1
|
Jackson KH, Harris WS, Belury MA, Kris-Etherton PM, Calder PC. Beneficial effects of linoleic acid on cardiometabolic health: an update. Lipids Health Dis 2024; 23:296. [PMID: 39267068 PMCID: PMC11391774 DOI: 10.1186/s12944-024-02246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024] Open
Abstract
Linoleic acid (LA), as a part of the wider debate about saturated, omega-6 and omega-3 fatty acids (FAs) and health, continues to be at the center of controversy in the world of fatty acid research. A robust evidence base, however, demonstrates that higher intakes and blood levels of LA are associated with improved cardiometabolic health outcomes. LA lowers total and low-density lipoprotein cholesterol when compared with saturated fatty acids and carbohydrates. Using large prospective datasets, higher blood levels of LA were associated with lower risk of coronary heart disease, stroke and incident type-2 diabetes mellitus compared with lower levels, suggesting that, across the range of typical dietary intakes, higher LA is beneficial. Recent trials of LA-rich oils report favorable outcomes in people with common lipid disorders. However, an LA intake that is too high can impair endogenous synthesis of eicosapentaenoic acid (EPA) from alpha-linolenic acid (ALA), but the threshold at which this becomes clinically relevant is not known. In the absence of a significant intake of EPA and docosahexaenoic acid, an ideal dietary ratio of LA and ALA may be theoretically useful as it provides insight into the likely extent of endogenous EPA synthesis from ALA. Updating dietary reference intakes (DRIs) for LA and ALA is needed; however, there are insufficient data to establish RDAs for these fatty acids. The omega-6 (n-6) to omega-3 (n-3) PUFA ratio is not informative and does not shed meaningful insight about the amount of individual fatty acids in each class needed to confer health benefits.
Collapse
Affiliation(s)
- Kristina H Jackson
- OmegaQuant Analytics, 5009 W. 12th St, Suite 8, Sioux Falls, Sioux Falls, SD, 57106, USA.
- Fatty Acid Research Institute, Sioux Falls, SD, USA.
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - William S Harris
- OmegaQuant Analytics, 5009 W. 12th St, Suite 8, Sioux Falls, Sioux Falls, SD, 57106, USA
- Fatty Acid Research Institute, Sioux Falls, SD, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Martha A Belury
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Omachi DO, Aryee ANA, Onuh JO. Functional Lipids and Cardiovascular Disease Reduction: A Concise Review. Nutrients 2024; 16:2453. [PMID: 39125334 PMCID: PMC11314407 DOI: 10.3390/nu16152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Functional lipids are dietary substances that may have an impact on human health by lowering the risk of chronic illnesses and enhancing the quality of life. Numerous functional lipids have been reported to have potential health benefits in the prevention, management, and treatment of cardiovascular disease, the leading cause of death in the United States. However, there is still insufficient and contradictory information in the literature about their effectiveness and associated mechanisms of action. The objective of this review, therefore, is to evaluate available literature regarding these functional lipids and their health benefits. Various studies have been conducted to understand the links between functional lipids and the prevention and treatment of chronic diseases. Recent studies on phytosterols have reported that CLA, medium-chain triglycerides, and omega-3 and 6 fatty acids have positive effects on human health. Also, eicosanoids, which are the metabolites of these fatty acids, are produced in relation to the ratio of omega-3 to omega-6 polyunsaturated fatty acids and may modulate disease conditions. These functional lipids are available either in dietary or supplement forms and have been proven to be efficient, accessible, and inexpensive to be included in the diet. However, further research is required to properly elucidate the dosages, dietary intake, effectiveness, and their mechanisms of action in addition to the development of valid disease biomarkers and long-term effects in humans.
Collapse
Affiliation(s)
- Deborah O. Omachi
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| | - Alberta N. A. Aryee
- Food Science and Biotechnology Program, Department of Human Ecology, Delaware State University, 1200 Dupont Highway, Dover, DE 19901, USA;
| | - John O. Onuh
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| |
Collapse
|
3
|
Mezzetti M, Passamonti MM, Dall’Asta M, Bertoni G, Trevisi E, Ajmone Marsan P. Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods 2024; 13:1650. [PMID: 38890886 PMCID: PMC11171858 DOI: 10.3390/foods13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Milk has become a staple food product globally. Traditionally, milk quality assessment has been primarily focused on hygiene and composition to ensure its safety for consumption and processing. However, in recent years, the concept of milk quality has expanded to encompass a broader range of factors. Consumers now also consider animal welfare, environmental impact, and the presence of additional beneficial components in milk when assessing its quality. This shifting consumer demand has led to increased attention on the overall production and sourcing practices of milk. Reflecting on this trend, this review critically explores such novel quality parameters, offering insights into how such practices meet the modern consumer's holistic expectations. The multifaceted aspects of milk quality are examined, revealing the intertwined relationship between milk safety, compositional integrity, and the additional health benefits provided by milk's bioactive properties. By embracing sustainable farming practices, dairy farmers and processors are encouraged not only to fulfill but to anticipate consumer standards for premium milk quality. This comprehensive approach to milk quality underscores the necessity of adapting dairy production to address the evolving nutritional landscape and consumption patterns.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Matilde Maria Passamonti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Margherita Dall’Asta
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Giuseppe Bertoni
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Erminio Trevisi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
- Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy
| | - Paolo Ajmone Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| |
Collapse
|
4
|
Zwilling CE, Wu J, Barbey AK. Investigating nutrient biomarkers of healthy brain aging: a multimodal brain imaging study. NPJ AGING 2024; 10:27. [PMID: 38773079 PMCID: PMC11109270 DOI: 10.1038/s41514-024-00150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
The emerging field of Nutritional Cognitive Neuroscience aims to uncover specific foods and nutrients that promote healthy brain aging. Central to this effort is the discovery of nutrient profiles that can be targeted in nutritional interventions designed to promote brain health with respect to multimodal neuroimaging measures of brain structure, function, and metabolism. The present study therefore conducted one of the largest and most comprehensive nutrient biomarker studies examining multimodal neuroimaging measures of brain health within a sample of 100 older adults. To assess brain health, a comprehensive battery of well-established cognitive and brain imaging measures was administered, along with 13 blood-based biomarkers of diet and nutrition. The findings of this study revealed distinct patterns of aging, categorized into two phenotypes of brain health based on hierarchical clustering. One phenotype demonstrated an accelerated rate of aging, while the other exhibited slower-than-expected aging. A t-test analysis of dietary biomarkers that distinguished these phenotypes revealed a nutrient profile with higher concentrations of specific fatty acids, antioxidants, and vitamins. Study participants with this nutrient profile demonstrated better cognitive scores and delayed brain aging, as determined by a t-test of the means. Notably, participant characteristics such as demographics, fitness levels, and anthropometrics did not account for the observed differences in brain aging. Therefore, the nutrient pattern identified by the present study motivates the design of neuroscience-guided dietary interventions to promote healthy brain aging.
Collapse
Affiliation(s)
- Christopher E Zwilling
- Department of Psychology, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | - Jisheng Wu
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aron K Barbey
- Department of Psychology, University of Illinois, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA.
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Bioengineering, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
5
|
Takić M, Ranković S, Girek Z, Pavlović S, Jovanović P, Jovanović V, Šarac I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int J Mol Sci 2024; 25:4909. [PMID: 38732139 PMCID: PMC11084241 DOI: 10.3390/ijms25094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.
Collapse
Affiliation(s)
- Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Slavica Ranković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Zdenka Girek
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Suzana Pavlović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Petar Jovanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| |
Collapse
|
6
|
Smolińska K, Szopa A, Sobczyński J, Serefko A, Dobrowolski P. Nutritional Quality Implications: Exploring the Impact of a Fatty Acid-Rich Diet on Central Nervous System Development. Nutrients 2024; 16:1093. [PMID: 38613126 PMCID: PMC11013435 DOI: 10.3390/nu16071093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Given the comprehensive examination of the role of fatty acid-rich diets in central nervous system development in children, this study bridges significant gaps in the understanding of dietary effects on neurodevelopment. It delves into the essential functions of fatty acids in neurodevelopment, including their contributions to neuronal membrane formation, neuroinflammatory modulation, neurogenesis, and synaptic plasticity. Despite the acknowledged importance of these nutrients, this review reveals a lack of comprehensive synthesis in current research, particularly regarding the broader spectrum of fatty acids and their optimal levels throughout childhood. By consolidating the existing knowledge and highlighting critical research gaps, such as the effects of fatty acid metabolism on neurodevelopmental disorders and the need for age-specific dietary guidelines, this study sets a foundation for future studies. This underscores the potential of nutritional strategies to significantly influence neurodevelopmental trajectories, advocating an enriched academic and clinical understanding that can inform dietary recommendations and interventions aimed at optimizing neurological health from infancy.
Collapse
Affiliation(s)
- Katarzyna Smolińska
- Chronic Wounds Laboratory, Medical University of Lublin, Chodźki St. 7, 20-093 Lublin, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| |
Collapse
|
7
|
Burron S, Richards T, Krebs G, Trevizan L, Rankovic A, Hartwig S, Pearson W, Ma DWL, Shoveller AK. The balance of n-6 and n-3 fatty acids in canine, feline, and equine nutrition: exploring sources and the significance of alpha-linolenic acid. J Anim Sci 2024; 102:skae143. [PMID: 38776363 PMCID: PMC11161904 DOI: 10.1093/jas/skae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024] Open
Abstract
Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.
Collapse
Affiliation(s)
- Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Giovane Krebs
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Alexandra Rankovic
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Samantha Hartwig
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
8
|
Lakshimi VI, Kavitha M. New Insights into Prospective Health Potential of ω-3 PUFAs. Curr Nutr Rep 2023; 12:813-829. [PMID: 37996669 DOI: 10.1007/s13668-023-00508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Courville AB, Majchrzak-Hong S, Yang S, Turner S, Wilhite B, Ness Shipley K, Horneffer Y, Domenichiello AF, Schwandt M, Cutler RG, Chen KY, Hibbeln JR, Ramsden CE. Dietary linoleic acid lowering alone does not lower arachidonic acid or endocannabinoids among women with overweight and obesity: A randomized, controlled trial. Lipids 2023; 58:271-284. [PMID: 38100748 PMCID: PMC10767670 DOI: 10.1002/lipd.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
The linoleic acid (LA)-arachidonic acid (ARA)-inflammatory axis suggests dietary LA lowering benefits health because it lowers ARA and ARA-derived endocannabinoids (ECB). Dietary LA reduction increases concentrations of omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DHA derived ECB. The aim of this study was to examine targeted reduction of dietary LA, with and without EPA and DHA, on plasma EPA and DHA and ECB (2-arachidonoyl glycerol [2-AG], anandamide [AEA], and docosahexaenoyl ethanolamide [DHA-EA]). Healthy, pre-menopausal women (n = 62, BMI 30 ± 3 kg/m2 , age 35 ± 7 years; mean ± SD) were randomized to three 12-week controlled diets: (1) high LA, low omega-3 EPA and DHA (H6L3); (2) low LA, low omega-3 EPA and DHA (L6L3); or (3) low LA, high omega-3 EPA and DHA (L6H3). Baseline plasma fatty acids and ECB were similar between diets. Starting at 4 weeks, L6L3 and L6H3 lowered plasma LA compared to H6L3 (p < 0.001). While plasma ARA changed from baseline by 8% in L6L3 and -8% in L6H3, there were no group differences. After 4 weeks, plasma EPA and DHA increased from baseline in women on the L6H3 diet (ps < 0.001) and were different than the H6L3 and L6L3 diets. No differences were found between diets for AEA or 2-AG, however, in L6L3 and L6H3, AEA increased by 14% (ps < 0.02). L6H3 resulted in 35% higher DHA-EA (p = 0.013) whereas no changes were seen with the other diets. Lowering dietary LA did not result in the expected changes in fatty acids associated with the LA-ARA inflammatory axis in women with overweight and obesity.
