1
|
Qian L, Song J, Zhang X, Qiao Y, Tan Z, Li S, Zhu J, Li J. Elucidating the causal relationship between 486 genetically predicted blood metabolites and the risk of gastric cancer: a comprehensive Mendelian randomization analysis. Front Oncol 2024; 14:1418283. [PMID: 39703854 PMCID: PMC11655336 DOI: 10.3389/fonc.2024.1418283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Background Previous epidemiological studies have yielded inconclusive results regarding the causality between blood metabolites and the risk of gastric cancer (GC). To address this shortcoming, we conducted a two-sample Mendelian randomization (MR) study, combined with metabolomics techniques, to elucidate the causality between 486 genetically predicted blood metabolites and GC. Methods MR analysis and metabolomics techniques such as ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) and gas chromatography/tandem mass spectrometry (GC-MS/MS) technologies were employed to assess the causality of 486 genetically predicted blood metabolites on the risk of GC. The genome-wide association study (GWAS) summary data for 486 blood metabolites from 7,824 individuals. The GWAS summary data for GC (ebi-a-GCST90018849) were obtained from the IEU Open GWAS project, including 1,029 GC cases and 474,841 controls. Primary causality estimates were obtained using inverse variance weighting (IVW), supplemented with the weighted median, MR-Egger, weighted mode, and simple mode. In addition, we conducted sensitivity analyses (including Cochran's Q, MR-Egger intercept, MR-PRESSO, and leave-one-out tests),Steiger's test, linked disequilibrium score regression, and multivariate MR (MVMR) to improve the assessment of causality between GC and blood metabolite. Finally, we recruited a total of 11 patients diagnosed with gastric cancer from the First Affiliated Hospital of Air Force Military Medical University between September and October 2024. The control group comprised 11 healthy individuals. Serum samples were collected from both groups for the evaluation of blood-related metabolite expression levels using advanced techniques such as ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS/MS). Results The MVMR analysis revealed a significant association between genetically predicted elevated levels of tryptophan (odds ratio [OR] = 0.523, 95% confidence interval [CI] = 0.313-0.872, p = 0.013), nonadecanoate (19:0) (odds ratio [OR] = 0.460, 95% confidence interval [CI] = 0.225-0.943, p = 0.034), and erythritol (odds ratio [OR] = 0.672, 95% confidence interval [CI] = 0.468-0.930, p = 0.016) with a decreased risk of gastric cancer. Based on metabolomic techniques such as UPLC-MS/MS and GC-MS/MS analyses, it has been demonstrated that the expression levels of tryptophan, nonadecanoate (19:0), and erythritol are reduced in patients with gastric cancer. This finding aligns with the results obtained from our MR analysis and provides further confirmation regarding the protective role of tryptophan, nonadecanoate (19:0), and erythritol against gastric cancer. Conclusions These findings indicate that three blood metabolites are causally related to GC and provide new perspectives for combining genomics and metabolomics to study the mechanisms of metabolite-mediated GC development.
Collapse
Affiliation(s)
- Lei Qian
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiawei Song
- School of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Xiaoqun Zhang
- Department of Pharmacy, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Yihuan Qiao
- Department of Digestive Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhaobang Tan
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shisen Li
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Zhu
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jipeng Li
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Sebastiani P, Monti S, Lustgarten MS, Song Z, Ellis D, Tian Q, Schwaiger-Haber M, Stancliffe E, Leshchyk A, Short MI, Ardisson Korat AV, Gurinovich A, Karagiannis T, Li M, Lords HJ, Xiang Q, Marron MM, Bae H, Feitosa MF, Wojczynski MK, O'Connell JR, Montasser ME, Schupf N, Arbeev K, Yashin A, Schork N, Christensen K, Andersen SL, Ferrucci L, Rappaport N, Perls TT, Patti GJ. Metabolite signatures of chronological age, aging, survival, and longevity. Cell Rep 2024; 43:114913. [PMID: 39504246 DOI: 10.1016/j.celrep.2024.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Metabolites that mark aging are not fully known. We analyze 408 plasma metabolites in Long Life Family Study participants to characterize markers of age, aging, extreme longevity, and mortality. We identify 308 metabolites associated with age, 258 metabolites that change over time, 230 metabolites associated with extreme longevity, and 152 metabolites associated with mortality risk. We replicate many associations in independent studies. By summarizing the results into 19 signatures, we differentiate between metabolites that may mark aging-associated compensatory mechanisms from metabolites that mark cumulative damage of aging and from metabolites that characterize extreme longevity. We generate and validate a metabolomic clock that predicts biological age. Network analysis of the age-associated metabolites reveals a critical role of essential fatty acids to connect lipids with other metabolic processes. These results characterize many metabolites involved in aging and point to nutrition as a source of intervention for healthy aging therapeutics.
Collapse
Affiliation(s)
- Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Stefano Monti
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Michael S Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Zeyuan Song
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA
| | - Dylan Ellis
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Qu Tian
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Meghan I Short
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Andres V Ardisson Korat
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Anastasia Gurinovich
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Tanya Karagiannis
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Mengze Li
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Hannah J Lords
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Qingyan Xiang
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA
| | - Megan M Marron
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harold Bae
- Biostatistics Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Mary F Feitosa
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - May E Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole Schupf
- Department of Epidemiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Konstantin Arbeev
- Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Anatoliy Yashin
- Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Nicholas Schork
- The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kaare Christensen
- Danish Aging Research Center, University of Southern Denmark, 5000 Odense, Denmark
| | - Stacy L Andersen
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Thomas T Perls
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Oravilahti A, Vangipurapu J, Laakso M, Fernandes Silva L. Metabolomics-Based Machine Learning for Predicting Mortality: Unveiling Multisystem Impacts on Health. Int J Mol Sci 2024; 25:11636. [PMID: 39519188 PMCID: PMC11546733 DOI: 10.3390/ijms252111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Reliable predictors of long-term all-cause mortality are needed for middle-aged and older populations. Previous metabolomics mortality studies have limitations: a low number of participants and metabolites measured, measurements mainly using nuclear magnetic spectroscopy, and the use only of conventional statistical methods. To overcome these challenges, we applied liquid chromatography-tandem mass spectrometry and measured >1000 metabolites in the METSIM study including 10,197 men. We applied the machine learning approach together with conventional statistical methods to identify metabolites associated with all-cause mortality. The three independent machine learning methods (logistic regression, XGBoost, and Welch's t-test) identified 32 metabolites having the most impactful associations with all-cause mortality (25 increasing and 7 decreasing the risk). From these metabolites, 20 were novel and encompassed various metabolic pathways, impacting the cardiovascular, renal, respiratory, endocrine, and central nervous systems. In the Cox regression analyses (hazard ratios and their 95% confidence intervals), clinical and laboratory risk factors increased the risk of all-cause mortality by 1.76 (1.60-1.94), the 25 metabolites by 1.89 (1.68-2.12), and clinical and laboratory risk factors combined with the 25 metabolites by 2.00 (1.81-2.22). In our study, the main causes of death were cancers (28%) and cardiovascular diseases (25%). We did not identify any metabolites associated with cancer but found 13 metabolites associated with an increased risk of cardiovascular diseases. Our study reports several novel metabolites associated with an increased risk of mortality and shows that these 25 metabolites improved the prediction of all-cause mortality beyond and above clinical and laboratory measurements.
