMCID: PMC10052089 DOI: 10.3390/v15030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Interferon lambdas (IFNLs) are innate immune cytokines that induce antiviral cellular responses by signaling through a heterodimer composed of IL10RB and the interferon lambda receptor 1 (IFNLR1). Multiple IFNLR1 transcriptional variants are expressed in vivo and are predicted to encode distinct protein isoforms whose function is not fully established. IFNLR1 isoform 1 has the highest relative transcriptional expression and encodes the full-length functional form that supports canonical IFNL signaling. IFNLR1 isoforms 2 and 3 have lower relative expression and are predicted to encode signaling-defective proteins. To gain insight into IFNLR1 function and regulation, we explored how altering relative expression of IFNLR1 isoforms influenced the cellular response to IFNLs. To achieve this, we generated and functionally characterized stable HEK293T clones expressing doxycycline-inducible FLAG-tagged IFNLR1 isoforms. Minimal FLAG-IFNLR1 isoform 1 overexpression markedly increased IFNL3-dependent expression of antiviral and pro-inflammatory genes, a phenotype that could not be further augmented by expressing higher levels of FLAG-IFNLR1 isoform 1. Expression of low levels of FLAG-IFNLR1 isoform 2 led to partial induction of antiviral genes, but not pro-inflammatory genes, after IFNL3 treatment, a phenotype that was largely abrogated at higher FLAG-IFNLR1 isoform 2 expression levels. Expression of FLAG-IFNLR1 isoform 3 partially augmented antiviral gene expression after IFNL3 treatment. In addition, FLAG-IFNLR1 isoform 1 significantly reduced cellular sensitivity to the type-I IFN IFNA2 when overexpressed. These results identify a unique influence of canonical and non-canonical IFNLR1 isoforms on mediating the cellular response to interferons and provide insight into possible pathway regulation in vivo.
Collapse
|
14
|
Fang MZ, Jackson SS, Pfeiffer RM, Kim EY, Chen S, Hussain SK, Jacobson LP, Martinson J, Prokunina-Olsson L, Thio CL, Duggal P, Wolinsky S, O’Brien TR. No Association of IFNL4 Genotype With Opportunistic Infections and Cancers Among Men With Human Immunodeficiency Virus 1 Infection. Clin Infect Dis 2023; 76:521-527. [PMID: 36573283 PMCID: PMC10169417 DOI: 10.1093/cid/ciac447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND IFNL4 genetic variants that are strongly associated with clearance of hepatitis C virus have been linked to risk of certain opportunistic infections (OIs) and cancers, including Kaposi sarcoma, cytomegalovirus infection, and herpes simplex virus infection. As the interferon (IFN) λ family plays a role in response to viral, bacterial, and fungal infections, IFNL4 genotype might affect risk for a wide range of OIs/cancers. METHODS We examined associations between genotype for the functional IFNL4 rs368234815 polymorphism and incidence of 16 OIs/cancers among 2310 men with human immunodeficiency virus (2038 white; 272 black) enrolled in the Multicenter AIDS Cohort Study during 1984-1990. Our primary analyses used Cox proportional hazards models adjusted for self-reported racial ancestry to estimate hazard ratios with 95% confidence intervals, comparing participants with the genotypes that generate IFN-λ4 and those with the genotype that abrogates IFN-λ4. We censored follow-up at the introduction of highly effective antiretroviral therapies. RESULTS We found no statistically significant association between IFNL4 genotype and the incidence of Kaposi sarcoma (hazard ratio, 0.92 [95% confidence interval, .76-1.11]), cytomegalovirus infection (0.94 [.71-1.24]), herpes simplex virus infection (1.37 [.68-2.93]), or any other OI/cancer. We observed consistent results using additive genetic models and after controlling for CD4 cell count through time-dependent adjustment or restriction to participants with a low CD4 cell count. CONCLUSIONS The absence of associations between IFNL4 genotype and these OIs/cancers provides evidence that this gene does not affect the risk of disease from opportunistic pathogens.
Collapse
Affiliation(s)
- Michelle Z Fang
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sarah S Jackson
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Eun-Young Kim
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sabrina Chen
- Information Management Services Inc., Calverton, Maryland, USA
| | - Shehnaz K Hussain
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Lisa P Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chloe L Thio
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Steven Wolinsky
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas R O’Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Matic S, Milovanovic D, Mijailovic Z, Djurdjevic P, Sazdanovic P, Stefanovic S, Todorovic D, Popovic S, Vitosevic K, Vukicevic V, Vukic M, Vukovic N, Milivojevic N, Zivanovic M, Jakovljevic V, Filipovic N, Baskic D, Djordjevic N. IFNL3/4 polymorphisms as a two-edged sword: An association with COVID-19 outcome. J Med Virol 2023; 95:e28506. [PMID: 36655749 DOI: 10.1002/jmv.28506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/14/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) has been ranked among the most fatal infectious diseases worldwide, with host's immune response significantly affecting the prognosis. With an aim to timely predict the most likely outcome of SARS-CoV-2 infection, we investigated the association of IFNL3 and IFNL4 polymorphisms, as well as other potentially relevant factors, with the COVID-19 mortality. This prospective observational case-control study involved 178 COVID-19 patients, hospitalized at Corona Center or Clinic for Infectious Diseases of University Clinical Centre Kragujevac, Serbia, followed up until hospital discharge or in-hospital death. Demographic and clinical data on all participants were retrieved from the electronic medical records, and TaqMan assays were employed in genotyping for IFNL3 and IFNL4 single nucleotide polymorphisms (SNPs), namely rs12980275, rs8099917, rs12979860, and rs368234815. 21.9% and 65.0% of hospitalized and critically ill COVID-19 patients, respectively, died in-hospital. Multivariable logistic regression analysis revealed increased Charlson Comorbidity Index (CCI), N/L, and lactate dehydrogenase (LDH) level to be associated with an increased likelihood of a lethal outcome. Similarly, females and the carriers of at least one variant allele of IFNL3 rs8099917 were almost 36-fold more likely not to survive SARS-CoV-2 infection. On the other hand, the presence of at least one ancestral allele of IFNL4 rs368234815 decreased more than 15-fold the likelihood of mortality from COVID-19. Our results suggest that, in addition to LDH level, N/L ratio, and CCI, IFNL4 rs368234815 and IFNL3 rs8099917 polymorphisms, but also patients' gender, significantly affect the outcome of COVID-19.
Collapse
Affiliation(s)
- Sanja Matic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Clinical Pharmacology, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Zeljko Mijailovic
- Department of Infectious Diseases, Serbia, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Infectious Diseases Clinic, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Predrag Djurdjevic
- Department of Internal medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Haematology, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Predrag Sazdanovic
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Gynecology and Obstetrics Clinic, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Srdjan Stefanovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Danijela Todorovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suzana Popovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Katarina Vitosevic
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Vukicevic
- Corona Centre, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Milena Vukic
- Department of Chemistry, Faculty of Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia.,Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Marko Zivanovic
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia.,Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Deprtment of Human Pathology, 1st Moscow Medical Unuversity "I. M. Sechenov", Moscow, Russia
| | - Nenad Filipovic
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia.,Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Dejan Baskic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Institute of Public Health Kragujevac, Kragujevac, Serbia
| | - Natasa Djordjevic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
16
|
Deng H, Jian Z, Zhu L, Li F, Zhao J, Deng J, Sun X, Xu Z. Investigation of the anti‐pseudorabies virus activity of interferon lambda 3 in cultured porcine kidney epithelial cells. Vet Med Sci 2022; 8:2444-2450. [DOI: 10.1002/vms3.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province Sichuan Agriculture University Wenjiang Chengdu China
| | - Zhijie Jian
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
| | - Ling Zhu
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province Sichuan Agricultural University Cheng Du Sichuan Province China
| | - Fengqin Li
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
- College of Animal Science, Xichang University Xichang Sichuan Province China
| | - Jun Zhao
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
| | - Junliang Deng
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province Sichuan Agriculture University Wenjiang Chengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province Sichuan Agricultural University Cheng Du Sichuan Province China
| | - Xiangang Sun
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
| | - Zhiwen Xu
- College of Veterinary Medicine Sichuan Agricultural University Cheng Du Sichuan Province China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province Sichuan Agriculture University Wenjiang Chengdu China
| |
Collapse
|
17
|
Song H, Liu X, Gao X, Li J, Shang Y, Gao W, Li Y, Zhang Z. Transcriptome analysis of pre-immune state induced by interferon gamma inhibiting the replication of H 9N 2 avian influenza viruses in chicken embryo fibroblasts. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105332. [PMID: 35811034 DOI: 10.1016/j.meegid.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Interferon (IFN), a critical antiviral cytokine produced by pathogens-induced cells, plays an important role in host innate immune system. In this study, to investigate the inhibition effect of IFN on avian influenza virus (AIV), Chicken Embryo Fibroblasts (CEFs) was infected by H9N2 AIV. The pre-immune state and transcriptome analysis have been observed and performed. The result showed chicken interferon gamma (chIFN-γ) have the most inhibitory effect on H9N2 virus among three types of chicken interferons (chIFNs). Inhibition of chIFN-γ on H9N2 virus was verified by indirect immunofluorescence, RT-qPCR and western blot. The possible signaling pathways induced by chIFN-γ with or without virus were analyzed by transcriptome. The transcriptome data were compared among H9N2-infected, chIFN-γ-treated, chIFN-γ + H9N2-treated, and Control groups. In summary, RNA-sequencing (RNA-seq) data suggested that H9N2 virus infection resulted in corresponding response of certain defensive, inflammatory and metabolism pathways to the virus replication in CEFs. Furthermore, while CEFs were treated with chIFN-γ, many immune-related signaling pathways in cells are affected and altered. Antiviral genes involved in these immune pathways such as interferon regulatory factors, chemokines, interferon-stimulated genes (ISGs) and transcription factors were significantly up-regulated, and showed significant antiviral responses. Compared with virus infected CEFs alone, pretreatment with IFN induced the expression of antiviral genes and activated related antiviral pathways, inhibited the viral replication as result. Our study provided functional annotations for antiviral genes and the basis for studying the mechanism of chIFN-γ mediated response against H9N2 AIV.
