1
|
Wang Z, Kregel M, Meijers JL, Franch J, Cuijpers VMJI, Ahlers D, Karst U, Slootweg P, van der Geest IC, Leeuwenburgh SC, van den Beucken JJ. Cisplatin-functionalized dual-functional bone substitute granules for bone defect treatment after bone tumor resection. Acta Biomater 2025; 191:158-176. [PMID: 39551330 DOI: 10.1016/j.actbio.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Invasive bone tumors pose a significant healthcare challenge, often requiring systemic chemotherapy and limb salvage surgery. However, these strategies are hampered by severe side effects, complex post-resection bone defects, and high local recurrence rates. To address this, we developed dual-functional bone substitute biomaterials by functionalizing commercially available bone substitute granules (Bio-Oss® and MBCP®+) with the established anticancer agent cisplatin. Physicochemical characterization revealed that Bio-Oss® granules possess a higher surface area and lower crystallinity compared to MBCP®+ granules, which enhances their capacity for cisplatin adsorption and release. In co-cultures with metastatic breast and prostate cancer cells (MDA-MB-231 and PC3) and bone marrow stromal cells (hBMSCs), cisplatin-functionalized granules and their releasates exhibited dose-dependent cytotoxic effects on cancer cells while having less impact on hBMSCs. Furthermore, investigations on the mechanism of action indicated that cisplatin induced significant cell cycle arrest and apoptosis in MDA-MB-231 and PC3 cells, contrasting with minimal effects on hBMSCs. In a rat femoral condyle defect model, cisplatin-functionalized granules did not evoke adverse effects on bone tissue ingrowth or new bone formation. Importantly, local application of cisplatin-functionalized granules resulted in negligible cisplatin accumulation without signs of apoptotic damage in kidneys and livers. Taken together, we here provide hard evidence that cisplatin-functionalized granules maintain a favorable balance between biosafety, anticancer efficacy, and bone regenerative capacity. Consequently, loading granular bone substitutes with cisplatin holds promise for local treatment of bone defects following bone tumor resections, presenting a safe and potentially more effective alternative to systemic cisplatin administration. STATEMENT OF SIGNIFICANCE: Current treatments in combating malignant bone tumors are hampered by severe side effects, high local tumor recurrence, and complex bone defects after surgery. This study explores a facile manufacturing method to render two types of commercially available bone substitute granules (Bio-Oss® and MBCP®+) suitable for local delivery of cisplatin. The use of cisplatin-functionalized granules has shown promising results both in killing cancer cells in a dose-dependent manner and in aiding bone regeneration. Importantly, this local treatment strategy avoids the systemic toxicity associated with traditional chemotherapy to excretory organs. This dual-functional strategy represents a significant advancement in bone cancer treatment, offering a safe and more efficient alternative that could improve outcomes for patients following bone tumor resection.
Collapse
Affiliation(s)
- Zhule Wang
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Mark Kregel
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jean-Luc Meijers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jordi Franch
- Department of Small Animal Medicine and Surgery, Veterinary School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vincent M J I Cuijpers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - David Ahlers
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Piet Slootweg
- Department of Pathology, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Ingrid Cm van der Geest
- Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands; Department of Orthopedics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Sander Cg Leeuwenburgh
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Jeroen Jjp van den Beucken
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Cheung HL, Wong YH, Li YY, Yang X, Ko LH, Tan Kabigting JE, Chan KC, Leung AYH, Chan BP. Microenvironment matters: In vitro 3D bone marrow niches differentially modulate survival, phenotype and drug responses of acute myeloid leukemia (AML) cells. Biomaterials 2025; 312:122719. [PMID: 39088912 DOI: 10.1016/j.biomaterials.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.
Collapse
Affiliation(s)
- Hoi Lam Cheung
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yu Hin Wong
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Yin Li
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Xingxing Yang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Lok Him Ko
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jessica Evangeline Tan Kabigting
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Koon Chuen Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anskar Yu Hung Leung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Barbara Pui Chan
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
3
|
Sory DR, Heyraud ACM, Jones JR, Rankin SM. Ionic release from bioactive SiO 2-CaO CME/poly(tetrahydrofuran)/poly(caprolactone) hybrids drives human-bone marrow stromal cell osteogenic differentiation. BIOMATERIALS ADVANCES 2025; 166:214019. [PMID: 39326252 DOI: 10.1016/j.bioadv.2024.214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
This study demonstrates that dissolution products of inorganic/organic SiO2-CaOCME/PTHF/PCL-diCOOH hybrid (70S30CCME-CL) drive human bone marrow stromal cells (h-BMSCs) down an osteogenic pathway with the production of mineralised matrix. We investigated osteogenesis through combined analyses of mRNA dynamics for key markers and targeted staining of mineralised matrix. We demonstrate that h-BMSCs undergo accelerated differentiation in vitro in response to the 70S30CCME-CL ionic milieu, as compared to incubation with osteogenic media. Extracts from 70S30CCME-CL promote osteogenesis by inducing changes in cellular metabolic activity, promoting changes in cell morphology consistent with the osteogenic lineage, and by enhancing mineralisation of hydroxyapatite in the extracellular matrix. Additionally, our results show that 70S30CCME-CL hybrids prove sustained functional resilience by maintaining osteostimulatory effects despite cumulated dissolution cycles. In co-differentiation medium, 70S30CCME-CL ionic release can modulate signalling pathways associated with non-osteogenic functions, further supporting their potential for bone regeneration applications. Overall, our study provides compelling experimental evidence that the 70S30CCME-CL hybrid is a promising biomaterial for bone tissue regeneration applications.
Collapse
Affiliation(s)
- David R Sory
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M Rankin
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
4
|
Maji S, Aliabouzar M, Quesada C, Chiravuri A, Macpherson A, Pinch A, Kazyak K, Emara Z, Abeid BA, Kent RN, Midekssa FS, Zhang M, Baker BM, Franceschi RT, Fabiilli ML. Ultrasound-generated bubbles enhance osteogenic differentiation of mesenchymal stromal cells in composite collagen hydrogels. Bioact Mater 2025; 43:82-97. [PMID: 39345992 PMCID: PMC11439547 DOI: 10.1016/j.bioactmat.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Hydrogels can improve the delivery of mesenchymal stromal cells (MSCs) by providing crucial biophysical cues that mimic the extracellular matrix. The differentiation of MSCs is dependent on biophysical cues like stiffness and viscoelasticity, yet conventional hydrogels cannot be dynamically altered after fabrication and implantation to actively direct differentiation. We developed a composite hydrogel, consisting of type I collagen and phase-shift emulsion, where osteogenic differentiation of MSCs can be non-invasively modulated using ultrasound. When exposed to ultrasound, the emulsion within the hydrogel was non-thermally vaporized into bubbles, which locally compacted and stiffened the collagen matrix surrounding each bubble. Bubble growth and matrix compaction were correlated, with collagen regions proximal (i.e., ≤ ∼60 μm) to the bubble displaying a 2.5-fold increase in Young's modulus compared to distal regions (i.e., > ∼60 μm). The viability and proliferation of MSCs, which were encapsulated within the composite hydrogel, were not impacted by bubble formation. In vitro and in vivo studies revealed encapsulated MSCs exhibited significantly elevated levels of RUNX2 and osteocalcin, markers of osteogenic differentiation, in collagen regions proximal to the bubble compared to distal regions. Additionally, alkaline phosphatase activity and calcium deposition were enhanced adjacent to the bubble. An opposite trend was observed for CD90, a marker of MSC stemness. Following subcutaneous implantation, bubbles persisted in the hydrogels for two weeks, which led to localized collagen alignment and increases in nuclear asymmetry. These results are a significant step toward controlling the 3D differentiation of MSCs in a non-invasive and on-demand manner.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Chiravuri
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aidan Macpherson
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abigail Pinch
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Karsyn Kazyak
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Ziyad Emara
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Bachir A Abeid
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Firaol S Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Han D, Wang W, Gong J, Ma Y, Li Y. Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing. Nanomedicine (Lond) 2024:1-18. [PMID: 39686770 DOI: 10.1080/17435889.2024.2439242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable controlled delivery systems for mesenchymal stem cells (MSCs) have emerged as novel advancements in the field of regenerative medicine, particularly for accelerating bone fracture healing. This detailed study emphasizes the importance of quick and adequate fracture treatment and the limitations of existing methods. New approaches employing biodegradable scaffolds can be placed within a fracture to serve as a mechanical support and allow controlled release of in situ MSCs and bioactive agents. They are made up of polymers and composites which degrade over time, aiding in natural tissue regrowth. The fabrication methods, including 3D printing, electrospinning, and solvent casting, with particulate leaching that enable precise control over scaffold architecture and properties, are discussed. Progress in controlled drug delivery systems including encapsulation techniques and release kinetics is described, highlighting the potential of such strategies to maintain therapeutic benefits over a prolonged time as well as improving outcomes for fracture repair. MSCs play a role in bone regeneration through differentiation using biodegradable scaffolds, paracrine effects, and regulation of inflammation focusing on fracture healing. Current trends and future directions in scaffold technology and MSC delivery, including smart scaffolds with growth factor incorporation and innovative delivery approaches for fracture healing are also discussed.