Collapse
Affiliation(s)
- Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
- Department of Medicine, Kuopio University Hospital, 70200 Kuopio, Finland
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.O.); (J.V.); (M.L.)
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Yang J, Bernard L, Wong KE, Yu B, Steffen LM, Sullivan VK, Rebholz CM. Serum metabolite signature of the modified Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet. Metabolomics 2024; 20:118. [PMID: 39432124 DOI: 10.1007/s11306-024-02184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION There is a lack of biomarkers of clinically important diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet. OBJECTIVES Our study explored serum metabolites associated with adherence to the MIND diet. METHODS In 3,908 Atherosclerosis Risk in Communities (ARIC) study participants, we calculated a modified MIND diet score based on a 66-item self-reported food frequency questionnaire (FFQ). The modified score did not include berries and olive oil, as these items were not assessed in the FFQ. We used multivariable linear regression models in 2 subgroups of ARIC study participants and meta-analyzed results using fixed effects regression to identify significant metabolites after Bonferroni correction. We also examined associations between these metabolites and food components of the modified MIND diet. C-statistics evaluated the prediction of high modified MIND diet adherence using significant metabolites beyond participant characteristics. RESULTS Of 360 metabolites analyzed, 27 metabolites (15 positive, 12 negative) were significantly associated with the modified MIND diet score (lipids, n = 13; amino acids, n = 5; xenobiotics, n = 3; cofactors and vitamins, n = 3; carbohydrates n = 2; nucleotide n = 1). The top 4 metabolites that improved the prediction of high dietary adherence to the modified MIND diet were 7-methylxanthine, theobromine, docosahexaenoate (DHA), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF). CONCLUSION Twenty-seven metabolomic markers were correlated with the modified MIND diet. The biomarkers, if further validated, could be useful to objectively assess adherence to the MIND diet.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Bernard
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kari E Wong
- Metabolon, Research Triangle Park, Morrisville, NC, USA
| | - Bing Yu
- Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Valerie K Sullivan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Wu YX, Li MJ, Liu Y, Guo M, Lan MN, Zheng HJ. ASPG and DAD1 are potential placental-derived biomarkers for ASD-like symptom severity levels in male/female offspring. Placenta 2024; 155:78-87. [PMID: 39154487 DOI: 10.1016/j.placenta.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION An early evaluating system for autism spectrum disorder (ASD) severity is crucial. Questionnaire survey is challenging for accurately assessing the severity levels for ASD in children. METHODS Offspring with ASD-like phenotypes were induced by treating pregnant mice with Poly (I:C) at GD12.5 and the placentae corresponding to the offspring were obtained by caesarean. The autism severity composite score (ASCS) for offspring was calculated through behavioral tests. HE staining and immunohistochemistry were used to observe the morphology of placenta. Candidate biomarkers were identified by weighted protein co-expression network analysis (WPCNA) combined with machine learning and further validated by ELISA. Sperman's was used to analyze the correlation between biomarkers and metabolome. RESULTS The placental weight and mean vascular area of male offspring with ASD-like phenotypes were significantly decreased compared with typical mice. According to the WPCNA, four modules were identified and significantly correlated with ASCS of offspring. Two biomarkers (ASPG and DAD1) with high correlation with ASCS in offspring were identified. DISCUSSION VEGF pathway may contribute to sexual dimorphism in placental morphology within mice with ASD-like phenotypes in term. The placental ASPG and DAD1 levels could reflect ASD-like symptom severity levels in male/female mice offspring.
Collapse
Affiliation(s)
- Yi-Xiao Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ming-Jie Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Steinbrenner I, Schultheiss UT, Bächle H, Cheng Y, Behning C, Schmid M, Yeo WJ, Yu B, Grams ME, Schlosser P, Stockmann H, Gronwald W, Oefner PJ, Schaeffner E, Eckardt KU, Köttgen A, Sekula P. Associations of Urine and Plasma Metabolites With Kidney Failure and Death in a Chronic Kidney Disease Cohort. Am J Kidney Dis 2024:S0272-6386(24)00787-X. [PMID: 38815646 DOI: 10.1053/j.ajkd.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 06/01/2024]
Abstract
RATIONALE & OBJECTIVE Biomarkers that enable better identification of persons with chronic kidney disease (CKD) who are at higher risk for disease progression and adverse events are needed. This study sought to identify urine and plasma metabolites associated with progression of kidney disease. STUDY DESIGN Prospective metabolome-wide association study. SETTING & PARTICIPANTS Persons with CKD enrolled in the GCKD (German CKD) study with metabolite measurements, with external validation within the ARIC (Atherosclerosis Risk in Communities) Study. EXPOSURES 1,513 urine and 1,416 plasma metabolites (Metabolon Inc) measured at study entry using untargeted mass spectrometry. OUTCOMES Main end points were kidney failure (KF) and a composite kidney end point (CKE) of KF, estimated glomerular filtration rate<15mL/min/1.73m2, or a 40% decrease in estimated glomerular filtration rate. Death from any cause was a secondary end point. After a median of 6.5 years of follow-up, 500 persons had experienced KF, 1,083 had experienced the CKE, and 680 had died. ANALYTICAL APPROACH Time-to-event analyses using multivariable proportional hazard regression models in a discovery-replication design with external validation. RESULTS 5,088 GCKD study participants were included in analyses of urine metabolites, and 5,144 were included in analyses of plasma metabolites. Among 182 unique metabolites, 30 were significantly associated with KF, 49 with the CKE, and 163 with death. The strongest association with KF was observed for plasma hydroxyasparagine (HR, 1.95; 95% CI, 1.68-2.25). An unnamed metabolite measured in plasma and urine was significantly associated with KF, the CKE, and death. External validation of the identified associations of metabolites with KF or the CKE revealed directional consistency for 88% of observed associations. Selected associations of 18 metabolites with study outcomes have not been previously reported. LIMITATIONS Use of observational data and semiquantitative metabolite measurements at a single time point. CONCLUSIONS The observed associations between metabolites and KF, the CKE, or death in persons with CKD confirmed previously reported findings and also revealed several associations not previously described. These findings warrant confirmatory research in other study cohorts. PLAIN-LANGUAGE SUMMARY Incomplete understanding of the variability of chronic kidney disease (CKD) progression motivated the search for new biomarkers that would help identify people at increased risk. We explored metabolites in plasma and urine for their association with unfavorable kidney outcomes or death in persons with CKD. Metabolomic analyses revealed 182 metabolites significantly associated with CKD progression or death. Many of these associations confirmed previously reported findings or were validated by analysis in an external study population. Our comprehensive screen of the metabolome serves as a valuable foundation for future investigations into biomarkers associated with CKD progression.