Collapse
Affiliation(s)
- Amber B Courville
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Sharon Majchrzak-Hong
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Shanna Yang
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Sara Turner
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Breanne Wilhite
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Katherine Ness Shipley
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Yvonne Horneffer
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Anthony F Domenichiello
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Melanie Schwandt
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Roy G Cutler
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| | - Kong Y Chen
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Joseph R Hibbeln
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Christopher E Ramsden
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Drobner T, Braun TS, Kiehntopf M, Schlattmann P, Lorkowski S, Dawczynski C. Evaluation of Influencing Factors on Metabolism of Land-Based n-3 Poly Unsaturated Fatty Acids-The KoALA Study. Nutrients 2023; 15:4461. [PMID: 37892536 PMCID: PMC10610546 DOI: 10.3390/nu15204461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to investigate the impact of influencing factors (sex, eicosapentaenoic acid (EPA) status at baseline, linoleic acid (LA) intake, milk fat intake) on the conversion of α-linolenic acid (ALA) obtained from linseed oil into its long-chain metabolites. In addition, the effect of ALA on cardiovascular risk markers was investigated. This study used a parallel design approach by randomly assigning the 134 subjects to one of four diets (high in LA (HLA); low in LA (LLA); high in milk fat (MF); control (Western diet)) each enriched with linseed oil (10 en%, 22-27 mL ≙ 13-16 g ALA). Blood samples were taken at baseline and after 4, 8, and 12 weeks of dietary intervention. The study was fully completed by 105 subjects (57.4 ± 12.1 years; 65.7% female). Results showed that ALA (296-465%), C-20:4n3 (54-140%), and EPA (37-73%) concentrations in erythrocytes increased in all groups (p < 0.01). In contrast, docosahexaenoic acid (19-35%, p < 0.01) and n-3 index (10-21%, p < 0.05) dropped in the HLA, LLA, and control groups. An increase in C-22:5n3 was only observed in the MF (36%) and control groups (11%) (p < 0.05). In addition, an increase in LA (7-27%) was found in the HLA, LLA, and control groups, whereas C-20:3n6 (16-22%), arachidonic acid (10-16%), C-22:4n6 (12-30%), and C-22:5n6 (32-47%) decreased (p < 0.01). The conversion into EPA was higher in men than in women (69 vs. 39%, p = 0.043) and in subjects with low EPA status compared to participants with high EPA status (79 vs. 29%, p < 0.001). A high LA status attenuates the conversion rate. In line with the literature, no clear effects on blood lipids and parameters of glucose metabolism were found in relation to ALA supplementation.
Collapse
Affiliation(s)
- Timo Drobner
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.D.); (T.S.B.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany; (P.S.); (S.L.)
| | - Theresa S. Braun
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.D.); (T.S.B.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany; (P.S.); (S.L.)
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, 07747 Jena, Germany;
| | - Peter Schlattmann
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany; (P.S.); (S.L.)
- Department of Medical Statistics, Informatics and Data Science, University Hospital Jena, 07743 Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany; (P.S.); (S.L.)
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.D.); (T.S.B.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany; (P.S.); (S.L.)
| |
Collapse
|
11
|
El-Zenary AS, Boney JW, Harvatine KJ. Direct Comparison of 18 Carbon n-3 and n-6 Fatty Acids at Equal Levels in an Oil Blend on Tissue Enrichment of Long-Chain Polyunsaturated Fatty Acid in Broiler Chickens. J Nutr 2023; 153:2929-2938. [PMID: 37453531 DOI: 10.1016/j.tjnut.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are of interest because of their health effects. However, most experiments use natural oils and are confounded by PUFA concentrations and other fatty acids (FAs) that impact biosynthesis of the very long-chain derivatives (VLC). OBJECTIVES To directly compare the effect of 18 C n-3 or n-6 FA fed at similar rates on their elongation and desaturation to VLC PUFA and their incorporation into tissues. METHODS Oil blends that substituted ∼23% points of stearidonic acid (SDA) with alpha-linolenic acid (ALA), gamma-linolenic acid (GLA), or linoleic acid (LA) while minimizing differences in other FA were prepared. COBB500 broilers were fed the oil blends at 1.25% of the diet from day 14-35 age. RESULTS There was greater enrichment of VLC PUFA in breast, thigh, liver, and plasma when diets were supplemented with high-SDA and high-GLA oil blends than high-ALA and high-LA oil blends. The efficiency of VLCn-3 PUFA synthesis from SDA and ALA was lower than the efficiency of VLCn-6 PUFA synthesis from GLA and LA, suggesting that the elongation and desaturation enzymes more efficiently utilized n-6 substrates. The efficiency of biotransformation of SDA to VLCn-3 PUFA was greater than that of high-ALA, and synthesis of VLCn-6 PUFA from GLA was higher than that of high-LA in breast, thigh, liver, and plasma. There were minimal effects on tissue-saturated and monounsaturated FA. CONCLUSIONS The high-SDA and high-GLA oil blends efficiently enriched tissues with their VLC-PUFA more than high-ALA and high-LA treatments.
Collapse
Affiliation(s)
- Ahmed Sa El-Zenary
- Department of Nutrition and Clinical Nutrition, College of Veterinary Medicine, University of Sadat City, Egypt; Department of Animal Science, Pennsylvania State University, University Park, PA, United States
| | - John W Boney
- Department of Animal Science, Pennsylvania State University, University Park, PA, United States
| | - Kevin J Harvatine
- Department of Animal Science, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
12
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bertin N, Vivarelli C, Bulfone L, Vacca A, Catena C, Sechi LA. Omega-3 Fatty Acids in Arterial Hypertension: Is There Any Good News? Int J Mol Sci 2023; 24:9520. [PMID: 37298468 PMCID: PMC10253816 DOI: 10.3390/ijms24119520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including alpha-linolenic acid (ALA) and its derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are "essential" fatty acids mainly obtained from diet sources comprising plant oils, marine blue fish, and commercially available fish oil supplements. Many epidemiological and retrospective studies suggested that ω-3 PUFA consumption decreases the risk of cardiovascular disease, but results of early intervention trials have not consistently confirmed this effect. In recent years, some large-scale randomized controlled trials have shed new light on the potential role of ω-3 PUFAs, particularly high-dose EPA-only formulations, in cardiovascular prevention, making them an attractive tool for the treatment of "residual" cardiovascular risk. ω-3 PUFAs' beneficial effects on cardiovascular outcomes go far beyond the reduction in triglyceride levels and are thought to be mediated by their broadly documented "pleiotropic" actions, most of which are directed to vascular protection. A considerable number of clinical studies and meta-analyses suggest the beneficial effects of ω-3 PUFAs in the regulation of blood pressure in hypertensive and normotensive subjects. These effects occur mostly through regulation of the vascular tone that could be mediated by both endothelium-dependent and independent mechanisms. In this narrative review, we summarize the results of both experimental and clinical studies that evaluated the effect of ω-3 PUFAs on blood pressure, highlighting the mechanisms of their action on the vascular system and their possible impact on hypertension, hypertension-related vascular damage, and, ultimately, cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
13
|
Østbye TKK, Gudbrandsen OA, Drotningsvik A, Ruyter B, Berge GM, Vogt G, Nilsson A. Different Dietary Ratios of Camelina Oil to Sandeel Oil Influence the Capacity to Synthesise and Deposit EPA and DHA in Zucker Fa/Fa Rats. Nutrients 2023; 15:nu15102344. [PMID: 37242227 DOI: 10.3390/nu15102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Plant-based food provides more ALA (α-linolenic acid) and less EPA (eicosapentaenoic acid) and DHA (docosahexanoic acid) than marine food. Earlier studies indicate that cetoleic acid (22:1n-11) stimulates the n-3 pathway from ALA to EPA and DHA. The present study aimed to investigate the dietary effects of camelina oil (CA) high in ALA and sandeel oil (SA) high in cetoleic acid on the conversion of ALA to EPA and DHA. Male Zucker fa/fa rats were fed a diet of soybean oil (Ctrl) or diets of CA, SA, or a combination of CA and SA. Significantly higher levels of DPA (docosapentaenoic acid) and DHA in blood cells from the CA group compared to the Ctrl indicate an active conversion of ALA to DPA and DHA. Increasing the uptake and deposition of EPA and DHA meant that a trend towards a decrease in the liver gene expression of Elovl5, Fads1, and Fads2 along with an increase in the dietary content of SA was observed. However, 25% of the SA could be exchanged with CA without having a significant effect on EPA, DPA, or DHA in blood cells, indicating that bioactive components in SA, such as cetoleic acid, might counteract the inhibiting effect of the high dietary content of DHA on the n-3 biosynthetic pathway.