Collapse
Affiliation(s)
- Dong Han
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Otolaryngology Department, Yantaishan Hospital, Yantai, China
| | - Jinpeng Gong
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yupeng Ma
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yu Li
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| |
Collapse
|
6
|
Hui H, Song Y, Liu H, Fan J, Sha Z, Li H, Lu J, Zhang Q, Fei X, Zhu M. Integrating molecular-caged nano-hydroxyapatite into post-crosslinked PVA nanofibers for artificial periosteum. BIOMATERIALS ADVANCES 2024; 165:214001. [PMID: 39216317 DOI: 10.1016/j.bioadv.2024.214001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Artificial periosteum is deemed a novel strategy for inducing endogenous bone regeneration, but ideal periosteum substitutes achieved by orchestrating a biomimetic microenvironment for bone regeneration remain a significant challenge. Here, we design and fabricate a hybridized nanofiber-based artificial periosteum with boosted osteoinduction properties. Via a "molecular cage" biomineralization strategy, nano-hydroxyapatite (nano-HAp) with a controllable size (∼22 nm) and excellent dispersion serves as unique nano-additives for water-soluble polyvinyl-alcohol (PVA)-based artificial periosteum. The PVA/HAp composite is electrospun into nanofibers to replicate the extracellular-matrix-inspired nanostructure for inducing cell adhesion, proliferation, and fate manipulation. A simple post-crosslinking treatment is subsequently applied to further booster its mechanical strength (6.6 MPa) and swelling stability. The optimized sample of C-PVA/HAp (10 wt% nano-HAp) artificial periosteum features excellent biocompatibility and remarkable in vitro mineralization. Cell experiments demonstrate that its effectively boasted cell modulation for enhanced osteogenesis without the aid of growth factors, showing a possible activation of the ERK/MAPK signaling pathway. This work provides an effective strategy for designing novel HAp nano-additives and expands the possibility of biomimetic fabrication for more advanced nanofiber-based artificial periosteum.
Collapse
Affiliation(s)
- Hu Hui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiahui Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongchuang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jian Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Yang Y, Sun W, Fu Q, Wang Z, Zhao H, Wang Z, Gao Y, Wang J. Fabrication and evaluation of Zn-EGCG-loaded chitosan scaffolds for bone regeneration: From cellular responses to in vivo performance. Int J Biol Macromol 2024; 283:137695. [PMID: 39551306 DOI: 10.1016/j.ijbiomac.2024.137695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
We have synthesized a flavonoid metal complex (FMC) by chelating zinc to epigallocatechin-3-gallate (EGCG), a flavonoid present in green tea and incorporated into chitosan (CS) to form 3D constructs by freeze drying method. Scanning electron microscopy characterized The scaffolds for surface morphology and pore dimensions and depicted the presence of interconnected porous network. The scaffolds exhibited optimal pore size (>50 μm), facilitating bone tissue ingrowth and neovascularization. Inclusion of Zn-EGCG into CS matrix improved the mechanical property by increasing compressive strength (0.53±0.045 MPa) and reducing enzymatic degradation with controlled swelling. In addition, increased protein adsorption was observed during the initial hour, which is crucial for cell attachment. Furthermore, the FMC inclusion promoted exogenous biomineralization of CS scaffolds as early as 4d in simulated body fluid. Indirect cytotoxicity measurements indicated the scaffolds with Zn-EGCG had no toxic effects on mouse mesenchymal stem cells (mMSCs). Under osteogenic environment, the scaffold promoted calcium deposition of mMSCs by upregulation of ALP activity and increased expression of osteoblast differentiation markers such as Runx2, ColI, OC and OPN. We found that the involvement of miR-15b/smurf-1 signalling pathway behind the osteogenic potential of the scaffold. In vivo assessments using the chick embryo CAM assay showed enhanced angiogenesis and confirmed the scaffold's biocompatibility with no toxicity. Additionally, in a zebrafish scale regeneration model, the scaffold enhanced calcium deposition and osteoblast marker expression, aligning with the in vitro findings. Overall, form the study it is clear that the osteogenic potential of the scaffold is as follows chitosan < EGCG-Chitosan < Zn-EGCG-Chitosan.
Collapse
Affiliation(s)
- Yu Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Wei Sun
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Qiang Fu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Zhongyuan Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Hui Zhao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Zaijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China
| | - Yuzhong Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China.
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 12100, China.
| |
Collapse
|
8
|
Li T, Zhang L, Qu X, Lei B. Advanced Thermoactive Nanomaterials for Thermomedical Tissue Regeneration: Opportunities and Challenges. SMALL METHODS 2024:e2400510. [PMID: 39588862 DOI: 10.1002/smtd.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Nanomaterials usually possess remarkable properties, including excellent biocompatibility, unique physical and chemical characteristics, and bionic attributes, which make them highly promising for applications in tissue regeneration. Thermal therapy has emerged as a versatile approach for wound healing, nerve repair, bone regeneration, tumor therapy, and antibacterial tissue regeneration. By combining nanomaterials with thermal therapy, multifunctional nanomaterials with thermogenic effects and tissue regeneration capabilities can be engineered to achieve enhanced therapeutic outcomes. This study provides a comprehensive review of the effects of thermal stimulation on cellular and tissue regeneration. Furthermore, it highlights the applications of photothermal, magnetothermal, and electrothermal nanomaterials, and thermally responsive drug delivery systems in tissue engineering. In Addition, the bioactivities and biocompatibilities of several representative thermal nanomaterials are discussed. Finally, the challenges facing thermal nanomaterials are outlined, and future prospects in the field are presented with the aim of offering new opportunities and avenues for the utilization of thermal nanomaterials in tissue regeneration.
Collapse
Affiliation(s)
- Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
9
|
Wu H, Liao X, Wu T, Xie B, Ding S, Chen Y, Song L, Wei B. Mechanism of MiR-145a-3p/Runx2 pathway in dexamethasone impairment of MC3T3-E1 osteogenic capacity in mice. PLoS One 2024; 19:e0309951. [PMID: 39561180 PMCID: PMC11575826 DOI: 10.1371/journal.pone.0309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE In this experiment, we screened key miRNAs involved in the dexamethasone-induced decrease in osteogenic capacity of mouse precursor osteoblasts MC3T3-E1 over and investigated their specific regulatory mechanisms. METHODS In this experiment, cell counting kit assay was utilized to act on MC3T3-E1 cells at 0, 5μM, 10μM, 15μM concentrations of dexamethasone for 24h, 48h and 72h to observe the changes in cell viability in order to select the appropriate dexamethasone concentration. Apoptosis and reactive oxygen species were detected by flow cytometry. The transcription of osteogenesis-related genes (Runx2, ALP, OCN, OPN, OPG, COL1A1) and protein expression levels (Runx2, ALP, OCN, OPN) were detected by Western Blot and qRT-PCR to validate the changes in cellular osteogenesis. The differentially expressed miRNAs related to MC3T3-E1 osteogenic differentiation after dexamethasone action were screened out. The expression levels of selected target miRNAs were verified in the experimental group and the control group by qRT-PCR. The miRNA inhibitor was transfected to knock down miRNA in dexamethasone-induced MC3T3-E1 injury. Alkaline phosphatase staining and flow cytometry were performed to detect apoptosis and reactive oxygen species changes. transcript and protein expression levels of osteogenesis-related genes in mouse MC3T3-E1 were detected by qRT-PCR and Western blot experiments. By miRNA target gene prediction, luciferase reporter gene experiments, qRT-PCR and Western blot experiments were used to verify whether the selected target miRNAs targeted the target gene. RESULTS First, it was determined that 10μM dexamethasone solution was effective in inducing a decrease in osteogenic function in mouse MC3T3-E1 by CCK8 experiments, which showed a significant decrease in alkaline phosphatase activity, a decrease in calcium nodules as shown by alizarin red staining, an increase in apoptosis and reactive oxygen species as detected by flow cytometry, as well as a decrease in the expression of osteogenesis-related genes and proteins. Five target miRNAs were identified: miR-706, miR-296-3p, miR-7011-5p, miR-145a-3p, and miR-149-3p. miR-145a-3p, which had the most pronounced and stable expression trend and was the most highly expressed miRNA, was chosen as the target of this experiment by qRT-PCR analysis. -145a-3p, as the subject of this experiment. Knockdown of miR-145a-3p in MC3T3-E1 cells after dexamethasone action significantly improved the expression of their impaired osteogenic indicators. It was shown that after knocking down the target miRNA, alkaline phosphatase staining was significantly increased compared with the dexamethasone-stimulated group and approached the level of the blank control group. Meanwhile, the expression of osteogenic function-related proteins and genes also increased in the dexamethasone-stimulated group after knocking down miR-145a-3p, and approached the level of the blank control group. A direct targeting relationship between miR-145a-3p and Runx2 was indeed confirmed by luciferase reporter gene assays, qRT-PCR and Western blot experiments. CONCLUSIONS The results indicated that dexamethasone impaired the osteogenic differentiation ability of MC3T3-E1 cells by inducing the up-regulation of miR-145a-3p expression. MiR-145a-3p inhibited the osteogenic differentiation ability of MC3T3-E1 cells by targeting and suppressing the expression level of Runx2 protein. Inhibition of miR-145a-3p levels significantly improved the osteogenic differentiation ability of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinghua Liao
- Central People's Hospital of Zhanjiang, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Xie
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sicheng Ding
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiren Chen
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Azuma C, Oishi T, Tohno Y, Ke L, Zhao XZ, Minami T, Horii-Hayashi N, Inoue K. Element accumulation in the tracheal and bronchial cartilages of monkeys. Biochem Biophys Res Commun 2024; 733:150699. [PMID: 39288699 DOI: 10.1016/j.bbrc.2024.150699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Compositional changes in the tracheal and bronchial cartilages can affect respiratory ventilation and lung function. We aimed to elucidate element accumulation in the tracheal and bronchial cartilages of monkeys and divided it into four sites: the tracheal, tracheal bifurcation, left bronchial, and right bronchial cartilages. The elemental content was analyzed using inductively coupled plasma atomic emission spectrometry. The average calcium content was two to three times higher in the tracheal cartilage than in the other three cartilages. The trends of phosphorus and zinc were similar to those of calcium. The average calcium, phosphorus, and zinc cartilage contents were the highest in the tracheal cartilage and decreased in the following order: the left bronchial, right bronchial, and tracheal bifurcation cartilages. These findings revealed that differences existed in element accumulation between different sites within the same airway cartilage and that calcium, phosphorus, and zinc accumulation mainly occurred in the tracheal cartilage. A substantial direct correlation was observed between age and calcium content in the tracheal and bronchial cartilages and all such monkeys with high calcium content were > four years of age. These results suggest that calcium accumulation occurs in the tracheal and bronchial cartilages after reaching a certain age. An extremely substantial direct correlation was observed between calcium and phosphorus contents in the tracheal and bronchial cartilages. This finding is similar to the previously published calcium and phosphorus correlations in several other cartilages, suggesting that the calcium and phosphorus contents of cartilage exist in a certain ratio.