Collapse
Affiliation(s)
- Inga Steinbrenner
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine IV-Nephrology and Primary Care, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helena Bächle
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Behning
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Wan-Jin Yeo
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Morgan E Grams
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology, University Medical Center Regensburg, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Elke Schaeffner
- Institute of Public Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Mirzaei S, DeVon HA, Cantor RM, Cupido AJ, Pan C, Ha SM, Silva LF, Hilser JR, Hartiala J, Allayee H, Rey FE, Laakso M, Lusis AJ. Relationships and Mendelian Randomization of Gut Microbe-Derived Metabolites with Metabolic Syndrome Traits in the METSIM Cohort. Metabolites 2024; 14:174. [PMID: 38535334 PMCID: PMC10972019 DOI: 10.3390/metabo14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass index (BMI) (β = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (β = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (β = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23, p = 4.4 × 10-33), and BMI (β = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (β = -0.19, p = 3.8 × 10-51) and triglycerides (β = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
Collapse
Affiliation(s)
- Sahereh Mirzaei
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Holli A. DeVon
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Rita M. Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1007 AZ Amsterdam, The Netherlands
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Lilian Fernandes Silva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaana Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markku Laakso
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Human Genetics and Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Gong S, Wang Q, Huang J, Huang R, Chen S, Cheng X, Liu L, Dai X, Zhong Y, Fan C, Liao Z. LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer. Methods 2024; 222:100-111. [PMID: 38228196 DOI: 10.1016/j.ymeth.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach. METHODS In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30). The multivariate data analysis, determination of the fold change and the Mann-Whitney U test were used to screen out the differential metabolites. Additionally, machine learning methods including receiver operating curve analysis and logistic regression analysis were conducted to establish diagnostic biomarker panels. RESULTS There were 36 metabolites found to be significantly different between BC and non-BC groups, and 12 metabolites discovered to be significantly different between TNBC and non-TNBC patients. Results also showed that four metabolites, including N-acetyl-D-tryptophan, 2-arachidonoylglycerol, pipecolic acid and oxoglutaric acid, were considered as vital biomarkers for the diagnosis of BC and non-BC with an area under the curve (AUC) of 0.995. Another two-metabolite panel of N-acetyl-D-tryptophan and 2-arachidonoylglycerol was discovered to discriminate TNBC from non-TNBC and produced an AUC of 0.965. CONCLUSION This study demonstrated that serum metabolomics can be used to identify BC specifically and identified promising serum metabolic markers for TNBC diagnosis.
Collapse
Affiliation(s)
- Sisi Gong
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Qingshui Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Jiewei Huang
- The Graduate School of Fujian Medical University, Fuzhou, PR China
| | - Rongfu Huang
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Shanshan Chen
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Xiaojuan Cheng
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Lei Liu
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Xiaofang Dai
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Yameng Zhong
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China.
| | - Zhijun Liao
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
9
|
Alghadir AH, Gabr SA, Iqbal A. Mineral elements and adiposity-related consequences in adolescents with intellectual disabilities. BMC Mol Cell Biol 2023; 24:29. [PMID: 37730529 PMCID: PMC10512604 DOI: 10.1186/s12860-023-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Patients with intellectual disabilities are shown to have a limited capacity for cooperation, communication,and other biological consequences, which significantly require a specialized interest in healthcare professionals worldwide. AIM In this respect, the present study was designed to evaluate the levels mineral elements, and their correlation with oxidative stress markers and adiposity markers; leptin (L), adiponectin (A), and L/A ratio in adolescents with intellectual disabilities. METHODS A total of 350 schoolchildren aged (12-18 years) were randomly invited to participate in this prospective, observational study. Only 300 participants agreed to participate in this study. According to Intelligence quotients scores (IQ) measured by WISC-III, the participants were classified into two groups; the healthy control group (no = 180; IQ = 90-114); and the moderate intellectual disability (MID) group (no = 120; IQ = 35-49). Adiposity markers; body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), physical activity scores, adipokines biomarkers; leptin, adiponectin, L/A ratio, oxidative stress, and plasma mineral elements were evaluated by prevalidated questionnaires, inductively coupled plasma-mass spectrometry (ICP-MS), colorimetric, and immunoassay techniques. RESULTS Intellectual disability of moderate type was reported in 40% of the studied populations most of them are men aged 12-18 years (66.6% for men vs. 33.3 for females). Obesity was shown to be associated with the degree of intellectual disability of the students. There was a significant (P = 0.001) increase in the BMI, WHR, and WHtR scores as obesity markers with poor physical activity (P = 0.01) in students with poor disability compared to healthy controls (HC). The levels of leptin (P = 0.001), adiponectin (P = 0.01), and L/A ratio (P = 0.01) as adiposity biomarkers were significantly increased in students with MID compared to healthy controls. Also, oxidative stress measured by malondialdehyde (MDA) (P = 0.01) and total antioxidant capacity (TAC) (P = 0.01) were significantly increased in students with MID compared to healthy control subjects. In addition, mineral elements were shown to be linked with intellectual disability. The data showed that the levels of Fe, Mn, Zn, Hg, Pb, Ca, Cr, Mg, and Ni significantly (P = 0.001) increased, and the levels of Al, Na, K, Cu, and Zn/Cu ratio significantly (P = 0.001) decreased in subjects with MID compared to healthy controls. Correlation analysis concluded that changes in mineral elements significantly correlated with adiposity markers, oxidative stress, and the scores of intellectual disability (WISC III-IQ score). CONCLUSION The intellectual disability of moderate type (MID) was associated with abnormal changes in the levels of essential mineral elements and adipokines and increased levels of cellular oxidative stress. Thus, evaluating plasma mineral elements and adipokines levels could be a potential diagnostic parameter for diagnosing MID.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
10
|