Collapse
Affiliation(s)
| | - Oddrun Anita Gudbrandsen
- Dietary Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Aslaug Drotningsvik
- Dietary Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Vedde AS, 6030 Langevåg, Norway
| | - Bente Ruyter
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Gerd Marit Berge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Gjermund Vogt
- Eurofins Food & Agro Testing Norway AS, 1538 Moss, Norway
| | - Astrid Nilsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| |
Collapse
|
14
|
Gray NL, Stoodley I, Wood LG, Collins CE, Brown LJ, Rae KM, Pringle KG, Schumacher TL. Omega-3 Fatty Acids during Pregnancy in Indigenous Australian Women of the Gomeroi Gaaynggal Cohort. Nutrients 2023; 15:nu15081943. [PMID: 37111163 PMCID: PMC10145055 DOI: 10.3390/nu15081943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Higher dietary intakes of Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have been linked to lower rates of preterm birth and preeclampsia. The aim of this analysis was to describe dietary intake and fractions of red blood cell (RBC) membrane LC-PUFAs during pregnancy in a cohort of Indigenous Australian women. Maternal dietary intake was assessed using two validated dietary assessment tools and quantified using the AUSNUT (Australian Food and Nutrient) 2011-2013 database. Analysis from a 3-month food frequency questionnaire indicated that 83% of this cohort met national n-3 LC-PUFA recommendations, with 59% meeting alpha-linolenic acid (ALA) recommendations. No nutritional supplements used by the women contained n-3 LC-PUFAs. Over 90% of women had no detectable level of ALA in their RBC membranes, and the median Omega-3 Index was 5.5%. This analysis appears to illustrate a decline in concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) across gestation in women who had preterm birth. However, there was no visible trend in LC-PUFA fractions in women who experienced hypertension during pregnancy. Further research is needed to better understand the link between dietary intake of n-3 LC-PUFA-rich foods and the role of fatty acids in preterm birth and preeclampsia.
Collapse
Affiliation(s)
- Natalie L Gray
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Isobel Stoodley
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Clare E Collins
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Leanne J Brown
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- Department of Rural Health, University of Newcastle, Tamworth, NSW 2340, Australia
| | - Kym M Rae
- Mater Medical Research Institute, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, Herston, Brisbane, QLD 4072, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton, NSW 2308, Australia
| | - Tracy L Schumacher
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- Department of Rural Health, University of Newcastle, Tamworth, NSW 2340, Australia
| |
Collapse
|
15
|
Richards TL, Burron S, Ma DWL, Pearson W, Trevizan L, Minikhiem D, Grant C, Patterson K, Shoveller AK. Effects of dietary camelina, flaxseed, and canola oil supplementation on inflammatory and oxidative markers, transepidermal water loss, and coat quality in healthy adult dogs. Front Vet Sci 2023; 10:1085890. [PMID: 36968475 PMCID: PMC10034026 DOI: 10.3389/fvets.2023.1085890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionCamelina oil contains a greater concentration of omega-3 (n-3) a-linolenic acid (C18:3n-3; ALA) than omega-6 (n-6) linoleic acid (C18:2n-6; LA), in comparison to alternative fat sources commonly used to formulate canine diets. Omega-3 FAs are frequently used to support canine skin and coat health claims and reduce inflammation and oxidative stress; however, there is a lack of research investigating camelina oil supplementation and its effects on these applications in dogs. The objective of this study was to evaluate the effects of camelina oil supplementation on coat quality, skin barrier function, and circulating inflammatory and oxidative marker concentrations.MethodsThirty healthy [17 females; 13 males; 7.2 ± 3.1 years old; 27.4 ± 14.0 kg body weight (BW)] privately-owned dogs of various breeds were used. After a 4-week wash-in period consuming sunflower oil (n6:n3 = 1:0) and a commercial kibble, dogs were blocked by age, breed, and size, and randomly assigned to one of three treatment oils: camelina (n6:n3 = 1:1.18), canola (n6:n3 = 1:0.59), flaxseed (n6:n3 = 1:4.19) (inclusion level: 8.2 g oil/100 g of total food intake) in a randomized complete block design. Transepidermal water loss (TEWL) was measured using a VapoMeter on the pinna, paw pad, and inner leg. Fasted blood samples were collected to measure serum inflammatory and oxidative marker concentrations using enzyme-linked immunosorbent assay (ELISA) kits and spectrophotometric assays. A 5-point-Likert scale was used to assess coat characteristics. All data were collected on weeks 0, 2, 4, 10, and 16 and analyzed using PROC GLIMMIX in SAS.ResultsNo significant changes occurred in TEWL, or inflammatory and oxidative marker concentrations among treatments, across weeks, or for treatment by week interactions. Softness, shine, softness uniformity, color intensity, and follicle density of the coat increased from baseline in all treatment groups (P < 0.05).DiscussionOutcomes did not differ (P > 0.05) among treatment groups over 16-weeks, indicating that camelina oil is comparable to existing plant-based canine oil supplements, flaxseed, and canola, at supporting skin and coat health and inflammation in dogs. Future research employing an immune or exercise challenge is warranted, as the dogs in this study were not subjected to either.
Collapse
Affiliation(s)
- Taylor L. Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Luciano Trevizan
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Caitlin Grant
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Keely Patterson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Anna K. Shoveller
| |
Collapse
|
16
|
Redruello-Requejo M, Samaniego-Vaesken MDL, Puga AM, Montero-Bravo A, Ruperto M, Rodríguez-Alonso P, Partearroyo T, Varela-Moreiras G. Omega-3 and Omega-6 Polyunsaturated Fatty Acid Intakes, Determinants and Dietary Sources in the Spanish Population: Findings from the ANIBES Study. Nutrients 2023; 15:nu15030562. [PMID: 36771269 PMCID: PMC9920307 DOI: 10.3390/nu15030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The multiple roles of polyunsaturated fatty acids (PUFA) in growth and general health are well documented. However, available intake data for the Spanish population are limited and lack gender and age considerations. Therefore, our goal was to assess dietary intake adequacy of omega-3 and omega-6 PUFA, their determinants and their major food sources among the Spanish population. Due to their influence on various beneficial functions attributed to omega-3 PUFA, combined intake adequacy with folic acid (FA), vitamin B₁₂ and choline was also assessed. Intake data were obtained from the ANIBES cross-sectional study on a representative sample of the Spanish population (9-75 years; n = 2009), where dietary intake was analysed with a three-day dietary record. Median intake of total omega-3 PUFA stood at 0.81 g/day (0.56-1.19 g/day), with α-linolenic acid (ALA) at 0.61 g/day (0.45-0.85 g/day), eicosapentaenoic acid (EPA) at 0.03 g/day (0.01-0.12 g/day) and docosahexaenoic acid (DHA) at 0.06 g/day (0.0-0.20 g/day). Accordingly, 65% of the Spanish population showed insufficient intakes for total omega-3 PUFA; 87% for ALA, and 83% for combined EPA and DHA. Inadequate intakes were significantly higher in children, adolescents, and younger women of childbearing age (18-30 years). In contrast, inadequacy due to excessive intakes was almost negligible. Regarding omega-6 PUFA, total intake was 10.1 g/day (7.0-14.0 g/day), 10.0 g/day (6.9-13.9 g/day) for linoleic acid (LA) and 0.08 g/day (0.05-0.13 g/day) for arachidonic acid (AA). Non-compliance due to either insufficient or excessive intakes of LA stood at around 5% of the sample, with the elderly showing significantly higher degrees of inadequacy due to insufficient intakes (10%; p ≤ 0.05). Median omega-6 to omega-3 ratio was 12:1, and significantly higher in men compared to women (p ≤ 0.05); in children, adolescents and adults compared to the elderly (p ≤ 0.05); and in younger women of childbearing age compared to the older group (31-45 years) (p ≤ 0.001). Oils and fats and meat and meat products were the main dietary sources for the essential fatty acids LA and ALA, respectively. Meat and meat products were as well the main providers of AA, while fish and shellfish were almost exclusively the only sources of EPA and DHA. However, main food sources identified showed important differences across age groups. Finally, the total combined degree of inadequacy observed for omega-3 PUFA, FA, vitamin B₁₂ and choline reached 21.3% of the ANIBES population. The observed degree of inadequacy of omega-3 PUFA intakes among the Spanish population makes it urgent to increase its consumption and to consider the need for supplementation. This should also be the main strategy for the optimization of the omega-6/omega-3 ratio, as the adequacy observed for omega-6 intakes is relatively acceptable. Additional improvement of the dietary intake of FA, vitamin B12 and choline could contribute to the beneficial effects of omega-3 PUFA.
Collapse
Affiliation(s)
- Marina Redruello-Requejo
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - María de Lourdes Samaniego-Vaesken
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Ana M. Puga
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Ana Montero-Bravo
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Mar Ruperto
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Paula Rodríguez-Alonso
- Spanish Nutrition Foundation (FEN), c/General Álvarez de Castro 20, 1 apta, 28010 Madrid, Spain
| | - Teresa Partearroyo
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Gregorio Varela-Moreiras
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
- Correspondence: ; Tel.: +34-91-372-47-26
| |
Collapse
|
17
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
18
|
Liu Q, Lin J, Zhao W, Lei M, Yang J, Bai W. The dynamic changes of flavors and UPLC-Q-Exactive-Orbitrap-MS based lipidomics in mackerel (Scomberomorus niphonius) during dry-cured processing. Food Res Int 2023; 163:112273. [PMID: 36596184 DOI: 10.1016/j.foodres.2022.112273] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Dry-cured mackerel is favored by consumers for its suitable salty flavor. Herein, the dynamic changes of volatile compounds and lipids in the mackerel, and the lipidomics based on UPLC-Orbitrap/MS technique during dry-cured processing were investigated. The results showed that endogenous lipases activities in dry-cured mackerel decreased. The dry-cured processing of mackerel had significant effects on its lipid classes and content. The contents of Arachidonic acid (C20:4n6), docosapentaenoic acid (C22:5n3), linoleic acid (LA, C18:2n6), alpha-linolenic acid (C18:3n3), eicosatrienoic acid (C20:3n3) and docosahexaenoic acid (DHA, C22:6n3) increased during dry-cured processing. A total of 38 kinds of volatile compounds were detected in the dry-cured mackerel, 12 of which were derived from fatty acid oxidation. Among 30 lipid metabolites (FC ≥ 2 and VIP > 2), phosphatidylethanolamine (PE, 19:0/22:6) accounted for the highest content, and its difference between three stages was the most obvious. Glycerophospholipid and sphingolipid metabolisms were the most important metabolic pathways involved in dry-cured processing.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Jianjun Lin
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
19
|
Meuronen T, Lankinen MA, Kolmert J, de Mello VD, Sallinen T, Ågren J, Virtanen KA, Laakso M, Wheelock CE, Pihlajamäki J, Schwab U. The FADS1 rs174550 Genotype Modifies the n-3 and n-6 PUFA and Lipid Mediator Responses to a High Alpha-Linolenic Acid and High Linoleic Acid Diets. Mol Nutr Food Res 2022; 66:e2200351. [PMID: 36367234 PMCID: PMC10077898 DOI: 10.1002/mnfr.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/14/2022] [Indexed: 11/13/2022]
Abstract
SCOPE The fatty acid composition of plasma lipids, which is associated with biomarkers and risk of non-communicable diseases, is regulated by dietary polyunsaturated fatty acids (PUFAs) and variants of fatty acid desaturase (FADS). We investigated the interactions between dietary PUFAs and FADS1 rs174550 variant. METHODS AND RESULTS Participants (n = 118), homozygous for FADS1 rs174550 variant (TT and CC) followed a high alpha-linolenic acid (ALA, 5 percent of energy (E-%)) or a high linoleic acid (LA, 10 E-%) diet during an 8-week randomized controlled intervention. Fatty acid composition of plasma lipids and PUFA-derived lipid mediators were quantified by gas and liquid chromatography mass spectrometry, respectively. The high-LA diet increased the concentration of plasma LA, but not its lipid mediators. The concentration of plasma arachidonic acid decreased in carriers of CC and remained unchanged in the TT genotype. The high-ALA diet increased the concentration of plasma ALA and its cytochrome P450-derived epoxides and dihydroxys, and cyclooxygenase-derived monohydroxys. Concentrations of plasma eicosapentaenoic acid and its mono- and dihydroxys increased only in TT genotype carriers. CONCLUSIONS These findings suggest the potential for genotype-based recommendations for PUFA consumption, resulting in modulation of bioactive lipid mediators which can exert beneficial effects in maintaining health.