Collapse
Affiliation(s)
- Cho Azuma
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Takao Oishi
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behaviors, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Yoshiyuki Tohno
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Lining Ke
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Zhen Zhao
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Takeshi Minami
- Laboratory of Environmental Biology, Department of Life Science, Faculty of Science and Technology, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Koichi Inoue
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
11
|
Cui M, Chen M, Yang Y, Akel H, Wang B. New role of calcium-binding fluorescent dye alizarin complexone in detecting permeability from articular cartilage to subchondral bone. FASEB Bioadv 2024; 6:539-554. [PMID: 39512844 PMCID: PMC11539031 DOI: 10.1096/fba.2024-00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 11/15/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by the progressive deterioration of articular cartilage and concomitant alterations in subchondral bone architecture. However, the precise mechanisms underlying the initiation and progression of OA remains poorly understood. In the present study, we explored whether the calcification in the articular cartilage occurred in the early stage of mouse OA model, generated by the surgery destabilization of the medial meniscus (DMM), via the intra-articular injection of alizarin complexone due to its anionic nature for binding calcium-containing crystals. Although we did not observe the calcification in the articular cartilage of early stage of DMM mice, we unexpectedly identified alizarin complexone had the diffusion capacity for detecting the permeability from the articular cartilage to subchondral bone. Our data showed that the diffusion of alizarin complexone from the articular cartilage to calcified cartilage was greater in the early stage of DMM mice than that in sham controls. Additionally, we observed enhanced penetration of alizarin complexone through the periosteum in DMM mice compared to sham mice. In summary, we developed a novel imaging method that offers a valuable tool for further exploration of biochemical communication underlying OA development. Our findings provided new evidence that increased molecular interactions between the articular cartilage and subchondral bone is involved in the pathogenesis of OA progression.
Collapse
Affiliation(s)
- Mingshu Cui
- The Center for Translational Medicine, Department of MedicineSidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Mengcun Chen
- The Center for Translational Medicine, Department of MedicineSidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Yanmei Yang
- The Center for Translational Medicine, Department of MedicineSidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Hamza Akel
- The Center for Translational Medicine, Department of MedicineSidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Bin Wang
- The Center for Translational Medicine, Department of MedicineSidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Khazaei M, Bozorgi M, Rezakhani L, Bozorgi A. Fabrication and characterization of nanohydroxyapatite/chitosan/decellularized placenta scaffold for bone tissue engineering applications. Int J Biol Macromol 2024; 281:136340. [PMID: 39374728 DOI: 10.1016/j.ijbiomac.2024.136340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Novel biomaterials are necessary to fabricate biomimetic scaffolds for bone tissue engineering. In the present experiment, we aimed to fabricate and evaluate the osteogenic properties of nanohydroxyapatite/chitosan/decellularized placenta (nHA.Cs.dPL) composite scaffolds. The human placenta was decellularized (dPL), characterized, and digested in pepsin to form the hydrogel. nHA.Cs.dPL scaffolds were fabricated using salt leaching/freeze drying and evaluated for their morphology, chemical composition, swelling, porosity, degradation, mechanical strength, and biocompatibility. Saos-2 cells were seeded on scaffolds, and their osteogenic properties were investigated by evaluating alkaline phosphatase (ALP), osteocalcin (OCN), collagen type 1 (COL I) expression, and calcium deposition under osteogenic differentiation. The dPL was prepared with minimized DNA content and a well-preserved porous structure. Scaffolds were highly porous with interconnected pores and exhibited appropriate swelling and degradation rates supporting saos-2 cell attachment and proliferation. dPL improved scaffold physicochemical features and increased cell proliferation, ALP, OCN, COL I expression, and calcium deposition under osteogenic differentiation induction. nHA.Cs.dPL composite scaffolds provide a 3D microenvironment with superior physicochemical features that support saos-2 cell adhesion, proliferation, and osteogenic differentiation.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Dei Rossi G, Vergani LM, Buccino F. A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5305. [PMID: 39517582 PMCID: PMC11547793 DOI: 10.3390/ma17215305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emerging paradigm of personalised bone repair embodies a transformative triad comprising bio-inspired design, digital fabrication, and the exploration of innovative materials. The increasing average age of the population, alongside the rising incidence of fractures associated with age-related conditions such as osteoporosis, necessitates the development of customised, efficient, and minimally invasive treatment modalities as alternatives to conventional methods (e.g., autografts, allografts, Ilizarov distraction, and bone fixators) typically employed to promote bone regeneration. A promising innovative technique involves the use of cellularised scaffolds incorporating mesenchymal stem cells (MSCs). The selection of materials-ranging from metals and ceramics to synthetic or natural bio-derived polymers-combined with a design inspired by natural sources (including bone, corals, algae, shells, silk, and plants) facilitates the replication of geometries, architectures, porosities, biodegradation capabilities, and mechanical properties conducive to physiological bone regeneration. To mimic internal structures and geometries for construct customisation, scaffolds can be designed using Computer-aided Design (CAD) and fabricated via 3D-printing techniques. This approach not only enables precise control over external shapes and internal architectures but also accommodates the use of diverse materials that improve biological performance and provide economic advantages. Finally, advanced numerical models are employed to simulate, analyse, and optimise the complex processes involved in personalised bone regeneration, with computational predictions validated against experimental data and in vivo studies to ascertain the model's ability to predict the recovery of bone shape and function.
Collapse
Affiliation(s)
- Greta Dei Rossi
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
| | - Laura Maria Vergani
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| | - Federica Buccino
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| |
Collapse
|
14
|
Michalopulos MG, Quigley R. Acid-base homeostasis in the neonate. Pediatr Neonatol 2024:S1875-9572(24)00190-6. [PMID: 39521676 DOI: 10.1016/j.pedneo.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Affiliation(s)
- Michael G Michalopulos
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raymond Quigley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Sartori M, Bregoli C, Carniato M, Cavazza L, Maglio M, Giavaresi G, Biffi CA, Fiocchi J, Gruppioni E, Tuissi A, Fini M. Biological Characterization of Ti6Al4V Additively Manufactured Surfaces: Comparison Between Ultrashort Laser Texturing and Conventional Post-Processing. Adv Healthc Mater 2024:e2402873. [PMID: 39436093 DOI: 10.1002/adhm.202402873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Among Additive Manufacturing (AM) technologies, Laser Powder Bed Fusion (LPBF) has made a great contribution to optimizing the production of customized implant materials. However, the design of the ideal surface topography, capable of exerting the best biological effect without drawbacks, is still a subject of study. The aim of the present study is to topographically and biologically characterize AM-produced Ti6Al4V ELI (Extra Low Interstitial) samples by comparing different surface finishing. Vertically and horizontally samples are realized by LPBF with four surface finishing conditions (as-built, corundum-sandblasted, zirconia-sandblasted, femtosecond laser textured). Bioactivity in vitro tests are performed with human osteoblasts evaluating morphology, metabolic activity, and differentiation capabilities in direct contact with surfaces. Scanning electron microscope and profilometry analysis are used to evaluate surface morphology and samples' roughness with and without cells. All tested surfaces show good biocompatibility. The influence of material surface features is evident in the early evaluation, with the most promising results of morphological study for laser texturing. Deposition orientations seem to influence metabolic activities, with XZ orientation more effective than XY. Current data provide the first positive feedback on the biocompatibility of laser texturing finishing, still poorly described in the literature, and support the future clinical development of devices produced with a combination of LPBF and different finishing treatments.
