1
|
Li X, Huang G, Zhou Y, Wang K, Zhu Y. GhATL68b regulates cotton fiber cell development by ubiquitinating the enzyme required for β-oxidation of polyunsaturated fatty acids. PLANT COMMUNICATIONS 2024; 5:101003. [PMID: 38877704 DOI: 10.1016/j.xplc.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
E3 ligases are key enzymes required for protein degradation. Here, we identified a C3H2C3 RING domain-containing E3 ubiquitin ligase gene named GhATL68b. It is preferentially and highly expressed in developing cotton fiber cells and shows greater conservation in plants than in animals or archaea. The four orthologous copies of this gene in various diploid cottons and eight in the allotetraploid G. hirsutum were found to have originated from a single common ancestor that can be traced back to Chlamydomonas reinhardtii at about 992 million years ago. Structural variations in the GhATL68b promoter regions of G. hirsutum, G. herbaceum, G. arboreum, and G. raimondii are correlated with significantly different methylation patterns. Homozygous CRISPR-Cas9 knockout cotton lines exhibit significant reductions in fiber quality traits, including upper-half mean length, elongation at break, uniformity, and mature fiber weight. In vitro ubiquitination and cell-free protein degradation assays revealed that GhATL68b modulates the homeostasis of 2,4-dienoyl-CoA reductase, a rate-limiting enzyme for the β-oxidation of polyunsaturated fatty acids (PUFAs), via the ubiquitin proteasome pathway. Fiber cells harvested from these knockout mutants contain significantly lower levels of PUFAs important for production of glycerophospholipids and regulation of plasma membrane fluidity. The fiber growth defects of the mutant can be fully rescued by the addition of linolenic acid (C18:3), the most abundant type of PUFA, to the ovule culture medium. This experimentally characterized C3H2C3 type E3 ubiquitin ligase involved in regulating fiber cell elongation may provide us with a new genetic target for improved cotton lint production.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gai Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifan Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Franchi C, Orsini F, Cantelli F, Ardoino I, Piscitelli P, Shaji S, Ran T, Ainslie N, Graziadio C, Vetrani C, Colao A. "Planeterranean" diet: the new proposal for the Mediterranean-based food pyramid for Asia. J Transl Med 2024; 22:806. [PMID: 39215283 PMCID: PMC11365138 DOI: 10.1186/s12967-024-05491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The Mediterranean Diet (MD) has been recognized for its benefits for human health and sustainability for the planet, but it has considered not easy to reproduce in other populations. The United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair on Health Education and Sustainable Development is fostering a research project (Planeterranea), aiming to identify a healthy dietary pattern based on local foods with the same MD features. The aim of our study is to develop a MD-based food pyramid for Asian populations. METHODS Asia was stratified into six areas according to pedo-climatic conditions. For each region a comprehensive scoping review of local crops and typical foods was conducted on several databases such as the US Department of Agriculture (USDA)'s database, the Food and Agriculture Organization of the United Nations (FAO) website, and PubMed, focusing on both plant-based and animal-based foods. Narrative review was then conducted on the identified foods to determine their nutritional composition and planetary health impact. Finally, the collected information was used to build up the Asian food pyramid with details for each respective region. RESULTS We proposed a food pyramid for Asian countries, guaranteeing the same nutritional intake and health benefits as MD, by considering dietary habits and typical foods of this population. From the bottom to the top, Asian fruits and vegetables present similar nutritional profile as those in MD. Whole grains (barley) may represent valid alternative to white rice. Sesame oil represents a source of unsaturated fats and an alternative to olive oil. Legumes (soybean), edible insects, mushrooms and algae, guarantee an adequate intake of plant-based proteins with a complete amino-acid profile and a low environmental impact with respect to animal-based ones. CONCLUSIONS This work is a new insight of healthy and sustainable local food system based on MD principles for the Asian population.
Collapse
Affiliation(s)
- Carlotta Franchi
- Department of Health Policy, Laboratory of Pharmacoepidemiology and Human Nutrition, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milan, Italy.
- Italian Institute for Planetary Health (IIPH), Milan, Italy.
| | - Francesca Orsini
- Department of Health Policy, Laboratory of Pharmacoepidemiology and Human Nutrition, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Federica Cantelli
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Federico II University, Naples, Italy
| | - Ilaria Ardoino
- Department of Health Policy, Laboratory of Pharmacoepidemiology and Human Nutrition, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Shana Shaji
- Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Tao Ran
- Laureate Science Alliance (LSA), Bejing, China
| | | | - Chiara Graziadio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Federico II University, Naples, Italy
- Italian Centre for the Care and Well-Being of Patients With Obesity (C.I.B.O), University of Naples "Federico II", Naples, Italy
| | - Claudia Vetrani
- Italian Centre for the Care and Well-Being of Patients With Obesity (C.I.B.O), University of Naples "Federico II", Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Federico II University, Naples, Italy
- Italian Centre for the Care and Well-Being of Patients With Obesity (C.I.B.O), University of Naples "Federico II", Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy
| |
Collapse
|
3
|
Wang Y, Becker S, Finkelstein S, Dyka FM, Liu H, Eminhizer M, Hao Y, Brush RS, Spencer WJ, Arshavsky VY, Ash JD, Du J, Agbaga MP, Vinberg F, Ellis JM, Lobanova ES. Acyl-CoA synthetase 6 controls rod photoreceptor function and survival by shaping the phospholipid composition of retinal membranes. Commun Biol 2024; 7:1027. [PMID: 39169121 PMCID: PMC11339274 DOI: 10.1038/s42003-024-06691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Silke Becker
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | - Frank M Dyka
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Eminhizer
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Ying Hao
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - William J Spencer
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - John D Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Frans Vinberg
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
4
|
Li L, Li B, Qu H, Tian S, Xu Z, Zhao L, Li X, Liu B. A new method based on melatonin-mediated seed germination to quickly remove pesticide residues and improve the nutritional quality of contaminated grains. PLoS One 2024; 19:e0303040. [PMID: 38713652 DOI: 10.1371/journal.pone.0303040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 μM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.
Collapse
Affiliation(s)
- Lingyun Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Baoyan Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Henghua Qu
- Yantai Agricultural Technology Extension Center, Yantai, Shandong, China
| | - Shan Tian
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Zimeng Xu
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Lulu Zhao
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Xueqin Li
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| |
Collapse
|
5
|
Yang Y, Wang X, Yang M, Wei S, Li Y. Integrated Analysis of Per- and Polyfluoroalkyl Substance Exposure and Metabolic Profiling of Elderly Residents Living near Industrial Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4104-4114. [PMID: 38373080 DOI: 10.1021/acs.est.3c09014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.
Collapse
Affiliation(s)
- Yajing Yang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Minmin Yang
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuqian Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
6
|
Jiao WE, Xi Y, Li D, Xu S, Kong YG, Deng YQ, Yang R, Tao ZZ, Hua QQ, Chen SM. Association of Dietary Polyunsaturated Fatty Acid Intake with Allergic Rhinitis in Adults: A Cross-Sectional Study of NHANES 2005-2006. Int Arch Allergy Immunol 2023; 185:124-132. [PMID: 37913762 DOI: 10.1159/000534168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION The incidence of allergic rhinitis (AR) is increasing year by year, and the pathogenesis is complex, in which diet may play an important role. The role of polyunsaturated fatty acids (PUFAs) in AR is still controversial. Previous studies have looked at the effects of PUFA during pregnancy, childhood, and adolescence. In this study, we aimed to determine the association between dietary intake of PUFA and AR in adults. METHODS We used the NHANES database from 2005 to 2006 to include a total of 4,211 adult subjects. We collected dietary PUFA intake data and information on AR. Logistic regression and restricted cubic spline models were constructed to examine the association between PUFA intake and AR in adults. The t test was used to compare daily PUFA intakes in patients with and without AR. RESULTS In the fully adjusted model (OR: 1.016; 95% CI: 1.003; 1.028), PUFA intake was positively correlated with allergic symptoms, hay fever, and AR in adults (p < 0.05). In addition, daily PUFA intake was significantly higher in people with allergic symptoms, hay fever, and AR than in people without the disease (p < 0.01). CONCLUSIONS Our results suggest a positive association between dietary PUFA intake and AR in adults to a certain extent. Future studies on dietary PUFA dose will provide new strategies for the prevention and treatment of allergic diseases such as AR related to non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xi
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Lei H, Chen X, Cheng B, Song L, Luo R, Wang S, Kang T, Wang Q, Zheng Y. The effects of unsaturated fatty acids on psoriasis: A two-sample Mendelian randomization study. Food Sci Nutr 2023; 11:6073-6084. [PMID: 37823124 PMCID: PMC10563715 DOI: 10.1002/fsn3.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 10/13/2023] Open
Abstract
Unsaturated fatty acids have been reported to be associated with the risk of psoriasis. However, the causal relationship between them remains unclear This study aimed to explore the causal relationship between unsaturated FAs and psoriasis. Firstly, we obtained genome-wide association study (GWAS) data for psoriasis from the FINNGEN database (number of cases = 4510, number of controls = 212,242) and different FA levels (number of samples = 114,999) from the IEU OpenGWAS Project. Secondly, the genetic correlation coefficient was calculated using linkage disequilibrium fractional regression. Thirdly, a two-sample Mendelian randomization (MR) analysis was performed using independent instrumental variables (p < 5 × 10-8) to determine the direction of randomization. Finally, expression quantitative trait loci (eQTL)-related analyses of common single nucleotide polymorphisms (SNPs) were carried out to explore the potential molecular mechanisms of unsaturated FAs affecting psoriasis. We found that an increase in the ratio of monounsaturated fatty acids (MUFAs) to total fatty acids could increase the risk of psoriasis (inverse-variance weighted [IVW], adjusted odds ratio [OR] = 1.175; adjusted 95% confidence interval [CI] = 1.045-1.321; adjusted p = .007). However, an increase in the ratio of polyunsaturated fatty acids (PUFAa) to total fatty acids could decrease the risk of psoriasis (IVW, adjusted OR = 0.754; adjusted 95% CI = 0.631-0.901; adjusted p = .002). Moreover, an increase in the ratio of PUFAs to MUFAs could decrease the risk of psoriasis (IVW, adjusted OR = 0.823; adjusted 95% CI = 0.715-0.948; adjusted p = .007). The heterogeneity of data was eliminated, and pleiotropy was not detected. There was no statistical difference in the MR analysis of other fatty acids indices with psoriasis. Further, no statistically significant evidence was found to verify a causal relationship between psoriasis and fatty acid levels in reverse MR. Functional enrichment analysis showed that these eQTL related to common SNPs were mainly involved in organic ion transport, choline metabolism, and the expression of key metabolic factors mediated by PKA, ChREBP, and PP2A. Our study indicated that the ratio of MUFAs to total fatty acids had a positive causal effect on psoriasis, while the ratio of PUFAs to total fatty acids and the ratio of PUFAs to MUFAs had a negative causal effect on psoriasis. Moreover, PKA-, PP2A-, and ChREBP-mediated activation of metabolic factors may play an important role in this process.