Collapse
Affiliation(s)
- Topi Meuronen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Food Sciences UnitUniversity of TurkuTurku20500Finland
| | - Maria A. Lankinen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
| | - Johan Kolmert
- Unit of Integrative MetabolomicsInstitute of Environmental MedicineKarolinska InstitutetStockholm171 65Sweden
| | - Vanessa Derenji de Mello
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
| | - Taisa Sallinen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- University of Eastern Finland Library KuopioKuopio70600Finland
| | - Jyrki Ågren
- Institute of BiomedicineSchool of Medicine University of Eastern FinlandKuopio70211Finland
| | - Kirsi A. Virtanen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Department of MedicineEndocrinology and Clinical NutritionKuopio University HospitalKuopio70210Finland
| | - Markku Laakso
- Institute of Clinical MedicineInternal Medicine University of Eastern FinlandKuopio70029Finland
- Department of Medicine, Kuopio University HospitalKuopio70210Finland
| | - Craig E. Wheelock
- Unit of Integrative MetabolomicsInstitute of Environmental MedicineKarolinska InstitutetStockholm171 65Sweden
- Department of Respiratory Medicine and AllergyKarolinska University HospitalStockholm141 86Sweden
- Gunma University Initiative for Advanced Research (GIAR)Gunma UniversityMaebashi371‐8511Japan
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Department of MedicineEndocrinology and Clinical NutritionKuopio University HospitalKuopio70210Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Department of MedicineEndocrinology and Clinical NutritionKuopio University HospitalKuopio70210Finland
| |
Collapse
|
20
|
Dao X, Zhang D, Wang L, Wang L. Analysis of human milk fatty acid composition and its correlation with diet pattern (A study in Tibetan population gathering area). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Aliev F, Barr PB, Davies AG, Dick DM, Bettinger J. Genes regulating levels of ω-3 long-chain polyunsaturated fatty acids are associated with alcohol use disorder and consumption, and broader externalizing behavior in humans. Alcohol Clin Exp Res 2022; 46:1657-1664. [PMID: 35904282 PMCID: PMC9509483 DOI: 10.1111/acer.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Individual variation in the physiological response to alcohol is predictive of an individual's likelihood to develop alcohol use disorder (AUD). Evidence from diverse model organisms indicates that the levels of long-chain polyunsaturated omega-3 fatty acids (ω-3 LC-PUFAs) can modulate the behavioral response to ethanol and therefore may impact the propensity to develop AUD. While most ω-3 LC-PUFAs come from diet, humans can produce these fatty acids from shorter chain precursors through a series of enzymatic steps. Natural variation in the genes encoding these enzymes has been shown to affect ω-3 LC-PUFA levels. We hypothesized that variation in these genes could contribute to the susceptibility to develop AUD. METHODS We identified nine genes (FADS1, FADS2, FADS3, ELOVL2, GCKR, ELOVL1, ACOX1, APOE, and PPARA) that are required to generate ω-3 LC-PUFAs and/or have been shown or predicted to affect ω-3 LC-PUFA levels. Using both set-based and gene-based analyses we examined their association with AUD and two AUD-related phenotypes, alcohol consumption, and an externalizing phenotype. RESULTS We found that the set of nine genes is associated with all three phenotypes. When examined individually, GCKR, FADS2, and ACOX1 showed significant association signals with alcohol consumption. GCKR was significantly associated with AUD. ELOVL1 and APOE were associated with externalizing. CONCLUSIONS Taken together with observations that dietary ω-3 LC-PUFAs can affect ethanol-related phenotypes, this work suggests that these fatty acids provide a link between the environmental and genetic influences on the risk of developing AUD.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Peter B. Barr
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Psychiatry & Behavioral SciencesSUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Andrew G. Davies
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Danielle M. Dick
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Jill C. Bettinger
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| |
Collapse
|
22
|
Burdge GC. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022; 57:267-287. [PMID: 35908848 DOI: 10.1002/lipd.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
α-linolenic acid (αLNA) conversion into the functionally important ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has been regarded as inadequate for meeting nutritional requirements for these PUFA. This view is based on findings of small αLNA supplementation trials and stable isotope tracer studies that have been interpreted as indicating human capacity for EPA and, in particular, DHA synthesis is limited. The purpose of this review is to re-evaluate this interpretation. Markedly differing study designs, inconsistent findings and lack of trial replication preclude robust consensus regarding the nutritional adequacy of αLNA as a source of EPC and DHA. The conclusion that αLNA conversion in humans is constrained is inaccurate because it presupposes the existence of an unspecified, higher level of metabolic activity. Since capacity for EPA and DHA synthesis is the product of evolution it may be argued that the levels of EPA and DHA it maintains are nutritionally appropriate. Dietary and supra-dietary EPA plus DHA intakes confer health benefits. Paradoxically, such health benefits are also found amongst vegetarians who do not consume EPA and DHA, and for whom αLNA conversion is the primary source of ω-3 PUFA. Since there are no reported adverse effects on health or cognitive development of diets that exclude EPA and DHA, their synthesis from αLNA appears to be nutritionally adequate. This is consistent with the dietary essentiality of αLNA and has implications for developing sustainable nutritional recommendations for ω-3 PUFA.
Collapse
Affiliation(s)
- Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
23
|
Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022; 14:nu14091969. [PMID: 35565936 PMCID: PMC9099610 DOI: 10.3390/nu14091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on human health are widely known. Humans are rather inefficient in synthesizing n-3 LC-PUFA; thus, these compounds should be supplemented in the diet. However, most Western human diets have unbalanced n-6/n-3 ratios resulting from eating habits and the fact that fish sources (rich in n-3 LC-PUFA) are not sufficient (worldwide deficit ~347,956 t/y) to meet the world requirements. In this context, it is necessary to find new and sustainable sources of n-3 LC-PUFA. Poultry products can provide humans n-3 LC-PUFA due to physiological characteristics and the wide consumption of meat and eggs. The present work aims to provide a general overview of the main strategies that should be adopted during rearing and postproduction to enrich and preserve n-3 LC-PUFA in poultry products. The strategies include dietary supplementation of α-Linolenic acid (ALA) or n-3 LC-PUFA, or enhancing n-3 LC-PUFA by improving the LA (Linoleic acid)/ALA ratio and antioxidant concentrations. Moreover, factors such as genotype, rearing system, transport, and cooking processes can impact the n-3 LC-PUFA in poultry products. The use of a multifactorial view in the entire production chain allows the relevant enrichment and preservation of n-3 LC-PUFA in poultry products.
Collapse
|
24
|
Li P, Hu S, Zhu Y, Sun T, Huang Y, Xu Z, Liu H, Luo C, Zhou S, Tan A, Liu L. Associations of Plasma Fatty Acid Patterns During Pregnancy With Gestational Diabetes Mellitus. Front Nutr 2022; 9:836115. [PMID: 35600822 PMCID: PMC9121815 DOI: 10.3389/fnut.2022.836115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background Limited studies have explored the difference of fatty acid profile between women with and without gestational diabetes mellitus (GDM), and the results were inconsistent. Individual fatty acids tend to be interrelated because of the shared food sources and metabolic pathways. Thus, whether fatty acid patters during pregnancy were related to GDM odds needs further exploration. Objective To identify plasma fatty acid patters during pregnancy and their associations with odds of GDM. Methods A hospital-based case-control study including 217 GDM cases and 217 matched controls was carried out in urban Wuhan, China from August 2012 to April 2015. All the participants were enrolled at the time of GDM screening and provided fasting blood samples with informed consent. We measured plasma concentrations of fatty acids by gas chromatography-mass spectrometry, and derived potential fatty acid patterns (FAPs) through principal components analysis. Conditional logistic regression and restricted cubic spline model were used to evaluate the associations between individual fatty acids or FAPs and odds of GDM. Results Twenty individual fatty acids with relative concentrations ≥0.05% were included in the analyses. Compared with control group, GDM group had significantly higher concentrations of total fatty acids, 24:1n-9, and relatively lower levels of 14:0, 15:0, 17:0, 18:0, 24:0, 16:1n-7, 20:1n-9,18:3n-6, 20:2n-6, 18:3n-3, 20:3n-3, 22:5n-3. Two novel patterns of fatty acids were identified to be associated with lower odds of GDM: (1) relatively higher odd-chain fatty acids, 14:0, 18:0, 18:3n-3, 20:2n-6, 20:3n-6 and lower 24:1n-9 and 18:2n-6 [adjusted odds ratio (OR) (95% confidence interval) (CI) for quartiles 4 vs. 1: 0.42 (0.23-0.76), P-trend = 0.002], (2) relatively higher n-3 polyunsaturated fatty acids, 24:0, 18:3n-6 and lower 16:0 and 20:4n-6 [adjusted OR (95% CI) for quartiles 4 vs. 1: 0.48 (0.26-0.90), P-trend = 0.018]. Conclusion Our findings suggested that two novel FAPs were inversely associated with GDM odds. The combination of circulating fatty acids could be a more significant marker of GDM development than individual fatty acids or their subgroups.
Collapse
Affiliation(s)
- Peiyun Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Nutrition, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Luo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqiong Zhou
- Department of Clinical Nutrition, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Davis H, Magistrali A, Butler G, Stergiadis S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods 2022; 11:foods11050646. [PMID: 35267281 PMCID: PMC8909876 DOI: 10.3390/foods11050646] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Livestock production is under increasing scrutiny as a component of the food supply chain with a large impact on greenhouse gas emissions. Amidst growing calls to reduce industrial ruminant production, there is room to consider differences in meat quality and nutritional benefits of organic and/or pasture-based management systems. Access to forage, whether fresh or conserved, is a key influencing factor for meat fatty acid profile, and there is increasing evidence that pasture access is particularly beneficial for meat’s nutritional quality. These composition differences ultimately impact nutrient supply to consumers of conventional, organic and grass-fed meat. For this review, predicted fatty acid supply from three consumption scenarios were modelled: i. average UK population National Diet and Nutrition Survey (NDNS) (<128 g/week) red meat consumption, ii. red meat consumption suggested by the UK National Health Service (NHS) (<490 g/week) and iii. red meat consumption suggested by the Eat Lancet Report (<98 g/week). The results indicate average consumers would receive more of the beneficial fatty acids for human health (especially the essential omega-3, alpha-linolenic acid) from pasture-fed beef, produced either organically or conventionally.