Collapse
Affiliation(s)
- Haozhi Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weisong Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
The role of IFNL4 in liver inflammation and progression of fibrosis. Genes Immun 2022; 23:111-117. [PMID: 35585257 DOI: 10.1038/s41435-022-00173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The discovery that genetic variation within the interferon lambda locus has a profound effect on the outcome of hepatitis C virus (HCV) treatment and spontaneous clearance of HCV is one of the great triumphs of genomic medicine. Subsequently, the IFNL4 gene was discovered and proposed as the causal gene underlying this association. However, there has been a lively debate within the field concerning the causality, which has been further complicated by a change in naming. This review summarizes the genetic data available for the IFNL3/IFNl4 loci and provides an in-depth discussion of causality. We also discuss a new series of interesting data suggesting that the genetic variation at the IFNL4 loci influences the evolution of the HCV virus and the implication this relationship between our genetic makeup and virus evolution has upon our understanding of the IFNL4 system. Finally, new data support an influence of the IFNL4 gene upon liver inflammation and fibrosis that is independent of etiology, thereby linking the IFNL4 gene to some of the major liver diseases of today.
Collapse
|
19
|
Mangone G, Serranti D, Bartolini E, Vigna V, Mastrangelo G, Ricci S, Trapani S, Azzari C, Resti M, Indolfi G. SNPs of the IFNL favour spontaneous clearance of HCV infection in children. Pediatr Res 2022; 91:1516-1521. [PMID: 33966053 DOI: 10.1038/s41390-021-01557-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Both spontaneous and treatment-induced clearance of hepatitis C virus (HCV) in adults have been associated with genetic polymorphisms in the interferon-λ genes. The aim of the present study was to confirm the association between the rs12979860 and evaluate the association between the rs368234815 and the rs4803217 single-nucleotide polymorphisms (SNPs) of the interferon-λ genes and the outcome of the infection in children. METHODS Alleles and genotypes frequencies of 32 children, who presented spontaneous clearance of the virus and 135 children, with viral persistence were compared with ethnically matched controls obtained from the 1000 Genomes Project and the International HapMap Project databases. RESULTS The frequencies of the C/C genotype of rs12979860, the TT/TT of the rs368234815 and the A/C of the rs4803217 were higher in the clearance group than in children with viral persistence (C/C versus T/T + C/T odds ratio (OR): 2.6; 90% confidence intervals (CI): 1.3-5; p = 0.01; TT/TT versus ΔG/TT + ΔG/ΔG OR: 2.8; 90% CI: 1.4-5.5; p = 0.01; and A/A versus A/C OR: 8.3; 90% CI: 1.5-45.9; p = 0.017, respectively) and with the ethnically matched controls. CONCLUSIONS The rs12979860, the rs368234815 and the rs4803217 SNPs are associated with spontaneous clearance of HCV in children. IMPACT Innate immune system response has a key role in the outcome of vertically acquired HCV infection in children. The rs12979860, the rs368234815 and the rs4803217 SNPs are associated with spontaneous clearance of HCV in children. Interferons-λ activate the Janus kinase-Stat pathway, which in turn induces several interferon-stimulated genes, leading to suppression of HCV replication both in vivo and in vitro.
Collapse
Affiliation(s)
- Giusi Mangone
- Immunology Unit, Meyer Children's University Hospital of Florence, Firenze, Italy
| | - Daniele Serranti
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy
| | - Elisa Bartolini
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy
| | - Veronica Vigna
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy
| | - Greta Mastrangelo
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy.,Department NEUROFARBA, University of Florence, Firenze, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Firenze, Italy
| | - Sandra Trapani
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy.,Department of Health Sciences, University of Florence, Firenze, Italy
| | - Chiara Azzari
- Immunology Unit, Meyer Children's University Hospital of Florence, Firenze, Italy.,Department of Health Sciences, University of Florence, Firenze, Italy
| | - Massimo Resti
- Department of Health Sciences, University of Florence, Firenze, Italy
| | - Giuseppe Indolfi
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Firenze, Italy. .,Department NEUROFARBA, University of Florence, Firenze, Italy.
| |
Collapse
|
20
|
Cao L, Zhang L, Zhang X, Liu J, Jia MA, Zhang J, Liu J, Wang F. Types of Interferons and Their Expression in Plant Systems. J Interferon Cytokine Res 2022; 42:62-71. [PMID: 35171703 DOI: 10.1089/jir.2021.0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferons (IFNs) are divided into 3 types (type I, type II, and type III) on the basis of sequence homology and functional properties. Recombinant IFNs have been approved by regulatory agencies in many countries for clinical treatment of hepatitis B, hepatitis C, and other diseases; these IFNs are mainly produced in microorganisms and mammalian cell systems. However, there are serious obstacles to the production of recombinant IFNs in microorganism systems; for example, the recombinant IFN may have different glycosylation patterns from the native protein, be present in insoluble inclusion bodies, be contaminated with impurities such as endotoxins and nucleic acids, have a short half-life in human blood, and incur high production costs. Some medicinal proteins have been successfully expressed in plants and used in clinical applications, suggesting that plants may also be a good system for IFN expression. However, there are still many technical problems that need to be addressed before the clinical application of plant-expressed IFNs, such as increasing the amount of recombinant protein expression and ensuring that the IFN is modified with the correct type of glycosylation. In this article, we review the classification of IFNs, their roles in antiviral signal transduction pathways, their clinical applications, and their expression in plant systems.
Collapse
Affiliation(s)
- Linggai Cao
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Lili Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xiaolian Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jia Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Meng-Ao Jia
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jishun Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang, China
| | - Feng Wang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
21
|
Sorrentino L, Silvestri V, Oliveto G, Scordio M, Frasca F, Fracella M, Bitossi C, D’Auria A, Santinelli L, Gabriele L, Pierangeli A, Mastroianni CM, d’Ettorre G, Antonelli G, Caruz A, Ottini L, Scagnolari C. Distribution of Interferon Lambda 4 Single Nucleotide Polymorphism rs11322783 Genotypes in Patients with COVID-19. Microorganisms 2022; 10:microorganisms10020363. [PMID: 35208821 PMCID: PMC8876137 DOI: 10.3390/microorganisms10020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Type III interferons (IFN-III), also known as IFN-Lambda, have a pivotal role during SARS-CoV-2 infection. IFN-Lambda response among individuals is heterogeneous and its association with COVID-19 symptoms severity needs to be further clarified. We analyzed the genotype frequencies of IFNL4 single nucleotide polymorphism (SNP) rs11322783 in patients with COVID-19 (n = 128), in comparison with a validated data set of European healthy controls (n = 14152). The IFNL4 SNP was also analyzed according to the haematological and clinical parameters of patients with COVID-19. The distributions of IFNL4 genotypes among SARS-CoV-2 positive patients [TT/TT 41.4% (n = 53), TT/ΔG 47.7% (n = 61) and ΔG/ΔG 10.9% (n = 14)] and healthy controls were comparable. Different levels of white blood cells (p = 0.036) and neutrophils (p = 0.042) were found in the IFNL4 different genotypes in patients with COVID-19; the ΔG/ΔG genotype was more represented in the groups with low white blood cells and neutrophils. There were no differences in major inflammation parameters (C-reactive protein, D-dimer, Albumin, and Lactate-dehydrogenase (LDH)] and survival rate according to the IFNL4 genotypes. In conclusion, although patients with COVID-19 did not exhibit a different distribution of the IFNL4 SNP, the ΔG/ΔG genotype was associated with a lower count of immune cell populations. These findings need to be confirmed in larger groups of patients with COVID-19 and the role of IFNL4 SNP needs to be also investigated in other respiratory viral infections.