Collapse
Affiliation(s)
- Hao Lei
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Baochen Cheng
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Liumei Song
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ruiting Luo
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shengbang Wang
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tong Kang
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qian Wang
- Tangdu Hospital, Air Force Military Medical UniversityXi'anChina
| | - Yan Zheng
- Department of DermatologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
8
|
Wang X, Yang L, Geng X, Shi W, Chen Y, Lu C. Integrative analysis of metabolome and transcriptome reveals the different metabolite biosynthesis profiles related to palatability in winter and spring shoot in moso bamboo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107973. [PMID: 37598446 DOI: 10.1016/j.plaphy.2023.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Moso bamboo winter shoot has good taste and rich nutritional value. To reveal the causes and regulatory mechanism of palatability deterioration from winter to spring shoot, a conjoint analysis of metabolome and transcriptome was conducted on winter and spring shoots of moso bamboo. Totally 909 metabolites were characterized for the first time. The significant increase of hydrolyzed tannin content intensified the bitterness of spring shoot, which was positively regulated by key metabolite (gallic acid) and genes (DAHPS, DHQS, DHQ, SDH) in the biosynthesis pathway of hydrolyzed tannin. The accumulation of lignified components enhanced the roughness of spring shoot, which was closely connected with the significant changes of important metabolites (cinnamic acid, ferulic acid, UDP-glucose and UDP-xylose) and up-regulation of most enzyme genes involved in the biosynthesis pathways of lignin, cellulose and hemicellulose. The present study provides theoretical support for understanding palatability transition and directional improvement of edible quality of moso bamboo shoots.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; School of Life Science, Peking University, Beijing, 100871, China.
| | - Lilin Yang
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Guizhou, 554300, China.
| | - Xin Geng
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Weijia Shi
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yuzhen Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Xin JW, Chai ZX, Jiang H, Cao HW, Chen XY, Zhang CF, Zhu Y, Zhang Q, Ji QM. Genome-wide comparison of DNA methylation patterns between yak and three cattle strains and their potential association with mRNA transcription. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:316-328. [PMID: 36148637 DOI: 10.1002/jez.b.23174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 05/11/2023]
Abstract
Yak has evolved specific adaptative mechanisms to high-altitude environment. Up to date, only a few studies reported the DNA methylation in yak. In the present study, genome-wide DNA methylome and transcriptome profiles in lung, mammary, and biceps brachii muscle tissues were compared between yak and three cattle breeds (Tibetan cattle, Sanjiang cattle, and Holstein cattle). The association between differentially expressed genes (DEGs) and differentially methylated regions (DMRs) was analyzed, and the biological functions of DEGs potentially driven by DMRs were explored by KEGG enrichment analysis. Finally, we found that yak-specific DMRs-driven DEGs were mainly involved in neuromodulation, respiration, lung development, blood pressure regulation, cardiovascular protection, energy metabolism, DNA repair, and immune functions. The higher levels of the key genes associated with these functions were observed in yak than in cattle, suggesting that DNA methylation might regulate these genes. Overall, the present study contributes basic data at the DNA methylation level to further understand the physiological metabolism in yak.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiu-Mei Ji
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| |
Collapse
|
10
|
Tobler R, Souilmi Y, Huber CD, Bean N, Turney CSM, Grey ST, Cooper A. The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa. Proc Natl Acad Sci U S A 2023; 120:e2213061120. [PMID: 37220274 PMCID: PMC10235988 DOI: 10.1073/pnas.2213061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.
Collapse
Affiliation(s)
- Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, SA5005, Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Nigel Bean
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA5005, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Chris S. M. Turney
- Division of Research, University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Shane T. Grey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW2052, Australia
- Transplantation Immunology Group, Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Blue Sky Genetics, Ashton, SA5137, Australia
| |
Collapse
|
11
|
Camargo LSA, Saraiva NZ, Oliveira CS, Carmickle A, Lemos DR, Siqueira LGB, Denicol AC. Perspectives of gene editing for cattle farming in tropical and subtropical regions. Anim Reprod 2023; 19:e20220108. [PMID: 36819485 PMCID: PMC9924776 DOI: 10.1590/1984-3143-ar2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Cattle productivity in tropical and subtropical regions can be severely affected by the environment. Reproductive performance, milk and meat production are compromised by the heat stress imposed by the elevated temperature and humidity. The resulting low productivity contributes to reduce the farmer's income and to increase the methane emissions per unit of animal protein produced and the pressure on land usage. The introduction of highly productive European cattle breeds as well as crossbreeding with local breeds have been adopted as strategies to increase productivity but the positive effects have been limited by the low adaptation of European animals to hot climates and by the reduction of the heterosis effect in the following generations. Gene editing tools allow precise modifications in the animal genome and can be an ally to the cattle industry in tropical and subtropical regions. Alleles associated with production or heat tolerance can be shifted between breeds without the need of crossbreeding. Alongside assisted reproductive biotechnologies and genome selection, gene editing can accelerate the genetic gain of indigenous breeds such as zebu cattle. This review focuses on some of the potential applications of gene editing for cattle farming in tropical and subtropical regions, bringing aspects related to heat stress, milk yield, bull reproduction and methane emissions.
Collapse
Affiliation(s)
| | | | | | - Allie Carmickle
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
12
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
13
|
Dehelean CA, Coricovac D, Pinzaru I, Marcovici I, Macasoi IG, Semenescu A, Lazar G, Cinta Pinzaru S, Radulov I, Alexa E, Cretu O. Rutin bioconjugates as potential nutraceutical prodrugs: An in vitro and in ovo toxicological screening. Front Pharmacol 2022; 13:1000608. [PMID: 36210849 PMCID: PMC9538480 DOI: 10.3389/fphar.2022.1000608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Rutin (RUT) is considered one the most attractive flavonoids from a therapeutic perspective due to its multispectral pharmacological activities including antiradical, anti-inflammatory, antiproliferative, and antimetastatic among others. Still, this compound presents a low bioavailability what narrows its clinical applications. To overcome this inconvenience, the current paper was focused on the synthesis, characterization, and toxicological assessment of two RUT bioconjugates obtained by enzymatic esterification with oleic acid (OA) and linoleic acid (LA)—rutin oleate (RUT-O) and rutin linoleate (RUT-L), as flavonoid precursors with improved physicochemical and biological properties. Following the enzymatic synthesis in the presence of Novozyme® 435, the two bioconjugates were obtained, their formation being confirmed by RAMAN and FT-IR spectroscopy. The in vitro and in ovo toxicological assessment of RUT bioconjugates (1–100 µM) was performed using 2D consecrated cell lines (cardiomyoblasts - H9c2(2-1), hepatocytes—HepaRG, and keratinocytes—HaCaT), 3D reconstructed human epidermis tissue (EpiDerm™), and chick chorioallantoic membranes, respectively. The results obtained were test compound, concentration—and cell-type dependent, as follows: RUT-O reduced the viability of H9c2(2-1), HepaRG, and HaCaT cells at 100 µM (to 77.53%, 83.17%, and 78.32%, respectively), and induced cell rounding and floating, as well as apoptotic-like features in the nuclei of all cell lines, whereas RUT-L exerted no signs of cytotoxicity in all cell lines in terms of cell viability, morphology, and nuclear integrity. Both RUT esters impaired the migration of HepaRG cells (at 25 µM) and lack irritative potential (at 100 µM) in vitro (tissue viability >50%) and in ovo (irritation scores of 0.70 for RUT-O, and 0.49 for RUT-L, respectively). Computational predictions revealed an increased lipophilicity, and reduced solubility, drug-likeness and drug score of RUT-O and RUT-L compared to their parent compounds—RUT, OA, and LA. In conclusion, we report a favorable toxicological profile for RUT-L, while RUT-O is dosage-limited since at high concentrations were noticed cytotoxic effects.