Wang F, Tessier AJ, Liang L, Wittenbecher C, Haslam DE, Fernández-Duval G, Heather Eliassen A, Rexrode KM, Tobias DK, Li J, Zeleznik O, Grodstein F, Martínez-González MA, Salas-Salvadó J, Clish C, Lee KH, Sun Q, Stampfer MJ, Hu FB, Guasch-Ferré M. Plasma metabolomic profiles associated with mortality and longevity in a prospective analysis of 13,512 individuals. Nat Commun 2023; 14:5744. [PMID: 37717037 PMCID: PMC10505179 DOI: 10.1038/s41467-023-41515-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
Experimental studies reported biochemical actions underpinning aging processes and mortality, but the relevant metabolic alterations in humans are not well understood. Here we examine the associations of 243 plasma metabolites with mortality and longevity (attaining age 85 years) in 11,634 US (median follow-up of 22.6 years, with 4288 deaths) and 1878 Spanish participants (median follow-up of 14.5 years, with 525 deaths). We find that, higher levels of N2,N2-dimethylguanosine, pseudouridine, N4-acetylcytidine, 4-acetamidobutanoic acid, N1-acetylspermidine, and lipids with fewer double bonds are associated with increased risk of all-cause mortality and reduced odds of longevity; whereas L-serine and lipids with more double bonds are associated with lower mortality risk and a higher likelihood of longevity. We further develop a multi-metabolite profile score that is associated with higher mortality risk. Our findings suggest that differences in levels of nucleosides, amino acids, and several lipid subclasses can predict mortality. The underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anne-Julie Tessier
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clemens Wittenbecher
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- SciLifeLab, Division of Food Science and Nutrition, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Danielle E Haslam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gonzalo Fernández-Duval
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
| | - A Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Oana Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Clary Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Zheng W, Wang M, Chai X, Pan F, Xu M, Wang Y, Lan L, Hu F, Zhang Z, Chen Z. Targeted metabolomics analysis of nucleosides and the identification of biomarkers for colorectal adenomas and colorectal cancer. Front Mol Biosci 2023; 10:1163089. [PMID: 37441164 PMCID: PMC10334214 DOI: 10.3389/fmolb.2023.1163089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/29/2023] [Indexed: 07/15/2023] Open
Abstract
The morbidity and mortality of colorectal cancer (CRC) have been increasing in recent years, and early detection of CRC can improve the survival rate of patients. RNA methylation plays crucial roles in many biological processes and has been implicated in the initiation of various diseases, including cancer. Serum contains a variety of biomolecules and is an important clinical sample for biomarker discovery. In this study, we developed a targeted metabolomics method for the quantitative analysis of nucleosides in human serum samples by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). We successfully quantified the concentrations of nucleosides in serum samples from 51 healthy controls, 37 patients with colorectal adenomas, and 55 patients with CRC. The results showed that the concentrations of N 6-methyladenosine (m6A), N 1-methyladenosine (m1A), and 3-methyluridine (m3U) were increased in patients with CRC, whereas the concentrations of N 2-methylguanosine (m2G), 2'-O-methyluridine (Um), and 2'-O-methylguanosine (Gm) were decreased in patients with CRC, compared with the healthy controls and patients with colorectal adenomas. Moreover, the levels of 2'-O-methyluridine and 2'-O-methylguanosine were lower in patients with colorectal adenomas than those in healthy controls. Interestingly, the levels of Um and Gm gradually decreased in the following order: healthy controls to colorectal adenoma patients to CRC patients. These results revealed that the aberrations of these nucleosides were tightly correlated to colorectal adenomas and CRC. In addition, the present work will stimulate future investigations about the regulatory roles of these nucleosides in the initiation and development of CRC.
Collapse
Affiliation(s)
- Weifang Zheng
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Mingwei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | | | - Fuzhen Pan
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Meihui Xu
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Yingchen Wang
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | | | - Feiran Hu
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Zhe Zhang
- Lanxi Red Cross Hospital, Jinhua, China
| | - Zhu Chen
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, China
| |
Collapse
|
12
|
Kaplan RC, Williams-Nguyen JS, Huang Y, Mossavar-Rahmani Y, Yu B, Boerwinkle E, Gellman MD, Daviglus M, Chilcoat A, Van Horn L, Faurot K, Qi Q, Greenlee H. Identification of Dietary Supplements Associated with Blood Metabolites in the Hispanic Community Health Study/Study of Latinos Cohort Study. J Nutr 2023; 153:1483-1492. [PMID: 36822396 PMCID: PMC10356961 DOI: 10.1016/j.tjnut.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Metabolomics approaches have been widely used to define the consumption of foods but have less often been used to study exposure to dietary supplements. OBJECTIVES This study aimed to identify dietary supplements associated with metabolite levels and to examine whether these metabolites predicted incident diabetes risk. METHODS We studied 3972 participants from a prospective cohort study of 18-74-y-old Hispanic/Latino adults. At a baseline examination, we ascertained use of dietary supplements using recall methods and concurrently, a serum metabolomic panel. After adjustment for potential confounders, we identified dietary supplements associated with metabolites. We then examined the association of these metabolites with incident diabetes at the 6-y study examination. RESULTS We observed a total of 110 dietary supplement-metabolite associations that met the criteria for statistical significance adjusted for age, sex, field center, Hispanic/Latino background, body mass index, diet, smoking, physical activity, and number of medications (adjusted P < 0.05). This included 13 metabolites uniquely associated with only one dietary supplement ingredient. Vitamin C had the most associated metabolites (n = 15), including positive associations with oxalate, tartronate, threonate, and isocitrate, which were each in turn protective for the risk of incident diabetes. Vitamin C was also associated with higher N-acetylvaline level, which was an unfavorable diabetes risk factor. Other findings related to branched chain amino acid related compounds including α-hydroxyisovalerate and 2-hydroxy-3-methylvalerate, which were inversely associated with thiamine or riboflavin intake and also predicted higher diabetes risk. Vitamin B12 had an inverse association with γ-glutamylvaline, levels of which were positively associated with the risk of diabetes. CONCLUSIONS Our data point to potential metabolite changes associated with vitamin C and B vitamins, which may have favorable metabolic effects. Knowledge of blood metabolites that can be modified by dietary supplement intake may aid understanding the health effects of dietary supplements and identify potential biological mediators.