Collapse
Affiliation(s)
- Hannah Davis
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
- Correspondence: (H.D.); (S.S.)
| | - Amelia Magistrali
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
| | - Gillian Butler
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; (A.M.); (G.B.)
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Correspondence: (H.D.); (S.S.)
| |
Collapse
|
26
|
Pertiwi K, Küpers LK, de Goede J, Zock PL, Kromhout D, Geleijnse JM. Dietary and Circulating Long-Chain Omega-3 Polyunsaturated Fatty Acids and Mortality Risk After Myocardial Infarction: A Long-Term Follow-Up of the Alpha Omega Cohort. J Am Heart Assoc 2021; 10:e022617. [PMID: 34845924 PMCID: PMC9075367 DOI: 10.1161/jaha.121.022617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/28/2021] [Indexed: 01/22/2023]
Abstract
Background Habitual intake of long-chain omega-3 fatty acids, especially eicosapentaenoic and docosahexaenoic acid (EPA+DHA) from fish, has been associated with a lower risk of fatal coronary heart disease (CHD) in population-based studies. Whether that is also the case for patients with CHD is not yet clear. We studied the associations of dietary and circulating EPA+DHA and alpha-linolenic acid, a plant-derived omega-3 fatty acids, with long-term mortality risk after myocardial infarction. Methods and Results We analyzed data from 4067 Dutch patients with prior myocardial infarction aged 60 to 80 years (79% men, 86% on statins) enrolled in the Alpha Omega Cohort from 2002 to 2006 (baseline) and followed through 2018. Baseline intake of fish and omega-3 fatty acids were assessed through a validated 203-item food frequency questionnaire and circulating omega-3 fatty acids were assessed in plasma cholesteryl esters. Hazard ratios (HRs) with 95% CIs were obtained from Cox regression analyses. During a median follow-up period of 12 years, 1877 deaths occurred, of which 515 were from CHD and 834 from cardiovascular diseases. Dietary intake of EPA+DHA was significantly inversely associated with only CHD mortality (HR, 0.69 [0.52-0.90] for >200 versus ≤50 mg/d; HR, 0.92 [0.86-0.98] per 100 mg/d). Similar results were obtained for fish consumption (HRCHD, 0.74 [0.53-1.03] for >40 versus ≤5 g/d; Ptrend: 0.031). Circulating EPA+DHA was inversely associated with CHD mortality (HR, 0.71 [0.53-0.94] for >2.52% versus ≤1.29%; 0.85 [0.77-0.95] per 1-SD) and also with cardiovascular diseases and all-cause mortality. Dietary and circulating alpha-linolenic acid were not significantly associated with mortality end points. Conclusions In a cohort of Dutch patients with prior myocardial infarction, higher dietary and circulating EPA+DHA and fish intake were consistently associated with a lower CHD mortality risk. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03192410.
Collapse
Affiliation(s)
- Kamalita Pertiwi
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Leanne K. Küpers
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Janette de Goede
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Peter L. Zock
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Daan Kromhout
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
- Department of EpidemiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Johanna M. Geleijnse
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
27
|
El-Zenary ASA, Gaafar KM, Abou-Elkhair R, Elkin RG, Boney JW, Harvatine KJ. Comparison of Ahiflower oil containing stearidonic acid to a high-alpha-linolenic acid flaxseed oil at two levels on tissue omega-3 enrichment in broilers. Lipids 2021; 57:57-68. [PMID: 34800048 DOI: 10.1002/lipd.12329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022]
Abstract
Enrichment of broiler meat with very long-chain omega-3 fatty acids (VLCn-3 FA) is of interest because of their beneficial effects on human health. The ability of Ahiflower® (AHI) oil (Buglossoides arvensis), which naturally contains stearidonic acid (SDA), and a high-alpha-linolenic acid (ALA) flaxseed (FLAX) oil to enrich VLCn-3 FA contents in broilers tissues was investigated. Fifty-five Cobb 500 chicks were fed from days 12 to 35 of life either a control (CON) diet that contained 27.9 g/kg soybean oil or AHI or FLAX oils, each individually at 7.5 or 22.5 g/kg of the diet in substitution for soybean oil (all on an as fed basis). Total VLCn-3 FA contents were greater in breast, thigh, liver, adipose tissue, and plasma of all n-3 treatments compared to CON, with the greatest increase observed at the highest level of AHI and FLAX oils (p < 0.001). AHI oil at 7.5 g/kg promoted the most efficient synthesis and deposition of VLCn-3 in broiler tissues measured as deposition of VLCn-3 FA in tissues relative to intake of n3 FA. In conclusion, both ALA and SDA oils increased VLCn-3 FA deposition in tissues, but there were diminishing returns when increasing dietary levels of the oils.
Collapse
Affiliation(s)
- Ahmed S A El-Zenary
- Department of Nutrition and Clinical Nutrition, College of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.,Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Khalid M Gaafar
- Department of Nutrition and Clinical Nutrition, College of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Reham Abou-Elkhair
- Department of Nutrition and Clinical Nutrition, College of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John W Boney
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
28
|
Cavalli J, Freitas MA, Gonçalves ECD, Fadanni GP, Santos AA, Raposo NRB, Dutra RC. Chia oil prevents chemical and immune-mediated inflammatory responses in mice: Evidence for the underlying mechanisms. Food Res Int 2021; 149:110703. [PMID: 34600695 DOI: 10.1016/j.foodres.2021.110703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Chia (Salvia hispanica L.) is an herbaceous plant used as omega-3 polyunsaturated fatty acid (ω-3 PUFA) source that presents a range of beneficial effects on human health. Herein, it was used a chia oil containing over than 62% of α-linolenic acid (ALA), a compound widely related to anti-inflammatory actions. Chia oil effect was tested using paw edema and mechanical hyperalgesia induced by carrageenan, and ear edema induced by croton oil, histamine, and capsaicin. Croton oil was used in both preventive and therapeutic treatment schedules of chia oil while histamine and capsaicin were used only in preventive treatment schedule. Chia oil mechanism of action was investigated using nociception and paw edema response induced by intraplantar injection of acidified saline (ASIC activator), PGE2 (prostaglandin pathway), cinnamaldehyde (TRPA1 activator), bradykinin (BK pathway), menthol (TRPM8 activator), and capsaicin (TRPV1 activator). Further, RT-PCR for inflammatory mediators (TRPA1, NF-κB, PPAR-γ, COX-2, IL-6, TNF, FPR2, FAAH, MAGL, and IL-12A) induced by carrageenan, NLRP3 inflammasome activation, and the cell viability were then accessed. Later, chia oil actions were evaluated in the experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis (MS) model. Chia oil showed anti-edematogenic and anti-hyperalgesic effects when administered 1 h before pro-inflammatory stimulus - particularly carrageenan and croton oil. Moreover, chia oil upregulated the mRNA levels of COX-2 and formyl peptide receptor 2 (FPR2) while reduced IL-6 expression in the spinal cord of mice submitted to i.pl. injection of carrageenan. Interestingly, chia oil mediates antinociceptive effects in mice decreasing the nociceptive response induced by acidified saline, PGE2, and cinnamaldehyde, but not by bradykinin, menthol, and capsaicin. On the EAE model, chia oil preventively administered attenuated EAE-induced motor deficits and mechanical hyperalgesia in mice, suggesting a valuable effect of chia oil supplementation in regulating inflammatory responses and some immune functions during immune-mediated inflammatory disorders (IMID). Nonetheless, additional reports will need to assess the effect of chia oil in well-controlled clinical trials performed in MS patients.
Collapse
Affiliation(s)
- Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Mariana A Freitas
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Guilherme P Fadanni
- Center of Innovation and Preclinical Research, 88056-000 Florianópolis, SC, Brazil
| | - Adara A Santos
- Center of Innovation and Preclinical Research, 88056-000 Florianópolis, SC, Brazil
| | - Nádia R B Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
29
|
Silva LDA, Verneque BJF, Mota APL, Duarte CK. Chia seed ( Salvia hispanica L.) consumption and lipid profile: a systematic review and meta-analysis. Food Funct 2021; 12:8835-8849. [PMID: 34378609 DOI: 10.1039/d1fo01287h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chia (Salvia hispanica L.) is an annual herbaceous plant, originally from southern Mexico and northern Guatemala - nowadays grown all over the world. In recent years, there has been an increase in demand for plant foods with health-promoting properties, and chia is a main actor in this process due to its high nutritional and functional value and its chemical composition rich in PUFAs, mainly ω-3, as well as protein, dietary fiber, and bioactive compounds. Chia has been explored in different research models for health and the prevention of human diseases. Evidence has suggested potential for improving insulin resistance, disordered lipid profiles, glucose tolerance and even adiposity. The aim of this study was to evaluate the effect of consumption of chia seeds on the lipid profile, triglycerides, and serum ω-3 fatty acids in adults. This systematic review included all randomized controlled trials (parallel or crossover design) published up to August 2020 in the main databases Medline, Embase, Scopus, Web of Science, and Scielo. Two independent authors selected and extracted data from those articles. After the selection process, 10 clinical trials were included. Forest plots and summary tables were constructed to present data and sensitivity subgroup analyses were performed for some of the outcomes. The results showed that chia consumption suggests a protective effect on the lipid profile, decreasing TC (MD = -2.98, 95% CI = [-9.98; 4.02]), TG (MD = -14.09 mg dL-1, 95% CI = [-33.46; 5.28]), and LDL (MD = 2.07 mg dL-1; 95% CI = [-5.05; 9.19]) and increasing HDL (MD = -2.92 mg dL-1, 95% CI = [-5.91; 0.06]). Regarding serum fatty acids, chia reduced FFA and SFA and increased PUFAs, ALA, EPA, and LA. It has also reduced DHA while not changing DPA. The intake of chia appears to have a neutral or beneficial effect on some markers of the lipid and fatty acid profile.
