1
|
Chung MY, Kim BH. Fatty acids and epigenetics in health and diseases. Food Sci Biotechnol 2024; 33:3153-3166. [PMID: 39328231 PMCID: PMC11422405 DOI: 10.1007/s10068-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Lipids are crucial for human health and reproduction and include diverse fatty acids (FAs), notably polyunsaturated FAs (PUFAs) and short-chain FAs (SCFAs) that are known for their health benefits. Bioactivities of PUFAs, including ω-6 and ω-3 FAs as well as SCFAs, have been widely studied in various tissues and diseases. Epigenetic regulation has been suggested as a significant mechanism affecting the progression of various diseases, including cancers and metabolic and inflammatory diseases. Epigenetics encompasses the reversible modulation of gene expression without altering the DNA sequence itself, mediated by mechanisms such as DNA methylation, histone acetylation, and chromatin remodeling. Bioactive FAs have been demonstrated to regulate gene expression via epigenetic modifications that are potentially important for modulating metabolic control and disease risk. This review paper discusses the evidence in support of bioactive FAs, including ω-6 and ω-3 FAs and SCFAs, eliciting various disease prevention via epigenetic regulation including methylation or acetylation. Graphical abstract
Collapse
Affiliation(s)
- Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul, 07661 Republic of Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
2
|
Che J, He N, Kuang X, Zheng C, Zhou R, Zhan X, Liu Z. Dietary n-3 Fatty Acids Intake and All-Cause and Cardiovascular Mortality in Patients With Prediabetes and Diabetes. J Clin Endocrinol Metab 2024; 109:2847-2856. [PMID: 38625900 DOI: 10.1210/clinem/dgae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
CONTEXT While the association between n-3 polyunsaturated fatty acids (PUFAs) and cardiovascular (CV) events has been thoroughly examined, there is still a scarcity of research regarding their effect on the long-term prognosis in diabetic patients. OBJECTIVE We aimed to explore the effects of n-3 PUFA on all-cause and cardiovascular mortality in patients with pre-diabetes and diabetes. METHOD Herein, a total of 16 539 eligible individuals were enrolled from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2018, and categorized into T1, T2, and T3 based on the tertiles of n-3 PUFA. The Cox proportional risk regression models, Kaplan-Meier curve, and subgroup analysis were conducted to evaluate the association between n-3 PUFA and mortality. Restricted cubic spline (RCS) curves graphically demonstrated the dose-response relationship. Additionally, weighted quantile sum (WQS) models were adopted to measure the mixed and individual effects of n-3 PUFA on mortality. RESULTS Following a median follow-up period of 8.42 years, 3010 individuals died, with 989 deaths attributed to CV diseases. Significantly lower risk of all-cause (T2: 0.81 [0.71-0.92], T3: 0.77 [0.64-0.94]) and CV (T2: 0.75 [0.61-0.93]) mortality was observed after adjusting for multivariables compared to the reference (T1). Meanwhile, the RCS curve revealed a negative nonlinear association between n-3 PUFA and mortality. None of the interactions in any subgroup analysis were statistically significant except for BMI (P for interaction = .049). Finally, the WQS analysis demonstrated alpha-linolenic acid (ALA) and docosapentaenoic acid (DPA) as the main contributors to n-3 PUFAs' benefits against mortality. CONCLUSION Increased dietary intake of n-3 PUFAs, particularly ALA and DPA, was associated with a reduced risk of all-cause and CV mortality among Americans with prediabetes and diabetes.
Collapse
Affiliation(s)
- Jinhang Che
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Na He
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Xue Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Caiyin Zheng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Ruoyu Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Xiaodan Zhan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Zengzhang Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| |
Collapse
|
3
|
Koven W, Yanowski E, Gardner L, Nixon O, Block B. Docosahexaenoic acid (DHA) is a driving force regulating gene expression in bluefin tuna (Thunnus thynnus) larvae development. Sci Rep 2024; 14:23191. [PMID: 39369082 PMCID: PMC11455926 DOI: 10.1038/s41598-024-74152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
This study elucidated the role of DHA-modulated genes in the development and growth of Atlantic bluefin tuna (Thunnus thynnus) larvae ingesting increasing levels of DHA in their rotifer prey. The effect of feeding low, medium, and high rotifer (Brachionus rotundiformis) DHA levels (2.0, 3.6 and 10.9 mg DHA g-1 DW, respectively) was tested on 2-15 days post hatching (dph) bluefin tuna larvae. Larval DHA content markedly (P < 0.05) increased in a DHA dose-dependent manner (1.5, 3.9, 6.1 mg DHA g-1 DW larva, respectively), that was positively correlated with larval prey consumption and growth (P < 0.05). Gene ontology enrichment analyses of differentially expressed genes (DEGs) demonstrated dietary DHA significantly (P < 0.05) affected different genes and biological processes at different developmental ages. The number of DHA up-regulated DEGs was highest in 10 dph larvae (491), compared to 5 (12) and 15 dph fish (34), and were mainly involved in neural and synaptic development in the brain and spinal cord. In contrast, DHA in older 15 dph larvae elicited fewer DEGs but played critical roles over a wider range of developing organs. The emerging picture underscores the importance of DHA-modulated gene expression as a driving force in bluefin tuna larval development and growth.
Collapse
Affiliation(s)
- William Koven
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, 88112, Eilat, Israel.
| | - Eran Yanowski
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, 88112, Eilat, Israel
| | - Luke Gardner
- Hopkins Marine Station of Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA
| | - Oriya Nixon
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, 88112, Eilat, Israel
| | - Barbara Block
- Hopkins Marine Station of Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA
| |
Collapse
|
4
|
Baliou S, Ioannou P, Apetroaei MM, Vakonaki E, Fragkiadaki P, Kirithras E, Tzatzarakis MN, Arsene AL, Docea AO, Tsatsakis A. The Impact of the Mediterranean Diet on Telomere Biology: Implications for Disease Management-A Narrative Review. Nutrients 2024; 16:2525. [PMID: 39125404 PMCID: PMC11313773 DOI: 10.3390/nu16152525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Telomeres are nucleoprotein complexes at the ends of chromosomes that are under the control of genetic and environmental triggers. Accelerated telomere shortening is causally implicated in the increasing incidence of diseases. The Mediterranean diet has recently been identified as one that confers protection against diseases. This review aimed to identify the effect of each component of the Mediterranean diet on telomere length dynamics, highlighting the underlying molecular mechanisms. METHODS PubMed was searched to identify relevant studies to extract data for conducting a narrative review. RESULTS The Mediterranean diet alleviates clinical manifestations in many diseases. Focusing on autoimmune diseases, the Mediterranean diet can be protective by preventing inflammation, mitochondrial malfunction, and abnormal telomerase activity. Also, each Mediterranean diet constituent seems to attenuate aging through the sustenance or elongation of telomere length, providing insights into the underlying molecular mechanisms. Polyphenols, vitamins, minerals, and fatty acids seem to be essential in telomere homeostasis, since they inhibit inflammatory responses, DNA damage, oxidative stress, mitochondrial malfunction, and cell death and induce telomerase activation. CONCLUSIONS The Mediterranean diet is beneficial for maintaining telomere dynamics and alleviating age-related illnesses. This review provides a comprehensive overview of cross-sectional, observational, and randomized controlled trials regarding the beneficial impact of every constituent in the Mediterranean diet on telomere length and chronic disease management.
Collapse
Affiliation(s)
- Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Evangelos Kirithras
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
| | - Andreea Letitia Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
5
|
Chen B, Wang C, Li W. Serum albumin levels and risk of atrial fibrillation: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1385223. [PMID: 38655495 PMCID: PMC11035896 DOI: 10.3389/fcvm.2024.1385223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Although several observational studies have linked serum albumin to cardiovascular disease and considered it as an important biomarker, little is known about whether increasing or maintaining serum albumin levels can effectively improve the prognosis of patients with atrial fibrillation. Therefore, this study aims to further explore the causal relationship between serum albumin and atrial fibrillation and its potential mechanism. Method Using data from large-scale genome-wide association studies, we conducted a two-sample Mendelian randomization (MR) analysis and a mediation MR analysis, using serum albumin as the exposure variable and atrial fibrillation as the outcome variable. We included 486 serum metabolites as potential mediating factors. To increase the robustness of the analysis, we applied five statistical methods, including inverse variance weighted, weighted median, MR-Egger, simple mode, and weighted mode. Validate the MR results using Bayesian weighted Mendelian randomization method. Result The results of the MR analysis indicate a significant inverse association between genetically predicted serum albumin concentration (g/L) and the risk of atrial fibrillation (Beta = -0.172, OR = 0.842, 95% CI: 0.753-0.941, p = 0.002). Further mediation MR analysis revealed that serum albumin may mediate the causal relationship with atrial fibrillation by affecting two serum metabolites, docosatrienoate and oleate/vaccenate, and the mediating effect was significant. In addition, all our instrumental variables showed no heterogeneity and level-multiplicity in the MR analysis. To verify the stability of the results, we also conducted a sensitivity analysis using the leave-one-out method, and the results further confirmed that our findings were robust and reliable. Finally, we conducted a validation using the Bayesian weighted Mendelian randomization method, which demonstrated the reliability of our causal inference results. Conclusion This study strongly demonstrates the causal relationship between serum albumin and reduced risk of atrial fibrillation through genetic methods, and reveals the key mediating role of two serum metabolites in this relationship. These findings not only provide a new perspective for our understanding of the role of serum albumin in atrial fibrillation, but also provide new ideas for the prevention and treatment strategies of atrial fibrillation.