Collapse
Affiliation(s)
- Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (V.S.); (L.O.)
| | - Giuseppe Oliveto
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Mirko Scordio
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Camilla Bitossi
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Rome, Italy; (L.S.); (C.M.M.); (G.d.)
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Rome, Italy; (L.S.); (C.M.M.); (G.d.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Rome, Italy; (L.S.); (C.M.M.); (G.d.)
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
| | - Antonio Caruz
- Immunogenetic Unit, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (V.S.); (L.O.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (G.O.); (M.S.); (F.F.); (M.F.); (C.B.); (A.D.); (A.P.); (G.A.)
- Correspondence:
| |
Collapse
|
22
|
Gozman L, Perry K, Nikogosov D, Klabukov I, Shevlyakov A, Baranova A. A Role of Variance in Interferon Genes to Disease Severity in COVID-19 Patients. Front Genet 2021; 12:709388. [PMID: 34603376 PMCID: PMC8484761 DOI: 10.3389/fgene.2021.709388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid rise and global consequences of the novel coronavirus disease 19 (COVID-19) have again brought the focus of the scientific community on the possible host factors involved in patient response and outcome to exposure to the virus. The disease severity remains highly unpredictable, and individuals with none of the aforementioned risk factors may still develop severe COVID-19. It was shown that genotype-related factors like an ABO Blood Group affect COVID-19 severity, and the risk of infection with SARS-CoV-2 was higher for patients with blood type A and lower for patients with blood type O. Currently it is not clear which specific genes are associated with COVID-19 severity. The comparative analysis of COVID-19 and other viral infections allows us to predict that the variants within the interferon pathway genes may serve as markers of the magnitude of immune response to specific pathogens. In particular, various members of Class III interferons (lambda) are reviewed in detail.
Collapse
Affiliation(s)
- Leonid Gozman
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Kellie Perry
- School of System Biology, George Mason University, Fairfax, VA, United States
| | | | - Ilya Klabukov
- Department of Regenerative Technologies and biofabrication, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | - Ancha Baranova
- School of System Biology, George Mason University, Fairfax, VA, United States
- Atlas Biomed Group Limited, London, United Kingdom
- Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
23
|
Waldenström J, Hellstrand K, Westin J, Nilsson S, Christensen P, Färkkilä M, Mørch K, Langeland N, Norkrans G, Lagging M. Presence of interferon-λ 4, male gender, absent/mild steatosis and low viral load augment antibody levels to hepatitis C virus. Scand J Gastroenterol 2021; 56:849-854. [PMID: 34078234 DOI: 10.1080/00365521.2021.1922750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Despite recombinant interferon-λ 4 (IFN-λ4) demonstrating anti-viral activity in vitro and the ancestral functional gene (IFNL4) being conserved in all other primates, there has been speculation that IFN-λ4 may be detrimental in humans. In light of recent rekindled interest in humoral immunity, this study aimed at evaluating the impact of baseline characteristics, including IFNL4, on antibody levels to hepatitis C virus (HCV). MATERIALS AND METHODS Pretreatment sera from 279 well-characterized North European Caucasians with chronic HCV genotype 2 or 3 infection having undergone liver biopsy were analyzed regarding IFNL4 (rs12979860) and anti-HCV antibody levels using a commercially available assay. RESULTS Patients producing IFN-λ4 had higher signal to cut-off (S/CO) anti-HCV antibody ratios as compared with those lacking IFN-λ4 (IFNL4rs12979860 CT/TT versus CC, p<.0001, Mann-Whitney U-test). Additionally, in univariate analyses S/CO was significantly higher in men than women (p<.001), as well as in patients with absent/mild interface hepatitis (Ishak grade 0-2 versus 3-4, p = .009), and absent/mild steatosis (grade 0-1 versus 2-3, p = .0005). Also, an inverse correlation with HCV RNA level (rs= -0.14, p = .02) was noted. In multivariate analysis IFN-λ4, gender, steatosis and viral load remained independently associated. CONCLUSIONS To our knowledge, this is the first report that demonstrates that the ability to produce IFN-λ4, in addition to male gender, absent/mild steatosis, and lower viral load, augments antibody levels against HCV. This indicates that IFN-λ4 may be associated with T helper cell 2 (Th2) immune skewing, which might have clinical implications beyond HCV infection. ClinicalTrials.gov Identifier: NCT00143000.
Collapse
Affiliation(s)
- Jesper Waldenström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Westin
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Peer Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Martti Färkkilä
- Department of Gastroenterology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristine Mørch
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Norkrans
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Lagging
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Roy S, Guha Roy D, Bhushan A, Bharatiya S, Chinnaswamy S. Functional genetic variants of the IFN-λ3 (IL28B) gene and transcription factor interactions on its promoter. Cytokine 2021; 142:155491. [PMID: 33725487 PMCID: PMC7611124 DOI: 10.1016/j.cyto.2021.155491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Interferon lambda 3 (IFN-λ3 or IFNL3, formerly IL28B), a type III interferon, modulates immune responses during infection/inflammation. Several human studies have reported an association of single nucleotide polymorphisms (SNP) in the IFNL3 locus with expression level of IFNL3. Previous genetic studies, in the context of hepatitis C virus infections, had predicted three regulatory SNPs: rs4803219, rs28416813 and rs4803217 that could have functional/causal roles. Subsequent studies confirmed this prediction for rs28416813 and rs4803217. A dinucleotide TA-repeat variant (rs72258881) has also been reported to be regulating the IFN-λ3 promoter. In this study, we tested all these genetic variants using a sensitive reporter assay. We show that the minor/ancestral alleles of both rs28416813 and rs4803217, together have a strong inhibitory effect on reporter gene expression. We also show an interaction between the two principal transcription factors regulating IFNL3 promoter: IRF7 and NF-kB RelA/p65. We show that IRF7 and p65 physically interact with each other. By using a transient ChIP assay, we show that presence of p65 increases the promoter occupancy of IRF7, thereby leading to synergistic activation of the IFNL3 promoter. We reason that, in contrast to p65, a unique nature of IRF7 binding to its specific DNA sequence makes it more sensitive to changes in DNA phasing. As a result, we see that IRF7, but not p65-mediated transcriptional activity is affected by the phase changes introduced by the TA-repeat polymorphism. Overall, we see that three genetic variants: rs28416813, rs4803217 and rs72258881 could have functional roles in controlling IFNL3 gene expression.
Collapse
Affiliation(s)
- Subhajit Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Debarati Guha Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Anand Bhushan
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Seema Bharatiya
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
25
|
IFN-λ Modulates the Migratory Capacity of Canine Mammary Tumor Cells via Regulation of the Expression of Matrix Metalloproteinases and Their Inhibitors. Cells 2021; 10:cells10050999. [PMID: 33922837 PMCID: PMC8145483 DOI: 10.3390/cells10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Interactions between neoplastic and immune cells taking place in tumors drive cancer regulatory mechanisms both in humans and animals. IFN-λ, a potent antiviral factor, is also secreted in the tumor; however, its role in tumor development is still unclear. In our study, we investigate the influence of IFN-λ on the canine mammary tumor (CMT) cell survival and their metastatic potential in vitro. First, we examined, by Western blot, the expression of the IFN-λ receptor complex in three CMT cell lines (P114, CMT-U27 and CMT-U309). We showed that only two cell lines (P114 and CMT-U27) express both (IL-28RA and IL-10Rb) receptor subunits and respond to IFN-λ treatment by STAT phosphorylation and the expression of interferon-stimulated genes. Using MTT, crystal violet and annexin-V assays, we showed a minimal role of IFN-λ in CMT viability. However, IFN-λ administration had a contradictory effect on cell migration in the scratch test, namely, it increased P114 and decreased CMT-U27 motility. Moreover, we demonstrated that this process is related to the expression of extracellular matrix metalloproteinases and their inhibitors; furthermore, it is independent of Akt and ERK signaling pathways. To conclude, we showed that IFN-λ activity is reliant on the expression of two receptor subunits and tumor type, but further investigations are needed.