Collapse
Affiliation(s)
- Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, 40136, Italy
| | - Chiara Bregoli
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), (Consiglio Nazionale delle Ricerche - CNR), Via Gaetano Previati, 1/E, Lecco, 23900, Italy
| | - Melania Carniato
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, 40136, Italy
| | - Luca Cavazza
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, 40136, Italy
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, 40136, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, 40136, Italy
| | - Carlo Alberto Biffi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), (Consiglio Nazionale delle Ricerche - CNR), Via Gaetano Previati, 1/E, Lecco, 23900, Italy
| | - Jacopo Fiocchi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), (Consiglio Nazionale delle Ricerche - CNR), Via Gaetano Previati, 1/E, Lecco, 23900, Italy
| | - Emanuele Gruppioni
- INAIL Centro Protesi, Via Rabuina 14, Vigorso di Budrio, Bologna, 40054, Italy
| | - Ausonio Tuissi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), (Consiglio Nazionale delle Ricerche - CNR), Via Gaetano Previati, 1/E, Lecco, 23900, Italy
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, 40136, Italy
| |
Collapse
|
16
|
Bargowo L, Kusumawardhani B, Perdana S, Wijaksana IKE, Saskianti T, Ridwan RD, Setijanto D, Prahasanti C, Saquib Abullais S. Expression of osteopontin and osteocalcin in Osteoblast cells exposed to a combination of polymethylmethacrylate (PMMA) and hydroxyapatite (HAp): A prospective observational study. Medicine (Baltimore) 2024; 103:e40088. [PMID: 39432596 PMCID: PMC11495729 DOI: 10.1097/md.0000000000040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
The success of implant placement will depend on the ability of the implant material to integrate with the surrounding tissue. Polymethylmethacrylate (PMMA) has been used as an implant material, but it has several fallback properties in its interaction with bone tissue. The addition of hydroxyapatite (HAp) to PMMA is expected to produce reinforced bioceramic polymers with better mechanical and biological properties. The purpose of this study was to evaluate the expression of osteopontin and osteocalcin in cultured osteoblasts when exposed to two implant candidate materials: PMMA-HApGMP, derived from bovine bone and processed under Good Manufacturing Practice by a Tissue Bank, and PMMA-HApBBK, sourced from limestone (CaCO3) and processed by Balai Besar Keramik. Twenty-four fetal rat calvariae osteoblast cell cultures were randomly divided into 6 groups: 7- and 14-day control group, 7 and 14 days PMMA-HApGMP group, 7 and 14 days PMMA-HApBBK group. The expression of osteopontin and osteocalcin was seen by immunocytochemical examination. The results showed that the average expression of osteopontin and osteocalcin in the treatment group on the 7th and 14th days was higher than the control group. The expression of osteopontin and osteocalcin in the PMMA-HApGMP group increased significantly (P < .05) on day 14. The PMMA-HAp combination material can accelerate the process of osteoblast differentiation which is characterized by an increase in osteopontin and osteocalcin which are markers of bone formation. This will support in increasing osseointegration.
Collapse
Affiliation(s)
- Lambang Bargowo
- Doctoral Programs, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
- Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Banun Kusumawardhani
- Department of Biomedical Sciences, Faculty of Dentistry, Jember University, Jember, Indonesia
| | - Sonny Perdana
- Periodontic Residency Program’s Student, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - I Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Darmawan Setijanto
- Department of Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Chiquita Prahasanti
- Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Chen CH, Dash BS, Ting WC, Chen JP. Bone Tissue Engineering with Adipose-Derived Stem Cells in Polycaprolactone/Graphene Oxide/Dexamethasone 3D-Printed Scaffolds. ACS Biomater Sci Eng 2024; 10:6425-6440. [PMID: 39226111 DOI: 10.1021/acsbiomaterials.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We fabricated three-dimensional (3D)-printed polycaprolactone (PCL) and PCL/graphene oxide (GO) (PGO) scaffolds for bone tissue engineering. An anti-inflammatory and pro-osteogenesis drug dexamethasone (DEX) was adsorbed onto GO and a 3D-printed PGO/DEX (PGOD) scaffold successfully improved drug delivery with a sustained release of DEX from the scaffold up to 1 month. The physicochemical properties of the PCL, PGO, and PGOD scaffolds were characterized by various analytical techniques. The biological response of these scaffolds was studied for adherence, proliferation, and osteogenic differentiation of seeded rabbit adipose-derived stem cells (ASCs) from DNA assays, alkaline phosphatase (ALP) production, calcium quantification, osteogenic gene expression, and immunofluorescence staining of osteogenic marker proteins. The PGOD scaffold was demonstrated to be the best scaffold for maintaining cell viability, cell proliferation, and osteogenic differentiation of ASCs in vitro. In vivo biocompatibility of PGOD was confirmed from subcutaneous implantation in nude mice where ASC-seeded PGOD can form ectopic bones, demonstrated by microcomputed tomography (micro-CT) analysis and immunofluorescence staining. Furthermore, implantation of PGOD/ASCs constructs into critical-sized cranial bone defects in rabbits form tissue-engineered bones at the defect site, observed using micro-CT and histological analysis.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Kwei-San 33305, Taiwan
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
| | - Wei-Chun Ting
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Kwei-San 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Kwei-San 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
18
|
Zwama J, Rosenberg NM, Verheij VA, Raijmakers PGHM, Yaqub M, Botman E, de Ruiter RD, Garrelfs MR, Bökenkamp A, Micha D, Schwarte LA, Teunissen BP, Lammertsma AA, Boellaard R, Eekhoff EMW. [ 18F]NaF PET/CT as a Marker for Fibrodysplasia Ossificans Progressiva: From Molecular Mechanisms to Clinical Applications in Bone Disorders. Biomolecules 2024; 14:1276. [PMID: 39456213 PMCID: PMC11505869 DOI: 10.3390/biom14101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic bone disorder characterized by episodic flare-ups in connective tissue, which are frequently followed by the formation of heterotopic ossification. The absence of available plasma-soluble biomarkers for flare-ups or heterotopic bone formation poses severe challenges to the monitoring of disease activity to measure or predict disease progression. Recently, 18-fluor-sodium fluoride positron emission tomography/computed tomography ([18F]NaF PET/CT) was introduced as a potential marker for ossifying FOP activity. This review discusses the pharmacokinetics of [18F]NaF in relation to the pathophysiology of FOP, and its use as a marker of local bone metabolism in a variety of bone-related disorders. In addition, the review specifically addresses the applicability of [18F]NaF PET/CT imaging in FOP as a monitoring modality.
Collapse
Affiliation(s)
- Jolien Zwama
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Neeltje M. Rosenberg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Vincent A. Verheij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Pieter G. H. M. Raijmakers
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Esmée Botman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Ruben D. de Ruiter
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Dijklander Hospital, Maelsonstraat 3, 1624 NP Hoorn, The Netherlands
| | - Mark R. Garrelfs
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Endocrinology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Nephrology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Lothar A. Schwarte
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anesthesiology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bernd P. Teunissen
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Adriaan A. Lammertsma
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Elisabeth M. W. Eekhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Gerdesmeyer L, Tübel J, Obermeier A, Harrasser N, Glowalla C, von Eisenhart-Rothe R, Burgkart R. Extracorporeal Magnetotransduction Therapy as a New Form of Electromagnetic Wave Therapy: From Gene Upregulation to Accelerated Matrix Mineralization in Bone Healing. Biomedicines 2024; 12:2269. [PMID: 39457582 PMCID: PMC11505246 DOI: 10.3390/biomedicines12102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Electromagnetic field therapy is gaining attention for its potential in treating bone disorders, with Extracorporeal Magnetotransduction Therapy (EMTT) emerging as an innovative approach. EMTT offers a higher oscillation frequency and magnetic field strength compared to traditional Pulsed Electromagnetic Field (PEMF) therapy, showing promise in enhancing fracture healing and non-union recovery. However, the mechanisms underlying these effects remain unclear. RESULTS This study demonstrates that EMTT significantly enhances osteoblast bone formation at multiple levels, from gene expression to extracellular matrix mineralization. Key osteoblastogenesis regulators, including SP7 and RUNX2, and bone-related genes such as COL1A1, ALPL, and BGLAP, were upregulated, with expression levels surpassing those of the control group by over sevenfold (p < 0.001). Enhanced collagen synthesis and mineralization were confirmed by von Kossa and Alizarin Red staining, indicating increased calcium and phosphate deposition. Additionally, calcium imaging revealed heightened calcium influx, suggesting a cellular mechanism for EMTT's osteogenic effects. Importantly, EMTT did not compromise cell viability, as confirmed by live/dead staining and WST-1 assays. CONCLUSION This study is the first to show that EMTT can enhance all phases of osteoblastogenesis and improve the production of critical mineralization components, offering potential clinical applications in accelerating fracture healing, treating osteonecrosis, and enhancing implant osseointegration.