Collapse
Affiliation(s)
- Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- *Correspondence: Iulia Pinzaru,
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Alexandra Semenescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Geza Lazar
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simona Cinta Pinzaru
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Isidora Radulov
- Faculty of Agriculture, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
14
|
Differential regulation of mRNAs and lncRNAs related to lipid metabolism in Duolang and Small Tail Han sheep. Sci Rep 2022; 12:11157. [PMID: 35778462 PMCID: PMC9249921 DOI: 10.1038/s41598-022-15318-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The function of long non-coding RNA (lncRNA) can be achieved through the regulation of target genes, and the deposition of fat is regulated by lncRNA. Fat has an important effect on meat quality. However, there are relatively few studies on lncRNAs in the subcutaneous adipose tissue of Duolang sheep and Small Tail Han sheep. In this study, RNA-Seq technology and bioinformatics methods were used to identify and analyze the lncRNA and mRNA in the subcutaneous adipose tissue of the two breeds of sheep. The results showed that 107 lnRNAs and 1329 mRNAs were differentially expressed. The differentially expressed genes and lncRNA target genes were significantly enriched in the biosynthesis of unsaturated fatty acids signaling pathway, fatty acid metabolism, adipocyte differentiation and other processes related to fat deposition. Among them, LOC105616076, LOC114118103, LOC105607837, LOC101116622, and LOC105603235 target FADS1, SCD, ELOVL6, HSD17B12 and HACD2, respectively. They play a key regulatory role in the biosynthesis of unsaturated fatty acids. This study lays a foundation for the study of the molecular mechanism of lncRNA on fat development, and has reference value for studying the differences in fat deposition between Duolang sheep and Small Tail Han sheep.
Collapse
|
15
|
Dias LG, Hacke A, dos Santos Souza E, Nath S, Canesin MR, Vilella OV, Geloneze B, Pallone JAL, Cazarin CBB, Blakeslee JJ, Mariutti LRB, Bragagnolo N. Comparison of Chemical and Nutritional Compositions Between Aromatic and Non-aromatic Rice From Brazil and Effect of Planting Time on Bioactive Compounds. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Li CQ, Liu ZQ, Liu SS, Zhang GT, Jiang L, Chen C, Luo DQ. Transcriptome Analysis of Liver Cancer Cell Huh-7 Treated With Metformin. Front Pharmacol 2022; 13:822023. [PMID: 35401213 PMCID: PMC8985428 DOI: 10.3389/fphar.2022.822023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Metformin is a kind of widely used antidiabetic drug that regulates glucose homeostasis by inhibiting liver glucose production and increasing muscle glucose uptake. Recently, some studies showed that metformin exhibits anticancer properties in a variety of cancers. Although several antitumor mechanisms have been proposed for metformin action, its mode of action in human liver cancer remains not elucidated. In our study, we investigated the underlying molecular mechanisms of metformin's antitumor effect on Huh-7 cells of hepatocellular carcinoma (HCC) in vitro. RNA sequencing was performed to explore the effect of metformin on the transcriptome of Huh-7 cells. The results revealed that 4,518 genes (with log2 fold change > 1 or < −1, adjusted p-value < 0.05) were differentially expressed in Huh-7 cells with treatment of 25-mM metformin compared with 0-mM metformin, including 1,812 upregulated and 2,706 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified 54 classical pathways that were significantly enriched, and 16 pathways are closely associated with cancer, such as cell cycle, DNA replication, extracellular matrix–receptor interaction, and so on. We selected 11 differentially expressed genes, which are closely associated with HCC, to validate their differential expressions through a quantitative real-time reverse transcription-polymerase chain reaction. The result exhibited that the genes of fatty acid synthase, mini-chromosome maintenance complex components 6 and 5, myristoylated alanine-rich C-kinase substrate, fatty acid desaturase 2, C-X-C motif chemokine ligand 1, bone morphogenetic protein 4, S-phase kinase-associated protein 2, kininogen 1, and proliferating cell nuclear antigen were downregulated, and Dual-specificity phosphatase-1 is significantly upregulated in Huh-7 cells with treatment of 25-mM metformin. These differentially expressed genes and pathways might play a crucial part in the antitumor effect of metformin and might be potential targets of metformin treating HCC. Further investigations are required to evaluate the metformin mechanisms of anticancer action in vivo.
Collapse
Affiliation(s)
- Chun-Qing Li
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Zhi-Qin Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding, China
| | - Sha-Sha Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China.,College of Science and Technology, Hebei Agricultural University, Huanghua, China
| | - Gao-Tao Zhang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Li Jiang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Chuan Chen
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Du-Qiang Luo
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
17
|
Zhou X, Mo Z, Li Y, Huang L, Yu S, Ge L, Hu Y, Shi S, Zhang L, Wang L, Gao L, Yang G, Chu G. Oleic acid reduces steroidogenesis by changing the lipid type stored in lipid droplets of ovarian granulosa cells. J Anim Sci Biotechnol 2022; 13:27. [PMID: 35130983 PMCID: PMC8822748 DOI: 10.1186/s40104-021-00660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Oleic acid is an abundant free fatty acid present in livestock that are in a negative energy-balance state, and it may have detrimental effects on female reproduction and fertility. Oleic acid induces lipid accumulation in bovine granulosa cells, which leads to a foam cell-like morphology and reduced steroidogenesis. However, why oleic acid increases lipid accumulation but decreases steroidogenesis remains unclear. This study focused on oleic acid’s effects on lipid type and steroidogenesis. Results Oleic acid increased the lipid accumulation in a concentration-dependent manner and mainly increased the triglyceride level and decreased the cholesterol ester level. Oleic acid also led to a decline in estradiol and progesterone production in porcine granulosa cells in vitro. In addition, oleic acid up-regulated the expression of CD36 and diacylglycerol acyltransferase 2, but down-regulated the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, scavenger receptor class B member 1 and acetyl-Coenzyme A acetyltransferase 2, as well as steroidogenesis-related genes, including cytochrome P450 family 11 subfamily A member 1, cytochrome P450 family 19 subfamily A member 1 and 3 as well as steroidogenic acute regulatory protein at the mRNA and protein levels. An oleic acid-rich diet also enhanced the triglyceride levels and reduced the cholesterol levels in ovarian tissues of female mice, which resulted in lower estradiol levels than in control-fed mice. Compared with the control, decreases in estrus days and the numbers of antral follicles and corpora lutea, as well as an increase in the numbers of the atretic follicles, were found in the oleic acid-fed female mice. Conclusions Oleic acid changed the lipid type stored in lipid droplets of ovarian granulosa cells, and led to a decrease in steroidogenesis. These results improve our understanding of fertility decline in livestock that are in a negative energy-balance state.
Collapse
Affiliation(s)
- Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhaoyi Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yankun Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Sihai Yu
- College of veterinary medicine, Northwest A&F University, Yangling, 712100, China
| | - Lan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yamei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liguang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China. .,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China. .,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
18
|
Vaittinen M, Lankinen MA, Käkelä P, Ågren J, Wheelock CE, Laakso M, Schwab U, Pihlajamäki J. The FADS1 genotypes modify the effect of linoleic acid-enriched diet on adipose tissue inflammation via pro-inflammatory eicosanoid metabolism. Eur J Nutr 2022; 61:3707-3718. [PMID: 35701670 PMCID: PMC9464166 DOI: 10.1007/s00394-022-02922-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE Fatty acid desaturase (FADS) variants associate with fatty acid (FA) and adipose tissue (AT) metabolism and inflammation. Thus, the role of FADS1 variants in the regulation of dietary linoleic acid (LA)-induced effects on AT inflammation was investigated. METHODS Subjects homozygotes for the TT and CC genotypes of the FADS1-rs174550 (TT, n = 25 and CC, n = 28) or -rs174547 (TT, n = 42 and CC, n = 28), were either recruited from the METabolic Syndrome In Men cohort to participate in an intervention with LA-enriched diet (FADSDIET) or from the Kuopio Obesity Surgery (KOBS) study. GC and LC-MS for plasma FA proportions and eicosanoid concentrations and AT gene expression for AT inflammatory score (AT-InSc) was determined. RESULTS We observed a diet-genotype interaction between LA-enriched diet and AT-InSc in the FADSDIET. In the KOBS study, interleukin (IL)1 beta mRNA expression in AT was increased in subjects with the TT genotype and highest LA proportion. In the FADSDIET, n-6/LA proportions correlated positively with AT-InSc in those with the TT genotype but not with the CC genotype after LA-enriched diet. Specifically, LA- and AA-derived pro-inflammatory eicosanoids related to CYP450/sEH-pathways correlated positively with AT-InSc in those with the TT genotype, whereas in those with the CC genotype, the negative correlations between pro-inflammatory eicosanoids and AT-InSc related to COX/LOX-pathways. CONCLUSIONS LA-enriched diet increases inflammatory AT gene expression in subjects with the TT genotype, while CC genotype could play a protective role against LA-induced AT inflammation. Overall, the FADS1 variant could modify the dietary LA-induced effects on AT inflammation through the differential biosynthesis of AA-derived eicosanoids.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.