Collapse
Affiliation(s)
- Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | - Yuhan Huang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Marc D Gellman
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois-Chicago, Chicago, IL, USA
| | - Aisha Chilcoat
- Program on Integrative Medicine, Department of Physical Medicine & Rehabilitation, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University School of Medicine, Chicago, IL, USA
| | - Kim Faurot
- Program on Integrative Medicine, Department of Physical Medicine & Rehabilitation, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heather Greenlee
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
13
|
Mi MY, Whitlock M, Shi X, Farrell LA, Bhambhani VM, Quadir J, Blatnik M, Wald KP, Tierney B, Kim A, Loudon P, Chen ZZ, Correa A, Gao Y, Carson AP, Bertoni AG, Roth Flach RJ, Gerszten RE. Mixed meal tolerance testing highlights in diabetes altered branched-chain ketoacid metabolism and pathways associated with all-cause mortality. Am J Clin Nutr 2023; 117:529-539. [PMID: 36811472 PMCID: PMC10356557 DOI: 10.1016/j.ajcnut.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Elevated BCAA levels are strongly associated with diabetes, but how diabetes affects BCAA, branched-chain ketoacids (BCKAs), and the broader metabolome after a meal is not well known. OBJECTIVE To compare quantitative BCAA and BCKA levels in a multiracial cohort with and without diabetes after a mixed meal tolerance test (MMTT) as well as to explore the kinetics of additional metabolites and their associations with mortality in self-identified African Americans. METHODS We administered an MMTT to 11 participants without obesity or diabetes and 13 participants with diabetes (treated with metformin only) and measured the levels of BCKAs, BCAAs, and 194 other metabolites at 8 time points across 5 h. We used mixed models for repeated measurements to compare between group metabolite differences at each timepoint with adjustment for baseline. We then evaluated the association of top metabolites with different kinetics with all-cause mortality in the Jackson Heart Study (JHS) (N = 2441). RESULTS BCAA levels, after adjustment for baseline, were similar at all timepoints between groups, but adjusted BCKA kinetics were different between groups for α-ketoisocaproate (P = 0.022) and α-ketoisovalerate (P = 0.021), most notably diverging at 120 min post-MMTT. An additional 20 metabolites had significantly different kinetics across timepoints between groups, and 9 of these metabolites-including several acylcarnitines-were significantly associated with mortality in JHS, irrespective of diabetes status. The highest quartile of a composite metabolite risk score was associated with higher mortality (HR:1.57; 1.20, 2.05, P = 0.00094) than the lowest quartile. CONCLUSIONS BCKA levels remained elevated after an MMTT among participants with diabetes, suggesting that BCKA catabolism may be a key dysregulated process in the interaction of BCAA and diabetes. Metabolites with different kinetics after an MMTT may be markers of dysmetabolism and associated with increased mortality in self-identified African Americans.
Collapse
Affiliation(s)
- Michael Y Mi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | | - Xu Shi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Laurie A Farrell
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Juweria Quadir
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Kyle P Wald
- Early Clinical Development, Pfizer, Groton, CT, USA
| | | | - Albert Kim
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA; Cytel, Cambridge, MA, USA
| | - Peter Loudon
- Early Clinical Development, Pfizer, Cambridge, UK; Tenpoint Therapeutics, Cambridge, UK
| | - Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Adolfo Correa
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yan Gao
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alain G Bertoni
- Department of Epidemiology & Prevention, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
14
|
Dorgan JF, Baer HJ, Bertrand KA, LeBlanc ES, Jung S, Magder LS, Snetselaar LG, Stevens VJ, Zhang Y, Van Horn L. Childhood adiposity, serum metabolites and breast density in young women. Breast Cancer Res 2022; 24:91. [PMID: 36536390 PMCID: PMC9764542 DOI: 10.1186/s13058-022-01588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Childhood adiposity is inversely associated with young adult percent dense breast volume (%DBV) and absolute dense breast volume (ADBV), which could contribute to its protective effect for breast cancer later in life. The objective of this study was to identify metabolites in childhood serum that may mediate the inverse association between childhood adiposity and young adult breast density. METHODS Longitudinal data from 182 female participants in the Dietary Intervention Study in Children (DISC) and the DISC 2006 (DISC06) Follow-Up Study were analyzed. Childhood adiposity was assessed by anthropometry at the DISC visit with serum available that occurred closest to menarche and expressed as a body mass index (BMI) z-score. Serum metabolites were measured by untargeted metabolomics using ultra-high-performance liquid chromatography-tandem mass spectrometry. %DBV and ADBV were measured by magnetic resonance imaging at the DISC06 visit when participants were 25-29 years old. Robust mixed effects linear regression was used to identify serum metabolites associated with childhood BMI z-scores and breast density, and the R package mediation was used to quantify mediation. RESULTS Of the 115 metabolites associated with BMI z-scores (FDR < 0.20), 4 were significantly associated with %DBV and 6 with ADBV before, though not after, adjustment for multiple comparisons. Mediation analysis identified 2 unnamed metabolites, X-16576 and X-24588, as potential mediators of the inverse association between childhood adiposity and dense breast volume. X-16576 mediated 14% (95% confidence interval (CI) = 0.002, 0.46; P = 0.04) of the association of childhood adiposity with %DBV and 11% (95% CI = 0.01, 0.26; P = 0.02) of its association with ADBV. X-24588 also mediated 7% (95% CI = 0.001, 0.18; P = 0.05) of the association of childhood adiposity with ADBV. None of the other metabolites examined contributed to mediation of the childhood adiposity-%DBV association, though there was some support for contributions of lysine, valine and 7-methylguanine to mediation of the inverse association of childhood adiposity with ADBV. CONCLUSIONS Additional large longitudinal studies are needed to identify metabolites and other biomarkers that mediate the inverse association of childhood adiposity with breast density and possibly breast cancer risk.