Collapse
Affiliation(s)
- Lennart Gerdesmeyer
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jutta Tübel
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Andreas Obermeier
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Norbert Harrasser
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- ECOM Excellent Center of Medicine, Arabellastraße 17, 81925 Munich, Germany
| | - Claudio Glowalla
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- BG Unfallklinik Murnau, Professor-Küntscher-Straße 8, 82418 Murnau am Staffelsee, Germany
| | - Rüdiger von Eisenhart-Rothe
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Rainer Burgkart
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
20
|
Batoon L, Keshvari S, Irvine KM, Ho E, Caruso M, Patkar OL, Sehgal A, Millard SM, Hume DA, Pettit AR. Relative contributions of osteal macrophages and osteoclasts to postnatal bone development in CSF1R-deficient rats and phenotype rescue following wild-type bone marrow cell transfer. J Leukoc Biol 2024; 116:753-765. [PMID: 38526212 DOI: 10.1093/jleuko/qiae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Macrophage and osteoclast proliferation, differentiation and survival are regulated by colony-stimulating factor 1 receptor (CSF1R) signaling. Osteopetrosis associated with Csf1 and Csf1r mutations has been attributed to the loss of osteoclasts and deficiency in bone resorption. Here, we demonstrate that homozygous Csf1r mutation in rat leads to delayed postnatal skeletal ossification associated with substantial loss of osteal macrophages in addition to osteoclasts. Osteosclerosis and site-specific skeletal abnormalities were reversed by intraperitoneal transfer of wild-type bone marrow cells (bone marrow cell transfer, BMT) at weaning. Following BMT, IBA1+ macrophages were detected before TRAP+ osteoclasts at sites of ossification restoration. These observations extend evidence that osteal macrophages independently contribute to bone anabolism and are required for normal postnatal bone growth and morphogenesis.
Collapse
Affiliation(s)
- Lena Batoon
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Eileen Ho
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Melanie Caruso
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Omkar L Patkar
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Susan M Millard
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - David A Hume
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Allison R Pettit
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
21
|
Chen KH, Chen CY, Wang WR, Lee YB, Chen CH, Wong PC. Development and evaluation of an injectable ChitHCl-MgSO 4-DDA hydrogel for bone regeneration: In vitro and in vivo studies on cell migration and osteogenesis enhancement. BIOMATERIALS ADVANCES 2024; 163:213963. [PMID: 39024862 DOI: 10.1016/j.bioadv.2024.213963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Nonunion and delayed union of the bone are situations in orthopedic surgery that can occur even if the bone alignment is correct and there is sufficient mechanical stability. Surgeons usually apply artificial bone grafts in bone fracture gaps or in bone defect sites for osteogenesis to improve bone healing; however, these bone graft materials have no osteoinductive or osteogenic properties, and fit the morphology of the fracture gap with difficulty. In this study, we developed an injectable chitosan-based hydrogel with MgSO4 and dextran oxidative, with the purpose to improve bone healing through introducing an engineered chitosan-based hydrogel. The developed hydrogel can gelate and fit with any morphology or shape, has good biocompatibility, can enhance the cell-migration capacity, and can improve extracellular calcium deposition. Moreover, the amount of new bone formed by injecting the hydrogel in the bone tunnel was assessed by an in vivo test. We believe this injectable chitosan-based hydrogel has great potential for application in the orthopedic field to improve fracture gap healing.
Collapse
Affiliation(s)
- Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan
| | - Chieh-Ying Chen
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ru Wang
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Chih-Hwa Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University 11031, Taipei, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
22
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
24
|
Meshcheryakova A, Bohdan S, Zimmermann P, Jaritz M, Pietschmann P, Mechtcheriakova D. RNA-Binding Proteins as Novel Effectors in Osteoblasts and Osteoclasts: A Systems Biology Approach to Dissect the Transcriptional Landscape. Int J Mol Sci 2024; 25:10417. [PMID: 39408753 PMCID: PMC11476634 DOI: 10.3390/ijms251910417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Bone health is ensured by the coordinated action of two types of cells-the osteoblasts that build up bone structure and the osteoclasts that resorb the bone. The loss of balance in their action results in pathological conditions such as osteoporosis. Central to this study is a class of RNA-binding proteins (RBPs) that regulates the biogenesis of miRNAs. In turn, miRNAs represent a critical level of regulation of gene expression and thus control multiple cellular and biological processes. The impact of miRNAs on the pathobiology of various multifactorial diseases, including osteoporosis, has been demonstrated. However, the role of RBPs in bone remodeling is yet to be elucidated. The aim of this study is to dissect the transcriptional landscape of genes encoding the compendium of 180 RBPs in bone cells. We developed and applied a multi-modular integrative analysis algorithm. The core methodology is gene expression analysis using the GENEVESTIGATOR platform, which is a database and analysis tool for manually curated and publicly available transcriptomic data sets, and gene network reconstruction using the Ingenuity Pathway Analysis platform. In this work, comparative insights into gene expression patterns of RBPs in osteoblasts and osteoclasts were obtained, resulting in the identification of 24 differentially expressed genes. Furthermore, the regulation patterns upon different treatment conditions revealed 20 genes as being significantly up- or down-regulated. Next, novel gene-gene associations were dissected and gene networks were reconstructed. Additively, a set of osteoblast- and osteoclast-specific gene signatures were identified. The consolidation of data and information gained from each individual analytical module allowed nominating novel promising candidate genes encoding RBPs in osteoblasts and osteoclasts and will significantly enhance the understanding of potential regulatory mechanisms directing intracellular processes in the course of (patho)physiological bone turnover.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Serhii Bohdan
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
25
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
26
|
Chen H, Xiong R, Cheng J, Ye J, Qiu Y, Huang S, Li M, Liu Z, Pang J, Zhang X, Guo S, Li H, Zhu H. Effects and Mechanisms of Polyunsaturated Fatty Acids on Age-Related Musculoskeletal Diseases: Sarcopenia, Osteoporosis, and Osteoarthritis-A Narrative Review. Nutrients 2024; 16:3130. [PMID: 39339730 PMCID: PMC11434726 DOI: 10.3390/nu16183130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The process of the globally aging population has been accelerating, leading to an increasing social burden. As people age, the musculoskeletal system will gradually go through a series of degenerative and loss of function and eventually develop age-related musculoskeletal diseases, like sarcopenia, osteoporosis, and osteoarthritis. On the other hand, several studies have shown that polyunsaturated fatty acids (PUFAs) possess various important physiological functions on the health of muscles, bones, and joints. Objective: This narrative review paper provides a summary of the literature about the effects and mechanisms of PUFAs on age-related musculoskeletal diseases for the prevention and management of these diseases. Methods: Web of Science, PubMed, Science Direct, and Scopus databases have been searched to select the relevant literature on epidemiological, cellular, and animal experiments and clinical evidence in recent decades with keywords "polyunsaturated fatty acids", "PUFAs", "omega-3", "omega-6", "musculoskeletal diseases", "sarcopenia", "osteoporosis", "osteoarthritis", and so on. Results: PUFAs could prevent and treat age-related musculoskeletal diseases (sarcopenia, osteoporosis, and osteoarthritis) by reducing oxidative stress and inflammation and controlling the growth, differentiation, apoptosis, and autophagy of cells. This review paper provides comprehensive evidence of PUFAs on age-related musculoskeletal diseases, which will be helpful for exploitation into functional foods and drugs for their prevention and treatment. Conclusions: PUFAs could play an important role in the prevention and treatment of sarcopenia, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Haoqi Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruogu Xiong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Cheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jialu Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingzhen Qiu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengchu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinzhu Pang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Guo
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Huabin Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
27
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
28
|
Choi BBR, Park SR, Kim GC. Effects of Different No-Ozone Cold Plasma Treatment Methods on Mouse Osteoblast Proliferation and Differentiation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1318. [PMID: 39202599 PMCID: PMC11356273 DOI: 10.3390/medicina60081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Enhanced osteoblast differentiation may be leveraged to prevent and treat bone-related diseases such as osteoporosis. No-ozone cold plasma (NCP) treatment is a promising and safe strategy to enhance osteoblast differentiation. Therefore, this study aimed to determine the effectiveness of direct and indirect NCP treatment methods on osteoblast differentiation. Mouse osteoblastic cells (MC3T3-E1) were treated with NCP using different methods, i.e., no NCP treatment (NT group; control), direct NCP treatment (DT group), direct NCP treatment followed by media replacement (MC group), and indirect treatment with NCP-treated media only (PAM group). Materials and Methods: The MC3T3-E1 cells were subsequently assessed for cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and ALP and osteocalcin mRNA expression using real-time polymerase chain reaction. Results: Cell proliferation significantly increased in the NCP-treated groups (DT and PAM; MC and PAM) compared to the NT group after 24 h (p < 0.038) and 48 h (p < 0.000). ALP activity was increased in the DT and PAM groups at 1 week (p < 0.115) and in the DT, MC, and PAM groups at 2 weeks (p < 0.000) compared to the NT group. Calcium deposition was higher in the NCP-treated groups than in NT group at 2 and 3 weeks (p < 0.000). ALP mRNA expression peaked in the MC group at 2 weeks compared to the NP group (p < 0.014). Osteocalcin mRNA expression increased in the MC group at 2 weeks (p < 0.000) and was the highest in the PAM group at 3 weeks (p < 0.000). Thus, the effects of direct (DT and MC) and indirect (PAM) treatment varied, with MC direct treatment showing the most significant impact on osteoblast activity. Conclusions: The MC group exhibited enhanced osteoblast differentiation, indicating that direct NCP treatment followed by media replacement is the most effective method for promoting bone formation.