Collapse
Affiliation(s)
- Bohang Chen
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Chuqiao Wang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Wenjie Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Torfadottir JE, Ulven SM. Fish - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10485. [PMID: 38571914 PMCID: PMC10989230 DOI: 10.29219/fnr.v68.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 04/05/2024] Open
Abstract
The aim of this scoping review was to conduct evidence-based documentation between fish intake and health outcomes for food-based dietary guidelines (FBDGs) in the Nordic Nutrition Recommendations (NNR) 2023. For most health outcomes, the evidence for fish oil and n-3 long chain (LC) polyunsaturated fatty acids (PUFA) supplementation was included when examining evidence between fish intake and health. In this review, conclusions from qualified systematic reviews (qSR) approved by NNR2023 are included. In addition, conclusions of a de novo systematic reviews on the topic of n-3 LC-PUFA, asthma, and allergy are included. Finally, a systematic literature search was performed limited to systematic reviews and meta-analysis published between 2011 and September 2021. In total, 21 papers from the systematic literature search, four qSR, and eight reports were included addressing the association between fish intake, fish oil, and n-3 LC-PUFA supplementation on several health outcomes. These included cardiovascular disease (CVD), type 2 diabetes, cancers (colorectal, breast, and prostate), metabolic syndrome, obesity, mortality, cognition and mental health, pregnancy-related outcomes (preterm birth and birth weight), and outcomes specific for children (neurodevelopment, and risk of food allergies, and asthma). In addition, intermediate risk factors such as blood lipids, glucose, C-reactive protein, and blood pressure were reviewed. Based on current evidence, fish consumption can have beneficial effects to prevent coronary heart disease (CHD) and stroke incidence, and lower mortality from CVD, CHD, myocardial infarction (MI), and stroke, as well as total mortality risk. In addition, fish consumption is beneficial for preventing cognitive decline in adults (e.g. dementia and Alzheimer's disease). Fish intake may also prevent metabolic syndrome, supported by an observed association between fish intake and reduction in plasma triglycerides and increase in high-density lipoprotein (HDL) cholesterol levels. Data from fish oil and n-3 LC-PUFA supplementation studies supports the conclusions on the effects of fish consumption on most of the health outcomes.
Collapse
Affiliation(s)
- Johanna E. Torfadottir
- Centre of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Directorate of Health, Reykjavik, Iceland
| | - Stine M. Ulven
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
8
|
Tomczyk M, Heileson JL, Babiarz M, Calder PC. Athletes Can Benefit from Increased Intake of EPA and DHA-Evaluating the Evidence. Nutrients 2023; 15:4925. [PMID: 38068783 PMCID: PMC10708277 DOI: 10.3390/nu15234925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fatty fish, which include mackerel, herring, salmon and sardines, and certain species of algae (e.g., Schizochytrium sp., Crytthecodiniumcohnii and Phaeodactylumtricornutum) are the only naturally rich sources of the omega-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA and DHA are the most biologically active members of the n-3 PUFA family. Limited dietary sources and fluctuating content of EPA and DHA in fish raise concerns about the status of EPA and DHA among athletes, as confirmed in a number of studies. The beneficial effects of EPA and DHA include controlling inflammation, supporting nervous system function, maintaining muscle mass after injury and improving training adaptation. Due to their inadequate intake and beneficial health-promoting effects, athletes might wish to consider using supplements that provide EPA and DHA. Here, we provide an overview of the effects of EPA and DHA that are relevant to athletes and discuss the pros and cons of supplements as a source of EPA and DHA for athletes.
Collapse
Affiliation(s)
- Maja Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Jeffery L. Heileson
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
- Nutrition Services Department, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Mirosław Babiarz
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
9
|
Michaeloudes C, Christodoulides S, Christodoulou P, Kyriakou TC, Patrikios I, Stephanou A. Variability in the Clinical Effects of the Omega-3 Polyunsaturated Fatty Acids DHA and EPA in Cardiovascular Disease-Possible Causes and Future Considerations. Nutrients 2023; 15:4830. [PMID: 38004225 PMCID: PMC10675410 DOI: 10.3390/nu15224830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular disease (CVD) that includes myocardial infarction and stroke, is the leading cause of mortality worldwide. Atherosclerosis, the primary underlying cause of CVD, can be controlled by pharmacological and dietary interventions, including n-3 polyunsaturated fatty acid (PUFA) supplementation. n-3 PUFA supplementation, primarily consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has shown promise in reducing atherosclerosis by modulating risk factors, including triglyceride levels and vascular inflammation. n-3 PUFAs act by replacing pro-inflammatory fatty acid types in cell membranes and plasma lipids, by regulating transcription factor activity, and by inducing epigenetic changes. EPA and DHA regulate cellular function through shared and differential molecular mechanisms. Large clinical studies on n-3 PUFAs have reported conflicting findings, causing confusion among the public and health professionals. In this review, we discuss important factors leading to these inconsistencies, in the context of atherosclerosis, including clinical study design and the differential effects of EPA and DHA on cell function. We propose steps to improve clinical and basic experimental study design in order to improve supplement composition optimization. Finally, we propose that understanding the factors underlying the poor response to n-3 PUFAs, and the development of molecular biomarkers for predicting response may help towards a more personalized treatment.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.C.); (P.C.); (T.-C.K.); (I.P.); (A.S.)
| | | | | | | | | | | |
Collapse
|
10
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Rajabi A, Fattahnia F, Shamsollahi M, Jahani-Azizabadi H, Khalilvandi-Behroozyar H, Pezeshki A, Kazemi-Bonchenari M. Effects of Soybean and Linseed Oils Calcium Salts and Starter Protein Content on Growth Performance, Immune Response, and Nitrogen Utilization Efficiency in Holstein Dairy Calves. Animals (Basel) 2023; 13:ani13060960. [PMID: 36978502 PMCID: PMC10044614 DOI: 10.3390/ani13060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
This study aimed to investigate the interaction of fatty acid (FA) source [calcium salt of soybean oil (n-6 FA) vs. calcium salt of linseed oil (n-3 FA) both 3% DM basis] with protein content (18% vs. 22% CP, based on DM) on growth performance, blood metabolites, immune function, skeletal growth indices, urinary purine derivatives (PD), and microbial protein synthesis (MPS) in young dairy calves. Forty 3-day-old calves (20 females and 20 males) with a starting body weight (BW) of 40.2 kg were assigned in a completely randomized block design in a 2 × 2 factorial arrangement of treatments. Experimental diets were: (1) n-6 FA with 18% CP (n-6-18CP), (2) n-6 FA with 22% CP (n-6-22CP), (3) n-3 FA with 18% CP (n-3-18CP), and (4) n-3 FA with 22% CP (n-3-22CP). Starter feed intake and average daily gain (ADG) were not influenced by experimental diets (p > 0.05). However, before weaning and the entire period, feed efficiency (FE) was greater in calves fed n-3 FA compared to n-6 FA (p < 0.05). Heart girth (weaning, p < 0.05) and hip height (weaning, p < 0.05 and final, p < 0.01) were highest among experimental treatments in calves who received n-3-22CP diets. The greatest blood glucose (p < 0.05) and insulin (p < 0.01) concentrations in the pre-weaning period and the lowest serum concentration of tumor necrosis factor (before weaning, p < 0.05) were observed in calves fed the n-3-22CP diet. However, the greatest blood urea N (before weaning, p < 0.05; after weaning, p < 0.05) and urinary N excretion (p < 0.05) were found in calves fed n-6-22CP diets compared to other experimental arrangements. In conclusion, offering calves with Ca-salt of n-3 FA along with 22% CP content may be related to improved nitrogen efficiency and immune function.
Collapse
Affiliation(s)
- Ardashir Rajabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Ilam University, Ilam 69315-516, Iran
| | - Farshid Fattahnia
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Ilam University, Ilam 69315-516, Iran
- Correspondence: (F.F.); (M.K.-B.)
| | - Mohammad Shamsollahi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Ilam University, Ilam 69315-516, Iran
| | - Hossein Jahani-Azizabadi
- Department of Animal Science, Faculty of Agriculture, Kurdistan University, Sanandaj 6617715175, Iran
| | | | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mehdi Kazemi-Bonchenari
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
- Correspondence: (F.F.); (M.K.-B.)
| |
Collapse
|
12
|
Yaegashi A, Kimura T, Hirata T, Iso H, Tamakoshi A. Association between low-carbohydrate diet score and incidence of type 2 diabetes among Japanese adults: the JACC Study. J Nutr Sci 2023; 12:e50. [PMID: 37123394 PMCID: PMC10131049 DOI: 10.1017/jns.2022.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 05/02/2023] Open
Abstract
We prospectively examined the association between low-carbohydrate diet (LCD) score and incidence of type 2 diabetes (T2D) in Japanese adults using Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC Study) data. A total of 19 084 (7052 men and 12 032 women) Japanese non-diabetic participants aged 40-79 years, who enrolled in the JACC study between 1988 and 1990, were included in our analysis. Dietary intake was evaluated using a validated food-frequency questionnaire. The overall, animal and vegetable LCD scores were calculated by dividing the study participants into eleven categories based on the percentages of energy from carbohydrates, protein and fat. The incidence of T2D was assessed using a self-administered questionnaire. We used multivariable logistic regression analysis to estimate the odds ratios (ORs) and 95 % confidence intervals (CIs) of incident T2D across the quintile of each LCD score, with adjustment for potential confounders. During the 5-year study period, 490 adults (247 men and 243 women) developed T2D. The multivariable-adjusted OR of incident T2D for the highest v. lowest quintiles of overall and animal LCD scores, respectively, were 0·64 (95 % CI 0·42, 0·99) and 0·83 (95 % CI 0·55, 1·27) for men, 0·78 (95 % CI 0·51, 1·18) and 0·84 (95 % CI 0·57, 1·24) for women. The vegetable LCD score was associated with a lower risk of T2D in men (OR 0·51; 95 % CI 0·33, 0·77). Our results suggest that diets lower in carbohydrates and higher in fat and protein are unlikely to higher the T2D risk among Japanese individuals.