Collapse
Affiliation(s)
- Joanne F Dorgan
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA.
| | - Heather J Baer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly A Bertrand
- Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Erin S LeBlanc
- Kaiser Permanente Center for Health Research, Portland, OR, 97227, USA
| | - Seungyoun Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Laurence S Magder
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Linda G Snetselaar
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, 52242, USA
| | - Victor J Stevens
- Kaiser Permanente Center for Health Research, Portland, OR, 97227, USA
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
15
|
Yan Y, Smith E, Melander O, Ottosson F. The association between plasma metabolites and future risk of all-cause mortality. J Intern Med 2022; 292:804-815. [PMID: 35796403 PMCID: PMC9796397 DOI: 10.1111/joim.13540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Metabolite profiles provide snapshots of the overall effect of numerous exposures accumulated over life courses, which may lead to health outcomes in the future. OBJECTIVE We hypothesized that the risk of all-cause mortality is linked to alterations in metabolism earlier in life, which are reflected in plasma metabolite profiles. We aimed to identify plasma metabolites associated with future risk of all-cause mortality. METHODS Through metabolomics, 110 metabolites were measured in 3833 individuals from the Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC). A total of 1574 deaths occurred within an average follow-up time of 22.2 years. Metabolites that were significantly associated with all-cause mortality in MDC-CC were replicated in 1500 individuals from Malmö Preventive Project re-examination (MPP), among whom 715 deaths occurred within an average follow-up time of 11.3 years. RESULTS Twenty two metabolites were significantly associated with all-cause mortality in MDC-CC, of which 13 were replicated in MPP. Levels of trigonelline, glutamate, dimethylglycine, C18-1-carnitine, C16-1-carnitine, C14-1-carnitine, and 1-methyladenosine were associated with an increased risk, while levels of valine, tryptophan, lysine, leucine, histidine, and 2-aminoisobutyrate were associated with a decreased risk of all-cause mortality. CONCLUSION We used metabolomics in two Swedish prospective cohorts and identified replicable associations between 13 metabolites and future risk of all-cause mortality. Novel associations between five metabolites-C18-1-carnitine, C16-1-carnitine, C14-1-carnitine, trigonelline, and 2-aminoisobutyrate-and all-cause mortality were discovered. These findings suggest potential new biomarkers for the prediction of mortality and provide insights for understanding the biochemical pathways that lead to mortality.
Collapse
Affiliation(s)
- Yingxiao Yan
- Department of Clinical Science, Lund University, Malmö, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Einar Smith
- Department of Clinical Science, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Science, Lund University, Malmö, Sweden
| | - Filip Ottosson
- Department of Clinical Science, Lund University, Malmö, Sweden.,Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
16
|
Cheng L, Wang L, Chen B, Wang C, Wang M, Li J, Gao X, Zhang Z, Han L. A multiple-metabolites model to predict preliminary renal injury induced by iodixanol based on UHPLC/Q-Orbitrap-MS and 1H-NMR. Metabolomics 2022; 18:85. [PMID: 36307737 DOI: 10.1007/s11306-022-01942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS There are some problems, such as unclear pathological mechanism, delayed diagnosis, and inaccurate therapeutic target of Contrast-induced acute kidney injury (CI-AKI). It is significantly important to find biomarkers and therapeutic targets that can indicate renal injury in the early stage of CI-AKI. This study aims to establish a multiple-metabolites model to predict preliminary renal injury induced by iodixanol and explore its pathogenesis. METHODS Both UHPLC/Q-Orbitrap-MS and 1H-NMR methods were applied for urine metabolomics studies on two independent cohorts who suffered from a preliminary renal injury caused by iodixanol, and the multivariate statistical analysis and random forest (RF) algorithm were used to process the related date. RESULTS In the discovery cohort (n = 169), 6 metabolic markers (leucine, indole, 5-hydroxy-L-tryptophan, N-acetylvaline, hydroxyhexanoycarnine, and kynurenic acid) were obtained by the cross-validation between the RF and liquid chromatography-mass spectrometry (LC-MS). Secondly, the 6 differential metabolites were confirmed by comparison of standard substance and structural identification of 1H-NMR. Subsequently, the multiple-metabolites model composed of the 6 biomarkers was validated in a validation cohort (n = 165). CONCLUSIONS The concentrations of leucine, indole, N-acetylvaline, 5-hydroxy-L-tryptophan, hydroxyhexanoycarnitine and kynurenic acid in urine were proven to be positively correlated with the degree of renal injury induced by iodixanol. The multiple-metabolites model based on these 6 biomarkers has a good predictive ability to predict early renal injury caused by iodixanol, provides treatment direction for injury intervention and a reference for reducing the incidence of clinical CI-AKI further.
Collapse
Affiliation(s)
- Liying Cheng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Liming Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Biying Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Chenxi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Mengxi Wang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210000, People's Republic of China
| | - Jie Li
- Tianjin Key Laboratory of Clinical Multi-Omics, Airport Economy Zone, Tianjin, 300308, People's Republic of China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Zhu Zhang
- Department of Nephrology, Fuwai Huazhong Cardiovascular Hospital, Zhengzhou, 451464, People's Republic of China.
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
17
|
Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies. Nutrients 2022; 14:nu14132654. [PMID: 35807835 PMCID: PMC9268449 DOI: 10.3390/nu14132654] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-derived metabolites have recently attracted considerable attention due to their role in host-microbial crosstalk and their link with cardiovascular health. The MEDLINE-PubMed and Elsevier’s Scopus databases were searched up to June 2022 for studies evaluating the association of baseline circulating levels of trimethylamine N-oxide (TMAO), secondary bile acids, short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), tryptophan and indole derivatives, with risk of cardiovascular disease (CVD). A total of twenty-one studies were included in the systematic review after evaluating 1210 non-duplicate records. There were nineteen of the twenty-one studies that were cohort studies and two studies had a nested case–control design. All of the included studies were of high quality according to the “Newcastle–Ottawa Scale”. TMAO was positively associated with adverse cardiovascular events and CVD/all-cause mortality in some, but not all of the included studies. Bile acids were associated with atrial fibrillation and CVD/all-cause mortality, but not with CVD. Positive associations were found between BCAAs and CVD, and between indole derivatives and major adverse cardiovascular events, while a negative association was reported between tryptophan and all-cause mortality. No studies examining the relationship between SCFAs and CVD risk were identified. Evidence from prospective studies included in the systematic review supports a role of microbial metabolites in CVD.