Collapse
|
26
|
Lauro R, Irrera N, Eid AH, Bitto A. Could Antigen Presenting Cells Represent a Protective Element during SARS-CoV-2 Infection in Children? Pathogens 2021; 10:476. [PMID: 33920011 PMCID: PMC8071032 DOI: 10.3390/pathogens10040476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Antigen Presenting Cells (APC) are immune cells that recognize, process, and present antigens to lymphocytes. APCs are among the earliest immune responders against an antigen. Thus, in patients with COVID-19, a disease caused by the newly reported SARS-CoV-2 virus, the role of APCs becomes increasingly important. In this paper, we dissect the role of these cells in the fight against SARS-CoV-2. Interestingly, this virus appears to cause a higher mortality among adults than children. This may suggest that the immune system, particularly APCs, of children may be different from that of adults, which may then explain differences in immune responses between these two populations, evident as different pathological outcome. However, the underlying molecular mechanisms that differentiate juvenile from other APCs are not well understood. Whether juvenile APCs are one reason why children are less susceptible to SARS-CoV-2 requires much attention. The goal of this review is to examine the role of APCs, both in adults and children. The molecular mechanisms governing APCs, especially against SARS-CoV-2, may explain the differential immune responsiveness in the two populations.
Collapse
Affiliation(s)
- Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (R.L.); (N.I.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (R.L.); (N.I.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (R.L.); (N.I.)
| |
Collapse
|
27
|
Lunova M, Kubovciak J, Smolková B, Uzhytchak M, Michalova K, Dejneka A, Strnad P, Lunov O, Jirsa M. Expression of Interferons Lambda 3 and 4 Induces Identical Response in Human Liver Cell Lines Depending Exclusively on Canonical Signaling. Int J Mol Sci 2021; 22:2560. [PMID: 33806448 PMCID: PMC7961969 DOI: 10.3390/ijms22052560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Jan Kubovciak
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Kyra Michalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University, 12808 Prague, Czech Republic;
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, 52062 Aachen, Germany;
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University, 12808 Prague, Czech Republic;
| |
Collapse
|
28
|
de Bitencorte JT, Rech TF, Lunge VR, dos Santos DC, Álvares-da-Silva MR, Simon D. Association of interferon lambda-4 rs12979860 polymorphism with hepatocellular carcinoma in patients with chronic hepatitis C infection. World J Hepatol 2021; 13:109-119. [PMID: 33584990 PMCID: PMC7856861 DOI: 10.4254/wjh.v13.i1.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a public health concern worldwide. Several factors, including genetic polymorphisms, may be evolved in the progression of HCV infection to liver diseases. Interferon lambdas (IFNLs) modulate the immune response during viral infections. IFNLs induce antiviral activity, interfering in the viral replication by promoting the expression of several genes that regulate immunological functions. The interferon lambda-4 (IFNL4) rs12979860 polymorphism, which is characterized by a C to T transition in intron 1, is associated with spontaneous and treatment-induced clearance of HCV infection and may play a role in the development of HCV-associated liver diseases, including hepatocellular carcinoma (HCC).
AIM To investigate the association of IFNL4 rs12979860 polymorphism with fibrosis, cirrhosis, and HCC in patients with chronic HCV infection.
METHODS This study was comprised of 305 chronic HCV-infected patients (53 fibrosis, 154 cirrhosis, and 98 HCC cases). The control group was comprised of 260 HCV-negative healthy individuals. The IFNL4 rs12979860 polymorphism was genotyped using the TaqMan assay. Fibrosis was diagnosed based on liver biopsy findings, while cirrhosis was diagnosed through clinical, laboratory, anatomopathological, and/or imaging data. HCC was diagnosed through imaging tests, tumor, and/or anatomopathological markers.
RESULTS The T allele was observed in the three groups of patients (fibrosis, cirrhosis, and HCC) at a significantly higher frequency when compared with the control group (P = 0.047, P < 0.001, and P = 0.01, respectively). Also, genotype frequencies presented significant differences between the control group and cirrhosis patients (P < 0.001) as well as HCC patients (P = 0.002). The risk analysis was performed using the codominant and dominant T allele models. In the codominant model, it was observed that the CT genotype showed an increased risk of developing cirrhosis in comparison with the CC genotype [odds ratio (OR) = 2.53; 95% confidence interval (CI): 1.55-4.15; P < 0.001] as well as with HCC (OR = 2.54; 95%CI: 1.44-4.56; P = 0.001). A similar result was observed in the comparison of the TT vs CC genotype between the control group and cirrhosis group (OR = 2.88; 95%CI: 1.44-5.77; P = 0.001) but not for HCC patients. In the dominant T allele model, the CT + TT genotypes were associated with an increased risk for progression to cirrhosis (OR = 2.60; 95%CI: 1.63-4.19; P < 0.001) and HCC (OR = 2.45; 95%CI: 1.42-4.31; P = 0.001).
CONCLUSION These findings suggest that the T allele of IFNL4 rs12979860 polymorphism is associated with the development of cirrhosis and HCC in chronic HCV-infected patients.
Collapse
Affiliation(s)
- Jóice Teixeira de Bitencorte
- PPG Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas 92425-900, Rio Grande do Sul, Brazil
| | - Tássia Flores Rech
- PPG Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas 92425-900, Rio Grande do Sul, Brazil
| | - Vagner Ricardo Lunge
- PPG Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas 92425-900, Rio Grande do Sul, Brazil
| | - Deivid Cruz dos Santos
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Daniel Simon
- PPG Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas 92425-900, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Grzegorzewska AE, Mostowska A, Świderska MK, Marcinkowski W, Stolarek I, Figlerowicz M, Jagodziński PP. Polymorphism rs368234815 of interferon lambda 4 gene and spontaneous clearance of hepatitis C virus in haemodialysis patients: a case-control study. BMC Infect Dis 2021; 21:102. [PMID: 33482747 PMCID: PMC7821534 DOI: 10.1186/s12879-021-05777-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In non-uremic subjects, IFNL4 rs368234815 predicts HCV clearance. We investigated whether rs368234815 is associated with spontaneous HCV clearance in haemodialysis patients and whether it is a stronger predictor of HCV resolution than the IFNL polymorphisms already associated with HCV clearance in dialysis subjects. We also evaluated an association of rs368234815 with patients` survival and alterations in transcription factor binding sites (TFBS) caused by IFNL polymorphisms. METHODS Among 161 haemodialysis patients with positive anti-HCV antibodies, 68 (42.2%) spontaneously resolved HCV infection, whereas 93 remained HCV RNA positive. Patients were tested for near IFNL3 rs12980275, IFNL3 rs4803217, IFNL4 rs12979860, IFNL4 rs368234815, and near IFNL4 rs8099917. IFNL4 rs368234815 polymorphism (TT/TT, ΔG/TT, ΔG/ΔG) was genotyped by restriction fragment length polymorphism analysis; other IFNL polymorphisms - by high resolution melting curve analysis. We used the Kaplan-Meier method with the log-rank test for survival analysis. In silico analysis included the use of ENCODE TFBS ChIP-seq data, HOCOMOCO, JASPAR CORE, and CIS-BP databases, and FIMO software. RESULTS The probability (OR, 95%CI, P) of spontaneous HCV clearance for rs368234815 TT/TT patients was higher than for the ΔG allele carriers (2.63, 1.38-5.04, 0.003). This probability for other major homozygotes varied between 2.80, 1.45-5.43, 0.002 for rs12980275 and 2.44, 1.27-4.69, 0.007 for rs12979860. In the additive model, rs368234815 TT/TT was the strongest predictor of HCV clearance (6.38, 1.69-24.2, 0.003). Survival analysis suggested an association of the ΔG allele with mortality due to neoplasms (log-rank P = 0.005). The rs368234815 ∆G allele caused TFBS removal for PLAGL1. CONCLUSIONS In haemodialysis patients, the association of rs368234815 with the spontaneous HCV clearance is better than that documented for other IFNL3/IFNL4 polymorphisms only in the additive mode of inheritance. However, identifying the homozygosity in the variant ∆G allele of rs368234815 means a more potent prediction of persistent HCV infection in haemodialysis subjects that we observe in the case of the variant homozygosity of other tested IFNL3/IFNL4 polymorphisms. Removal of PLAGL1 TFBS in subjects harbouring the rs368234815 ∆G allele may contribute to cancer susceptibility. The association of rs368234815 with cancer-related mortality needs further studies in HCV-exposed subjects.