Collapse
Affiliation(s)
| | | | - Ana Paula Lucas Mota
- Department of Clinical and Toxicological Analysis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Kümmel Duarte
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
30
|
Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021; 35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: The 5-year survival rate of childhood cancers is now reaching 84%. However, treatments cause numerous acute and long-term side effects. These include cardiometabolic complications, namely hypertension, dyslipidemia, hyperglycemia, insulin resistance, and increased fat mass. Recent Advances: Many antineoplastic treatments can induce oxidative stress (OxS) and trigger an inflammatory response, which may cause acute and chronic side effects. Critical Issues: Clinical studies have reported a state of heightened OxS and inflammation during cancer treatment in children as the result of treatment cytotoxic action on both cancerous and noncancerous cells. Higher levels of OxS and inflammation are associated with treatment side effects and with the development of cardiometabolic complications. Key nutrients (omega-3 polyunsaturated fatty acids, dietary antioxidants, probiotics, and prebiotics) have the potential to modulate inflammatory and oxidative responses and, therefore, could be considered in the search for adverse complication prevention means as long as antineoplastic treatment efficiency is maintained. Future Directions: There is a need to better understand the relationship between cardiometabolic complications, OxS, inflammation and diet during pediatric cancer treatment, which represents the ultimate goal of this review. Antioxid. Redox Signal. 35, 293-318.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Abderrahim Benmoussa
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Alexandre Warin
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada
| | | | - Sophie Marcoux
- Department of Public Health & Preventive Medicine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| |
Collapse
|
31
|
Nienaber A, Ozturk M, Dolman RC, Zandberg L, Hayford FE, Brombacher F, Blaauw R, Smuts CM, Parihar SP, Malan L. Beneficial effect of long-chain n-3 polyunsaturated fatty acid supplementation on tuberculosis in mice. Prostaglandins Leukot Essent Fatty Acids 2021; 170:102304. [PMID: 34082319 DOI: 10.1016/j.plefa.2021.102304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Intakes of the omega-3 essential fatty acids (n-3 EFAs) are low in the general adult population, with high n-6/n-3 polyunsaturated fatty acid (PUFA) ratios and the accompanying suboptimal n-3 PUFA status. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) have antibacterial and inflammation-resolving effects in tuberculosis (TB). However, whether switching to a diet with optimum n-3 EFA intake after the infection has comparable benefits has not been investigated. We aimed to compare the effects of a diet with sufficient n-3 EFA content in an acceptable n-6/n-3 PUFA ratio for rodents ((n-3)eFAS group) with those on the same diet supplemented with EPA and DHA (EPA/DHA group) in Mycobacterium tuberculosis (Mtb)-infected C3HeB/FeJ mice with a low n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient diet with a high n-6/n-3 PUFA ratio for 6 weeks before Mtb infection and randomized to either (n-3)eFAS or EPA/DHA diets 1 week post-infection for 3 weeks. At endpoint, EPA and DHA compositions were higher and arachidonic acid, osbond acid, and total n-6 LCPUFAs lower in all lipid pools measured in the EPA/DHA group (all P < 0.001). Percentage body weight gain was higher (P = 0.017) and lung bacterial load lower (P < 0.001) in the EPA/DHA group. Additionally, the EPA/DHA group had a more pro-resolving lung lipid mediator profile and lower lung in IL-1α and IL-1β concentrations (P = 0.023, P = 0.049). Inverse correlations were found between the lung and peripheral blood mononuclear cell EPA and DHA and selected pro-inflammatory cytokines. These are the first findings that indicate that EPA/DHA supplementation provides benefits superior to a diet with sufficient n-3 EFAs concerning bacterial killing, weight gain and lung inflammation resolution in Mtb-infected mice with a low n-3 PUFA status. Therefore, EPA and DHA may be worth considering as adjunct TB treatment.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa; Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Robin C Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank Ea Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa; Department of Nutrition and Dietetics, School of biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa; Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa; Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa; Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, Western Cape, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa; Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa; Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa; Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
32
|
Nutrigenomics of Dietary Lipids. Antioxidants (Basel) 2021; 10:antiox10070994. [PMID: 34206632 PMCID: PMC8300813 DOI: 10.3390/antiox10070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual’s genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.
Collapse
|
33
|
Buckland G, de Silva Johnson S, Johnson L, Taylor CM, Jones LR, Emmett PM. The relationship between dietary intakes and plasma concentrations of PUFA in school-age children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Br J Nutr 2021; 127:1-11. [PMID: 34134803 PMCID: PMC10484628 DOI: 10.1017/s0007114521002191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
An adequate intake of PUFA plays a vital role in human health. Therefore, it is important to assess PUFA intakes in different populations and validate them with biomarkers, but only a few small studies are in paediatric populations. We calculated the dietary intake of PUFA and their main food sources in children and assessed associations between PUFA intakes and plasma proportions. Dietary intakes of 7-year-old children (n 8242) enrolled in the Avon Longitudinal Study of Parents and Children were calculated from the parental-completed FFQ. Plasma PUFA were measured in 5571 children 8 months later, and 4380 children had complete dietary and plasma data. The association between dietary and plasma PUFA proportions was estimated using Spearman's correlation coefficients, quintile cross-classification and Cohen's κ coefficients. Mean total PUFA intake was 13·2 g/d (sd 4·2), contributing 6·5 % of total energy intake; n-6 PUFA contributed 5·2 % and n-3 PUFA 0·7 %. The n-6:n-3 ratio was 7·9:1. Mean intakes of EPA and DHA were 35·7 mg/d and 49·7 mg/d, respectively. Most n-3 and n-6 PUFA intakes were weakly correlated with their respective plasma lipids (0·07 ≤ r ≤ 0·16, P < 0·001). The correlation between dietary and plasma DHA was stronger though (r = 0·34, P < 0·001), supported by a modest level of agreement between quintiles (k = 0·32). The results indicate that the FFQ was able to reasonably rank the long-chain (LC) PUFA, DHA, in this paediatric population. Public health initiatives need to address the suboptimal ratio of n-6:n-3 PUFA and very low n-3 LC-PUFA intakes in school-age children in the UK.
Collapse
Affiliation(s)
- Genevieve Buckland
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, BristolBS8 1NU, UK
| | - Sandra de Silva Johnson
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Laura Johnson
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, BristolBS8 1NU, UK
| | - Louise R. Jones
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, BristolBS8 1NU, UK
| | - Pauline M. Emmett
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, BristolBS8 1NU, UK
| |
Collapse
|
34
|
Prado-Cabrero A, Nolan JM. Omega-3 nutraceuticals, climate change and threats to the environment: The cases of Antarctic krill and Calanus finmarchicus. AMBIO 2021; 50:1184-1199. [PMID: 33502683 PMCID: PMC8068752 DOI: 10.1007/s13280-020-01472-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The nutraceutical market for EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) is promoting fishing for Euphasia superba (Antarctic krill) in the Southern Ocean and Calanus finmarchicus in Norwegian waters. This industry argues that these species are underexploited, but they are essential in their ecosystems, and climate change is altering their geographical distribution. In this perspective, we advocate the cessation of fishing for these species to produce nutraceuticals with EPA and DHA. We argue that this is possible because, contrary to what this industry promotes, the benefits of these fatty acids only seem significant to specific population groups, and not for the general population. Next, we explain that this is desirable because there is evidence that these fisheries may interact with the impact of climate change. Greener sources of EPA and DHA are already available on the market, and their reasonable use would ease pressure on the Arctic and Antarctic ecosystems.
Collapse
Affiliation(s)
- Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| |
Collapse
|
35
|
Messina M, Shearer G, Petersen K. Soybean oil lowers circulating cholesterol levels and coronary heart disease risk, and has no effect on markers of inflammation and oxidation. Nutrition 2021; 89:111343. [PMID: 34171740 DOI: 10.1016/j.nut.2021.111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
To reduce risk of coronary heart disease, replacement of saturated fats (SFAs) with polyunsaturated fats (PUFA) is recommended. Strong and concordant evidence supports this recommendation, but controversy remains. Some observational studies have reported no association between SFAs and coronary heart disease, likely because of failure to account for the macronutrient replacing SFAs, which determines the direction and strength of the observed associations. Controversy also persists about whether ω-6 (nω-6) PUFA or a high dietary ratio of nω-6 to ω-3 (nω-3) fatty acids leads to proinflammatory and pro-oxidative states. These issues are relevant to soybean oil, which is the leading edible oil consumed globally and in the United States. Soybean oil accounts for over 40% of the US intake of both essential fatty acids. We reviewed clinical and epidemiologic literature to determine the effects of soybean oil on cholesterol levels, inflammation, and oxidation. Clinical evidence indicates that soybean oil does not affect inflammatory biomarkers, nor does it increase oxidative stress. On the other hand, it has been demonstrated that when dietary SFAs are replaced with soybean oil, blood cholesterol levels are lowered. Regarding the nω-6:nω-3 dietary ratio, health agencies have consistently rejected the importance of this ratio, instead emphasizing the importance of consuming sufficient amounts of each type of fat. Thus, several lines of evidence indicate that soybean oil can positively contribute to overall health and reduction of risk of coronary heart disease.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., Pittsfield, Massachusetts, USA.
| | - Gregory Shearer
- Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristina Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
36
|
Van Dael P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: review of recent studies and recommendations. Nutr Res Pract 2021; 15:137-159. [PMID: 33841720 PMCID: PMC8007408 DOI: 10.4162/nrp.2021.15.2.137] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/13/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Long-chain (LC) n-3 polyunsaturated fatty acids (n-3 PUFAs), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are nutrients involved in many metabolic and physiological processes, and are referred to as n-3 LCPUFA. They have been extensively studied for their effects in human nutrition and health. This paper provides an overview on metabolism, sources, dietary intake, and status of n-3 LCPUFA. A summary of the dietary recommendations for n-3 LCPUFAs for different age groups as well as specific physiological conditions is provided. Evidence for n-3 LCPUFA in cardiovascular diseases, including new studies, is reviewed. Expert recommendations generally support a beneficial effect of n-3 LCPUFA on cardiovascular health and recommend a daily intake of 500 mg as DHA and EPA, or 1-2 servings of fish per week. The role of n-3 LCPUFA on brain health, in particular neurodegenerative disorders and depression, is reviewed. The evidence for beneficial effects of n-3 LCPUFA on neurodegenerative disorders is non-conclusive despite mechanistic support and observational data. Hence, no definite n-3 LCPUFA expert recommendations are made. Data for the beneficial effect of n-3 LCPUFA on depression are generally compelling. Expert recommendations have been established: 200-300 mg/day for depression; up to 1-2 g/day for major depressive disorder. Recent studies support a beneficial role of n-3 LCPUFAs in reducing the risk for premature birth, with a daily intake of 600-800 mg of DHA during pregnancy. Finally, international experts recently reviewed the scientific evidence on DHA and arachidonic acid (ARA) in infant nutrition and concluded that the totality of data support that infant and follow-on formulas should provide both DHA and ARA at levels similar to those in breast milk. In conclusion, the available scientific data support that dietary recommendations for n-3 LCPUFA should be established for the general population and for subjects with specific physiological conditions.