Collapse
|
18
|
Scarale MG, Mastroianno M, Prehn C, Copetti M, Salvemini L, Adamski J, De Cosmo S, Trischitta V, Menzaghi C. Circulating Metabolites Associate With and Improve the Prediction of All-Cause Mortality in Type 2 Diabetes. Diabetes 2022; 71:1363-1370. [PMID: 35358315 DOI: 10.2337/db22-0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022]
Abstract
Death rate is increased in type 2 diabetes. Unraveling biomarkers of novel pathogenic pathways capable to identify high-risk patients is instrumental to tackle this burden. We investigated the association between serum metabolites and all-cause mortality in type 2 diabetes and then whether the associated metabolites mediate the effect of inflammation on mortality risk and improve ENFORCE (EstimatioN oF mORtality risk in type2 diabetic patiEnts) and RECODe (Risk Equation for Complications Of type 2 Diabetes), two well-established all-cause mortality prediction models in diabetes. Two cohorts comprising 856 individuals (279 all-cause deaths) were analyzed. Serum metabolites (n = 188) and pro- and anti-inflammatory cytokines (n = 7) were measured. In the pooled analysis, hexanoylcarnitine, kynurenine, and tryptophan were significantly and independently associated with mortality (hazard ratio [HR] 1.60 [95% CI 1.43-1.80]; 1.53 [1.37-1.71]; and 0.71 [0.62-0.80] per 1 SD). The kynurenine-to-tryptophan ratio (KTR), a proxy of indoleamine-2,3-dioxygenase, which degrades tryptophan to kynurenine and contributes to a proinflammatory status, mediated 42% of the significant association between the antiatherogenic interleukin (IL) 13 and mortality. Adding the three metabolites improved discrimination and reclassification (all P < 0.01) of both mortality prediction models. In type 2 diabetes, hexanoylcarnitine, tryptophan, and kynurenine are associated to and improve the prediction of all-cause mortality. Further studies are needed to investigate whether interventions aimed at reducing KTR also reduce the risk of death, especially in patients with low IL-13.
Collapse
Affiliation(s)
- Maria Giovanna Scarale
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| | - Mario Mastroianno
- Scientific Direction, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| | - Cornelia Prehn
- Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Massimiliano Copetti
- Biostatistics Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| | - Lucia Salvemini
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Salvatore De Cosmo
- Department of Clinical Sciences, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo Della Sofferenza," San Giovanni Rotondo, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| |
Collapse
|
19
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
20
|
Hu Y, Fang Z, Mu J, Huang Y, Zheng S, Yuan Y, Guo C. Quantitative Analysis of Methylated Adenosine Modifications Revealed Increased Levels of N 6-Methyladenosine (m 6A) and N 6,2'- O-Dimethyladenosine (m 6Am) in Serum From Colorectal Cancer and Gastric Cancer Patients. Front Cell Dev Biol 2021; 9:694673. [PMID: 34381776 PMCID: PMC8350345 DOI: 10.3389/fcell.2021.694673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer and gastric cancer are the most prevalent gastrointestinal malignancies worldwide, and early detection of these cancers is crucial to reduce their incidence and mortality. RNA methylation plays an important regulatory role in a variety of physiological activities, and it has drawn great attention in recent years. Methylated adenosine (A) modifications such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 2′-O-methyladenosine (Am), N6,2′-O-dimethyladenosine (m6Am), and N6,N6-dimethyladenosine (m62A) are typical epigenetic markers of RNA, and they are closely correlated to various diseases including cancer. Serum is a valuable source of biofluid for biomarker discovery, and determination of these adenosine modifications in human serum is desirable since they are emerging biomarkers for detection of diseases. In this work, a targeted quantitative analysis method using hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) was developed and utilized to analyze these methylated adenosine modifications in serum samples. The concentration differences between the healthy volunteers and cancer patients were evaluated by Mann–Whitney test, and receiver operator characteristic (ROC) curve analysis was performed to access the potential of these nucleosides as biomarkers. We demonstrated the presence of the m6Am in human serum for the first time, and we successfully quantified the concentrations of A, m6A, m1A, and m6Am in serum samples from 99 healthy controls, 51 colorectal cancer patients, and 27 gastric cancer patients. We found that the levels of m6A and m6Am in serum were both increased in colorectal cancer or gastric cancer patients, compared to that in healthy controls. These results indicate that m6A and m6Am in serum may act as potential biomarkers for early detection and prognosis of colorectal cancer and gastric cancer. In addition, the present work will stimulate investigations on the effects of adenosine methylation on the initiation and progression of colorectal cancer and gastric cancer.
Collapse
Affiliation(s)
- Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayi Mu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Steinbrenner I, Schultheiss UT, Kotsis F, Schlosser P, Stockmann H, Mohney RP, Schmid M, Oefner PJ, Eckardt KU, Köttgen A, Sekula P. Urine Metabolite Levels, Adverse Kidney Outcomes, and Mortality in CKD Patients: A Metabolome-wide Association Study. Am J Kidney Dis 2021; 78:669-677.e1. [PMID: 33839201 DOI: 10.1053/j.ajkd.2021.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE & OBJECTIVE Mechanisms underlying the variable course of disease progression in patients with chronic kidney disease (CKD) are incompletely understood. The aim of this study was to identify novel biomarkers of adverse kidney outcomes and overall mortality, which may offer insights into pathophysiologic mechanisms. STUDY DESIGN Metabolome-wide association study. SETTING & PARTICIPANTS 5,087 patients with CKD enrolled in the observational German Chronic Kidney Disease Study. EXPOSURES Measurements of 1,487 metabolites in urine. OUTCOMES End points of interest were time to kidney failure (KF), a combined end point of KF and acute kidney injury (KF+AKI), and overall mortality. ANALYTICAL APPROACH Statistical analysis was based on a discovery-replication design (ratio 2:1) and multivariable-adjusted Cox regression models. RESULTS After a median follow-up of 4 years, 362 patients died, 241 experienced KF, and 382 experienced KF+AKI. Overall, we identified 55 urine metabolites whose levels were significantly associated with adverse kidney outcomes and/or mortality. Higher levels of C-glycosyltryptophan were consistently associated with all 3 main end points (hazard ratios of 1.43 [95% CI, 1.27-1.61] for KF, 1.40 [95% CI, 1.27-1.55] for KF+AKI, and 1.47 [95% CI, 1.33-1.63] for death). Metabolites belonging to the phosphatidylcholine pathway showed significant enrichment. Members of this pathway contributed to the improvement of the prediction performance for KF observed when multiple metabolites were added to the well-established Kidney Failure Risk Equation. LIMITATIONS Findings among patients of European ancestry with CKD may not be generalizable to the general population. CONCLUSIONS Our comprehensive screen of the association between urine metabolite levels and adverse kidney outcomes and mortality identifies metabolites that predict KF and represents a valuable resource for future studies of biomarkers of CKD progression.