Collapse
Affiliation(s)
- Byul-Bo Ra Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea;
| | - Sang-Rye Park
- Department of Dental Hygiene, Kyungnam College of Information & Technology, Busan 47011, Republic of Korea;
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
29
|
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N. The Manganese-Bone Connection: Investigating the Role of Manganese in Bone Health. J Clin Med 2024; 13:4679. [PMID: 39200820 PMCID: PMC11355939 DOI: 10.3390/jcm13164679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn's interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential.
Collapse
Affiliation(s)
- Gulaim Taskozhina
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulnara Batyrova
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Zhamilya Issanguzhina
- Department of Children Disease No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Nurgul Kereyeva
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
30
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
31
|
Yoon H, Park Y, Kwak JG, Lee J. Collagen structures of demineralized bone paper direct mineral metabolism. JBMR Plus 2024; 8:ziae080. [PMID: 38989259 PMCID: PMC11235081 DOI: 10.1093/jbmrpl/ziae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Bone is a dynamic mineralized tissue that undergoes continuous turnover throughout life. While the general mechanism of bone mineral metabolism is documented, the role of underlying collagen structures in regulating osteoblastic mineral deposition and osteoclastic mineral resorption remains an active research area, partly due to the lack of biomaterial platforms supporting accurate and analytical investigation. The recently introduced osteoid-inspired demineralized bone paper (DBP), prepared by 20-μm thin sectioning of demineralized bovine compact bone, holds promise in addressing this challenge as it preserves the intrinsic bony collagen structure and retains semi-transparency. Here, we report on the impact of collagen structures on modulating osteoblast and osteoclast-driven bone mineral metabolism using vertical and transversal DBPs that exhibit a uniaxially aligned and a concentric ring collagen structure, respectively. Translucent DBP reveals these collagen structures and facilitates longitudinal tracking of mineral deposition and resorption under brightfield microscopy for at least 3 wk. Genetically labeled primary osteogenic cells allow fluorescent monitoring of these cellular processes. Osteoblasts adhere and proliferate following the underlying collagen structures of DBPs. Osteoblastic mineral deposition is significantly higher in vertical DBP than in transversal DBP. Spatiotemporal analysis reveals notably more osteoblast adhesion and faster mineral deposition in vascular regions than in bone regions. Subsequent osteoclastic resorption follows these mineralized collagen structures, directing distinct trench and pit-type resorption patterns. In vertical DBP, trench-type resorption occurs at an 80% frequency, whereas transversal DBP shows 35% trench-type and 65% pit-type resorption. Our studies substantiate the importance of collagen structures in regulating mineral metabolism by osteogenic cells. DBP is expected to serve as an enabling biomaterial platform for studying various aspects of cellular and extracellular bone remodeling biology.
Collapse
Affiliation(s)
- Hyejin Yoon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Yongkuk Park
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
32
|
Dadashi Ouranj Z, Hosseini S, Alipour A, Homaeigohar S, Azari S, Ghazizadeh L, Shokrgozar M, Thomas S, Irian S, Shahsavarani H. The potent osteo-inductive capacity of bioinspired brown seaweed-derived carbohydrate nanofibrous three-dimensional scaffolds. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:515-534. [PMID: 39219680 PMCID: PMC11358581 DOI: 10.1007/s42995-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zahra Dadashi Ouranj
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Leila Ghazizadeh
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Mohammadali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala India
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 19839-69411 Iran
- Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, 1533734716 Iran
| |
Collapse
|
33
|
Dima O, Didilescu AC, Manole CC, Pameijer C, Călin C. Synthetic composites versus calcium phosphate cements in bone regeneration: A narrative review. Ann Anat 2024; 255:152273. [PMID: 38754741 DOI: 10.1016/j.aanat.2024.152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND When the natural process of bone remodeling is disturbed, the need arises for a stimulant material in order to enhance the formation of a new healthy and strong osseous tissue to replace the damaged one. Recent studies have reported synthetic biomaterials to be a very good option for supporting bone regeneration. STUDY DESIGN Narrative review. OBJECTIVE This review aims to provide a brief presentation of two of the most recently developed synthetic biomaterials, i.e. calcium phosphate cements and synthetic composites, that are currently being used in bone regeneration with promising results. METHODS Literature searches using broad terms such as "bone regeneration," "biomaterials," "synthetic composites" and "calcium phosphate cements" were performed using PubMed. The osteal cells state of the art was explored by searching topic-specific full text keywords using Google Scholar. CONCLUSIONS Synthetic polymers such as PCL (poly-ε-caprolactone) and PLGA (poly lactic-co-glycolic acid) can improve the effectiveness of biomaterials like HA (hydroxyapatite) and BG (bioglass). Calcium phosphate, although being a suitable material for stimulating bone regeneration, needs an adjuvant in order to be effective in larger bone defects.
Collapse
Affiliation(s)
- Oana Dima
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Claudiu Constantin Manole
- Department of Biophysics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Cornelis Pameijer
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, USA
| | - Claudiu Călin
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
34
|
Zainal Ariffin SH, Megat Abdul Wahab R, Abdul Razak M, Yazid MD, Shahidan MA, Miskon A, Zainol Abidin IZ. Evaluation of in vitro osteoblast and osteoclast differentiation from stem cell: a systematic review of morphological assays and staining techniques. PeerJ 2024; 12:e17790. [PMID: 39071131 PMCID: PMC11283775 DOI: 10.7717/peerj.17790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Background Understanding human stem cell differentiation into osteoblasts and osteoclasts is crucial for bone regeneration and disease modeling. Numerous morphological techniques have been employed to assess this differentiation, but a comprehensive review of their application and effectiveness is lacking. Methods Guided by the PRISMA framework, we conducted a rigorous search through the PubMed, Web of Science and Scopus databases, analyzing 254 articles. Each article was scrutinized against pre-defined inclusion criteria, yielding a refined selection of 14 studies worthy of in-depth analysis. Results The trends in using morphological approaches were identified for analyzing osteoblast and osteoclast differentiation. The three most used techniques for osteoblasts were Alizarin Red S (mineralization; six articles), von Kossa (mineralization; three articles) and alkaline phosphatase (ALP; two articles) followed by one article on Giemsa staining (cell morphology) and finally immunochemistry (three articles involved Vinculin, F-actin and Col1 biomarkers). For osteoclasts, tartrate-resistant acid phosphatase (TRAP staining) has the highest number of articles (six articles), followed by two articles on DAPI staining (cell morphology), and immunochemistry (two articles with VNR, Cathepsin K and TROP2. The study involved four stem cell types: peripheral blood monocyte, mesenchymal, dental pulp, and periodontal ligament. Conclusion This review offers a valuable resource for researchers, with Alizarin Red S and TRAP staining being the most utilized morphological procedures for osteoblasts and osteoclasts, respectively. This understanding provides a foundation for future research in this rapidly changing field.
Collapse
Affiliation(s)
- Shahrul Hisham Zainal Ariffin
- Department of Science Biology and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Centre of Family Dental Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Muhammad Abdul Razak
- Board of Director Office, 6th Floor, Chancellery Building, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Science Biology and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Azizi Miskon
- Department of Electrical and Electronics Engineering, Faculty of Engineering, National Defence University of Malaysia, Sungai Besi, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Intan Zarina Zainol Abidin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
35
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Li X, Uyanga VA, Jiao H, Wang X, Zhao J, Zhou Y, Li H, Lin H. Effects of low dietary calcium and lipopolysaccharide challenges on production performance, eggshell quality, and bone metabolism of laying hens. Front Physiol 2024; 15:1396301. [PMID: 39022305 PMCID: PMC11253253 DOI: 10.3389/fphys.2024.1396301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Dietary calcium supply is essential for bone development and egg production in laying hens. This study investigated the effects of low dietary calcium and lipopolysaccharide (LPS) induced immune challenge in aged laying hens. A total of thirty-two Hy-Line Brown laying hens at 80 weeks old with an average laying rate of 62% were randomly divided into two groups and fed a normal calcium diet (3.57% Ca, NCA) or low calcium diet (2.08% Ca, LCA). At 88 weeks, the experiment was designed using a 2 × 2 factorial arrangement, and hens were intraperitoneally injected with saline (SAL) or LPS (0.5 mg/kg, 0.5 mg/kg, or 1.5 mg/kg body weight) once every 48 h intervals over 5 days. Production performance, egg quality, and bone physiology were evaluated. Results showed that LPS challenge decreased the hen-day egg production, egg mass, and eggshell traits (p < 0.05), but increased (p < 0.05) the calcium content of the tibia compared to SAL-injected hens. LCA diet decreased (p < 0.05) the hen-day egg production, and eggshell traits such as weight, percentage, strength, and thickness compared to the NCA diet. LCA diet increased the serum alkaline phosphatase (ALP) activity (p < 0.01) and tibial expression of ALP (p < 0.05) compared to NCA diet. LPS injection suppressed both the serum ALP activity (p < 0.05) and tibial expression of ALP (p < 0.001) compared to SAL injection. Furthermore, LPS injection increased (p < 0.05) the expression of both pro and anti-inflammatory cytokines in the spleen and tibia. The expression of cathepsin K ( Cts K ) and matrix metalloproteinase 9 ( MMP-9 ) were downregulated by LPS injection (p < 0.001). Broken and shell-less egg production and calcium content of eggshell, as well as tibial mRNA expression of osteocalcin ( Ocn ), tumor necrosis factor-alpha ( TNF-α ) and tartrate-resistant acid phosphatase ( TRAP ) were affected by the interaction (p < 0.05) of diet and injection. Therefore, this study demonstrated that to certain extents, low dietary calcium and LPS challenge dysregulated bone homeostasis and metabolism, with detrimental effects on the performance and eggshell quality of aged laying hens.