Collapse
Affiliation(s)
- Akinori Yaegashi
- Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
- Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, 5-196-1, Kogane-chuo, Eniwa 061-1449, Japan
| | - Takashi Kimura
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Takumi Hirata
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Clinical and Translational Science, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Hiroyasu Iso
- National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Akiko Tamakoshi
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
- Corresponding author: Akiko Tamakoshi, fax 011-706-7805, Email
| |
Collapse
|
13
|
Dietary fat quality impacts metabolic impairments of type 2 diabetes risk differently in male and female CD-1 ® mice. Br J Nutr 2022; 128:1013-1028. [PMID: 34605388 DOI: 10.1017/s0007114521004001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metabolic impairments associated with type 2 diabetes, including insulin resistance and loss of glycaemic control, disproportionately impact the elderly. Lifestyle interventions, such as manipulation of dietary fat quality (i.e. fatty acid (FA) composition), have been shown to favourably modulate metabolic health. Yet, whether or not chronic consumption of beneficial FAs can protect against metabolic derangements and disease risk during ageing is not well defined. We sought to evaluate whether long-term dietary supplementation of fish-, dairy- or echium-derived FAs to the average FA profile in a U.S. American diet may offset metabolic impairments in males and females during ageing. One-month-old CD-1® mice were fed isoenergetic, high-fat (40 %) diets with the fat content composed of either 100 % control fat blend (CO) or 70 % CO with 30 % fish oil, dairy fat or echium oil for 13 months. Every 3 months, parameters of glucose homoeostasis were evaluated via glucose and insulin tolerance tests. Glucose tolerance improved in males consuming a diet supplemented with fish oil or echium oil as ageing progressed, but not in females. Yet, females were more metabolically protected than males regardless of age. Additionally, Spearman correlations were performed between indices of glucose homoeostasis and previously reported measurements of diet-derived FA content in tissues and colonic bacterial composition, which also revealed sex-specific associations. This study provides evidence that long-term dietary fat quality influences risk factors of metabolic diseases during ageing in a sex-dependent manner; thus, sex is a critical factor to be considered in future dietary strategies to mitigate type 2 diabetes risk.
Collapse
|
14
|
Lampova B, Doskocil I, Kourimska L, Kopec A. N-3 polyunsaturated fatty acids may affect the course of COVID-19. Front Immunol 2022; 13:957518. [PMID: 36238306 PMCID: PMC9551352 DOI: 10.3389/fimmu.2022.957518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The highly infectious coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a new coronavirus that has been spreading since late 2019 and has caused millions of deaths worldwide. COVID-19 continues to spread rapidly worldwide despite high vaccination coverage; therefore, it is crucial to focus on prevention. Most patients experience only mild symptoms of COVID-19. However, in some cases, serious complications can develop mainly due to an exaggerated immune response; that is, a so-called cytokine storm, which can lead to acute respiratory distress syndrome, organ failure, or, in the worst cases, death. N-3 polyunsaturated fatty acids and their metabolites can modulate inflammatory responses, thus reducing the over-release of cytokines. It has been hypothesized that supplementation of n-3 polyunsaturated fatty acids could improve clinical outcomes in critically ill COVID-19 patients. Some clinical trials have shown that administering n-3 polyunsaturated fatty acids to critically ill patients can improve their health and shorten the duration of their stay in intensive care. However, previous clinical studies have some limitations; therefore, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Barbora Lampova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Ivo Doskocil,
| | - Lenka Kourimska
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Kopec
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, The University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
15
|
Ogłuszka M, Lipiński P, Starzyński RR. Effect of Omega-3 Fatty Acids on Telomeres-Are They the Elixir of Youth? Nutrients 2022; 14:nu14183723. [PMID: 36145097 PMCID: PMC9504755 DOI: 10.3390/nu14183723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Correspondence:
| |
Collapse
|
16
|
Kim H, Kim JK. Evidence on Statins, Omega-3, and Prostate Cancer: A Narrative Review. World J Mens Health 2022; 40:412-424. [PMID: 35021299 PMCID: PMC9253794 DOI: 10.5534/wjmh.210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Dietary intake selections might play a crucial role in prostate cancer (PCa) occurrence and progression. Several studies have investigated whether statin use could reduce PCa risk but with conflicting results. Nevertheless, a significantly decreased incidence of advanced PCa has been consistently noted. Statins may also reduce the risk of biochemical recurrence (BCR) in men with PCa after receiving active treatment. However, the influence of statin usage on BCR and PCa progression in men with high prostate-specific antigen levels has been found to be insignificant. In contrast, the combined use of a statin and metformin was significantly related to the survival status of PCa patients. However, some studies have revealed that the intake of long-chain omega-3 fatty acid (ω-3) from fish or fish oil supplements may elevate PCa risk. Several meta-analyses on ω-3 consumption and PCa have shown controversial results for the relationship between PCa and ω-3 consumption. However, studies with positive results for various genotypes, fatty acid intake or levels, and PCA risk are emerging. This review highlights the association among statins, ω-3, and PCa. The findings summarized here may be helpful for clinicians counseling patients related to PCa.
Collapse
Affiliation(s)
- Hwanik Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Fanalli SL, da Silva BPM, Gomes JD, Ciconello FN, de Almeida VV, Freitas FAO, Moreira GCM, Silva-Vignato B, Afonso J, Reecy J, Koltes J, Koltes D, Regitano LCA, de Carvalho Baileiro JC, Freitas L, Coutinho LL, Fukumasu H, de Alencar SM, Luchiari Filho A, Cesar ASM. Effect of dietary soybean oil inclusion on liver-related transcription factors in a pig model for metabolic diseases. Sci Rep 2022; 12:10318. [PMID: 35725871 PMCID: PMC9209463 DOI: 10.1038/s41598-022-14069-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Dietary fatty acids (FA) are components of the lipids, which contribute to membrane structure, energy input, and biological functions related to cellular signaling and transcriptome regulation. However, the consumers still associate dietary FA with fat deposition and increased occurrence of metabolic diseases such as obesity and atherosclerosis. Previous studies already demonstrated that some fatty acids are linked with inflammatory response, preventing metabolic diseases. To better understand the role of dietary FA on metabolic diseases, for the first time, a study to identify key transcription factors (TF) involved in lipid metabolism and inflammatory response by transcriptome analysis from liver samples of animal models was performed. The key TF were identified by functional enrichment analysis from the list of differentially expressed genes identified in liver samples between 35 pigs fed with 1.5% or 3.0% soybean oil. The functional enrichment analysis detected TF linked to lipid homeostasis and inflammatory response, such as RXRA, EGFR, and SREBP2 precursor. These findings demonstrated that key TF related to lipid metabolism could be modulated by dietary inclusion of soybean oil. It could contribute to nutrigenomics research field that aims to elucidate dietary interventions in animal and human health, as well as to drive food technology and science.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Bruna Pereira Martins da Silva
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Julia Dezen Gomes
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Fernanda Nery Ciconello
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Vivian Vezzoni de Almeida
- College of Veterinary Medicine and Animal Science, Federal University of Goiás, Nova Veneza, km 8, Campus Samambaia, Goiânia, Goiás, 74690-900, Brazil
| | - Felipe André Oliveira Freitas
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Gabriel Costa Monteiro Moreira
- University of Liège, GIGA Medical Genomics, Unit of Animal Genomics, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liège, Belgium
| | - Bárbara Silva-Vignato
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, Km 234 s/nº, São Carlos, São Paulo, 13560-970, Brazil
| | - James Reecy
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | - James Koltes
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | - Dawn Koltes
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | | | - Júlio Cesar de Carvalho Baileiro
- College of Veterinary Medicine and Animal Science, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13.635-900, Brazil
| | - Luciana Freitas
- DB Genética de Suínos, Avenue Juscelino Kubitschek de Oliveira, 2094, Patos de Minas, MG, 38.706-000, Brazil
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Severino Matias de Alencar
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Albino Luchiari Filho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
18
|
Yavari M, Kazemi-Bonchenari M, Mirzaei M, Hossein Yazdi M. Supplementation of n-3 fatty acid and ruminal undegradable to degradable protein ratio in young lambs raised under heat condition: effects on growth performance and urinary purine derivatives. Trop Anim Health Prod 2022; 54:212. [PMID: 35689115 DOI: 10.1007/s11250-022-03195-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The present study evaluated the effect of supplementation alpha-linolenic fatty acid source (ALA) with different rumen undegradable to degradable protein ratios [low ratio (LR) = 26:74; high ratio (HR) = 36:64 based on CP%] on growth performance, nutrient digestibility, fecal score, animal feeding behavior, and urinary purine derivatives (PD) in young lambs during hot season. Forty 10-day-old lambs (averaging body weight of 7.9 ± 0.8 kg) were used in a completely randomized block design with a 2 × 2 factorial arrangement as following treatments (10 lambs/treatment): (1) no n-3 FA supplementation with LR diet (NALA-LR), (2) no ALA supplementation with HR diet (NALA-HR), (3) supplementation of ALA with LR diet (ALA-LR), and (4) supplementation of ALA with HR diet (ALA-HR). Results showed that ALA supplementation slightly increased feed efficiency (FE; tendency, P = 0.076), improved fecal score (P = 0.045), and reduced rectal temperature (tendency, P = 0.064) during pre-weaning period. The HR diets improved average daily gain (ADG; P < 0.01), wither height (post-weaning; P = 0.015), and final BW (P = 0.048) compared with LR diets. The greatest ADG (pre-weaning; P = 0.012), structural growth, and the lowest urinary nitrogen exertion (P = 0.043) were found in the ALA-HR treatment. No change was found for ruminal fermentation, nutrient digestibility, and animal behavior in lambs fed different experimental treatments. In summary, results indicated that concurrent feeding of ALA and high dietary RUP:RDP ratio can be recommendable that is likely due to more efficient nitrogen utilization when young lambs are raised during hot season. HIGHLIGHTS: • The interaction of n-3 FA and nitrogen was evaluated in pre-weaning lambs raised under heat condition. • Supplementation of n-3 FA increased FE and improved fecal score in heat-exposed lambs during pre-weaning period. • The high RUP:RDP ratio improved skeletal growth during post-weaning period. • Concurrent feeding of n-3 FA and high dietary RUP:RDP ratio is recommendable in young lambs raised during hot season.