| | - Maria A. Lankinen
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
| | - Pirjo Käkelä
- grid.9668.10000 0001 0726 2490Department of Surgery, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jyrki Ågren
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Craig E. Wheelock
- grid.4714.60000 0004 1937 0626Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Markku Laakso
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ursula Schwab
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- grid.9668.10000 0001 0726 2490Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XDepartment of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
19
|
Ngcobo JN, Ramukhithi FV, Nephawe KA, Mpofu TJ, Chokoe TC, Nedambale TL. Flaxseed Oil as a Source of Omega n-3 Fatty Acids to Improve Semen Quality from Livestock Animals: A Review. Animals (Basel) 2021; 11:ani11123395. [PMID: 34944172 PMCID: PMC8698102 DOI: 10.3390/ani11123395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In response to the conservation of threatened livestock species, different strategies to improve semen quality have been developed. However, spermatozoa remain sensitive to cryopreservation damages especially that of avian species, thus limiting the use of reproductive biotechnologies such as artificial insemination in the conservation programs. Improving semen quality through dietary inclusion of long-chain polyunsaturated fatty acids sources mainly omega n-3 has received research interest. This review explains the role of flaxseed oil as a source of omega n-3 fatty acids to improve semen quality. Comprehensive information elaborated in this review is believed to promote the use of flaxseed oil as an alternative source of omega n-3 fatty acids to fish oil. This is because fisheries are over-exploited and could collapse. Abstract The demand to conserve indigenous species through the cryo-gene bank is increasing. Spermatozoa remain sensitive to cryopreservation damages especially that of avian species thus limiting the use of reproductive biotechnologies such as artificial insemination in the conservation programs. Long-chain polyunsaturated fatty acid (LCPUFAs), specifically omega n-3, expanded a research interest to improve animal reproductive efficiency through improving spermatozoa quality. This is driven by the fact that mammals cannot synthesize omega-3 de-novo because they lack delta-12 and delta-15 desaturase enzymes thus supplemented in the diet is mandatory. Delta-12 and delta-15 add a double bond at the 12th and 15th carbon-carbon bond from the methyl end of fatty acids, lengthening the chain to 22 carbon molecules. Fish oil is a pioneer source of omega n-3 and n-6 fatty acids. However, there is a report that numerous fisheries are over-exploited and could collapse. Furthermore, processing techniques used for processing by-products could complement alterations of the amino acid profile and reduce protein retrieval. Alternatively, flaxseed oil contains ±52–58% of total fatty acids and lignans in the form of α-linolenic and linoleic acid. Alpha-linolenic acid (ALA,18:3n-3) is enzymatically broken-down de-novo by delta-6 desaturase and lengthened into a long-chain carbon molecule such as eicosapentaenoic acid (C20:5n-3). Nevertheless, controversial findings following the enrichment of diet with flaxseed oil have been reported. Therefore, this paper is aimed to postulate the role of flaxseed oil as an alternative source of omega n-3 and n-6 fatty acids to improve semen quality and quantity from livestock animals. These include the interaction between docosahexaenoic acid (DHA) and spermatogenesis, the interaction between docosahexaenoic acid (DHA) and testicular cells, and the effect of flaxseed oil on semen quality. It additionally assesses the antioxidants to balance the level of PUFAs in the semen.
Collapse
Affiliation(s)
- Jabulani Nkululeko Ngcobo
- Department of Animal Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (K.A.N.); (T.J.M.); (T.L.N.)
- Agricultural Research Council, Germplasm, Conservation, Reproductive Biotechnologies, Private Bag 0062, Pretoria 0001, South Africa;
- Correspondence: ; Tel.: +27-67-282-4956
| | - Fhulufhelo Vincent Ramukhithi
- Agricultural Research Council, Germplasm, Conservation, Reproductive Biotechnologies, Private Bag 0062, Pretoria 0001, South Africa;
| | - Khathutshelo Agree Nephawe
- Department of Animal Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (K.A.N.); (T.J.M.); (T.L.N.)
| | - Takalani Judas Mpofu
- Department of Animal Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (K.A.N.); (T.J.M.); (T.L.N.)
| | - Tlou Caswell Chokoe
- Department of Agriculture, Land Reform and Rural Development, Directorate, Farm Animal Genetic Resource, Private Bag X250, Pretoria 0001, South Africa;
| | - Tshimangadzo Lucky Nedambale
- Department of Animal Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (K.A.N.); (T.J.M.); (T.L.N.)
- Agricultural Research Council, Germplasm, Conservation, Reproductive Biotechnologies, Private Bag 0062, Pretoria 0001, South Africa;
| |
Collapse
|
20
|
Fatty Acid Composition by Total Acyl Lipid Collision-Induced Dissociation Time-of-Flight (TAL-CID-TOF) Mass Spectrometry. Methods Mol Biol 2021. [PMID: 34047975 DOI: 10.1007/978-1-0716-1362-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Total acyl lipid collision-induced dissociation time-of-flight (TAL-CID-TOF) mass spectrometry uses a quadrupole time-of-flight (QTOF) mass spectrometer to rapidly provide a comprehensive fatty acid composition of a biological lipid extract. Samples are infused into a QTOF instrument, operated in negative mode, and the quadrupole is used to transfer all, or a wide mass range of, precursor ions to the collision cell for fragmentation. Time-of-flight-acquired mass spectra provide mass accuracy and resolution sufficient for chemical formula determination of fatty acids in the complex mixture. Considering the limited number of reasonable CHO variants in fatty acids, one can discern acyl anions with the same nominal mass but different chemical formulas. An online application, LipidomeDB Data Calculation Environment, is employed to process the mass spectral output data and match identified fragments to target fragments at a resolution specified by the user. TAL-CID-TOF methodology is a useful discovery or screening tool to identify and compare fatty acid profiles of biological samples.
Collapse
|
21
|
The fatty acid elongase ELOVL6 regulates bortezomib resistance in multiple myeloma. Blood Adv 2021; 5:1933-1946. [PMID: 33821992 DOI: 10.1182/bloodadvances.2020002578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Resistance to the proteasome inhibitor bortezomib (BTZ) represents a major obstacle in the treatment of multiple myeloma (MM). The contribution of lipid metabolism in the resistance of MM cells to BTZ is mostly unknown. Here we report that levels of fatty acid elongase 6 (ELOVL6) were lower in MM cells from BTZ-nonresponsive vs BTZ-responsive patients and in cultured MM cells selected for BTZ resistance compared with parental counterparts. Accordingly, depletion of ELOVL6 in parental MM cells suppressed BTZ-induced endoplasmic reticulum (ER) stress and cytotoxicity, whereas restoration of ELOVL6 levels in BTZ-resistant MM cells sensitized them to BTZ in tissue culture settings and, as xenografts, in a plasmacytoma mouse model. Furthermore, for the first time, we identified changes in the BTZ-induced lipidome between parental and BTZ-resistant MM cell lines underlying a functional difference in their response to BTZ. We demonstrated that restoration of ELOVL6 levels in BTZ-resistant MM cells resensitized them to BTZ largely via upregulation of ELOVL6-dependent ceramide species, which was a prerequisite for BTZ-induced ER stress and cell death in these cells. Our data characterize ELOVL6 as a major clinically relevant regulator of MM cell resistance to BTZ, which can emerge from the impaired ability of these cells to alter ceramide composition in response to BTZ.
Collapse
|
22
|
Liu X, Zhao K, Jing N, Zhao Y, Yang X. EGCG regulates fatty acid metabolism of high-fat diet-fed mice in association with enrichment of gut Akkermansia muciniphila. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Somacal S, Pinto VS, Vendruscolo RG, Somacal S, Wagner R, Ballus CA, Kuhn RC, Mazutti MA, Menezes CR. Maximization of microbial oil containing polyunsaturated fatty acid production by Umbelopsis (Mortierella) isabellina. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Monmai C, Rod-in W, Jang AY, Lee SM, Jung SK, You S, Park WJ. Immune-enhancing effects of anionic macromolecules extracted from Codium fragile coupled with arachidonic acid in RAW264.7 cells. PLoS One 2020; 15:e0239422. [PMID: 33031432 PMCID: PMC7544070 DOI: 10.1371/journal.pone.0239422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/07/2020] [Indexed: 11/19/2022] Open
Abstract
Arachidonic acid (ARA) is an integral constituent of the biological cell membrane, conferring it with fluidity and flexibility, which are necessary for the function of all cells, especially nervous system, skeletal muscle, and immune system. Codium species biosynthesize sulfated polysaccharides with very distinct structural features. Some of them have different biological activities with great potential in pharmaceutical applications. In this study, anionic macromolecules extracted from Codium fragile were investigated for their cooperative immune-enhancing activities with ARA. The cooperation between ARA and Codium resulted in increased, dose-dependent nitric oxide production and iNOS gene expression. In addition, co-treatment of ARA and Codium effectively increased pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), compared with Codium alone. We also demonstrated that the expression of COX-2 mRNA was also increased, which is responsible for the production of inflammatory mediator prostaglandins and their metabolites. Compared to the Codium group, the co-treatment of Codium with ARA enhanced the phosphorylation of nuclear factor-κB p-65, p38, and extracellular signal-related kinase 1/2, indicating that this combination stimulated immune response through nuclear factor-κB and mitogen-activated protein kinase pathways. These results indicated that the coordination of arachidonic acid with polysaccharide extracted from seaweed may be a potential source of immunomodulatory molecules.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - A-yeong Jang
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - Sang-min Lee
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - Seok-Kyu Jung
- Department of Horticulture, Daegu Catholic University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
- * E-mail:
| |
Collapse
|
25
|
Piper K, Garelnabi M. Eicosanoids: Atherosclerosis and cardiometabolic health. J Clin Transl Endocrinol 2020; 19:100216. [PMID: 32071878 PMCID: PMC7013337 DOI: 10.1016/j.jcte.2020.100216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases (CVD) have been the leading causes of death in the U.S. for nearly a century. Numerous studies have linked eicosanoids to cardiometabolic disease. Objectives and Methods: This review summaries recent advances and innovative research in eicosanoids and CVD. Numerous review articles and their original human or animal studies were assessed in the relevant and recent studies. OUTCOME We identified and discussed recent trends in eicosanoids known for their roles in CVD. Their subsequent relationships were assessed for any possible implications associated with consumption of different dietary lipids, essentially omega fatty acids. Eicosanoids have been heavily sought after over recent decades for their direct role in mediating the enhancement and resolution of acute immune responses. Given the short half-life of these oxidized lipid metabolites, studies on atherosclerosis have had to rely on the metabolites that are actively involved in eicosanoid production, signaling or redox reactions as markers for atherosclerosis-related molecular behaviors. CONCLUSION Further investigations expending current knowledge, should be applied to narrow the specific class and species of eicosanoids responsible for inciting inflammation especially in the context of recent clinical studies assessing the role of dietary lipid in cardiovascular diseases.