Collapse
Affiliation(s)
- Peter Van Dael
- Nutrition Science & Advocacy, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland
| |
Collapse
|
37
|
Monnard CR, Dulloo AG. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes Rev 2021; 22 Suppl 2:e13197. [PMID: 33471425 DOI: 10.1111/obr.13197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
It is now recognized that the amount and type of dietary fat consumed play an important role in metabolic health. In humans, high intake of polyunsaturated fatty acids (PUFAs) has been associated with reductions in cardiovascular disease risk, improvements in glucose homeostasis, and changes in body composition that involve reductions in central adiposity and, more recently, increases in lean body mass. There is also emerging evidence, which suggests that high intakes of the plant-based essential fatty acids (ePUFAs)-n-6 linoleic acid (LA) and n-3 α-linolenic acid (ALA)-have a greater impact on body composition (fat mass and lean mass) and on glucose homeostasis than the marine-derived long-chain n-3 PUFA-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, high intake of both ePUFAs (LA and ALA) may also have anti-inflammatory effects in humans. The purpose of this review is to highlight the emerging evidence, from both epidemiological prospective studies and clinical intervention trials, of a role for PUFA, in particular ePUFA, in the long-term regulation of body weight and body composition, and their impact on cardiometabolic health. It also discusses current notions about the mechanisms by which PUFAs modulate fat mass and lean mass through altered control of energy intake, thermogenesis, or lean-fat partitioning.
Collapse
Affiliation(s)
- Cathriona R Monnard
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
38
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
39
|
Tabaszewska M, Rutkowska J, Skoczylas Ł, Słupski J, Antoniewska A, Smoleń S, Łukasiewicz M, Baranowski D, Duda I, Pietsch J. Red Arils of Taxus baccata L.-A New Source of Valuable Fatty Acids and Nutrients. Molecules 2021; 26:molecules26030723. [PMID: 33573256 PMCID: PMC7866497 DOI: 10.3390/molecules26030723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of this study, focused on the nutritional value of wild berries, was to determine the contents of macronutrients, profiles of fatty (FAs) and amino acids (AAs), and the contents of selected elements in red arils (RA) of Taxus baccata L., grown in diverse locations in Poland. Protein (1.79–3.80 g/100 g) and carbohydrate (18.43–19.30 g/100 g) contents of RAs were higher than in many cultivated berries. RAs proved to be a source of lipids (1.39–3.55 g/100 g). Ten out of 18 AAs detected in RAs, mostly branched-chain AAs, were essential AAs (EAAs). The EAAs/total AAs ratio approximating were found in animal foods. Lipids of RA contained seven PUFAs, including those from n-3 family (19.20–28.20 g/100 g FA). Polymethylene-interrupted FAs (PMI-FAs), pinolenic 18:3Δ5,9,12; sciadonic 20:3Δ5,11,14, and juniperonic 20:4Δ5,11,14,17, known as unique for seeds of gymnosperms, were found in RAs. RAs may represent a novel dietary source of valuable n-3 PUFAs and the unique PMI-FAs. The established composition of RAs suggests it to become a new source of functional foods, dietary supplements, and valuable ingredients. Because of the tendency to accumulate toxic metals, RAs may be regarded as a valuable indicator of environmental contamination. Thus, the levels of toxic trace elements (Al, Ni, Cd) have to be determined before collecting fruits from natural habitats.
Collapse
Affiliation(s)
- Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Cracow, Balicka st. 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.); (J.S.)
| | - Jaroslawa Rutkowska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska st.159c, 02-776 Warsaw, Poland; (A.A.); (D.B.)
- Correspondence:
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Cracow, Balicka st. 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.); (J.S.)
| | - Jacek Słupski
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Cracow, Balicka st. 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.); (J.S.)
| | - Agata Antoniewska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska st.159c, 02-776 Warsaw, Poland; (A.A.); (D.B.)
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, Al. 29 Listopada 54, 31-425 Cracow, Poland;
| | - Marcin Łukasiewicz
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture in Cracow, Balicka st. 122, 30-149 Cracow, Poland;
| | - Damian Baranowski
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska st.159c, 02-776 Warsaw, Poland; (A.A.); (D.B.)
| | - Iwona Duda
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka st. 122, 30-149 Cracow, Poland;
| | - Jörg Pietsch
- Institute of Legal Medicine, Medical Faculty Carl Gustav, Dresden Technical University, Fetscherstr. 74, D-01307 Dresden, Germany;
| |
Collapse
|
40
|
Wen M, Zhao Y, Shi H, Wang C, Zhang T, Wang Y, Xue C. Short-term supplementation of DHA as phospholipids rather than triglycerides improve cognitive deficits induced by maternal omega-3 PUFA deficiency during the late postnatal stage. Food Funct 2021; 12:564-572. [PMID: 33325958 DOI: 10.1039/d0fo02552f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cognitive deficiencies, which are caused by maternal omega-3 PUFA deficiency (O-3 Def), are likely to be more rapidly and easily reversed at younger ages with quicker DHA reversal. This study aims to compare the efficiency of short-term supplementation of DHA in the form of phospholipids (PL) and triglycerides (TG) and improve cognitive deficiency in the O-3 Def model during different periods of brain development (3-week and 7-week old). The animal's spatial task performance, brain PUFA concentration, histopathology, and expression of synapse-associated proteins in the hippocampus were then analyzed. We demonstrate here that DHA-PL shows improved efficiency in improving cognitive deficiency compared to DHA-TG, particularly for adult O-3 Def offspring. The superiority of DHA-PL also correlates with the specific elevation of synapse-associated proteins, including BDNF, DCX, GAP-43, Syn, and PSD95, except to higher brain DHA accretion. This work highlights the DHA-PL as a better DHA supplement for inferior brain development caused by maternal O-3 Def, especially regarding those who missed the optimal time window of neurodevelopment.
Collapse
Affiliation(s)
- Min Wen
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | | | | | | | | | | | | |
Collapse
|
41
|
In Vivo Digestion of Egg Products Enriched with DHA: Effect of the Food Matrix on DHA Bioavailability. Foods 2020; 10:foods10010006. [PMID: 33375011 PMCID: PMC7822025 DOI: 10.3390/foods10010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to determine to what extent the food matrix could affect the release of docosahexaenoic acid (DHA) during digestion and its incorporation into systemic circulation. In this aim, three DHA-enriched egg products having the same composition but different structure were developed: omelet, hard-boiled egg, and mousse. Then, nine pigs fitted with T-shape cannulas at duodenal level and a jugular venous catheter were fed with the DHA-enriched egg products, and duodenal effluents and plasma were collected throughout the postprandial period. Results highlighted an undeniable effect of the food matrix on digestion parameters and DHA bioavailability. The transit of DHA and protein through the duodenum was faster after the ingestion of the mousse than after the ingestion of the omelet and hard-boiled egg. While most of the DHA and protein ingested under the form of mousse had already passed through the duodenum 4.5 h after its ingestion, significantly higher quantities were still present in the case of the omelet and hard-boiled egg. In terms of bioavailability, the omelet was the most efficient vector for delivering DHA into systemic circulation. It supplied 56% and 120% more DHA than the hard-boiled egg and the mousse, respectively.
Collapse
|
42
|
Neijat M, Habtewold J, Li S, Jing M, House JD. Effect of dietary n-3 polyunsaturated fatty acids on the composition of cecal microbiome of Lohmann hens. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102182. [PMID: 33038831 DOI: 10.1016/j.plefa.2020.102182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Supplementation of n-3 fatty acids to poultry diets is widely acknowledged for its role in enhancing poultry products, however, little is known about the compositional responses of gut microbial communities to type and dosage of these supplements. Here, we compared the effects of n-3 polyunsaturated fatty acids (PUFA), supplied as alpha-linolenic acid (ALA) or docosahexaenoic acid (DHA), on the composition of bacterial communities in ceca of laying hens. Corn-soybean basal diets were supplemented with either flaxseed oil (FO, ALA-rich) or marine algal biomass (MA, DHA-rich), and each supplied 0.20 and 0.60% of total n-3 PUFA in the diet. Lohmann LSL-Classic laying hens (n = 10/treatment) were randomly allocated to one of the 4 diets. After 8 weeks of feeding, blood, liver and cecal digesta samples were obtained for plasma glucose, fatty acids, and short chain fatty acids analyses, respectively. The gut bacterial communities were characterized using genomic DNA extracted from cecal contents, whereby the V3-V4 hypervariable region of the 16S rRNA gene was sequenced using the Illumina Miseq® platform. Firmicutes and Bacteroidetes were the predominant phyla in both the FO- and MA-fed groups. The relative abundance of Tenericutes, often associated with immunomodulation, was relatively higher (P<0.0001) in the FO than MA group. Although the relative abundance of Bacteroides was greater for the FO- than the MA-fed group, this genus was negatively correlated (P<0.05) with total n-3 PUFA in the liver at higher dosages of both FO- and MA-fed hens. Higher dose of FO (0.60%) and both dosages of MA (0.20 and 0.60%) substantially enriched several members of Firmicutes (e.g., Faecalibacterium, Clostridium and Ruminococcus) which are known to produce butyrate. Moreover, co-occurrence network analysis revealed that, in the FO 0.60- and MA 0.20-fed hens, Ruminococcaceae was the most influential taxon accounting for about 31% of the network complexity. These findings demonstrate that supplementation of different type and level of n-3 PUFA in hens' diets could enrich microbial communities with potential role in lipid metabolism and health.
Collapse
Affiliation(s)
- M Neijat
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - J Habtewold
- Agriculture and Agri-Food Canada (AAFC), Ottawa, Ontario, Canada
| | - S Li
- Department of Animal Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - M Jing
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - J D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Department of Animal Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, R3T 2E1, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
43
|
Neijat M, Zacek P, Picklo MJ, House JD. Lipidomic characterization of omega-3 polyunsaturated fatty acids in phosphatidylcholine and phosphatidylethanolamine species of egg yolk lipid derived from hens fed flaxseed oil and marine algal biomass. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102178. [PMID: 32980739 DOI: 10.1016/j.plefa.2020.102178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
Membrane phospholipids, including phosphatidylcholine (PC) and phosphatidylethanolamine (PE), consist of distinct fatty acids occupying the sn-1 and sn-2 positions, reflecting the highly regulated nature of lipid biosynthesis. However, little is known about the influence of dietary lipids on the positional nature of fatty acids in tissues, including the enrichment of omega-3 polyunsaturated fatty acid (PUFA) in chicken egg yolk phospholipids. This study was undertaken to characterize the PC and PE species in egg lipids derived from Lohmann hens (n=10/treatment) randomly allocated to either a control (no supplementation), a flaxseed oil (FO) or a marine algal oil (MA) diet. Each of the FO or MA diets supplied three levels of total omega-3 PUFA (0.20, 0.40 and 0.60% of diet) that were provided for 6 weeks. A combination of multiplexed mass spectrometry (MS) experiments are used to determine total, isobaric, and position molecules for PC and PE in egg yolk. The distribution of phospholipids in the yolk was predominantly PC over PE (~72 vs. 23%, respectively) across treatments. The longer chain PUFA existed in the sn-2 position in the PC and PE. Although docosahexaenoic acid (22:6) formed isomers with fatty acids 16:0, 18:0 and 18:1; it was preferentially enriched in the egg in combination with 16:0 with both the FO and MA-fed groups in both lipid pools. All 22:6-containing isomers were enriched by ~2-fold more (P < 0.0001) with MA than FO, however, all isomers exhibited a plateau with the FO-fed group. In addition, the MS analyses of PCs revealed several isobaric species containing eicosapentaenoic acid (EPA, 20:5), however, in the PE, EPA formed only one isomer (i.e. in combination with 16:0). These results may assist to elucidate potential aspects regulating the limited enrichment of omega-3 PUFA, particularly EPA and docosahexaenoic acid (22:6) in chicken eggs.