Collapse
Affiliation(s)
- Maryam Yavari
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mehdi Kazemi-Bonchenari
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Mehdi Mirzaei
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mehdi Hossein Yazdi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
19
|
Trends of Dietary Intakes and Metabolic Diseases in Japanese Adults: Assessment of National Health Promotion Policy and National Health and Nutrition Survey 1995–2019. J Clin Med 2022; 11:jcm11092350. [PMID: 35566474 PMCID: PMC9100344 DOI: 10.3390/jcm11092350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Health Japan 21 is Japan’s premier health promotion policy encompassing preventive community health measures for lifestyle-related diseases. In this repeated cross-sectional survey, we report 24-year trends of type 2 diabetes mellitus (T2DM), obesity, hypertension, and their association with dietary intakes to evaluate Health Japan 21’s impact and identify gaps for future policy implementation. We analyzed data from 217,519 and 232,821 adults participating in the physical examination and dietary intake assessment, respectively, of the National Health and Nutrition Survey 1995–2019. Average HbA1c and BMI have significantly increased along with the prevalence of T2DM and overweight/obesity among males. Despite a significant decrease in daily salt intake, the decline in the combined prevalence of Grades 1–3 hypertension was non-significant. Seafood and meat intakes showed strong opposing trends during the study period, indicating a dietary shift in the Japanese population. Neither salt nor vegetable/fruit intake reached the target set by Health Japan 21. Metabolic disease trend differences between males and females highlight the need for a gender-specific health promotion policy. Future Health Japan 21 implementation must also consider locally emerging dietary trends.
Collapse
|
20
|
Rezaei A, Neshat S, Heshmat-Ghahdarijani K. Alterations of Lipid Profile in COVID-19: A Narrative Review. Curr Probl Cardiol 2022; 47:100907. [PMID: 34272088 PMCID: PMC8161768 DOI: 10.1016/j.cpcardiol.2021.100907] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic has led to over 100 million infections and over 3 million deaths worldwide. Understanding its pathogenesis is crucial to guide prognostic and therapeutic implications. Viral infections are known to alter the lipid profile and metabolism of their host cells, similar to the case with MERS and SARS-CoV-2002. Since lipids play various metabolic roles, studying lipid profile alterations in COVID-19 is an inevitable step as an attempt to achieve better therapeutic strategies, as well as a potential prognostic factor in the course of this disease. Several studies have reported changes in lipid profile associated with COVID-19. The most frequently reported changes are a decline in serum cholesterol and ApoA1 levels and elevated triglycerides. The hyper-inflammatory state mediated by the Cytokine storm disturbs several fundamental lipid biosynthesis pathways. Virus replication is a process that drastically changes the host cell's lipid metabolism program and overuses cell lipid resources. Lower HDL-C and ApoA1 levels are associated with higher severity and mortality rates and with higher levels of inflammatory markers. Studies suggest that arachidonic acid omega-3 derivatives might help modulate hyper-inflammation and cytokine storm resulting from pulmonary involvement. Also, statins have been shown to be beneficial when administered after COVID-19 diagnosis via unclear mechanisms probably associated with anti-inflammatory effects and HDL-C rising effects.
Collapse
Affiliation(s)
- Abbas Rezaei
- Department of Internal Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Neshat
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Kiyan Heshmat-Ghahdarijani,MD, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran Tel: + 98 (31)36680048 Fax: +98 (31)3912862
| |
Collapse
|
21
|
Expression of genes and localization of enzymes involved in polyunsaturated fatty acid synthesis in rabbit testis and epididymis. Sci Rep 2022; 12:2637. [PMID: 35173269 PMCID: PMC8850619 DOI: 10.1038/s41598-022-06700-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 01/21/2023] Open
Abstract
The metabolism of polyunsaturated fatty acids (PUFAs) plays an important role in male reproduction. Linoleic and alpha-linolenic acids need to be provided in the diet and they are converted into long chain polyunsaturated fatty acids by steps of elongation and desaturation, exerted by elongases 2 (ELOVL2) and 5 (ELOVL5) and Δ5- (FADS1) and Δ6-desaturase (FADS2). This study aims to assess the gene expression and localization of enzymes involved in the synthesis of n-3 and n-6 long-chain PUFAs in control rabbits and those fed diets containing 10% extruded flaxseed. Enzyme and PUFA localization were assessed in the testes and epididymis by immunofluorescence. Testes showed high gene expression of FADS2, ELOVL2 and ELOVL5 and low expression of FADS1. Intermediate metabolites, enzymes and final products were differently found in Leydig, Sertoli and germinal cells. FADS2 was localized in interstitial cells and elongated spermatids; ELOVL5 in meiotic cells; FADS1 was evident in interstitial tissue, Sertoli cells and elongated spermatids; ELOVL2 in interstitial cells. Epididymal vesicles were positive for FADS1, ELOVL2 and ELOVL5 as well as docosahexaenoic, eicosapentaenoic, and arachidonic acids. This knowledge of fatty acids (FA) metabolism in spermatogenesis and the influence of diet on FA profile could help identify causes of male infertility, suggesting new personalized therapy.
Collapse
|
22
|
Assessment of Polyunsaturated Fatty Acids on COVID-19-Associated Risk Reduction. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 32:50-64. [PMID: 34876760 PMCID: PMC8638948 DOI: 10.1007/s43450-021-00213-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A3 from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G2, lipoxins A4 and B4, and thromboxane A2. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure. Graphic Abstract
Collapse
|
23
|
Podpeskar A, Crazzolara R, Kropshofer G, Hetzer B, Meister B, Müller T, Salvador C. Omega-3 Fatty Acids and Their Role in Pediatric Cancer. Nutrients 2021; 13:1800. [PMID: 34073158 PMCID: PMC8226718 DOI: 10.3390/nu13061800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malnutrition is common in children with cancer and is associated with adverse clinical outcomes. The need for supportive care is becoming ever more evident and the role of nutrition in oncology is still not sufficiently understood. In particular, the consequences of macro- and micronutrient deficiencies require further research. As epidemiological data suggest anti-tumoral properties of omega-3 (n-3) polyunsaturated fatty acids (PUFAs), we reviewed the role of nutrition and n-3 supplementation in pediatric oncology. METHODS A comprehensive literature search was conducted on PubMed through 5 February 2021 to select meta-analyses, systematic reviews, observational studies, and individual randomized controlled trials (RCTs) on macro- and micronutrient supplementation in pediatric oncology. The search strategy included the following medical subject headings (MeSH) and keywords: "childhood cancer", "pediatric oncology", "nutritional status", "malnutrition", and "omega-3-fatty-acids". The reference lists of all relevant articles were screened to include potentially pertinent studies. RESULTS We summarize evidence about the importance of adequate nutrition in childhood cancer and the role of n-3 PUFAs and critically interpret findings. Possible effects of supplementation on the nutritional status and benefits during chemotherapy are discussed as well as strategies for primary and secondary prevention. CONCLUSION We here describe the obvious benefits of omega-3 supplementation in childhood cancer. Further large scale clinical trials are required to verify potential anti-cancer effects of n-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christina Salvador
- Department of Pediatrics I, Division of Hematology and Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.P.); (R.C.); (G.K.); (B.H.); (B.M.); (T.M.)
| |
Collapse
|
24
|
Velez LM, Seldin M, Motta AB. Inflammation and reproductive function in women with polycystic ovary syndrome†. Biol Reprod 2021; 104:1205-1217. [PMID: 33739372 DOI: 10.1093/biolre/ioab050] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathies, affecting 5-10% of women of reproductive age, and is characterized by the presence of ovarian cysts, oligo, or anovulation, and clinical or biochemical hyperandrogenism. Metabolic abnormalities such as hyperinsulinemia, insulin resistance, cardiovascular complications, dyslipidemia, and obesity are frequently present in PCOS women. Several key pathogenic pathways overlap between these metabolic abnormalities, notably chronic inflammation. The observation that this mechanism was shared led to the hypothesis that a chronic inflammatory state could contribute to the pathogenesis of PCOS. Moreover, while physiological inflammation is an essential feature of reproductive events such as ovulation, menstruation, implantation, and labor at term, the establishment of chronic inflammation may be a pivotal feature of the observed reproductive dysfunctions in PCOS women. Taken together, the present work aims to review the available evidence about inflammatory mediators and related mechanisms in women with PCOS, with an emphasis on reproductive function.