Collapse
Affiliation(s)
- Xin Li
- Department of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taian, China
| | - Victoria Anthony Uyanga
- Department of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taian, China
| | - Hongchao Jiao
- Department of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taian, China
| | - Xiaojuan Wang
- Department of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taian, China
| | - Jingpeng Zhao
- Department of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taian, China
| | - Yunlei Zhou
- College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Haifang Li
- College of Chemistry, Shandong Agricultural University, Taian, China
| | - Hai Lin
- Department of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taian, China
| |
Collapse
|
37
|
Miao M, Li M, Sheng Y, Tong P, Zhang Y, Shou D. Epimedium-Curculigo herb pair enhances bone repair with infected bone defects and regulates osteoblasts through LncRNA MALAT1/miR-34a-5p/SMAD2 axis. J Cell Mol Med 2024; 28:e18527. [PMID: 38984969 PMCID: PMC11234645 DOI: 10.1111/jcmm.18527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-β signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-β/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.
Collapse
Affiliation(s)
- Maomao Miao
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunjie Sheng
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Peijian Tong
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Yang Zhang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Dan Shou
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
38
|
Ravazzano L, Colaianni G, Tarakanova A, Xiao YB, Grano M, Libonati F. Multiscale and multidisciplinary analysis of aging processes in bone. NPJ AGING 2024; 10:28. [PMID: 38879533 PMCID: PMC11180112 DOI: 10.1038/s41514-024-00156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/07/2024] [Indexed: 06/19/2024]
Abstract
The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.
Collapse
Affiliation(s)
- Linda Ravazzano
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Anna Tarakanova
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, CT, 06269, Storrs, USA
| | - Yu-Bai Xiao
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Flavia Libonati
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
- Department of Mechanical, Energy, Management and Transport Engineering - DIME, University of Genova, Via all'Opera Pia 15, Genova, 16145, Italy.
| |
Collapse
|
39
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
40
|
Schaart JM, Kea-Te Lindert M, Roverts R, Nijhuis WH, Sommerdijk N, Akiva A. Cell-induced collagen alignment in a 3D in vitro culture during extracellular matrix production. J Struct Biol 2024; 216:108096. [PMID: 38697586 DOI: 10.1016/j.jsb.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
The bone extracellular matrix consists of a highly organized collagen matrix that is mineralized with carbonated hydroxyapatite. Even though the structure and composition of bone have been studied extensively, the mechanisms underlying collagen matrix organization remain elusive. In this study, we used a 3D cell culture system in which osteogenic cells deposit and orient the collagen matrix that is subsequently mineralized. Using live fluorescence imaging combined with volume electron microscopy, we visualize the organization of the cells and collagen in the cell culture. We show that the osteogenically induced cells are organizing the collagen matrix during development. Based on the observation of tunnel-like structures surrounded by aligned collagen in the center of the culture, we propose that osteoblasts organize the deposited collagen during migration through the culture. Overall, we show that cell-matrix interactions are involved in collagen alignment during early-stage osteogenic differentiation and that the matrix is organized by the osteoblasts in the absence of osteoclast activity.
Collapse
Affiliation(s)
- Judith M Schaart
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands
| | - Mariska Kea-Te Lindert
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands
| | - Rona Roverts
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands
| | - Wouter H Nijhuis
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, 3508GA Utrecht, The Netherlands
| | - Nico Sommerdijk
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands.
| | - Anat Akiva
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Elli FM, Mattinzoli D, Ikehata M, Bagnaresi F, Maffini MA, Del Sindaco G, Pagnano A, Lucca C, Messa P, Arosio M, Castellano G, Alfieri CM, Mantovani G. Targeted silencing of GNAS in a human model of osteoprogenitor cells results in the deregulation of the osteogenic differentiation program. Front Endocrinol (Lausanne) 2024; 15:1296886. [PMID: 38828417 PMCID: PMC11140044 DOI: 10.3389/fendo.2024.1296886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Bagnaresi
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria A. Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Del Sindaco
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angela Pagnano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Camilla Lucca
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo M. Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
42
|
Zakri RN, Grawish ME, Mowafey B, Youssef J. Impact of Freeze-dried Corticocancellous Bone Allograft Combined with Enamel Matrix Derivative in the Treatment of Critical-sized Calvarial Bone Defects: An Animal Study. J Contemp Dent Pract 2024; 25:424-431. [PMID: 39364840 DOI: 10.5005/jp-journals-10024-3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIM This study compared the quality and quantity of newly formed bone in rabbits' critical-sized calvarial defects filled with enamel matrix derivative (EMD) combined with freeze-dried bone allograft (FDBA) vs FDBA alone. MATERIALS AND METHODS A total of 24 adult male white New Zealand rabbits were included. In each rabbit, three bone defects with a diameter of 8 mm were created on the calvarium bone; the first defect was left untreated, while the second was filled with FDBA, and the third was filled with EMD + FDBA. Twelve rabbits were randomly euthanized after a month, and the remaining 2 month postsurgery. Bone sections were histologically evaluated by hematoxylin and eosin and vascular endothelial growth factor (VEGF), alkaline phosphatase (ALP), osteoprotegerin (OPG), and receptor activator of NF-kappaB (RANK) immune-histochemical staining. RESULTS An improvement in the newly formed bone percentage was found in the defects filled with EMD + FDBA in comparison with FDBA and control defects at 1 month and 2 months postsurgery. Additionally, the expression of VEGF, ALP, OPG, and RANK showed highly significant differences in the defects filled with EMD + FDBA compared to the FDBA and control ones at 1 month postsurgery (p = 0.001). Meanwhile, VEGF and ALP expression showed a significant decrease in defects filled with EMD + FDBA compared to the FDBA and control ones (p = 0.001), while OPG and RANK expression showed non-significant differences between treated groups at 2 months postsurgery. CONCLUSION Enamel matrix derivative combined with FDBA has a synergistic effect on bone formation and graft substitution. This combination accelerates the expression of VEGF, ALP, OPG, and RANK. CLINICAL SIGNIFICANCE The combination of EMD and FDBA accelerates and ameliorates the quality of newly formed bone, aiding in maxillofacial reconstruction. How to cite this article: Zakri RN, Grawish ME, Mowafey B, et al. Impact of Freeze-dried Corticocancellous Bone Allograft Combined with Enamel Matrix Derivative in the Treatment of Critical-sized Calvarial Bone Defects: An Animal Study. J Contemp Dent Pract 2024;25(5):424-431.
Collapse
Affiliation(s)
- Rouida N Zakri
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Sabratha University, Sabratha, Libya, Orcid: https://orcid.org/0009-0007-9083-1973
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt; Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt, Orcid: https://orcid.org/0000-0003-4732-8022
| | - Bassant Mowafey
- Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0001-8539-0594
| | - Jilan Youssef
- Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt; Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry - Horus University, New Damietta, Egypt, Phone: +20 1200060050, e-mail: , Orcid: https://orcid.org/0000-0002-0987-8616
| |
Collapse
|
43
|
Chrungoo S, Bharadwaj T, Verma D. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs. Int J Biol Macromol 2024; 266:131123. [PMID: 38537853 DOI: 10.1016/j.ijbiomac.2024.131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Although several bioinks have been developed for 3D bioprinting applications, the lack of optimal printability, mechanical properties, and adequate cell response has limited their practical applicability. Therefore, this work reports the development of a composite bioink consisting of bovine serum albumin (BSA), alginate, and self-assembled nanofibrous polyelectrolyte complex aggregates of gelatin and chitosan (PEC-GC). The nanofibrous PEC-GC aggregates were prepared and incorporated into the bioink in varying concentrations (0 % to 3 %). The bioink samples were bioprinted and crosslinked post-printing by calcium chloride. The average nanofiber diameter of PEC-GC was 62 ± 15 nm. It was demonstrated that PEC-GC improves the printability and cellular adhesion of the developed bioink and modulates the swelling ratio, degradation rate, and mechanical properties of the fabricated scaffold. The in vitro results revealed that the bioink with 2 % PEC-GC had the best post-printing cell viability of the encapsulated MG63 osteosarcoma cells and well oragnized stress fibers, indicating enhanced cell adhesion. The cell viability was >90 %, as observed from the MTT assay. The composite bioink also showed osteogenic potential, as confirmed by the estimation of alkaline phosphatase activity and collagen synthesis assay. This study successfully fabricated a high-shape fidelity bioink with potential in bone tissue engineering.