Collapse
|
26
|
Valenzuela R, Videla LA. Impact of the Co-Administration of N-3 Fatty Acids and Olive Oil Components in Preclinical Nonalcoholic Fatty Liver Disease Models: A Mechanistic View. Nutrients 2020; 12:E499. [PMID: 32075238 PMCID: PMC7071322 DOI: 10.3390/nu12020499] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is present in approximately 25% of the population worldwide. It is characterized by the accumulation of triacylglycerol in the liver, which can progress to steatohepatitis with different degrees of fibrosis, stages that lack approved pharmacological therapies and represent an indication for liver transplantation with consistently increasing frequency. In view that hepatic steatosis is a reversible condition, effective strategies preventing disease progression were addressed using combinations of natural products in the preclinical high-fat diet (HFD) protocol (60% of fat for 12 weeks). Among them, eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:5n-3, DHA), DHA and extra virgin olive oil (EVOO), or EPA plus hydroxytyrosol (HT) attained 66% to 83% diminution in HFD-induced steatosis, with the concomitant inhibition of the proinflammatory state associated with steatosis. These supplementations trigger different molecular mechanisms that modify antioxidant, antisteatotic, and anti-inflammatory responses, and in the case of DHA and HT co-administration, prevent NAFLD. It is concluded that future studies in NAFLD patients using combined supplementations such as DHA plus HT are warranted to prevent liver steatosis, thus avoiding its progression into more unmanageable stages of the disease.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Nutritional Sciences Department, Faculty of Medicine, University of Toronto, Toronto, ON M2J4A6, Canada
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| |
Collapse
|
27
|
Long X, Song J, Zhao X, Zhang Y, Wang H, Liu X, Suo H. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-κB signaling. Food Sci Nutr 2020; 8:237-245. [PMID: 31993149 PMCID: PMC6977511 DOI: 10.1002/fsn3.1296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Acetaminophen (APAP) overdose causes severe hepatotoxicity and acute liver failure. The current study aims to investigate the protection effects of silkworm pupa oil (SPO) against acute hepatic injury in APAP-exposed Kunming mice. Our results showed that the liver index and the levels of serum alanine transaminase (ALT) and aspartate transaminase (AST) in mice subjected to APAP treatment were decreased by SPO. Supplement of SPO also restored hepatic histopathological alterations induced by APAP. The APAP-induced increase in proinflammatory cytokines, including TNF-α, IL-6, and IL-12, was reversed by SPO, which was mediated by the reduction of nuclear factor (NF)-κB p65 expression and the increase in the expression of IκB-α in liver tissue. Moreover, SPO inhibited APAP-triggered oxidative stress by decreasing MDA level and increasing the activities of SOD and GSH-Px. Collectively, SPO attenuated hepatic injury induced by APAP, which attributed to the suppression of oxidative stress-mediated NF-κB signaling. Our findings suggest that SPO supplementation may be potential strategy against acute hepatic injury.
Collapse
Affiliation(s)
- Xingyao Long
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Jiajia Song
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
| | - Yu Zhang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Hongwei Wang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
| | - Huayi Suo
- College of Food ScienceSouthwest UniversityChongqingChina
| |
Collapse
|
28
|
Endoplasmic reticulum retention signaling and transmembrane channel proteins predicted for oilseed ω3 fatty acid desaturase 3 (FAD3) genes. Funct Integr Genomics 2019; 20:433-458. [PMID: 31781992 DOI: 10.1007/s10142-019-00718-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Oilseed crop oils contain a variety of unsaturated fatty acids that are synthesized and regulated by fatty acid desaturases (FADs). In this study, 14 FAD3 (ω3 desaturase) protein sequences from oilseeds are analyzed and presented through the application of several computational tools. The results indicated a close relationship between Brassica napus and Camelina sativa, as well as between Salvia hispanica and Perilla frutescens FAD3s, due to a high similarity in codon preferences in codon usage clusters and the phylogenetic tree. The cis-acting element results reveal that the seed-specific promoter region of BnFAD3 contains the critical conserved boxes such as HSE and ABRE, which are involved in responsiveness to heat stress and abscisic acid. The presence of the aforementioned conserved boxes may increase cold acclimation as well as tolerance to drought and high salinity. Omega(ω)3 desaturases contain a Skn-1 motif which is a cis-acting regulatory element required involved in endosperm development. In oilseed FAD3s, leucine is the most repeated amino acid in FAD3 proteins. The study conveyed that B. napus, Camelina sativa, Linum usitatissimum, Vernicia fordii, Gossypium hirsutum, S. hispanica, Cannabis sativa, and P. frutescens have retention signal KXKXX/XKXX at their c-terminus sites, which is one of the most important characteristics of FADs. Additionally, it was found that BnFAD3 is a transmembrane protein that can convert ω6 to ω3 fatty acids and may simultaneously act as a potassium ion channel in the ER.
Collapse
|
29
|
Song L, Yang L, Wang J, Liu X, Bai L, Di A, Li G. Generation of Fad2 and Fad3 transgenic mice that produce n-6 and n-3 polyunsaturated fatty acids. Open Biol 2019; 9:190140. [PMID: 31640475 PMCID: PMC6833225 DOI: 10.1098/rsob.190140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Linoleic acid (18 : 2, n-6) and α-linolenic acid (18 : 3, n-3) are polyunsaturated fatty acids (PUFAs), which are essential for mammalian health, development and growth. However, the majority of mammals, including humans, are incapable of synthesizing n-6 and n-3 PUFAs. Mammals must obtain n-6 and n-3 PUFAs from their diet. Fatty acid desaturase (Fad) plays a critical role in plant PUFA biosynthesis. Therefore, we generated plant-derived Fad3 single and Fad2–Fad3 double transgenic mice. Compared with wild-type mice, we found that PUFA levels were greatly increased in the single and double transgenic mice by measuring PUFA levels. Moreover, the concentration of n-6 and n-3 PUFAs in the Fad2–Fad3 double transgenic mice were greater than in the Fad3 single transgenic mice. These results demonstrate that the plant-derived Fad2 and Fad3 genes can be expressed in mammals. To clarify the mechanism for Fad2 and Fad3 genes in transgenic mice, we measured the PUFAs synthesis-related genes. Compared with wild-type mice, these Fad transgenic mice have their own n-3 and n-6 PUFAs biosynthetic pathways. Thus, we have established a simple and efficient method for in vivo synthesis of PUFAs.
Collapse
Affiliation(s)
- Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Jiapeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Lige Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| |
Collapse
|
30
|
Nguyen N, Dow M, Woodside B, German JB, Quehenberger O, Shih PAB. Food-Intake Normalization of Dysregulated Fatty Acids in Women with Anorexia Nervosa. Nutrients 2019; 11:E2208. [PMID: 31540208 PMCID: PMC6769727 DOI: 10.3390/nu11092208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022] Open
Abstract
Anorexia nervosa (AN) is a psychiatric disorder affected by psychological, environmental, and biological factors. Individuals with AN avoid high-fat, high-calorie diets and have shown abnormal metabolism of fatty acids (FAs), which are essential for brain and cognitive/neuropsychiatric health. To clarify the relationship between FAs and AN, fasting and postprandial plasma FAs in AN patients and age-matched control women were analyzed via mass-spectrometry. Clinical phenotypes were assessed using Becker Anxiety Inventory and Becker Depression Inventory. AN patients and controls exhibited different FA signatures at both fasting and postprandial timepoints. Lauric acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and alpha-linoleic acid (ALA) were higher in AN than in controls (lauric acid: 15,081.6 ± 14,970.2 vs. 8257.4 ± 4740.2 pmol/mL; ALA at fasting: 2217.7 ± 1587.6 vs. 1087.9 ± 821.2 pmol/mL; ALA at postprandial: 1830.9 ± 1115.6 vs. 1159.4 ± 664.7 pmol/mL. EPA: 33,788.3 ± 17,487.5 vs. 22,860.6 ± 12,642.4 pmol/mL; DPA: 32,664.8 ± 16,215.0 vs. 20,969.0 ± 12,350.0 pmol/mL. FDR-adjusted p-values < 0.05). Food intake and AN status modified the correlations of FAs with body mass index (BMI), depression, and anxiety. Desaturases SCD-18 and D6D showed lower activities in AN compared to controls. Altered FA signature, specifically correlations between elevated n-3 FAs and worsened symptoms, illustrate metabolic underpinnings in AN. Future studies should investigate the mechanisms by which FA dysregulation, specifically elevated n-3 FAs, affects AN risk and outcome.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Psychiatry, School of Medicine University of California, San Diego, La Jolla, CA 92037, USA.
| | - Michelle Dow
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Blake Woodside
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - J Bruce German
- Department of Food Science & Technology, University of California, Davis, Davis, CA 95616, USA.
| | - Oswald Quehenberger
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA.
| | - Pei-An Betty Shih
- Department of Psychiatry, School of Medicine University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Jabłońska-Trypuć A, Krętowski R, Wołejko E, Wydro U, Butarewicz A. Traumatic acid toxicity mechanisms in human breast cancer MCF-7 cells. Regul Toxicol Pharmacol 2019; 106:137-146. [DOI: 10.1016/j.yrtph.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
|
32
|
Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Raman spectroscopy has been applied to study unsaturated fatty acid in edible vegetable oils. The relative intensity ratio of characteristic vibrational bands has been investigated as a function of the content of totally unsaturated fatty acid, polyunsaturated fatty acid, and monounsaturated fatty acid. The results suggest the intensity ratio of 1655 cm−1 to 1440 cm−1 or 1265 cm−1 to 1300 cm−1, i.e., a characteristic vibrational band correlated with carbon-carbon double bond in acid chain to a vibrational band not correlated with double bond, could be applied for preliminary analysis of the content of polyunsaturated fatty acid or monounsaturated fatty acid, but cannot be used to analyze the content of total unsaturated fatty acid. Additionally, two-dimensional correlation spectroscopy (2DCOS) has been performed on the content dependent Raman spectra. The 2DCOS result is consistent with that by Raman spectroscopy.