Collapse
Affiliation(s)
- Leandro M Velez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Alicia B Motta
- Center of Pharmacological and Botanical Studies (CEFYBO), National Scientific and Technical Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Sundrani DP, Karkhanis AR, Joshi SR. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med 2021; 67:24-41. [PMID: 33719831 DOI: 10.1080/19396368.2020.1858994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low birth weight (LBW) babies are associated with neonatal morbidity and mortality and are at increased risk for noncommunicable diseases (NCDs) in later life. However, the molecular determinants of LBW are not well understood. Placental insufficiency/dysfunction is the most frequent etiology for fetal growth restriction resulting in LBW and placental epigenetic processes are suggested to be important regulators of pregnancy outcome. Early life exposures like altered maternal nutrition may have long-lasting effects on the health of the offspring via epigenetic mechanisms like DNA methylation and microRNA (miRNA) regulation. miRNAs have been recognized as major regulators of gene expression and are known to play an important role in placental development. Angiogenesis in the placenta is known to be regulated by transcription factor peroxisome proliferator-activated receptor (PPAR) which is activated by ligands such as long-chain-polyunsaturated fatty acids (LCPUFA). In vitro studies in different cell types indicate that fatty acids can influence epigenetic mechanisms like miRNA regulation. We hypothesize that maternal fatty acid status may influence the miRNA regulation of PPAR genes in the placenta in women delivering LBW babies. This review provides an overview of miRNAs and their regulation of PPAR gene in the placenta of women delivering LBW babies.Abbreviations: AA - Arachidonic Acid; Ago2 - Argonaute2; ALA - Alpha-Linolenic Acid; ANGPTL4 - Angiopoietin-Like Protein 4; C14MC - Chromosome 14 miRNA Cluster; C19MC - Chromosome 19 miRNA Cluster; CLA - Conjugated Linoleic Acid; CSE - Cystathionine γ-Lyase; DHA - Docosahexaenoic Acid; EFA - Essential Fatty Acids; E2F3 - E2F transcription factor 3; EPA - Eicosapentaenoic Acid; FGFR1 - Fibroblast Growth Factor Receptor 1; GDM - Gestational Diabetes Mellitus; hADMSCs - Human Adipose Tissue-Derived Mesenchymal Stem Cells; hBMSCs - Human Bone Marrow Mesenchymal Stem Cells; HBV - Hepatitis B Virus; HCC - Hepatocellular Carcinoma; HCPT - Hydroxycamptothecin; HFD - High-Fat Diet; Hmads - Human Multipotent Adipose-Derived Stem; HSCS - Human Hepatic Stellate Cells; IUGR - Intrauterine Growth Restriction; LA - Linoleic Acid; LBW - Low Birth Weight; LCPUFA - Long-Chain Polyunsaturated Fatty Acids; MEK1 - Mitogen-Activated Protein Kinase 1; MiRNA - MicroRNA; mTOR - Mammalian Target of Rapamycin; NCDs - NonCommunicable Diseases; OA - Oleic Acid; PASMC - Pulmonary Artery Smooth Muscle Cell; PLAG1 - Pleiomorphic Adenoma Gene 1; PPAR - Peroxisome Proliferator-Activated Receptor; PPARα - PPAR alpha; PPARγ - PPAR gamma; PPARδ - PPAR delta; pre-miRNA - precursor miRNA; RISC - RNA-Induced Silencing Complex; ROS - Reactive Oxygen Species; SAT - Subcutaneous Adipose Tissue; WHO - World Health Organization.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Aishwarya R Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
26
|
Iannotti FA, Vitale RM. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021; 10:586. [PMID: 33799988 PMCID: PMC8001692 DOI: 10.3390/cells10030586] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors including PPARα, PPARγ, and PPARβ/δ, acting as transcription factors to regulate the expression of a plethora of target genes involved in metabolism, immune reaction, cell differentiation, and a variety of other cellular changes and adaptive responses. PPARs are activated by a large number of both endogenous and exogenous lipid molecules, including phyto- and endo-cannabinoids, as well as endocannabinoid-like compounds. In this view, they can be considered an extension of the endocannabinoid system. Besides being directly activated by cannabinoids, PPARs are also indirectly modulated by receptors and enzymes regulating the activity and metabolism of endocannabinoids, and, vice versa, the expression of these receptors and enzymes may be regulated by PPARs. In this review, we provide an overview of the crosstalk between cannabinoids and PPARs, and the importance of their reciprocal regulation and modulation by common ligands, including those belonging to the extended endocannabinoid system (or "endocannabinoidome") in the control of major physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
27
|
Lyall K, Windham GC, Snyder NW, Kuskovsky R, Xu P, Bostwick A, Robinson L, Newschaffer CJ. Association Between Midpregnancy Polyunsaturated Fatty Acid Levels and Offspring Autism Spectrum Disorder in a California Population-Based Case-Control Study. Am J Epidemiol 2021; 190:265-276. [PMID: 33524118 DOI: 10.1093/aje/kwaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are critical for brain development and have been linked with neurodevelopmental outcomes. We conducted a population-based case-control study in California to examine the association between PUFAs measured in midpregnancy serum samples and autism spectrum disorder (ASD) in offspring. ASD cases (n = 499) were identified through the California Department of Developmental Services and matched to live-birth population controls (n = 502) on birth month, year (2010 or 2011), and sex. Logistic regression models were used to examine crude and adjusted associations. In secondary analyses, we examined ASD with and without co-occurring intellectual disability (ID; n = 67 and n = 432, respectively) and effect modification by sex and ethnicity. No clear patterns emerged, though there was a modest inverse association with the top quartile of linoleic acid level (highest quartile vs. lowest: adjusted odds ratio = 0.74, 95% confidence interval: 0.49, 1.11; P for trend = 0.10). Lower levels of total and ω-3 PUFAs were associated with ASD with ID (lowest decile of total PUFAs vs. deciles 4-7: adjusted odds ratio = 2.78, 95% confidence interval: 1.13, 6.82) but not ASD without ID. We did not observe evidence of effect modification by the factors examined. These findings do not suggest a strong association between midpregnancy PUFA levels and ASD. In further work, researchers should consider associations with ASD with ID and in other time windows.
Collapse
|
28
|
Watts AJ, Logan SM, Kübber-Heiss A, Posautz A, Stalder G, Painer J, Gasch K, Giroud S, Storey KB. Regulation of Peroxisome Proliferator-Activated Receptor Pathway During Torpor in the Garden Dormouse, Eliomys quercinus. Front Physiol 2020; 11:615025. [PMID: 33408645 PMCID: PMC7779809 DOI: 10.3389/fphys.2020.615025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Differential levels of n-6 and n-3 essential polyunsaturated fatty acids (PUFAs) are incorporated into the hibernator’s diet in the fall season preceding prolonged, multi-days bouts of torpor, known as hibernation. Peroxisome proliferator-activated receptor (PPAR) transcriptional activators bind lipids and regulate genes involved in fatty acid transport, beta-oxidation, ketogenesis, and insulin sensitivity; essential processes for survival during torpor. Thus, the DNA-binding activity of PPARα, PPARδ, PPARγ, as well as the levels of PPARγ coactivator 1α (PGC-1α) and L-fatty acid binding protein (L-FABP) were investigated in the hibernating garden dormouse (Eliomys quercinus). We found that dormice were hibernating in a similar way regardless of the n-6/n-3 PUFA diets fed to the animals during the fattening phase prior to hibernation. Further, metabolic rates and body mass loss during hibernation did not differ between dietary groups, despite marked differences in fatty acid profiles observed in white adipose tissue prior and at mid-hibernation. Overall, maintenance of PPAR DNA-binding activity was observed during torpor, and across three n-6/n-3 ratios, suggesting alternate mechanisms for the prioritization of lipid catabolism during torpor. Additionally, while no change was seen in L-FABP, significantly altered levels of PGC-1α were observed within the white adipose tissue and likely contributes to enhanced lipid metabolism when the diet favors n-6 PUFAs, i.e., high n-6/n-3 ratio, in both the torpid and euthermic state. Altogether, the maintenance of lipid metabolism during torpor makes it likely that consistent activity or levels of the investigated proteins are in aid of this metabolic profile.
Collapse
Affiliation(s)
| | | | - Anna Kübber-Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Annika Posautz
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Gasch
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
29
|
The effects of omega-3 α-linolenic acid from flaxseed oil supplemented to high-yielding dairy cows on production, health, and fertility. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Kandi M, Kazemi-Bonchenari M, HosseinYazdi M, Mirzaei M. Effects of Ca-salt of linseed oil supplementation and protein content in diet on performance, ruminal fermentation, microbial protein yield, and blood metabolites in young lambs. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Guo Y, Guo X, Deng Y, Cheng L, Hu S, Liu H, Hu J, Hu B, Li L, He H, Wang J. Effects of different rearing systems on intramuscular fat content, fatty acid composition, and lipid metabolism-related genes expression in breast and thigh muscles of Nonghua ducks. Poult Sci 2020; 99:4832-4844. [PMID: 32988520 PMCID: PMC7598316 DOI: 10.1016/j.psj.2020.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rearing system is a critical nongenetic factor influencing meat quality of ducks. In this study, a total of 360 birds were randomly allocated into floor rearing system (FRS) and net rearing system (NRS) to compare their effects on intramuscular fat (IMF) deposition, fatty acid composition, and related gene expression in muscles of Nonghua ducks. Sawdust bedding and stainless mesh bed were equipped in FRS and NRS, respectively. At the eighth week (8w) and 13th week (13w), the breast and thigh muscles of ducks were collected to determine the profiles of lipids composition and the expressions of lipid metabolism-related genes. The IMF content was higher in 13w-FRS than 8w-FRS and 8w-NRS in breast muscle, whereas it was higher in 13w-NRS than other groups in thigh muscle (P < 0.05). C16:1, C20:5(n-3) of muscles were higher in 8w-NRS than 8w-FRS, whereas C18:1(n-9)c, C18:2(n-6)c, Ʃ monounsaturated fatty acid (MUFA), and ƩMUFA/Ʃsaturated fatty acid (SFA) ratio of muscles were higher in 13w-NRS than 8w-FRS and 8w-NRS (P < 0.05). C22:6(n-3), C20:4(n-6) of breast muscle and C20:3(n-6) of thigh muscle were higher in 13w-NRS than 13w-FRS (P < 0.05). Fatty acids variation was studied by principal component analysis, exhibiting extensive positive loadings on principal components. SREBP1, ACADL, and FABP3 were downregulated in breast muscle, whereas PPARα and ELOVL5 were upregulated in thigh muscle of NRS ducks at 13w. Principal components were extensively correlated with lipids composition parameters, and principal components of breast muscle 1 and principal components of thigh muscle 1 were correlated with SREBP1 and PPARα, respectively (P < 0.05). In conclusion, with increasing age, FRS enhanced IMF deposition in breast muscle, and the same promotion in thigh muscle was because of NRS. The variation of fatty acids in muscles was uniform, and the change of single fatty acid was unable to distinguish NRS and FRS. However, as NRS downregulated SREBP1, ACADL and FABP3 in breast muscle and upregulated PPARα and ELOVL5 in thigh muscle, NRS could improve nutrient value and meat quality by increasing ƩMUFA, ƩMUFA/ƩSFA ratio, and important PUFA levels. Therefore, NRS was more recommended than FRS for Nonghua ducks during week 8 to 13 posthatching.