Collapse
Affiliation(s)
- Alicja E. Grzegorzewska
- Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland
| | - Monika K. Świderska
- Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | | | - Ireneusz Stolarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland
| |
Collapse
|
30
|
Huschka H, Mihm S. Interferon-lambda (IFNL) germline variations and their significance for HCC and PDAC progression: an analysis of The Cancer Genome Atlas (TCGA) data. BMC Cancer 2020; 20:1131. [PMID: 33228589 PMCID: PMC7682090 DOI: 10.1186/s12885-020-07589-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are malignancies with a leading lethality. With reference to interferons (IFNs) known to mediate antitumor activities, this study investigated the relationship between germline genetic variations in type III IFN genes and cancer disease progression from The Cancer Genome Atlas (TCGA) data. The genetic variations under study tag a gain-or-loss-of-function dinucleotide polymorphism within the IFNL4 gene, rs368234815 [TT/ΔG]. METHODS The entirety of the TCGA sequencing data was used to assess genotypes of 187 patients with HCC and of 162 patients with PDAC matched for ethnicity. Stratified for IFNL genotypes, both cohorts were subjected to time-to-event analyses according to Kaplan-Meier with regard to the length of the specific progression free interval (PFI) and the overall survival (OS) time as two clinical endpoints for disease progression. RESULTS Logrank analysis revealed a significant relationship between IFNL genotypes and disease outcome for PDAC. This relationship was not found for HCC. A multiple Cox regression analysis employing patients' age, tumor grade and tumor stage as further covariates proved IFNL genotypes to be independent predictors for PDAC disease outcome. CONCLUSION This repository-based approach unveiled clinical evidence suggestive for an impact of IFNL germline variations for PDAC progression with an IFNL haplotype predisposing for IFNL4 expression being favorable.
Collapse
Affiliation(s)
- Henriette Huschka
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Sabine Mihm
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| |
Collapse
|
31
|
Alnefaie A, Albogami S. Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective. Saudi Pharm J 2020; 28:1333-1352. [PMID: 32905015 PMCID: PMC7462599 DOI: 10.1016/j.jsps.2020.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organization (WHO) as a global pandemic on March 11, 2020. SARS-CoV-2 targets the respiratory system, resulting in symptoms such as fever, headache, dry cough, dyspnea, and dizziness. These symptoms vary from person to person, ranging from mild to hypoxia with acute respiratory distress syndrome (ARDS) and sometimes death. Although not confirmed, phylogenetic analysis suggests that SARS-CoV-2 may have originated from bats; the intermediary facilitating its transfer from bats to humans is unknown. Owing to the rapid spread of infection and high number of deaths caused by SARS-CoV-2, most countries have enacted strict curfews and the practice of social distancing while awaiting the availability of effective U.S. Food and Drug Administration (FDA)-approved medications and/or vaccines. This review offers an overview of the various types of coronaviruses (CoVs), their targeted hosts and cellular receptors, a timeline of their emergence, and the roles of key elements of the immune system in fighting pathogen attacks, while focusing on SARS-CoV-2 and its genomic structure and pathogenesis. Furthermore, we review drugs targeting COVID-19 that are under investigation and in clinical trials, in addition to progress using mesenchymal stem cells to treat COVID-19. We conclude by reviewing the latest updates on COVID-19 vaccine development. Understanding the molecular mechanisms of how SARS-CoV-2 interacts with host cells and stimulates the immune response is extremely important, especially as scientists look for new strategies to guide their development of specific COVID-19 therapies and vaccines.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AHFS, American Hospital Formula Service
- ANGII, angiotensin II
- APCs, antigen presenting cells
- ARDS, acute respiratory distress syndrome
- COVID-19, coronavirus disease
- CoVs, coronaviruses
- Coronavirus
- GVHD, graft versus host disease
- HCoVs, human coronoaviruses
- IBV, infectious bronchitis coronavirus
- IFN-γ, interferon-gamma
- ILCs, innate lymphoid cells
- Investigational medications
- MERS-CoV, Middle East respiratory syndrome
- NKs, natural killer cells
- ORFs, open reading frames
- PAMPs, pathogen-associated molecular patterns
- Pandemic
- Pathophysiology
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SLE, systemic lupus erythematosus
- TMPRSS2, transmembrane serine protease 2
- Viral immune response
- WHO, World Health Organization
- nsps, nonstructural proteins
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
32
|
Sakr AA, Ahmed AE, Abd El-Maksoud MDE, Gamal A, El-Garem H, Ahmed OM. Interferon lambda 4 gene polymorphisms as a predicting tool of response to hepatitis C virus genotype 4 patients treated with Sofosbuvir and Ribavirin. INFECTION GENETICS AND EVOLUTION 2020; 86:104606. [PMID: 33127459 DOI: 10.1016/j.meegid.2020.104606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
Abstract
The relation between interferon lambda 4 gene (IFNL4) and direct acting antiviral (DAA) regimens in hepatitis C virus (HCV) infected patients is not clear. So, a single nucleotide polymorphisms (SNP) of IFNL4 gene genotypes and its relationship with Sofosbuvir (SOF) and Ribavirin (RBV) treatment response is under consideration. This study aims to investigate the relation between IFNL4 polymorphisms and clearance of HCV genotype 4 for HCV patients. Hence, the appropriate drug can be chosen for each patient. SNP genotyping assay for IFNL4 which formerly known as IL28B (rs368234815) was examined for genomic DNA. The DNA was extracted from whole blood of one hundred patients who documented to have infection with chronic HCV genotype 4 (positive PCR) and treated with SOF and RBV. Patients were diagnosed, previously, as HCV genotype 4 and classified according to drug response into two groups (responders, non-responders). All samples were compared with 50 of non-infected (negative PCR) people (control group). The TT/TT homozygous represents 48% of patients and 66% of non-infected people while the homozygous ∆G/∆G is 21% and 12%, respectively. There is significance to IFNL4 genotypes for the treatment response with the probability value p < 0.001. The percentages of the appearance of genotypes TT/TT, TT/∆G and ∆G/∆G for responders were 60%, 28% and 12%, respectively. There is no significance for gender, age, ALT and PLC to treatment response to SOF and RBV, while INR has.
Collapse
Affiliation(s)
- Amany A Sakr
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt.
| | - Amr E Ahmed
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Mohamed D E Abd El-Maksoud
- Department of Biochemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Amany Gamal
- National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Hasan El-Garem
- Department of Gastroenterology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Osama M Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
33
|
Vergara C, Duggal P, Thio CL, Valencia A, O'Brien TR, Latanich R, Timp W, Johnson EO, Kral AH, Mangia A, Goedert JJ, Piazzola V, Mehta SH, Kirk GD, Peters MG, Donfield SM, Edlin BR, Busch MP, Alexander G, Murphy EL, Kim AY, Lauer GM, Chung RT, Cramp ME, Cox AL, Khakoo SI, Rosen HR, Alric L, Wheelan SJ, Wojcik GL, Thomas DL, Taub MA. Multi-ancestry fine mapping of interferon lambda and the outcome of acute hepatitis C virus infection. Genes Immun 2020; 21:348-359. [PMID: 33116245 PMCID: PMC7657970 DOI: 10.1038/s41435-020-00115-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Clearance of acute infection with hepatitis C virus (HCV) is associated with the chr19q13.13 region containing the rs368234815 (TT/ΔG) polymorphism. We fine-mapped this region to detect possible causal variants that may contribute to HCV clearance. First, we performed sequencing of IFNL1-IFNL4 region in 64 individuals sampled according to rs368234815 genotype: TT/clearance (N = 16) and ΔG/persistent (N = 15) (genotype-outcome concordant) or TT/persistent (N = 19) and ΔG/clearance (N = 14) (discordant). 25 SNPs had a difference in counts of alternative allele >5 between clearance and persistence individuals. Then, we evaluated those markers in an association analysis of HCV clearance conditioning on rs368234815 in two groups of European (692 clearance/1 025 persistence) and African ancestry (320 clearance/1 515 persistence) individuals. 10/25 variants were associated (P < 0.05) in the conditioned analysis leaded by rs4803221 (P value = 4.9 × 10-04) and rs8099917 (P value = 5.5 × 10-04). In the European ancestry group, individuals with the haplotype rs368234815ΔG/rs4803221C were 1.7× more likely to clear than those with the rs368234815ΔG/rs4803221G haplotype (P value = 3.6 × 10-05). For another nearby SNP, the haplotype of rs368234815ΔG/rs8099917T was associated with HCV clearance compared to rs368234815ΔG/rs8099917G (OR: 1.6, P value = 1.8 × 10-04). We identified four possible causal variants: rs368234815, rs12982533, rs10612351 and rs4803221. Our results suggest a main signal of association represented by rs368234815, with contributions from rs4803221, and/or nearby SNPs including rs8099917.