Collapse
Affiliation(s)
- Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Tanmay Bharadwaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
44
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
45
|
Chen Z, Encarnacion AM, Rajan RPS, Yao H, Lee S, Kim E, Lee TH. Discovery of a novel homoisoflavonoid derivative 5g for anti-osteoclastic bone loss via targeting FGFR1. Eur J Med Chem 2024; 270:116335. [PMID: 38555854 DOI: 10.1016/j.ejmech.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Several flavonoids have been shown to exert anti-osteoporosis activity. However, the structure-activity relationship and the mechanism of anti-osteoporosis activity of flavonoids remain unknown. In this study, we prepared a series of novel homoisoflavonoid (HIF) derivatives to evaluate their inhibitory effects on osteoclastogenesis using TRAP-activity in vitro assay. Then, the preliminary structure-activity relationship was studied. Among the evaluated novel flavonoids, derivative 5g exerted the most inhibitory bioactivity on primary osteoclast differentiation without interfering with osteogenesis. It was hence selected for further in vitro, in vivo and mechanism of action investigation. Results show that 5g likely directly binds to the fibroblast growth factor receptor 1 (FGFR1), decreasing the activation of ERK1/2 and IκBα/NF-κB signaling pathways, which in turn blocks osteoclastogenesis in vitro and osteoclastic bone loss in vivo. Our study shows that homoisoflavonoid (HIF) derivatives 5g can serve as a potential novel candidate for treating osteoporosis via inhibition of FGFR1.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Alessandra Marie Encarnacion
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | | | - Hongyuan Yao
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea; Host-directed Antiviral Research Center, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
46
|
Channasanon S, Kaewkong P, Chantaweroad S, Tesavibul P, Pratumwal Y, Otarawanna S, Kirihara S, Tanodekaew S. Scaffold geometry and computational fluid dynamics simulation supporting osteogenic differentiation in dynamic culture. Comput Methods Biomech Biomed Engin 2024; 27:587-598. [PMID: 37014922 DOI: 10.1080/10255842.2023.2195961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Geometry of porous scaffolds is critical to the success of cell adhesion, proliferation, and differentiation in bone tissue engineering. In this study, the effect of scaffold geometry on osteogenic differentiation of MC3T3-E1 pre-osteoblasts in a perfusion bioreactor was investigated. Three geometries of oligolactide-HA scaffolds, named Woodpile, LC-1000, and LC-1400, were fabricated with uniform pore size distribution and interconnectivity using stereolithography (SL) technique, and tested to evaluate for the most suitable scaffold geometry. Compressive tests revealed sufficiently high strength of all scaffolds to support new bone formation. The LC-1400 scaffold showed the highest cell proliferation in accordance with the highest level of osteoblast-specific gene expression after 21 days of dynamic culture in a perfusion bioreactor; however, it deposited less amount of calcium than the LC-1000 scaffold. Computational fluid dynamics (CFD) simulation was employed to predict and explain the effect of flow behavior on cell response under dynamic culture. The findings concluded that appropriate flow shear stress enhanced cell differentiation and mineralization in the scaffold, with the LC-1000 scaffold performing best due to its optimal balance between permeability and flow-induced shear stress.
Collapse
Affiliation(s)
| | - Pakkanun Kaewkong
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Surapol Chantaweroad
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Passakorn Tesavibul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Yotsakorn Pratumwal
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Somboon Otarawanna
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Soshu Kirihara
- Joining and Welding Research International (JWRI), Osaka University, Suita, Osaka, Japan
| | - Siriporn Tanodekaew
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| |
Collapse
|
47
|
Hall TAG, Theodoridis K, Kohli N, Cegla F, van Arkel RJ. Active osseointegration in an ex vivo porcine bone model. Front Bioeng Biotechnol 2024; 12:1360669. [PMID: 38585711 PMCID: PMC10995341 DOI: 10.3389/fbioe.2024.1360669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Achieving osseointegration is a fundamental requirement for many orthopaedic, oral, and craniofacial implants. Osseointegration typically takes three to 6 months, during which time implants are at risk of loosening. The aim of this study was to investigate whether osseointegration could be actively enhanced by delivering controllable electromechanical stimuli to the periprosthetic bone. First, the osteoconductivity of the implant surface was confirmed using an in vitro culture with murine preosteoblasts. The effects of active treatment on osseointegration were then investigated in a 21-day ex vivo model with freshly harvested cancellous bone cylinders (n = 24; Ø10 mm × 5 mm) from distal porcine femora, with comparisons to specimens treated by a distant ultrasound source and static controls. Cell viability, proliferation and distribution was evident throughout culture. Superior ongrowth of tissue onto the titanium discs during culture was observed in the actively stimulated specimens, with evidence of ten-times increased mineralisation after 7 and 14 days of culture (p < 0.05) and 2.5 times increased expression of osteopontin (p < 0.005), an adhesive protein, at 21 days. Moreover, histological analyses revealed increased bone remodelling at the implant-bone interface in the actively stimulated specimens compared to the passive controls. Active osseointegration is an exciting new approach for accelerating bone growth into and around implants.
Collapse
Affiliation(s)
- Thomas A G Hall
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Konstantinos Theodoridis
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Nupur Kohli
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Frederic Cegla
- Non-Destructive Evaluation Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Richard J van Arkel
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Buck HV, Stains JP. Osteocyte-mediated mechanical response controls osteoblast differentiation and function. Front Physiol 2024; 15:1364694. [PMID: 38529481 PMCID: PMC10961341 DOI: 10.3389/fphys.2024.1364694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Low bone mass is a pervasive global health concern, with implications for osteoporosis, frailty, disability, and mortality. Lifestyle factors, including sedentary habits, metabolic dysfunction, and an aging population, contribute to the escalating prevalence of osteopenia and osteoporosis. The application of mechanical load to bone through physical activity and exercise prevents bone loss, while sufficient mechanical load stimulates new bone mass acquisition. Osteocytes, cells embedded within the bone, receive mechanical signals and translate these mechanical cues into biological signals, termed mechano-transduction. Mechano-transduction signals regulate other bone resident cells, such as osteoblasts and osteoclasts, to orchestrate changes in bone mass. This review explores the mechanisms through which osteocyte-mediated response to mechanical loading regulates osteoblast differentiation and bone formation. An overview of bone cell biology and the impact of mechanical load will be provided, with emphasis on the mechanical cues, mechano-transduction pathways, and factors that direct progenitor cells toward the osteoblast lineage. While there are a wide range of clinically available treatments for osteoporosis, the majority act through manipulation of the osteoclast and may have significant disadvantages. Despite the central role of osteoblasts to the deposition of new bone, few therapies directly target osteoblasts for the preservation of bone mass. Improved understanding of the mechanisms leading to osteoblastogenesis may reveal novel targets for translational investigation.
Collapse
Affiliation(s)
| | - Joseph Paul Stains
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
49
|
Barrera-Lopez JF, Cumplido-Laso G, Olivera-Gomez M, Garrido-Jimenez S, Diaz-Chamorro S, Mateos-Quiros CM, Benitez DA, Centeno F, Mulero-Navarro S, Roman AC, Carvajal-Gonzalez JM. Early Atf4 activity drives airway club and goblet cell differentiation. Life Sci Alliance 2024; 7:e202302284. [PMID: 38176727 PMCID: PMC10766780 DOI: 10.26508/lsa.202302284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.
Collapse
Affiliation(s)
- Juan F Barrera-Lopez
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marcos Olivera-Gomez
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Clara M Mateos-Quiros
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Dixan A Benitez
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Angel C Roman
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose M Carvajal-Gonzalez
- https://ror.org/0174shg90 Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
50
|
Kastella F, Salim FN, Goenawan H, Lesmana R, Maliza R, Syaidah R, Rosdianto AM, Tarawan VM, Setiawan. Effect of Low Protein Diet on Bone Structure of Young Wistar Mice. Pak J Biol Sci 2024; 27:113-118. [PMID: 38686732 DOI: 10.3923/pjbs.2024.113.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
<b>Background and Objective:</b> Malnutrition and stunting are major unresolved problems in Indonesia. Protein deficiency can cause stunted growth, as well as make physical and cognitive abilities cannot reach their maximum potential. During childhood the need for protein must be fulfilled so that the peak of bone formation during adolescence can be perfect. In malnourished children, a low protein diet will lead to thinning of the bone cortex. Due to the high rate of stunting and malnutrition in children due to protein deficiency, a study was conducted on the effects of feeding low protein diet on rat bones. <b>Materials and Methods:</b> Male Wistar rats (n = 10) at 6-8 weeks old (body weight around 250 g), control groups were fed a normal chow diet and low protein diet groups were given low protein chow diet (protein 5%) for 18 weeks, then the rats were sacrificed and the femoral bones were isolated. Body weight, femur weight, femur length were checked and bone density was examined using X-ray. <b>Results:</b> The body proportions of the low protein group rats were smaller and thinner than those of the control group. This difference is supported by the significant weight loss starting from the sixth week after low protein feeding. There are significant differences in body weight and femur weight between the control and low protein diet groups. Bone density decreases significantly in low protein diet group. Macroscopically, the femur length of the low protein group was shorter than the control group, however the femur length did not show significant differences statistically between the two groups. <b>Conclusion:</b> A low protein diet decreased the body weight of the rats, also causing impaired bone growth characterized by decreasing femur weight. The low protein diet also caused osteoporosis in the bones.
Collapse
|