Collapse
Affiliation(s)
- Yifan Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
32
|
Haubold S, Kröger-Koch C, Tuchscherer A, Kanitz E, Weitzel JM, Hoeflich A, Starke A, Tröscher A, Sauerwein H, Hammon HM. Effects of a combined essential fatty acid and conjugated linoleic acid abomasal infusion on metabolic and endocrine traits, including the somatotropic axis, in dairy cows. J Dairy Sci 2020; 103:12069-12082. [PMID: 32981718 DOI: 10.3168/jds.2020-18569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023]
Abstract
The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid (ALA), and conjugated linoleic acid (CLA) supplementation on metabolic and endocrine traits related to energy metabolism, including the somatotropic axis, in mid-lactation dairy cows. Four cows (126 ± 4 d in milk) were used in a dose-escalation study design and were abomasally infused with coconut oil (CTRL; 38.3 g/d; providing saturated fatty acids), linseed and safflower oils (EFA; 39.1 and 1.6 g/d; n-6:n-3 FA ratio = 1:3), Lutalin (CLA; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d of each), or EFA and CLA (EFA+CLA) for 6 wk. The initial dosage was doubled twice after 2 wk, resulting in 3 dosages (dosages 1, 2, and 3). Each cow received each fat treatment at different times. Cows were fed with a corn silage-based total mixed ration providing a low-fat content and a high n-6:n-3 fatty acid ratio. Plasma concentrations of metabolites and hormones (insulin-like growth factor-binding proteins only on wk 0 and 6) were analyzed at wk 0, 2, 4, and 6 of each treatment period. Liver biopsies were taken before starting the trial and at wk 6 of each treatment period to measure hepatic mRNA abundance of genes linked to glucose, cholesterol and lipid metabolism, and the somatotropic axis. The changes in the milk and blood fatty acid patterns and lactation performance of these cows have already been published in a companion paper. The plasma concentration of total cholesterol increased with dosage in all groups, except CLA, reaching the highest levels in EFA+CLA and CTRL compared with CLA. The high-density lipoprotein cholesterol plasma concentration increased in CTRL and was higher than that in EFA and CLA, whereas the concentration of low-density lipoprotein cholesterol increased in a dose-dependent manner in EFA and EFA+CLA, and was higher than that in CLA. Hepatic mRNA expression of 3-hydroxy-3-methyl-glutaryl-CoA synthase 1 was upregulated in all groups but was highest in EFA+CLA. Expression of sterol regulatory element-binding factor 1 tended to be lowest due to EFA treatment, whereas expression of long chain acyl-CoA-synthetase was lower in EFA than in CTRL. Hepatic mRNA expression of GHR1A tended to be higher in EFA+CLA than in CTRL. The plasma concentration of insulin-like growth factor I increased in CLA, and the plasma IGFBP-2 concentration was lower in EFA+CLA than in CTRL at wk 6. The plasma concentration of adiponectin decreased in EFA+CLA up to dosage 2. Plasma concentrations of albumin and urea were lower in CLA than in CTRL throughout the experimental period. Supplementation with EFA and CLA affected cholesterol and lipid metabolism and their regulation differently, indicating distinct stimulation after the combined EFA and CLA treatment. The decreased IGFBP-2 plasma concentration and upregulated hepatic mRNA abundance of GHR1A in EFA+CLA-supplemented cows indicated the beneficial effect of the combined EFA and CLA treatment on the somatotropic axis in mid-lactation dairy cows. Moreover, supplementation with CLA might affect protein metabolism in dairy cows.
Collapse
Affiliation(s)
- S Haubold
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Hoeflich
- Institute of Genome Biology of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
33
|
Weill P, Plissonneau C, Legrand P, Rioux V, Thibault R. May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients? Biochimie 2020; 179:275-280. [PMID: 32920170 PMCID: PMC7481803 DOI: 10.1016/j.biochi.2020.09.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
In around 10% of SARS-CoV-2 infected patients, coronavirus disease-2019 (Covid-19) symptoms are complicated with a severe lung damage called Acute Respiratory Distress Syndrome (ARDS), which is often lethal. ARDS is mainly associated with an uncontrolled overproduction of immune cells and cytokines, called "cytokine storm syndrome"; it appears 7-15 days following the onset of symptoms, leading to systemic inflammation and multiple organ failure. Because they are well-known metabolic precursors of specialized pro-resolving lipid mediators (SPMs), omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs) could help improve the resolution of the inflammatory balance, limiting therefore the level and duration of the critical inflammatory period. Omega-3 LC-PUFAs may also interact at different stages of the viral infection, notably on the virus entry and replication. In the absence of demonstrated treatment and while waiting for vaccine possibility, the use of omega-3 LC-PUFAs deserve therefore to be considered, based on previous clinical studies suggesting that omega-3 supplementation could improve clinical outcomes of critically ill patients at the acute phase of ARDS. In this context, it is crucial to remind that the omega-3 PUFA dietary intake levels in Western countries remains largely below the current recommendations, considering both the omega-3 precursor α-linolenic acid (ALA) and long chain derivatives such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). An optimized omega-3 PUFAs status could be helpful to prevent infectious diseases, including Covid-19.
Collapse
Affiliation(s)
- Pierre Weill
- Bleu-Blanc-Cœur Association - Univ Rennes, France
| | - Claire Plissonneau
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), 63001, Clermont-Ferrand, France; Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), EA 3533, 63171, Clermont-Ferrand, France
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine, Institut Agro, Rennes, France; INRAE, INSERM, Univ Rennes, Nutrition Métabolismes et Cancer, NuMeCan, Rennes, France
| | - Vincent Rioux
- Laboratoire de Biochimie et Nutrition Humaine, Institut Agro, Rennes, France; INRAE, INSERM, Univ Rennes, Nutrition Métabolismes et Cancer, NuMeCan, Rennes, France
| | - Ronan Thibault
- INRAE, INSERM, Univ Rennes, Nutrition Métabolismes et Cancer, NuMeCan, Rennes, France; Unité de Nutrition, CHU Rennes, Rennes, France.
| |
Collapse
|
34
|
Bostwick A, Snyder NW, Windham GC, Whitman C, Pearl M, Robinson L, Newschaffer CJ, Lyall K. Polyunsaturated Fatty Acids in Newborn Bloodspots: Associations With Autism Spectrum Disorder and Correlation With Maternal Serum Levels. Autism Res 2020; 13:1601-1613. [PMID: 32897003 DOI: 10.1002/aur.2365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022]
Abstract
We conducted a population-based case-control study to examine newborn polyunsaturated fatty acid (PUFA) levels in association with autism spectrum disorder (ASD) and assess PUFA correlation across two time points. ASD cases (n = 200) were identified through the Department of Developmental Services and matched to live-birth population controls (n = 200) on birth month, year (2010-2011), and sex. Nonesterified PUFAs were measured by isotope dilution liquid chromatography-high resolution mass spectrometry from archived newborn dried blood spots and maternal mid-pregnancy serum samples. Crude and adjusted conditional logistic regression models were used to examine the association between neonatal PUFA levels, categorized in quartiles and according to distributional extremes, and ASD. Cubic splines were utilized to examine nonlinear relationships between continuous neonatal PUFAs and ASD. The correlation between neonatal and maternal levels was examined using Pearson correlation coefficients. In adjusted analyses of neonatal PUFA levels, no clear trends emerged, though there was an elevated odds ratio of ASD for the third quartile of linoleic acid, relative to the first (adjusted odds ratio = 2.49, 95% confidence interval: 1.31, 4.70). Cubic spline analysis suggested a nonlinear association between linoleic acid and ASD, though this was not robust to sensitivity analyses. While individual PUFAs were significantly correlated with one another within a given time point, aside from docohexaseanoic acid, PUFAs were not correlated across maternal and neonatal samples. Overall, our findings do not support an association between neonatal PUFA levels and ASD. Future work should confirm and expand these findings by examining associations with phenotypic subgroups and considering PUFAs in other time points. LAY SUMMARY: In this study, we examined whether levels of fats known as polyunsaturated fatty acids, measured in newborns, were related to later child diagnosis of autism spectrum disorder (ASD). Overall, we did not find strong evidence for hypothesized reduction in risk of ASD based on newborn levels of these fats. Future studies in larger samples and considering other time points may be useful to explain whether these fats are important in brain development related to ASD. Autism Res 2020, 13: 1601-1613. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Bostwick
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Gayle C Windham
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, USA
| | - Casey Whitman
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michelle Pearl
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, USA
| | - Lucy Robinson
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, USA
| | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA.,College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Xie X, Sun K, Meesapyodsuk D, Miao Y, Qiu X. Distinct functions of two FabA-like dehydratase domains of polyunsaturated fatty acid synthase in the biosynthesis of very long-chain polyunsaturated fatty acids. Environ Microbiol 2020; 22:3772-3783. [PMID: 32618113 DOI: 10.1111/1462-2920.15149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.