Collapse
Affiliation(s)
- M Neijat
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - P Zacek
- Faculty of Science, BIOCEV, Charles University in Prague, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - M J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203-9034
| | - J D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, R3T 2E1, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
44
|
El-Zenary AS, Ying Y, Michael Hulet R, Harvatine KJ, Elkin RG. Effect of lowering the amount of dietary linoleic acid on tissue omega-3 fatty acid contents of broilers fed supplemental flaxseed oil from 18 to 35 days of age. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Chamorro R, Gonzalez MF, Aliaga R, Gengler V, Balladares C, Barrera C, Bascuñan KA, Bazinet RP, Valenzuela R. Diet, Plasma, Erythrocytes, and Spermatozoa Fatty Acid Composition Changes in Young Vegan Men. Lipids 2020; 55:639-648. [DOI: 10.1002/lipd.12265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rodrigo Chamorro
- Department of Nutrition, Faculty of Medicine University of Chile Santiago Chile
| | - María F. Gonzalez
- Department of Nutrition, Faculty of Medicine University of Chile Santiago Chile
| | - Rocío Aliaga
- Department of Nutrition, Faculty of Medicine University of Chile Santiago Chile
| | - Valentina Gengler
- Department of Nutrition, Faculty of Medicine University of Chile Santiago Chile
| | | | - Cynthia Barrera
- Department of Nutrition, Faculty of Medicine University of Chile Santiago Chile
| | - Karla A. Bascuñan
- Department of Nutrition, Faculty of Medicine University of Chile Santiago Chile
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine University of Toronto Toronto ON Canada
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine University of Chile Santiago Chile
- Department of Nutritional Sciences, Faculty of Medicine University of Toronto Toronto ON Canada
| |
Collapse
|
46
|
Roszkos R, Tóth T, Mézes M. Review: Practical Use of n-3 Fatty Acids to Improve Reproduction Parameters in the Context of Modern Sow Nutrition. Animals (Basel) 2020; 10:ani10071141. [PMID: 32640618 PMCID: PMC7401659 DOI: 10.3390/ani10071141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary The use of n-3 fatty acids could have many favourable aspects considering the nutrition of mammals, as can be seen from studies carried out on humans or livestock animals. Concerning large-scale pig farms, the reproduction performance could be made more balanced at a high level by enhancing efficacy and decreasing the ecological footprint of pork production. In this review, we attempt to identify specific periods in the sow production cycle in which the feeding of n-3 fatty acids returns an investment, in addition to demonstrating the importance of the dosage and proportion of n-6 and n-3 fatty acids, originating from different nutritional sources. Abstract The effects of long-chain polyunsaturated fatty acids (LC PUFAs) have been frequently investigated in sows because the profitability of pig production depends mainly on reproduction performance. In feeding trials, different sources and doses of n-3 PUFAs-rich feeds were used with various breeds and stages of production; however, a discrepancy in the response of n-3 PUFAs on sow reproduction has been observed. According to the results of the previous studies, n-3 fatty acids can postpone the time of parturition, decreasing the synthesis of prostaglandins, which are necessary for uterus contraction during labour. These effects could also be useful during the post-weaning period when low prostaglandin levels are indispensable for embryo survival. The n-3 fatty acids fed during the lactation period secreted in milk, may improve piglet performance. In this review, we will focus on the contradictory results of previous studies concerning practical swine nutrition. The main purpose of the review is to highlight those periods of swine breeding when the use of n-3 fatty acids may be advantageous in case of the deficiency of these essential nutrients. In finding the appropriate dose of n-3 PUFAs in terms of sow nutrition, the n-6 PUFAs levels in the given feeds must be taken into account to ensure that there are no significant reductions in the final n-6/n-3 ratio. Despite the numerous previous field trials, there are no current feeding recommendations available for PUFAs in swine nutrition. Hence, more research is required in different practical feeding situations to certify the assumptions and conclusions of this review.
Collapse
Affiliation(s)
- Róbert Roszkos
- Department of Nutrition, Szent István University, 2103 Gödöllő, Hungary;
- ADEXGO Ltd., 8230 Balatonfüred, Hungary;
- Correspondence:
| | - Tamás Tóth
- ADEXGO Ltd., 8230 Balatonfüred, Hungary;
| | - Miklós Mézes
- Department of Nutrition, Szent István University, 2103 Gödöllő, Hungary;
| |
Collapse
|
47
|
Saleh-Ghadimi S, Alizadeh M, Jafari-Vayghan H, Darabi M, Golmohammadi A, Kheirouri S. Effect of flaxseed oil supplementation on the erythrocyte membrane fatty acid composition and endocannabinoid system modulation in patients with coronary artery disease: a double-blind randomized controlled trial. GENES AND NUTRITION 2020; 15:9. [PMID: 32370762 PMCID: PMC7201600 DOI: 10.1186/s12263-020-00665-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Background The endocannabinoid system (ECS) overactivation, associated with increased inflammatory process, may act as a risk factor for coronary artery disease (CAD). Dietary fat may influence the ECS tone. The aim of the present study was to investigate the effect of flaxseed oil on the erythrocyte membrane fatty acid profile and ECS activity by the measurement of serum N-arachydonoil ethanolamine (AEA) and cannabinoid receptor type-1 (CB1), cannabinoid receptor type-2 (CB2), and fatty acid amide hydrolase (FAAH) mRNA expression. Methods This clinical trial was performed on 44 patients with CAD. The intervention group received 1.5% fat milk supplemented with flaxseed oil (containing 2.5 g α-linolenic acid or ALA), while the placebo group received 1.5% fat milk for 10 weeks. The fatty acid profile of erythrocyte membrane phospholipids was measured by gas chromatography. The AEA level was determined using an ELISA kit, and real-time PCR was performed to measure CB1, CB2, and FAAH mRNA expression pre- and post-intervention. Results Flaxseed oil supplementation resulted in a significant increase in the ALA content and a significant reduction in linoleic acid (LA) content of membrane phospholipids, compared to the placebo group (MD = − 0.35 and 2.89, respectively; P < 0.05). The within group analysis showed that flaxseed oil supplementation caused a significant reduction in both LA and arachidonic acid (MD = − 4.84 and − 4.03, respectively; P < 0.05) and an elevation in the ALA (MD = 0.37, P < 0.001) content of membrane phospholipids compared with the baseline. In the intervention group, a marked reduction was observed in the serum AEA level after 10 weeks of intervention, compared with the placebo group (MD = 0.64, P = 0.016). Changes in CB2 mRNA expression in the flaxseed oil group were significant (fold change = 1.30, P = 0.003), compared with the placebo group. Conclusion Flaxseed oil supplementation could attenuate the ECS tone by decreasing the AEA level and increasing CB2 mRNA expression. Therefore, flaxseed oil may be considered a promising agent with cardioprotective properties.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Golmohammadi
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Oils' Impact on Comprehensive Fatty Acid Analysis and Their Metabolites in Rats. Nutrients 2020; 12:nu12051232. [PMID: 32349264 PMCID: PMC7281977 DOI: 10.3390/nu12051232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty acids, especially polyunsaturated, and their metabolites (eicosanoids) play many pivotal roles in human body, influencing various physiological and pathological processes. The aim of the study was to evaluate the effect of supplementation with edible oils diverse in terms of fatty acid composition on fatty acid contents, activities of converting their enzymes, and on lipoxygenase metabolites of arachidonic and linoleic acids (eicosanoids) in rat serum. Female Sprague-Dawley rats divided into seven groups were used in the study. Animals from six groups were fed one of oils daily (carotino oil, made up by combining of red palm oil and canola oil, linseed oil, olive oil, rice oil, sesame oil, or sunflower oil). One group received a standard diet only. Fatty acids were determined using gas chromatography with flame ionization detection. Eicosanoids—hydroxyeicosatetraenoic (HETE) and hydroxyoctadecadienoic acids (HODE) were extracted using a solid-phase extraction method and analyzed with HPLC. Vegetable oils given daily to rats caused significant changes in serum fatty acid profile and eicosanoid concentrations. Significant differences were also found in desaturases’ activity, with the linseed and olive oil supplemented groups characterized by the highest D6D and D5D activity. These findings may play a significant role in various pathological states.
Collapse
|
49
|
Leong WYA, Ngiam JN, Tan RS, Lim SL, Poh KK. Controversies and discrepancies in the effect of dietary fat and cholesterol on cardiovascular risk. Singapore Med J 2020; 62:56-62. [PMID: 32312028 DOI: 10.11622/smedj.2020065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The top ten causes of death in Singapore include many cardiovascular-related diseases such as ischaemic heart disease. The increasing prevalence of CVD poses a burden to both the economy and healthcare system of a country. Dietary habits, in particular dietary fats and cholesterol intake, have been shown to greatly influence CVD risks. Therefore, reference and adherence to relevant dietary guidelines could be crucial in CVD prevention. Recent research findings have provided novel insights into the relationship between certain dietary fats or cholesterol intake and CVD risks, challenging or reinforcing previous guidelines. These findings may, however, be conflicting, and there are still controversies over the effects of dietary fats and cholesterol as well as their association with cardiovascular risk. This review paper aims to evaluate common controversies, identify gaps in relevant research areas and summarise evidence-based dietary recommendations.
Collapse
Affiliation(s)
| | | | - Ru San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Su Lin Lim
- Department of Dietetics, National University Hospital, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
50
|
Alpha-linolenic acid enhances the phagocytic and secretory functions of alternatively activated macrophages in part via changes to the oxylipin profile. Int J Biochem Cell Biol 2020; 119:105662. [DOI: 10.1016/j.biocel.2019.105662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
|