Collapse
|
33
|
Zhou M, Song L, Ye S, Zeng W, Hännien H, Yu W, Suo J, Hu Y, Wu J. New sights into lipid metabolism regulation by low temperature in harvested Torreya grandis nuts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4226-4234. [PMID: 30790295 DOI: 10.1002/jsfa.9653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Torreya grandis, a large evergreen coniferous tree with oil-rich nuts, undergoes a crucial ripening stage after harvest that results in oil accumulation, finally giving rise to the nut that is edible in roasted form. To understand lipid metabolism in T. grandis nuts during the post-harvest ripening period, the effects of low temperature on lipid content, fatty acid composition, lipid biosynthesis and degradation were investigated. RESULTS The lipid content increased during ripening at room temperature and a low temperature slowed down this increase. Linoleic acid content increased at low temperature, which was accompanied by an increase in the microsomal oleate desaturase (FAD2) activity and FAD2 expression. Furthermore, a low temperature attenuated lipid peroxidation as indicated by lower contents of malondialdehyde, hydroperoxide and total free fatty acid in T. grandis nuts during the ripening stage, as well as the down-regulation of gene expression of lipid degradation-related enzymes such as phospholipase D and lipoxygenases. CONCLUSION The findings of the present study indicate that a low temperature increased polyunsaturated fatty acid contents by increasing FAD2 biosynthesis and decreasing lipid peroxidation, thereby improving the oil yield in T. grandis nuts during the post-harvest ripening period. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Shan Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Heikki Hännien
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Nascimento-Silva NRRD, Naves MMV. Potential of Whole Pequi ( Caryocar spp.) Fruit-Pulp, Almond, Oil, and Shell-as a Medicinal Food. J Med Food 2019; 22:952-962. [PMID: 31074677 DOI: 10.1089/jmf.2018.0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pequi (Caryocar) pulp, the most consumed component of pequi fruit, is one of the richest Brazilian carotenoid sources, and the most important carotenoid food source native to the Cerrado. However, there are considerable differences among pequi species regarding total carotenoids content and carotenoids profile. Caryocar brasiliense Camb. pulp presents higher content of total carotenoids than Caryocar villosum (Aubl.) Pers. Regarding the carotenoids profile, few studies are available in the literature, mainly with C. brasiliense. Pequi pulp also has high contents of lipids, dietary fiber, zinc, and magnesium, and is source of calcium and polyphenols. Pequi almond presents high energy, lipid, protein, dietary fiber, and ash contents. Pequi oil (pulp and almond) has high levels of monounsaturated fatty acids, especially oleic acid, and relatively high contents of saturated fatty acids, mainly palmitic. Pequi shell (exocarp and external mesocarp) is the largest component of the fruit and a solid residue of the pequi processing, which is rich in dietary fibers, including soluble fibers, and phenolic compounds, mostly gallic acid, ellagic acid, and quercetin. Pulp oil is the pequi byproduct most investigated in in vivo studies. Research with pequi pulp oil in animal models has shown antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, antigenotoxic, and anticarcinogenic effects. In humans, there are evidences supporting anti-inflammatory, cardioprotective, and antigenotoxic effects. Studies on carotenoids profile of pequi pulp in different fruit species are recommended, and in vivo studies are necessary to better explore the potential health benefits of pequi fruit components, mainly the pequi pulp and shell.
Collapse
|
35
|
Potential Prebiotic Properties of Nuts and Edible Seeds and Their Relationship to Obesity. Nutrients 2018; 10:nu10111645. [PMID: 30400274 PMCID: PMC6266159 DOI: 10.3390/nu10111645] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity is a global epidemic chronic condition and is progressing at a rapid rate. This review focuses on the potential prebiotic properties of nuts and edible seeds and the plausible mechanisms that their consumption may help the prevention and the management of overweight and obesity. The literature review was performed by searching papers about the topic in MEDLINE and SCOPUS databases. The healthy attributes of nuts and edible seeds, especially dietary fibers and polyphenols contents, indicate that their mechanism of weight gain prevention may occur through interaction with the gut microbiota, by means of prebiotic effects. Among the etiological factors associated with obesity, the gut microbiota seems to play a significant role. Dysbiosis causes an imbalance in energy homeostasis that contributes to obesity. Three mechanisms are proposed in this review to explain the potential role of nut and edible seed consumption on intestinal homeostasis and body weight control: maintenance of the enteric barrier integrity, improvement of anti-inflammatory status and enhancement of butyrate synthesis. Further high-quality clinical trials should explore the interaction between oilseed consumption, microbiota, and body adiposity control, particularly investigating the microbiota metabolites and their relation to the prevention and management of obesity.
Collapse
|
36
|
Expression Changes in Fatty acid Metabolic Processrelated Genes in Porcine Oocytes During in Vitro Maturation. ACTA ACUST UNITED AC 2018. [DOI: 10.2478/acb-2018-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Mammalian oocytes undergo compound processes of nuclear and cytoplasmic maturation that allow them to reach MII stage. Only fully mature, oocyte can be successfully fertilized by a single spermatozoon. Fatty acids, apart from their role in cellular metabolism, inflammation and tissue development, have positive and detrimental effects on oocyte maturation, fertilization, blastocyst cleavage rate and embryo development in mammals. Using microarrays, we have analyzed the expression changes in fatty acids- -related genes during in vitro maturation of porcine oocytes. The oocytes were recovered from ovaries of 45 pubertal crossbred Landrace gilts and subsequently subjected to BCB test. For further analyses, only granulosa cell-free BCB+ oocytes were used and divided into two groups. The first one, described as “before IVM”, was directly exposed to molecular assays, the second one, described as “after IVM”, was first in vitro matured and then subjected to a second BCB test. Oocytes, if classified as BCB+, were then passed to corresponding molecular analyses. We found significant down-regulation of genes involved in fatty acid metabolic process, such as: ACSL6, EPHX2, FADS2, PTGES, TPI1, TBXAS1, NDUFAB1, MIF, ACADSB and DECR1 in porcine oocytes analyzed after IVM, in comparison to those analyzed before IVM. In conclusion, apart from poor data available concerning analyzed genes in relation to reproductive events, significant changes in their expression point to their potential role as an oocyte developmental competence markers in pigs. Introducing molecular diagnostics of oocytes could be the prospective tool for selection of best gametes, leading to improved outcomes of in vitro fertilization.
Collapse
|
37
|
Zhang HM, Xia HL, Jiang HR, Mao YJ, Qu KX, Huang BZ, Gong YC, Yang ZP. Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition. Genome 2018; 61:549-558. [PMID: 29883552 DOI: 10.1139/gen-2017-0164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intramuscular fat (IMF) content and fatty acid (FA) composition vary significantly across beef cattle breeds, which play an important role in taste and nutritional value. However, the molecular mechanisms underlying these phenotypic differences remain unknown. The present study compared meat quality traits between Yunling cattle and Chinese Simmental cattle. Yunling cattle showed a lower IMF content and proportion of monounsaturated fatty acids (MUFA), as well as higher proportions of saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), and short-chain fatty acids (sc-FA) in the longissimus dorsi (LD) muscle than Chinese Simmental cattle. To further identify the candidate genes and pathways responsible for these phenotypic differences, the transcriptome of LD muscle from the two breeds were measured using RNA-seq. A total of 1347 differentially expressed genes were identified. The major metabolic pathways that were differentially modulated were lipolysis and glycometabolism. Yunling cattle showed a higher expression of lipolysis genes (ALDH9A1, ACSL5, ACADM, ACAT2, ACOT2) and a lower expression of genes related to glycometabolism (PGM1, GALM, PGM1, GPI, LDHA). This research identified candidate genes and pathways for IMF content and FA composition in the LD muscle of beef cattle, which may facilitate the design of new selection strategies to improve meat quality.