Collapse
Affiliation(s)
- Xi Xie
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Kaiwen Sun
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.,National Research Council of Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yu Miao
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| |
Collapse
|
36
|
Nemeth M, Wallner B, Schuster D, Siutz C, Quint R, Wagner KH, Millesi E. Effects of dietary fatty acids on the social life of male Guinea pigs from adolescence to adulthood. Horm Behav 2020; 124:104784. [PMID: 32504693 DOI: 10.1016/j.yhbeh.2020.104784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
Dietary intake of polyunsaturated fatty acids (PUFAs) or saturated fatty acids (SFAs) differently modulates neurophysiological and behavioral functions in response to altered hypothalamic-pituitary-adrenal (HPA)-axis activity and an individual's development. In this context, an individual's social environment, including social interactions and social hierarchies, is closely related to hormone concentrations and possibly interacts with dietary fatty acid effects. We investigated if dietary supplementation with walnut oil (high in PUFAs) and coconut fat (high in SFAs), compared to a control group, affects body mass gain, cortisol and testosterone concentrations, plasma fatty acids, and social behavior in male domestic guinea pigs from adolescence to adulthood. For analyses of cortisol and testosterone concentrations, social interactions were included as covariates in order to consider effects of social behavior on hormone concentrations. Our results revealed that SFAs increased escalated conflicts like fights and stimulated cortisol and testosterone concentrations, which limited body mass gain and first-year survival. PUFAs did not remarkably affect social behavior and hormone concentrations, but enabled the strongest body mass gain, which probably resulted from an energetic advantage. Neither sociopositive nor agonistic behaviors explained age-specific differences in hormone concentrations between groups. However, a high number of subdominant individuals and lower testosterone concentrations were related to increased cortisol concentrations in adult PUFA males. Our findings demonstrate the importance of dietary fatty acids regarding behavioral and endocrine developmental processes and adaptations to the social environment by modulating HPA-axis function and body homeostasis.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniela Schuster
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Carina Siutz
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ruth Quint
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
37
|
Huang Y, Iosif AM, Hansen RL, Schmidt RJ. Maternal polyunsaturated fatty acids and risk for autism spectrum disorder in the MARBLES high-risk study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 24:1191-1200. [PMID: 31958995 PMCID: PMC9897595 DOI: 10.1177/1362361319877792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
LAY ABSTRACT Prior studies suggest that maternal polyunsaturated fatty acids intake during pregnancy may have protective effects on autism spectrum disorder in their children. However, they did not examine detailed timing of maternal polyunsaturated fatty acid intake during pregnancy, nor did they evaluate plasma concentrations. This study investigates whether maternal polyunsaturated fatty acids in defined time windows of pregnancy, assessed by both questionnaires and biomarkers, are associated with risk of autism spectrum disorder and other non-typical development in the children. Food frequency questionnaires were used to estimate maternal polyunsaturated fatty acid intake during the first and second half of pregnancy. Gas chromatography measured maternal plasma polyunsaturated fatty acid concentrations in the third trimester. In all, 258 mother-child pairs from a prospective cohort were included. All mothers already had a child with autism spectrum disorder and were planning a pregnancy or pregnant with another child. Children were clinically assessed longitudinally and diagnosed at 36 months. For polyunsaturated fatty acid intake from questionnaires, we only found mothers consuming more omega-3 in the second half of pregnancy were 40% less likely to have children with autism spectrum disorder. For polyunsaturated fatty acid concentrations in the third-trimester plasma, we did not observe any statistical significance in relation to the risk of autism spectrum disorder. However, our study confirmed associations from previous studies between higher maternal docosahexaenoic acid and eicosapentaenoic acid plasma concentrations in the late pregnancy and reduced risk for non-typical development. This study markedly advanced understandings of whether and when maternal polyunsaturated fatty acid intake influences risk for autism spectrum disorder and sets the stage for prevention at the behavioral and educational level.
Collapse
Affiliation(s)
- Yunru Huang
- Department of Public Health Sciences, School of Medicine,
University of California, Davis
| | - Ana-Maria Iosif
- Department of Public Health Sciences, School of Medicine,
University of California, Davis
| | - Robin L. Hansen
- Department of Pediatrics, School of Medicine, University of
California, Davis
- Medical Investigation of Neurodevelopmental Disorder (MIND)
Institute, University of California, Davis
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine,
University of California, Davis
- Medical Investigation of Neurodevelopmental Disorder (MIND)
Institute, University of California, Davis
| |
Collapse
|
38
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
39
|
Behrouz V, Dastkhosh A, Sohrab G. Overview of dietary supplements on patients with type 2 diabetes. Diabetes Metab Syndr 2020; 14:325-334. [PMID: 32298985 DOI: 10.1016/j.dsx.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The primary approach for managing type 2 diabetes mellitus (T2DM) involves lifestyle modification and diet therapy along with pharmacologic interventions. Many patients are interested to identify nutritional supplements that may provide benefit in prevention and management of diabetes. However, the efficacy and safety of nutritional supplements such as chromium, n-3 polyunsaturated fatty acids (PUFAs), vitamin D, zinc and magnesium in disease treatment is a worrying and controversial matter. In this narrative review, patients and health care providers are introduced to the effects of mentioned dietary supplements that may help in choosing or not choosing these supplements in treatment of diabetes. METHODS This review was carried out using comprehensive and systematic literature reports on the dietary supplements in the management of diabetes. Empirical searches were conducted using Google Scholar, Science Direct and PubMed databases. Searches were also undertaken using keywords, in English, such as "chromium" OR "vitamin D" OR "omega-3 fatty acids" OR "zinc" OR "magnesium" in combination with "type 2 diabetes". RESULTS The available evidence is insufficient to create a definite conclusion that nutritional supplements including chromium, n-3 PUFAs, vitamin D, zinc and magnesium might be beneficial for the prevention and treatment of T2DM and therefore, the general recommendation to use these supplements in the management of diabetes cannot be justified. The results of most studies lack uniformity across multiple aspects, including different dose and formation of supplements, duration, and subjects under intervention. CONCLUSIONS There is a need for well-designed, high quality, large and long-term studies to strengthen the available evidence and ensure the safety and efficacy of products.
Collapse
Affiliation(s)
- Vahideh Behrouz
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Dastkhosh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Torrinhas RS, Calder PC, Waitzberg DL. Response to Bistrian BR. Parenteral Fish-Oil Emulsions in Critically Ill COVID-19 Emulsions. JPEN J Parenter Enteral Nutr 2020; 44:1169-1170. [PMID: 32463483 PMCID: PMC7283760 DOI: 10.1002/jpen.1933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
In this letter we discuss the proposition of Bristian BR (2020) to use the intravenous administration of fish‐oil emulsions in critically ill patients with Coronavirus Disease 2019 (COVID‐19). We consider that immune‐modulatory properties of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, rapidly provided in high amounts by fish‐oil emulsions, may be important to change the course of COVID‐19's death pathway. Prescriptions should be based on body weight (eg, 0.2‐g pure fish‐oil lipid emulsion/kg body weight/d) and also should consider combining the parenteral administration of fish‐oil emulsions with low oral aspirin intake to trigger resolvin synthesis from EPA and DHA.
Collapse
Affiliation(s)
- Raquel S Torrinhas
- Laboratory of Nutrition and Metabolic Surgery (LIM-35), Department of Gastroenterology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Philip C Calder
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Dan L Waitzberg
- Laboratory of Nutrition and Metabolic Surgery (LIM-35), Department of Gastroenterology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Urrutia O, Mendizabal JA, Alfonso L, Soret B, Insausti K, Arana A. Adipose Tissue Modification through Feeding Strategies and Their Implication on Adipogenesis and Adipose Tissue Metabolism in Ruminants. Int J Mol Sci 2020; 21:E3183. [PMID: 32365995 PMCID: PMC7246642 DOI: 10.3390/ijms21093183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
Dietary recommendations by health authorities have been advising of the importance of diminishing saturated fatty acids (SFA) consumption and replacing them by polyunsaturated fatty acids (PUFA), particularly omega-3. Therefore, there have been efforts to enhance food fatty acid profiles, helping them to meet human nutritional recommendations. Ruminant meat is the major dietary conjugated linoleic acid (CLA) source, but it also contains SFA at relatively high proportions, deriving from ruminal biohydrogenation of PUFA. Additionally, lipid metabolism in ruminants may differ from other species. Recent research has aimed to modify the fatty acid profile of meat, and other animal products. This review summarizes dietary strategies based on the n-3 PUFA supplementation of ruminant diets and their effects on meat fatty acid composition. Additionally, the role of n-3 PUFA in adipose tissue (AT) development and in the expression of key genes involved in adipogenesis and lipid metabolism is discussed. It has been demonstrated that linseed supplementation leads to an increase in α-linolenic acid (ALA) and eicosapentaenoic acid (EPA), but not in docosahexaenoic acid (DHA), whilst fish oil and algae increase DHA content. Dietary PUFA can alter AT adiposity and modulate lipid metabolism genes expression, although further research is required to clarify the underlying mechanism.
Collapse
Affiliation(s)
- Olaia Urrutia
- IS-FOOD Institute, Escuela Técnica Superior de Ingeniería Agronómica y Biociencias, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (J.A.M.); (L.A.); (B.S.); (K.I.); (A.A.)
| | | | | | | | | | | |
Collapse
|
42
|
Wu H, Xu L, Ballantyne CM. Dietary and Pharmacological Fatty Acids and Cardiovascular Health. J Clin Endocrinol Metab 2020; 105:dgz174. [PMID: 31678992 PMCID: PMC7174038 DOI: 10.1210/clinem/dgz174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT The effects of dietary intake of different fatty acids and pharmacological use of fatty acids, specifically long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), on cardiovascular health and atherosclerotic cardiovascular disease (ASCVD) prevention have been examined in a large number of observational studies and clinical trials. This review summarizes recent data and discusses potential mechanisms. EVIDENCE ACQUISITION The review is based on the authors' knowledge of the field supplemented by a PubMed search using the terms seafood, fish oil, saturated fatty acids, omega-3 fatty acids, eicosapentaenoic acid, docosahexaenoic acid, polyunsaturated fatty acids, monounsaturated fatty acids, and ASCVD. EVIDENCE SYNTHESIS We mainly discuss the recent clinical trials that examine the effects of different types of dietary fatty acids and pharmacological use of n-3 PUFA products on ASCVD prevention and the potential mechanisms. CONCLUSIONS While replacement of dietary saturated fat with unsaturated fat, polyunsaturated fat in particular, or intake of LC n-3 PUFA-rich seafood has generally shown benefit for ASCVD prevention and is recommended for cardiovascular benefits, data on effects of n-3 PUFA products on ASCVD health are inconsistent. However, recent clinical trials support benefits of prescription EPA in ASCVD prevention. n-3 PUFAs may contribute to ASCVD prevention through multiple mechanisms, including lowering plasma triglyceride levels, anti-inflammatory effects, antithrombotic effects, and effects on endothelial function.