Collapse
Affiliation(s)
- Candelaria Vergara
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Priya Duggal
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Chloe L Thio
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ana Valencia
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Thomas R O'Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rachel Latanich
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Winston Timp
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | - Alex H Kral
- RTI International, Research Triangle Park, NC, USA
| | - Alessandra Mangia
- Liver Unit IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valeria Piazzola
- Liver Unit IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Shruti H Mehta
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gregory D Kirk
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marion G Peters
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Francisco, CA, USA
| | | | - Brian R Edlin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael P Busch
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA, USA
| | - Graeme Alexander
- University College London Institute for Liver and Digestive Health, The Royal Free Hospital, London, UK
| | - Edward L Murphy
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA, USA
| | - Arthur Y Kim
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georg M Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrea L Cox
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Salim I Khakoo
- University of Southampton, Southampton General Hospital, Southampton, UK
| | | | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Centre Hospitalier Universitaire Rangueil, UMR 152, Institut de Recherche pour le Développement Toulouse 3 University, Toulouse, France
| | - Sarah J Wheelan
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Genevieve L Wojcik
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - David L Thomas
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Margaret A Taub
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
34
|
Premzl M. Comparative genomic analysis of eutherian interferon genes. Genomics 2020; 112:4749-4759. [DOI: 10.1016/j.ygeno.2020.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
|
35
|
Zhao J, Zhu L, Xu L, Huang J, Sun X, Xu Z. Porcine interferon lambda 3 (IFN-λ3) shows potent anti-PRRSV activity in primary porcine alveolar macrophages (PAMs). BMC Vet Res 2020; 16:408. [PMID: 33115475 PMCID: PMC7594293 DOI: 10.1186/s12917-020-02627-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious viral disease of swine. At present, there are vaccines for the control of PRRSV infection, but the effect is not satisfactory. The recombination of attenuated vaccines causes significant difficulties with the prevention and control of PRRSV. Type III interferons (IFNs), also called IFN-λs, were newly identified and showed potent antiviral activity within the mucosal surface and immune organs. Results Therefore, primary porcine alveolar macrophages (PAMs) were used for this investigation. To this end, we found that the replication of PRRSV in PAMs was significantly reduced after pre-treatment with IFN-λ3, and such inhibition was dose- and time-dependent. The plaque formation of PRRSV abrogated entirely, and virus yields were reduced by four orders of magnitude when the primary PAMs were treated with IFN-λ3 at 1000 ng/ml. In addition, IFN-λ3 in our study was able to induce the expression of interferon-stimulated genes 15 (ISG15), 2′-5′-oligoadenylate synthase 1 (OAS1), IFN-inducible transmembrane 3 (IFITM3), and myxoma resistance protein 1(Mx1) in primary PAMs. Conclusions IFN-λ3 had antiviral activity against PRRSV and can stimulate the expression of pivotal interferon-stimulated genes (ISGs), i.e., ISG15, Mx1, OAS1, and IFITM3. So, IFN-λ3 may serve as a useful antiviral agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02627-6.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, Sichuan Province, China.
| |
Collapse
|
36
|
Gadalla SM, Wang Y, Wang T, Onabajo OO, Banday AR, Obajemu A, Karaesman E, Sucheston-Campbell L, Hahn T, Sees JA, Spellman SR, Lee SJ, Katki HA, Prokunina-Olsson L. Association of donor IFNL4 genotype and non-relapse mortality after unrelated donor myeloablative haematopoietic stem-cell transplantation for acute leukaemia: a retrospective cohort study. LANCET HAEMATOLOGY 2020; 7:e715-e723. [PMID: 32976751 DOI: 10.1016/s2352-3026(20)30294-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The interferon lambda 4 gene (IFNL4) regulates immune responses by controlling the production of IFNλ4, a type III interferon. We hypothesised that IFNλ4 could play a role in infection clearance or alloreactivity in patients with acute leukaemia who received a myeloablative 10/10 HLA-matched haematopoietic stem-cell transplantation (HSCT). Therefore, we aimed to assess the association between recipient and donor IFNL4 genotype with post-HSCT survival outcomes in patients with acute leukaemia. METHODS We did a two-stage retrospective cohort study using the Center for International Blood and Marrow Transplant Research (CIBMTR) repository and database, in which nearly all patients underwent the procedure in the USA. We included patients with acute myeloid leukaemia or acute lymphocytic leukaemia, who received a HSCT at any age from an unrelated 10/10 HLA-matched donor, with a myeloablative conditioning regimen, between Jan 1, 2000, and Dec 31, 2008, and had a pre-HSCT recipient or donor blood sample available. The discovery dataset included patients from an existing National Cancer Institute (NCI) cohort of the CIBMTR database, in which donor and recipient IFNL4 polymorphisms (rs368234815, rs12979860, and rs117648444) were genotyped with TaqMan assays. According to their genotype, donors and recipients were categorised into IFNL4-positive, if they had at least one copy of the allele that supports the production of IFNλ4, or IFNL4-null for the analyses. The findings were independently validated with patients from the DISCOVeRY-BMT cohort (validation dataset) with existing Illumina array genotype data. We also did a combined analysis using data from patients included in both the NCI and DISCOVeRY-BMT cohorts. FINDINGS We assessed 404 patients (who had a HSCT from Jan 9, 2004, to Dec 26, 2008) in the discovery dataset and 1245 patients in the validation dataset (HSCT Jan 7, 2000, to Dec 26, 2008). The combined analysis included 1593 overlapping participants in both cohorts. Donor, but not recipient IFNL4-positive genotype was associated with increased risk of non-relapse mortality (HR 1·60, 95% CI 1·23-2·10; p=0·0005 in the discovery dataset; 1·22, 1·05-1·40; p=0·0072 in the validation dataset; and 1·27, 1·12-1·45; p=0·0001 in the combined dataset). Associations with post-HSCT overall survival were as follows: HR 1·24, 95% CI 1·02-1·51; p=0·034 in the discovery dataset; 1·10, 0·98-1·20; p=0·10 in the validation dataset; and 1·11, 1·02-1·22; p=0·018 in the combined dataset. INTERPRETATION Prioritising HSCT donors with the IFNL4-null genotype might decrease non-relapse mortality and improve overall survival without substantially limiting the donor pool. If these findings are validated, IFNL4 genotype could be added to the donor selection algorithm. FUNDING The National Cancer Institute Intramural Research Program. For full funding list see Acknowledgments.
Collapse
Affiliation(s)
- Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA; Center for International Blood and Marrow Transplant Research Milwaukee, WI, USA
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - A Rouf Banday
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Adeola Obajemu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ezgi Karaesman
- College of Pharmacy, Ohio State University Columbus, OH, USA
| | | | - Theresa Hahn
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jennifer A Sees
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research Milwaukee, WI, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hormuzd A Katki
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
37
|
Rujescu D, Herrling M, Hartmann AM, Maul S, Giegling I, Konte B, Strupp M. High-risk Allele for Herpes Labialis Severity at the IFNL3/4 Locus is Associated With Vestibular Neuritis. Front Neurol 2020; 11:570638. [PMID: 33133009 PMCID: PMC7579408 DOI: 10.3389/fneur.2020.570638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Vestibular neuritis (VN) is a peripheral vestibular disorder leading to a sudden loss of unilateral vestibular function. Although the underlying etiological mechanisms for disease development are not yet known, there is evidence that a latent infection with herpes simplex virus type 1 (HSV-1) might be involved. The polymorphism rs12979860 has been associated with the severity of recurrent herpes labialis and hepatitis C virus (HCV) clearance and treatment outcome and is located within the first intron of the IFNL4 gene on chromosome 19.q13.2. This case control study was conducted to evaluate the association of rs12979860 with VN occurrence. Methods: DNA was extracted from EDTA blood of 151 VN patients and 1,775 healthy controls. Genotyping of rs12979860 was performed using iPLEX and MassARRAY Matrix Assisted Laser Desorption Ionization—Time of Flight (MALDI-TOF) mass spectrometry. For association analyses, an additive, dominant and recessive logistic regression model was calculated, using age and sex as covariates. Results: A significant association of rs12979860 with VN was obtained for the additive [OR = 1.51 (1.18–1.92); p = 9.23 × 10−4] and dominant models [OR = 2.15 (1.48–3.13); p = 5.86 × 10−5], with the T allele being more frequent in the VN group. Conclusion: By detecting a significant association of the rs12979860-T risk allele for herpes labialis severity with susceptibility to VN, this study gives further indirect evidence for an involvement of HSV-1 in VN pathology, thereby strengthening the virus hypothesis.