Collapse
Affiliation(s)
- H M Zhang
- a Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.,b Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - H L Xia
- a Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.,b Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - H R Jiang
- a Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.,b Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Y J Mao
- a Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.,b Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - K X Qu
- c Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan 650212, China
| | - B Z Huang
- c Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan 650212, China
| | - Y C Gong
- d The Centre for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Z P Yang
- a Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.,b Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
38
|
Abstract
Potential reproductive effects are considered as the major aspect of biomolecules functionality in an organism. The recent identification of differential patterns of fatty acids across ovarian follicles and their association with levels of sexual maturity highlights the importance of these biomolecules. It is well known that fatty acids are highly diverse in terms of their functional properties. Oleic acid is chemically classified as an unsaturated omega-9 fatty acid. Besides serving as an important energy source, oleic acid is involved in metabolic and structural roles. Free and esterified oleic acids are compartmentalized into discrete extracellular fluids, cell organelles and found within the cytosol. This review summarizes the current knowledge on the contribution of oleic acid in regulating female fertility, particularly its involvement in female germ cell growth and development. Oleic acid has been identified as a blastomeric and post-cryopreservation survival biomarker in bovine. Several related studies have shown the critical role of oleic acid in counteracting the detrimental effects of saturated fatty acids and in paracrine support of oocyte development. Although available data are not ideally detailed, most data suggest that oleic acid can contribute to normal oocyte and preimplantation embryo development via mechanisms involving metabolic partitioning of fatty acids, change in the membrane structural organization, attenuation of oxidative stress and regulation of intracellular signalling. Thus, oleic acid may play a significant role in oocyte and early embryo development, suggesting that future studies should explore in more detail its potential effects on the physiopathology of female reproduction.
Collapse
|
39
|
Wang Y, Ma C, Sun Y, Li Y, Kang L, Jiang Y. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs. BMC Genomics 2017; 18:780. [PMID: 29025412 PMCID: PMC5639760 DOI: 10.1186/s12864-017-4201-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The intramuscular fat content (IMF) refers to the amount of fat within muscles, including the sum of phospholipids mainly found in cell membranes, triglycerides and cholesterol, and is determined both by hyperplasia and hypertrophy of adipocyte during the development of pigs. The IMF content is an important economic trait that is genetically controlled by multiple genes. The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by excessively higher level of IMF content (9%~12%), therefore, is suitable for the identification of genes controlling IMF variations. To identify genes underlying IMF deposition, we performed genome-wide transcriptome and methylome analyses on longissimus dorsi (LD) muscle in Laiwu pigs across four developmental stages. Results A total of 22,524 expressed genes were detected and 1158 differentially expressed genes (DEGs) were hierarchically clustered in the LD muscle over four developmental stages from 60 d to 400 d. These genes were significantly clustered into four temporal expression profiles, and genes participating in fat cell differentiation and lipid biosynthesis processes were identified. From 120 d to 240 d, the period with the maximum IMF deposition rate, the lipid biosynthesis related genes (FOSL1, FAM213B and G0S2), transcription factors (TFs) (EGR1, KLF5, SREBF2, TP53 and TWIST1) and enriched pathways (steroid biosynthesis and fatty acid biosynthesis) were revealed; and fat biosynthesis relevant genes showing differences in DNA methylation in gene body or intergenic region were detected, such as FASN, PVALB, ID2, SH3PXD2B and EGR1. Conclusions This study provides a comprehensive landscape of transcriptome of the LD muscle in Laiwu pigs ranging from 60 to 400 days old, and methylome of the LD muscle in 120 d and 240 d Laiwu pigs. A set of candidate genes and TFs involved in fat biosynthesis process were identified, which were probably responsible for IMF deposition. The results from this study would provide a reference for the identification of genes controlling IMF variation, and for exploring molecular mechanisms underlying IMF deposition in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4201-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Li
- Central Hospital of Taian, Taian, 271018, People's Republic of China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.
| |
Collapse
|
40
|
Vaittinen M, Männistö V, Käkelä P, Ågren J, Tiainen M, Schwab U, Pihlajamäki J. Interorgan cross talk between fatty acid metabolism, tissue inflammation, and FADS2 genotype in humans with obesity. Obesity (Silver Spring) 2017; 25:545-552. [PMID: 28145068 DOI: 10.1002/oby.21753] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Fatty acid (FA) composition affects obesity-associated low-grade inflammation. It has been shown that the fatty acid desaturase (FADS) 2 gene polymorphism associates with FA metabolism and adipose tissue (AT) inflammation. This study aimed to investigate the relationship between FA metabolism and inflammation in different tissues and the possible interorgan cross talk. METHODS Cross-sectional baseline data from 155 individuals with obesity (both male and female) participating in the Roux-en-Y gastric bypass operation in the ongoing Kuopio Obesity Surgery Study were used. Gas chromatograph for FA composition, liver histology, and targeted RNA expression for gene expression profile were performed. RESULTS It was demonstrated that the saturated fatty acid (SFA) proportion in AT correlated positively with inflammation in subcutaneous AT (SAT) and visceral AT (VAT) but not in the liver, while the monounsaturated fatty acid (MUFA) proportion in SAT and VAT correlated negatively with AT inflammation. Notably, there was a positive correlation between AT n-6 polyunsaturated fatty acids (PUFAs), but not AT SFAs or MUFAs, and liver inflammation. This correlation was modified by the FADS2 genotype. CONCLUSIONS The AT FA profile relates with AT inflammation. Additionally, there seems to be a complex interaction, partly regulated by the FADS2 genotype, regulating the interaction between FAs in AT and liver inflammation.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Turku PET Centre, Turku University Hospital, Finland
| | - Ville Männistö
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Finland
| | - Pirjo Käkelä
- Department of Surgery, University of Eastern Finland and Kuopio University Hospital, Finland
| | - Jyrki Ågren
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mika Tiainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
41
|
ALVES AM, FERNANDES DC, BORGES JF, SOUSA AGDO, NAVES MMV. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. REV NUTR 2016. [DOI: 10.1590/1678-98652016000600010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT Objective: To assess and compare the fatty acid composition of edible seeds and a nut native to the Cerrado (Brazilian savannah) to that of traditional oilseeds. Methods: Baru almonds, Cerrado cashew nuts, and pequi almonds were extracted from the fruits using appropriate equipment. All edible seeds and nuts were roasted, except for the Brazil nut. The sample lipids were extracted via cold pressing. The fatty acids were esterified, and the fatty acid esters were analyzed by gas chromatography. Results: The native and traditional edible seeds and nuts contain mostly monounsaturated fatty acids (42.72 g to 63.44 g/100 g), except for the Brazil nut, which showed predominance of polyunsaturated fatty acids (45.48 g/100 g). Pequi almond had the highest saturated fatty acid content (36.14 g/100 g). The fatty acids with the highest concentration were oleic and linoleic acids, and palmitic acid was also found in considerable concentration in the oilseeds studied. The Cerrado cashew nut and the traditional cashew nut have similar fatty acid profiles. As for the ratio of ω-6 to ω-3, the baru almond showed the highest ratio, 9:1, which was the closest to the recommended intake of these fatty acids. Conclusion: The fatty acid profile of the edible seeds and nuts native to the cerrado is similar to those of traditional oilseeds. We suggest the inclusion of native oilseeds in the diet aiming at reducing the risk of cardiovascular disease, especially the baru almond and the cerrado cashew nut, due to the fact they have high ratio of monounsaturated fatty acids to saturated fatty acids.
Collapse
|
42
|
Rincón-Cervera MÁ, Valenzuela R, Hernandez-Rodas MC, Barrera C, Espinosa A, Marambio M, Valenzuela A. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins Leukot Essent Fatty Acids 2016; 111:25-35. [PMID: 26995676 DOI: 10.1016/j.plefa.2016.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA.
Collapse
Affiliation(s)
| | - Rodrigo Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | - Cynthia Barrera
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Macarena Marambio
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| |
Collapse
|
43
|
Lee JM, Lee H, Kang S, Park WJ. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016; 8:nu8010023. [PMID: 26742061 PMCID: PMC4728637 DOI: 10.3390/nu8010023] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.
Collapse
Affiliation(s)
- Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea.
| | - Hyungjae Lee
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Korea.
| | - SeokBeom Kang
- Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA, Seogwipo 63607, Korea.