Collapse
Affiliation(s)
- Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Lu Xu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
43
|
Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil. PLoS One 2020; 15:e0229435. [PMID: 32107491 PMCID: PMC7046235 DOI: 10.1371/journal.pone.0229435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown. We propose that the mixture of conjugated PUFAs exerts higher vasorelaxation activity than the corresponding mixture of nonconjugated PUFAs. The vascular response to different concentrations of conjugated and nonconjugated isomers of EPA and DHA, among other fatty acids (FAs) naturally present in shark oil, and the role of nitric oxide (NO) as a vasorelaxant agent were investigated. Both conjugated EPA (CEPA) and conjugated DHA (CDHA) were prepared by alkaline isomerization of all PUFAs contained in shark oil. Different concentrations of conjugated and nonconjugated PUFAs were placed in contact with precontracted aortic rings of Wistar rats to assess their effect on vascular tone. All tested samples exerted a vasorelaxant effect. Compared to nonconjugated PUFAs, conjugated isomers exhibited an increase in the dilatation of the aortic rings (P<0.001) in a dose-dependent manner (P<0.001). In addition, nonconjugated PUFAs produced nitric oxide (NO) in a dose-dependent manner, while conjugated PUFAs did not, suggesting that their dilatation mechanism is not totally dependent on NO.
Collapse
|
44
|
Balić A, Vlašić D, Žužul K, Marinović B, Bukvić Mokos Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2020; 21:E741. [PMID: 31979308 PMCID: PMC7037798 DOI: 10.3390/ijms21030741] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) are nowadays desirable components of oils with special dietary and functional properties. Their therapeutic and health-promoting effects have already been established in various chronic inflammatory and autoimmune diseases through various mechanisms, including modifications in cell membrane lipid composition, gene expression, cellular metabolism, and signal transduction. The application of ω-3 and ω-6 PUFAs in most common skin diseases has been examined in numerous studies, but their results and conclusions were mostly opposing and inconclusive. It seems that combined ω-6, gamma-linolenic acid (GLA), and ω-3 long-chain PUFAs supplementation exhibits the highest potential in diminishing inflammatory processes, which could be beneficial for the management of inflammatory skin diseases, such as atopic dermatitis, psoriasis, and acne. Due to significant population and individually-based genetic variations that impact PUFAs metabolism and associated metabolites, gene expression, and subsequent inflammatory responses, at this point, we could not recommend strict dietary and supplementation strategies for disease prevention and treatment that will be appropriate for all. Well-balanced nutrition and additional anti-inflammatory PUFA-based supplementation should be encouraged in a targeted manner for individuals in need to provide better management of skin diseases but, most importantly, to maintain and improve overall skin health.
Collapse
Affiliation(s)
- Anamaria Balić
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| | - Domagoj Vlašić
- Department of Ophtalmology and Optometry, General Hospital Dubrovnik, Ulica dr. Roka Mišetića 2, 20000 Dubrovnik, Croatia;
| | - Kristina Žužul
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| | - Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| |
Collapse
|
45
|
Moradi Sarabi M, Mohammadrezaei Khorramabadi R, Zare Z, Eftekhar E. Polyunsaturated fatty acids and DNA methylation in colorectal cancer. World J Clin Cases 2019; 7:4172-4185. [PMID: 31911898 PMCID: PMC6940323 DOI: 10.12998/wjcc.v7.i24.4172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) has been designated a major global problem, especially due to its high prevalence in developed countries. CRC mostly occurs sporadically (75%-80%), and only 20%-25% of patients have a family history. Several processes are involved in the development of CRC such as a combination of genetic and epigenetic alterations. Epigenetic changes, including DNA methylation play a vital role in the progression of CRC. Complex interactions between susceptibility genes and environmental factors, such as a diet and sedentary lifestyle, lead to the development of CRC. Clinical and experimental studies have confirmed the beneficial effects of dietary polyunsaturated fatty acids (PUFAs) in preventing CRC. From a mechanistic viewpoint, it has been suggested that PUFAs are pleiotropic agents that alter chromatin remodeling, membrane structure and downstream cell signaling. Moreover, PUFAs can alter the epigenome via modulation of DNA methylation. In this review, we summarize recent investigations linking PUFAs and DNA methylation-associated CRC risk.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Reza Mohammadrezaei Khorramabadi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Zohre Zare
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| |
Collapse
|
46
|
Vu TT, Dieterich P, Vu TT, Deussen A. Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:345-356. [PMID: 31496872 PMCID: PMC6717795 DOI: 10.4196/kjpp.2019.23.5.345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, 100 µM) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to 50 µM. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated Ca2+-transient. This effect was preserved in the presence of BAPTA (10 and 20 µM) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane (75 µM) to inhibit store-operated calcium channel or thapsigargin (2 µM) to delete calcium store. In addition, DHA (12 µM) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a Ca2+ activated mode to a preferentially controlled phosphorylation mode.
Collapse
Affiliation(s)
- Thom Thi Vu
- Department of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
- Department of Basic Sciences in Medicine and Pharmacy, School of Medicine and Pharmacy, Vietnam National University, Hanoi 100000, Vietnam
| | - Peter Dieterich
- Department of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Thu Thi Vu
- Faculty of Biology, VNU University of Science, Hanoi 100000, Vietnam
- Dinh Tien Hoang Institute of Medicine, Hanoi 100000, Vietnam
| | - Andreas Deussen
- Department of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| |
Collapse
|
47
|
Medhat D, El-Khayat Z, El-Banna M, Abdel-Latif Y, Morsy S, El-Daly SM, Seid Hussein J. Protective Effect of Polyunsaturated Fatty Acids against Experimental Lung Injury Induced by Acute Ethanol Inhalation. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ethanol-induced diseases include oxidative mechanisms by which prolonged endoplasmic reticulum (ER) stress results in genesis and accumulation of cytotoxic total fatty acid ethyl esters (FAEEs, non-oxidative metabolites of ethanol). FAEEs participate in the pathogenesis of alcoholic lung disease. Polyunsaturated fatty acids (PUFA) offer a possible protective effect against damage induced by ethanol inhalation. The present study aimed to investigate the protective effect of flaxseed and fish oils administration against toxicity induced by ethanol inhalation. Forty healthy female albino rats were divided into four groups (control, ethanol, flaxseed and fish oils). Lung superoxide dismutase (SOD) and malondialdehyde (MDA) were measured. Plasma advanced oxidation end product (AOPP) and phosphatidylinositol 3- kinase (PI3K) were determined. Erythrocyte membrane fatty acids were extracted and fractionated by HPLC. Ethanol inhalation results in significant increase in lung MDA, plasma AOPP and erythrocyte membrane arachidonic acid (AA), linolenic acid (LA), and oleic acid (OA) along with a significant decrease in erythrocyte membrane alpha-linolenic acid (ALA), lung SOD, and plasma PI3K while pretreatment with flaxseed and fish oils daily (1.2 ml/kg) significantly attenuated these parameters. Supplementation of marine PUFAs reduced the oxidative stress induced by ethanol inhalation in experimental animals.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - Mona El-Banna
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - Safaa Morsy
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - Sherien M. El-Daly
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - Jihan Seid Hussein
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
48
|
Fatty acid composition of mesenteric, cardiac, abdominal, intermuscular, and subcutaneous adipose tissues from horses of three body condition scores. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Abstract
The prevalence of food allergy is raising in industrialized countries, but the mechanisms behind this increased incidence are not fully understood. Environmental factors are believed to play a role in allergic diseases, including lifestyle influences, such as diet. There is a close relationship between allergens and lipids, with many allergenic proteins having the ability to bind lipids. Dietary lipids exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to cells of the adaptive immunity. In addition to modifying the immunostimulating properties of proteins, lipids also alter their digestibility and intestinal absorption, changing allergen bioavailability. This study provides an overview of the role of dietary lipids in food allergy, taking into account epidemiological information, as well as results of mechanistic investigations using in vivo, ex vivo and in vitro models. The emerging link among high-fat diets, obesity, and allergy is also discussed.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
50
|
Jang H, Park K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin Nutr 2019; 39:765-773. [PMID: 31010701 DOI: 10.1016/j.clnu.2019.03.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/09/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Previous studies suggest that polyunsaturated fatty acids (PUFAs) may reduce the risk of metabolic diseases, but some have shown ambiguous results. The aim of this study was to systematically evaluate and summarize available evidence on the association between omega-3 and omega-6 PUFA levels and risk of metabolic syndrome (MetS). METHODS A systematic literature search of articles published until December 2017 was conducted in PubMed, Web of Science, and Cochrane Library databases. Meta-analyses of the highest vs. lowest categories of omega-3 and omega-6 PUFAs were conducted using the random effects models. RESULTS Thirteen studies (2 case-control, 9 cross-sectional, 1 nested case-control, and 1 prospective cohort) with 36,542 individuals were included. Higher omega-3 PUFA levels in diets or blood were associated with a 26% reduction in the risk of MetS (odds ratio (OR)/relative risk (RR) 0.74, 95% confidence interval (CI) 0.62-0.89). This inverse association was evident among studies with Asian populations (OR/RR 0.69, 95% CI 0.54-0.87), but not among those with American/European populations (OR/RR 0.84, 95% CI 0.55-1.28). Null results were found regarding the association between circulating/dietary omega-6 PUFAs and MetS. CONCLUSION The present meta-analysis indicates that higher intakes of omega-3 PUFAs, but not omega-6 PUFAs, was associated with lower MetS risk; adding to the current body of evidence on the metabolic health effects of circulating/dietary omega-3 PUFAs.
Collapse
Affiliation(s)
- Haeun Jang
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Kyong Park
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|