Collapse
Affiliation(s)
- Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Marko Herrling
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany
| | - Annette M Hartmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Maul
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Giegling
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Bettina Konte
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Strupp
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany.,Department of Neurology, University Hospital Munich, Munich, Germany
| |
Collapse
|
38
|
Benedicenti O, Wang T, Morel E, Secombes CJ, Soleto I, Díaz-Rosales P, Tafalla C. Type I Interferon Regulates the Survival and Functionality of B Cells in Rainbow Trout. Front Immunol 2020; 11:1494. [PMID: 32733485 PMCID: PMC7363951 DOI: 10.3389/fimmu.2020.01494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
Interferons (IFNs) orchestrate antiviral responses in jawed vertebrates and can be classified into three types based on different aspects of their genomic organization, structure and receptors through which they signal and function. Generally, type I and type III IFNs include cytokines that directly induce an antiviral response, whereas type II IFNs are well-known for their immunomodulatory role during viral infections. In mammals, type I IFNs have been shown to also regulate many aspects of B cell development and differentiation. Yet, these functions have been only faintly investigated for teleost IFNs. Thus, in the current study, we have examined the effects of a model type I rainbow trout IFN molecule (IFNa) on blood naïve (IgM+IgD+) B cells, comparing them to those exerted by type II IFN (IFNγ). Our results demonstrate that IFNa increases the survival of naïve rainbow trout B cells, in the absence of lymphoproliferative effects, by rescuing them from spontaneous apoptosis. Additionally, IFNa increased the phagocytic capacity of blood IgM+IgD+ B cells and augmented the number of IgM-secreting cells in blood leukocyte cultures. IFNγ, on the other hand, had only minor effects up-regulating IgM secretion, whereas it increased the phagocytic capacity of IgM− cells in the cultures. Finally, given the recent identification of 9 mx genes in rainbow trout, we have also established which of these genes were transcriptionally regulated in blood naïve B cells in response to IFNa. This study points to a previously undescribed role for teleost type I IFNs in the regulation of B cell responses.
Collapse
Affiliation(s)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | |
Collapse
|
39
|
Interferon Response in Hepatitis C Virus-Infected Hepatocytes: Issues to Consider in the Era of Direct-Acting Antivirals. Int J Mol Sci 2020; 21:ijms21072583. [PMID: 32276399 PMCID: PMC7177520 DOI: 10.3390/ijms21072583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
When interferons (IFNs) bind to their receptors, they upregulate numerous IFN-stimulated genes (ISGs) with antiviral and immune regulatory activities. Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus that affects over 71 million people in the global population. Hepatocytes infected with HCV produce types I and III IFNs. These endogenous IFNs upregulate a set of ISGs that negatively impact the outcome of pegylated IFN-α and ribavirin treatments, which were previously used to treat HCV. In addition, the IFNL4 genotype was the primary polymorphism responsible for a suboptimal treatment response to pegylated IFN-α and ribavirin. However, recently developed direct-acting antivirals have demonstrated a high rate of sustained virological response without pegylated IFN-α. Herein, we review recent studies on types I and III IFN responses to in HCV-infected hepatocytes. In particular, we focused on open issues related to IFN responses in the direct-acting antiviral era.
Collapse
|
40
|
Fang MZ, Jackson SS, O'Brien TR. IFNL4: Notable variants and associated phenotypes . Gene 2019; 730:144289. [PMID: 31846709 DOI: 10.1016/j.gene.2019.144289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Interferon lambda proteins activate the JAK-STAT signalling pathway, resulting in upregulation of genes with antiviral effects. The interferon lambda family was initially thought to be redundant to the interferon alpha family, which signals through the same pathway, except for the more limited expression of the IFNLR1 receptor. However, recent studies show that interferon lambdas uniquely protect tissue barriers against a wide range of important viral infections. The interferon lambda 4 gene (IFNL4) was discovered in 2013. The IFNL4 protein is determined by the IFNL4-ΔG/TT (rs368234815) variant. The ancestral IFNL4-ΔG allele generates IFNL4, whereas IFNL4-TT causes pre-mature termination of the protein. Surprisingly, although interferons are generally antiviral proteins, the genotypes that generate the IFNL4 protein are strongly linked to impaired clearance of hepatitis C virus (HCV). IFNL4 genotype has also been linked to variation within the HCV genome, as well as risk of hepatic fibrosis, certain cancers and some infectious diseases. There has been very strong evolutionary selection against the ancestral IFNL4-ΔG allele, which is the major form in African populations, but the minor allele in Europeans and Asians. The reason for this selection and the biological mechanisms underlying observed phenotypic associations remain to be explained.
Collapse
Affiliation(s)
- Michelle Z Fang
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, 6E108, MSC 9767, Bethesda, MD 20892, USA
| | - Sarah S Jackson
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, 6E108, MSC 9767, Bethesda, MD 20892, USA
| | - Thomas R O'Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, 6E108, MSC 9767, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
IFNL4 haplotype, linkage disequilibrium and their influence on virological response to hepatitis C virus infection in Indian population. Virusdisease 2019; 30:344-353. [DOI: 10.1007/s13337-019-00535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022] Open
|
42
|
O'Brien TR, Jackson SS. What Have We Learned from Studies of IFN-λ Variants and Hepatitis C Virus Infection? J Interferon Cytokine Res 2019; 39:618-626. [PMID: 31161939 DOI: 10.1089/jir.2019.0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic infection with the hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. In 2009, genome-wide association studies (GWAS) strongly linked genetic variants in the interferon lambda (IFN-λ) chromosomal region to HCV clearance. In 2013, discovery of the IFNL4 gene provided a functional explanation for those GWAS findings. The IFNL4-ΔG/TT (rs368234815) variant controls generation of the IFN-λ4 protein. Paradoxically, the IFNL4-TT allele, which abrogates IFN-λ4, associates with higher rates of spontaneous HCV clearance and better response to treatments for HCV infection. The finding that a "knock-out" allele for IFN-λ4 enhances HCV clearance challenges the paradigm of IFNs as antiviral cytokines. Genetic variants in the IFN-λ region have also been associated with hepatic inflammation and fibrosis from various etiologies, however, alleles that are linked with improved HCV clearance associates with worse inflammation and fibrosis. These studies demonstrate that GWAS of infectious diseases may yield important and unexpected biological insights.
Collapse
Affiliation(s)
- Thomas R O'Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sarah S Jackson
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
43
|
Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol 2019; 4:914-924. [PMID: 30936491 PMCID: PMC6554024 DOI: 10.1038/s41564-019-0421-x] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Interferon (IFN)-mediated antiviral responses are central to host defence against viral infection. Despite the existence of at least 20 IFNs, there are only three known cell surface receptors. IFN signalling and viral evasion mechanisms form an immensely complex network that differs across species. In this Review, we begin by highlighting some of the advances that have been made towards understanding the complexity of differential IFN signalling inputs and outputs that contribute to antiviral defences. Next, we explore some of the ways viruses can interfere with, or circumvent, these defences. Lastly, we address the largely under-reviewed impact of IFN signalling on host tropism, and we offer perspectives on the future of research into IFN signalling complexity and viral evasion across species.