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| |
Collapse
|
44
|
Vaittinen M, Walle P, Kuosmanen E, Männistö V, Käkelä P, Ågren J, Schwab U, Pihlajamäki J. FADS2 genotype regulates delta-6 desaturase activity and inflammation in human adipose tissue. J Lipid Res 2015; 57:56-65. [PMID: 26609056 DOI: 10.1194/jlr.m059113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 12/17/2022] Open
Abstract
Obesity is associated with disturbed lipid metabolism and low-grade inflammation in tissues. The aim of this study was to investigate the association between FA metabolism and adipose tissue (AT) inflammation in the Kuopio Obesity Surgery study. We investigated the association of surgery-induced weight loss and FA desaturase (FADS)1/2 genotypes with serum and AT FA profile and with AT inflammation, measured as interleukin (IL)-1β and NFκB pathway gene expression, in order to find potential gene-environment interactions. We demonstrated an association between serum levels of saturated and polyunsaturated n-6 FAs, and estimated enzyme activities of FADS1/2 genes with IL-1β expression in AT both at baseline and at follow-up. Variation in the FADS1/2 genes associated with IL-1β and NFκB pathway gene expression in SAT after weight reduction, but not at baseline. In addition, the FA composition in subcutaneous and visceral fat correlated with serum FAs, and the associations between serum PUFAs and estimated D6D enzyme activity with AT inflammation were also replicated with corresponding AT FAs and AT inflammation. We conclude that the polymorphism in FADS1/2 genes associates with FA metabolism and AT inflammation, leading to an interaction between weight loss and FADS1/2 genes in the regulation of AT inflammation.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institutes of Public Health and Clinical Nutrition University of Eastern Finland, Kuopio, Finland
| | - Paula Walle
- Institutes of Public Health and Clinical Nutrition University of Eastern Finland, Kuopio, Finland
| | - Emmi Kuosmanen
- Institutes of Public Health and Clinical Nutrition University of Eastern Finland, Kuopio, Finland
| | - Ville Männistö
- Departments of Medicine University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Pirjo Käkelä
- Surgery, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jyrki Ågren
- Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institutes of Public Health and Clinical Nutrition University of Eastern Finland, Kuopio, Finland Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institutes of Public Health and Clinical Nutrition University of Eastern Finland, Kuopio, Finland Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
45
|
Valenzuela R, Barrera C, Espinosa A, Llanos P, Orellana P, Videla LA. Reduction in the desaturation capacity of the liver in mice subjected to high fat diet: Relation to LCPUFA depletion in liver and extrahepatic tissues. Prostaglandins Leukot Essent Fatty Acids 2015; 98:7-14. [PMID: 25910408 DOI: 10.1016/j.plefa.2015.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 11/29/2022]
Abstract
α-Linolenic (ALA) and linoleic (LA) acids are precursors of long chain polyunsaturated fatty acids (LCPUFAs), FAs with important biochemical and physiological functions. In this process, desaturation reactions catalyzed by Δ5- and Δ6-desaturase play a major role, enzymes that are subjected to hormonal and dietary regulation. The aim of this study was to assess the influence of a high fat diet (HFD) on activity of liver Δ5 and Δ6 desaturases, in relation to LCPUFA composition in liver and extrahepatic tissues. Male C57BL/6J mice received control diet (CD) (10% fat, 20% protein and 70% carbohydrate) or high fat diet (HFD) (60% fat, 20% protein, and 20% carbohydrate) for 12 weeks. After this time, blood and liver samples were taken for metabolic, morphologic, inflammatory, oxidative stress and desaturase activity assessment, besides FA phospholipid analysis in erythrocytes, heart, adipose tissue and brain. HFD significantly increased hepatic total fat, triacylglycerides and free FA content with macrovesicular steatosis and oxidative stress enhancement, concomitantly with higher fasting serum glucose and insulin levels, HOMA, and serum cholesterol, triacylglycerols, TNF-α, and IL-6. Diminution in liver Δ5- and Δ6-desaturase activities and LCPUFA depletion were induced by HFD, the later finding being also observed in extrahepatic tissues. In conclusion, HFD-induced reduction in the bioavailability of liver LCPUFA is associated with defective desaturation of ALA and LA, with Δ5- and Δ6-desaturase activities being correlated with insulin resistance development. Data analyzed point to the liver as a major organ responsible for extrahepatic LCPUFA homeostasis, which is markedly deranged by HFD.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Cynthia Barrera
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Paula Orellana
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
46
|
Antal O, Péter M, Hackler L, Mán I, Szebeni G, Ayaydin F, Hideghéty K, Vigh L, Kitajka K, Balogh G, Puskás LG. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1271-82. [PMID: 26092623 DOI: 10.1016/j.bbalip.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.
Collapse
Affiliation(s)
- Otilia Antal
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Mária Péter
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | - Imola Mán
- Avidin Ltd., Szeged H-6726, Hungary(3)
| | | | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin Hideghéty
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, H-6720, Hungary
| | - László Vigh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Klára Kitajka
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3)
| | - Gábor Balogh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Laszló G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3).
| |
Collapse
|
47
|
Zhang D, Lu K, Jiang G, Liu W, Dong Z, Tian H, Li X. A global transcriptional analysis of Megalobrama amblycephala revealing the molecular determinants of diet-induced hepatic steatosis. Gene 2015; 570:255-63. [PMID: 26074088 DOI: 10.1016/j.gene.2015.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/19/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
Blunt snout bream (Megalobrama amblycephala), a prevalent species in China's intensive polyculture systems, is highly susceptible to hepatic steatosis, resulting in considerable losses to the fish farming industry. Due to a lack of genomic resources, the molecular mechanisms of lipid metabolism in M. amblycephala are poorly understood. Here, a hepatic cDNA library was generated from equal amounts of mRNAs isolated from M. amblycephala fed normal-fat and high-fat diets. Sequencing of this library using the Illumina/Solexa platform produced approximately 51.87 million clean reads, which were assembled into 48,439 unigenes with an average length of 596 bp and an N50 value of 800 bp. These unigenes were searched against the nucleotide (NT), non-redundant (NR), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genome (KEGG) databases using the BLASTn or BLASTx algorithms (E-value ≤ 10(-5)). A total of 8602 unigenes and 22,155 unigenes were functionally classified into 25 COG categories and 259 KEGG pathways, respectively. Furthermore, 22,072 unigenes were grouped into 62 sub-categories belonging to three main Gene Ontology (GO) terms. Using a digital gene expression analysis and the M. amblycephala transcriptome as a reference, 477 genes (134 up-regulated and 343 down-regulated) were identified as differentially expressed in fish fed a high-fat diet versus a normal-fat diet. KEGG and GO functional enrichment analyses of the differentially expressed unigenes were performed and 12 candidate genes related to lipid metabolism were identified. This study provides a global survey of hepatic transcriptome profiles and identifies candidate genes that may be related to lipid metabolism in M. amblycephala. These findings will facilitate further investigations of the mechanisms underlying hepatic steatosis in M. amblycephala.
Collapse
Affiliation(s)
- Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kangle Lu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hongyan Tian
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
48
|
Tintle NL, Pottala JV, Lacey S, Ramachandran V, Westra J, Rogers A, Clark J, Olthoff B, Larson M, Harris W, Shearer GC. A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham Heart Offspring Study. Prostaglandins Leukot Essent Fatty Acids 2015; 94:65-72. [PMID: 25500335 PMCID: PMC4339483 DOI: 10.1016/j.plefa.2014.11.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/06/2023]
Abstract
Most genome-wide association studies have explored relationships between genetic variants and plasma phospholipid fatty acid proportions, but few have examined apparent genetic influences on the membrane fatty acid profile of red blood cells (RBC). Using RBC fatty acid data from the Framingham Offspring Study, we analyzed over 2.5 million single nucleotide polymorphisms (SNPs) for association with 14 RBC fatty acids identifying 191 different SNPs associated with at least 1 fatty acid. Significant associations (p<1×10(-8)) were located within five distinct 1MB regions. Of particular interest were novel associations between (1) arachidonic acid and PCOLCE2 (regulates apoA-I maturation and modulates apoA-I levels), and (2) oleic and linoleic acid and LPCAT3 (mediates the transfer of fatty acids between glycerolipids). We also replicated previously identified strong associations between SNPs in the FADS (chromosome 11) and ELOVL (chromosome 6) regions. Multiple SNPs explained 8-14% of the variation in 3 high abundance (>11%) fatty acids, but only 1-3% in 4 low abundance (<3%) fatty acids, with the notable exception of dihomo-gamma linolenic acid with 53% of variance explained by SNPs. Further studies are needed to determine the extent to which variations in these genes influence tissue fatty acid content and pathways modulated by fatty acids.
Collapse
Affiliation(s)
- N L Tintle
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA.
| | - J V Pottala
- Health Diagnostic Laboratory, Richmond, VA, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - S Lacey
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave., Boston, MA, USA
| | - V Ramachandran
- Framingham Heart Study, 73 Mt. Wayte Ave., Framingham, MA 01702, USA; Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA
| | - J Westra
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - A Rogers
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - J Clark
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - B Olthoff
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - M Larson
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave., Boston, MA, USA; Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; Department of Mathematics and Statistics, Boston University, 111 Cummington St., Boston, MA, USA
| | - W Harris
- Health Diagnostic Laboratory, Richmond, VA, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA; OmegaQuant, Sioux Falls, SD, USA
| | - G C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
49
|
Roy S, Dhobale M, Dangat K, Mehendale S, Wagh G, Lalwani S, Joshi S. Differential levels of long chain polyunsaturated fatty acids in women with preeclampsia delivering male and female babies. Prostaglandins Leukot Essent Fatty Acids 2014; 91:227-32. [PMID: 25172358 DOI: 10.1016/j.plefa.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/16/2014] [Accepted: 07/04/2014] [Indexed: 01/23/2023]
Abstract
Maternal long chain polyunsaturated fatty acids (LCPUFA) play a key role in fetal growth and development. This study for the first time examines the maternal and cord LCPUFA levels in preeclamptic mothers delivering male and female infants. In this study 122 normotensive control pregnant women (gestation≥37 weeks) and 90 women with preeclampsia were recruited. Results indicate lower maternal plasma docosahexaenoic acid (DHA) levels (p<0.05) in women with preeclampsia delivering male babies as compared to normotensive control women delivering male babies. Similarly, cord nervonic acid levels were lower (p<0.01) in women with preeclampsia delivering male babies as compared to normotensive control group. However, cord nervonic acid levels were comparable in women with preeclampsia and normotensive control women delivering female babies. This data suggests that male babies born to mothers with preeclampsia may be at an increased risk of developing neurodevelopmental disorders as compared to female babies. Future studies need to follow up both male and female children born to mothers with preeclampsia since altered levels of LCPUFA at birth may have differential implications for the growth and development.
Collapse
Affiliation(s)
- Suchitra Roy
- Department of Nutritional Medicine, Interactive Research School for Health Affairs; Bharati Vidyapeeth University, Pune 411043, India
| | - Madhavi Dhobale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs; Bharati Vidyapeeth University, Pune 411043, India
| | - Kamini Dangat
- Department of Nutritional Medicine, Interactive Research School for Health Affairs; Bharati Vidyapeeth University, Pune 411043, India
| | - Savita Mehendale
- Department of Obstetrics and Gynaecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Girija Wagh
- Department of Obstetrics and Gynaecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Sanjay Lalwani
- Department of Paediatrics, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs; Bharati Vidyapeeth University, Pune 411043, India.
| |
Collapse
|