Collapse
Affiliation(s)
- Emily V Mesev
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert A LeDesma
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
44
|
Piontkivska H, Plonski NM, Miyamoto MM, Wayne ML. Explaining Pathogenicity of Congenital Zika and Guillain-Barré Syndromes: Does Dysregulation of RNA Editing Play a Role? Bioessays 2019; 41:e1800239. [PMID: 31106880 PMCID: PMC6699488 DOI: 10.1002/bies.201800239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and University, Kent, OH
44242, USA
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | - Noel-Marie Plonski
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | | | - Marta L. Wayne
- Department of Biology, University of Florida, Gainesville,
FL 32611, USA
- Emerging Pathogens Institute, University of Florida,
Gainesville, FL 32611, USA
| |
Collapse
|
45
|
Abstract
Humans are polymorphic in their ability to produce type-III interferons. Most individuals of African ancestry are genetically capable of generating all 4 type-III interferons (IFN-λ1, 2, 3, and 4), whereas the majority of individuals of European and Asian ancestry lack IFN-λ4 and thus can generate only IFN-λ1, 2, and 3. All 4 type-III IFNs are encoded by genes located within a ∼55 kb genomic region on human chromosome 19. Although IFN-λ4 appears to be important in animals, genetic alterations acquired in the Hominidae lineage, and particularly in humans, resulted in the elimination of IFN-λ4 or restriction of its activity, suggesting that IFN-λ4 function might be detrimental to human health. Genetic variants within the IFNL region, including those controlling production and activity of IFN-λ4, have been strongly associated with clearance of hepatitis C virus (HCV) infection. There is growing evidence for association of the same genetic variants with a multitude of other disease conditions. This article reviews the genetic landscape of the human IFNL genetic locus, with an emphasis on the genetic control of IFN-λ4 production and activity, and its association with viral clearance.
Collapse
Affiliation(s)
- Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
46
|
Rosenberg BR, Freije CA, Imanaka N, Chen ST, Eitson JL, Caron R, Uhl SA, Zeremski M, Talal A, Jacobson IM, Rice CM, Schoggins JW. Genetic Variation at IFNL4 Influences Extrahepatic Interferon-Stimulated Gene Expression in Chronic HCV Patients. J Infect Dis 2019; 217:650-655. [PMID: 29165633 DOI: 10.1093/infdis/jix593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
Polymorphisms at IFNL4 strongly influence spontaneous resolution and interferon therapeutic response in hepatitis C virus (HCV) infection. In chronic HCV, unfavorable alleles are associated with elevated interferon (IFN)-stimulated gene (ISG) expression in the liver, but extrahepatic effects are less well characterized. We used RNA sequencing (RNA-Seq) to examine whether IFNL4 genetic variation (rs368234815) modulates ISG expression in peripheral blood mononuclear cells (PBMC) during chronic HCV infection. ISG expression was elevated in unstimulated PBMC homozygous for the unfavorable ΔG IFNL4 variant; expression following IFN-α stimulation was comparable across genotypes. These findings suggest that lambda interferons may have broader systemic effects during HCV infection.
Collapse
Affiliation(s)
- Brad R Rosenberg
- Program in Immunogenomics, Rockefeller University.,Department of Microbiology, Icahn School of Medicine at Mount Sinai
| | | | - Naoko Imanaka
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, Rockefeller University
| | | | | | - Rachel Caron
- Program in Immunogenomics, Rockefeller University
| | - Skyler A Uhl
- Program in Immunogenomics, Rockefeller University
| | - Marija Zeremski
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York
| | - Andrew Talal
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York
| | - Ira M Jacobson
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, Rockefeller University
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
47
|
Luna JM, Saeed M, Rice CM. Taming a beast: lessons from the domestication of hepatitis C virus. Curr Opin Virol 2019; 35:27-34. [PMID: 30875640 PMCID: PMC6556422 DOI: 10.1016/j.coviro.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
"What I cannot create, I do not understand." Richard Feynman may have championed reasoning from first principles in his famous blackboard missive, but he could just as well have been referring to the plight of a molecular virologist. What cannot be grown in a controlled laboratory setting, we cannot fully understand. The story of the laboratory domestication of hepatitis C virus (HCV) is now a classic example of virologists applying all manner of inventive skill to create cell-based models of infection in order to clarify prospective drug targets. In this review, we highlight key successes and failures that were instructive in achieving cell-based models for HCV studies and drug development. We also emphasize the lessons learned from the ∼40 year saga that may be applicable to viruses yet unknown and uncultured.
Collapse
Affiliation(s)
- Joseph M Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Mohsan Saeed
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
48
|
Abstract
Hepatitis C virus represents a global pathogen of human health significance. In the space of less than three decades, we have witnessed the discovery of the virus, a growing understanding of the structure and biology of the viral-encoded proteins and their interaction with the host cell and the sequencing of the viral genome. Most importantly, we have moved from early therapeutic strategies aimed at crude boosting of host anti-viral immunity, limited by side effects and with poor response rates, to therapies that directly exploit our understanding of viral biology. In this review, we discuss the significance of the virus, its' discovery and outline the advances in the molecular characterisation of the virus, before setting these within the context of contemporary and emerging therapeutic strategies as well as viral resistance mechanisms.
Collapse
|
49
|
Ishida Y, Kakuni M, Bang BR, Sugahara G, Lau DTY, Tateno-Mukaidani C, Li M, Gale M, Saito T. Hepatic IFN-Induced Protein with Tetratricopeptide Repeats Regulation of HCV Infection. J Interferon Cytokine Res 2019; 39:133-146. [PMID: 30844328 PMCID: PMC6441290 DOI: 10.1089/jir.2018.0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022] Open
Abstract
Interferons (IFNs) suppress viral infection through the induction of >400 interferon-stimulated genes (ISGs). Among ISGs, IFN-induced protein with tetratricopeptide repeats (IFITs) is one of the most potent and well-characterized ISGs. IFIT family consists of 4 cluster genes. It has been suggested that the antiviral action of each IFIT employs distinct mechanisms. In addition, it has been shown that each IFIT exhibits its antiviral properties partially in a pathogen-specific manner. To date, the expression profile of IFITs in the liver, as well as the antiviral potency of the individual IFITs in the regulation of hepatitis C virus (HCV) infection, is not yet fully defined. Our previous study found that the expression of hepatic IFITs is well correlated with the outcome of IFN-based antiviral therapy. This study explored the significance of each IFIT in the suppression of HCV. Our in vitro and in vivo studies with humanized liver chimeric mouse system revealed that IFIT1, 2, and 3/4 play an important role in the suppression of HCV. In addition, our in vitro experiment found that all IFITs possess a comparable anti-HCV potency. Follow-up studies collectively indicated that IFITs suppress HCV likely through 2 distinct mechanisms: (1) inhibition of internal ribosome entry site-dependent viral protein translation initiation complex according to experiments with bicistronic reporter assay as well as confocal microscopic analyses and (2) sequestration of viral genome based on an experiment using replication defective viral genome. In conclusion, our study defined the importance of IFITs in the regulation of HCV and also suggested the multifaceted antiviral actions.
Collapse
Affiliation(s)
- Yuji Ishida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- PhoenixBio, Kagamiyama, Higashi-Hiroshima City, Hiroshima, Japan
| | - Masakazu Kakuni
- PhoenixBio, Kagamiyama, Higashi-Hiroshima City, Hiroshima, Japan
| | - Bo-Ram Bang
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Go Sugahara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- PhoenixBio, Kagamiyama, Higashi-Hiroshima City, Hiroshima, Japan
| | - Daryl T.-Y. Lau
- Department of Medicine, Liver Center, Beth Israel Deaconess, Harvard Medical School, Boston, Massachusetts
| | | | - Meng Li
- Bioinformatics Service, Norris Medical Library, University of Southern California, Los Angeles, California
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
50
|
Ilyushina NA, Dickensheets H, Donnelly RP. A comparison of interferon gene expression induced by influenza A virus infection of human airway epithelial cells from two different donors. Virus Res 2019; 264:1-7. [PMID: 30779949 DOI: 10.1016/j.virusres.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Influenza is an acute respiratory disease that can cause local annual epidemics and worldwide pandemics of different morbidity and mortality. Our understanding of host factors that modulate the frequency and severity of influenza virus infections is less than complete. In this study, we examined the inter-individual variations in the innate immune responses to H1N1 and H3N2 influenza A viruses (IAV) using primary cultures of normal human bronchial epithelial (NHBE) cells derived from two different donors (D1 and D2). Although IAV replication kinetics were similar in cultures derived from these two donors, the levels of type III interferons (IFNs) were significantly higher in D1 cells compared to D2 cells (˜31-fold↑ in D1 cells versus D2 cells; P < 0.05). The levels of IFN-λ1 protein at individual time points as well as the total amounts of IFN-λ1 secreted over 72 h were also significantly higher in D1 than in D2 NHBE cells (0.7-7.7-fold↑, P < 0.05). The relative levels of IFN-stimulated gene (ISG) expression also differed significantly between D1 and D2 cells. Our data indicate that donor-specific differences can result in significant differences in IFN and ISG induction by human airway epithelium.
Collapse
Affiliation(s)
- Natalia A Ilyushina
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Harold Dickensheets
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Raymond P Donnelly
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|