Collapse
Affiliation(s)
- Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg; Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg; Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin
| | | | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin; Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen; Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg.
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg.
| | | |
Collapse
|
22
|
Lightning TA, Gesteira TF, Mueller JW. Steroid disulfates - Sulfation double trouble. Mol Cell Endocrinol 2021; 524:111161. [PMID: 33453296 DOI: 10.1016/j.mce.2021.111161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Sulfation pathways have recently come into the focus of biomedical research. For steroid hormones and related compounds, sulfation represents an additional layer of regulation as sulfated steroids are more water-soluble and tend to be biologically less active. For steroid diols, an additional sulfation is possible, carried out by the same sulfotransferases that catalyze the first sulfation step. The steroid disulfates that are formed are the focus of this review. We discuss both their biochemical production as well as their putative biological function. Steroid disulfates have also been linked to various clinical conditions in numerous untargeted metabolomics studies. New analytical techniques exploring the biosynthetic routes of steroid disulfates have led to novel insights, changing our understanding of sulfation in human biology. They promise a bright future for research into sulfation pathways, hopefully too for the diagnosis and treatment of several associated diseases.
Collapse
Affiliation(s)
- Thomas Alec Lightning
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, USA; Optimvia, LLC, Batavia, OH, USA
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
23
|
Stepien M, Keski-Rahkonen P, Kiss A, Robinot N, Duarte-Salles T, Murphy N, Perlemuter G, Viallon V, Tjønneland A, Rostgaard-Hansen AL, Dahm CC, Overvad K, Boutron-Ruault MC, Mancini FR, Mahamat-Saleh Y, Aleksandrova K, Kaaks R, Kühn T, Trichopoulou A, Karakatsani A, Panico S, Tumino R, Palli D, Tagliabue G, Naccarati A, Vermeulen RCH, Bueno-de-Mesquita HB, Weiderpass E, Skeie G, Ramón Quirós J, Ardanaz E, Mokoroa O, Sala N, Sánchez MJ, Huerta JM, Winkvist A, Harlid S, Ohlsson B, Sjöberg K, Schmidt JA, Wareham N, Khaw KT, Ferrari P, Rothwell JA, Gunter M, Riboli E, Scalbert A, Jenab M. Metabolic perturbations prior to hepatocellular carcinoma diagnosis: Findings from a prospective observational cohort study. Int J Cancer 2021; 148:609-625. [PMID: 32734650 DOI: 10.1002/ijc.33236] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. Current knowledge on metabolic perturbations in HCC is derived mostly from case-control designs, with sparse information from prospective cohorts. Our objective was to apply comprehensive metabolite profiling to detect metabolites whose serum concentrations are associated with HCC development, using biological samples from within the prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (>520 000 participants), where we identified 129 HCC cases matched 1:1 to controls. We conducted high-resolution untargeted liquid chromatography-mass spectrometry-based metabolomics on serum samples collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic regression was applied controlling for dietary habits, alcohol consumption, smoking, body size, hepatitis infection and liver dysfunction. Corrections for multiple comparisons were applied. Of 9206 molecular features detected, 220 discriminated HCC cases from controls. Detailed feature annotation revealed 92 metabolites associated with HCC risk, of which 14 were unambiguously identified using pure reference standards. Positive HCC-risk associations were observed for N1-acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, l,l-cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid and 7-methylguanine. Inverse risk associations were observed for retinol, dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl hydroxychroman and creatine. Discernible differences for these metabolites were observed between cases and controls up to 10 years prior to diagnosis. Our observations highlight the diversity of metabolic perturbations involved in HCC development and replicate previous observations (metabolism of bile acids, amino acids and phospholipids) made in Asian and Scandinavian populations. These findings emphasize the role of metabolic pathways associated with steroid metabolism and immunity and specific dietary and environmental exposures in HCC development.
Collapse
Affiliation(s)
- Magdalena Stepien
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pekka Keski-Rahkonen
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Agneta Kiss
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Nivonirina Robinot
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Talita Duarte-Salles
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Gabriel Perlemuter
- INSERM UMRS U996 - Intestinal Microbiota, Macrophages and Liver Inflammation, Clamart, France
- Université Paris-Sud, Clamart, France
- AP-HP, Hepato-gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France
| | - Vivian Viallon
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anne Tjønneland
- Diet, Genes and Environment Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Christina C Dahm
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de médecine-Université Paris-Sud, Faculté de médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Francesca Romana Mancini
- CESP, Faculté de médecine-Université Paris-Sud, Faculté de médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Yahya Mahamat-Saleh
- CESP, Faculté de médecine-Université Paris-Sud, Faculté de médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- Second Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP) Ragusa, Ragusa, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Naccarati
- Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM) Torino, Torino, Italy
| | - Roel C H Vermeulen
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hendrik Bastiaan Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Elisabete Weiderpass
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | | | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Olatz Mokoroa
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Núria Sala
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program and Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Maria-Jose Sánchez
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs. Granada. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - José María Huerta
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain
| | - Anna Winkvist
- The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Public Health and Clinical Medicine, Nutrition Research, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Skåne University Hospital, Department of Internal Medicine, Lund University, Malmö, Sweden
| | - Klas Sjöberg
- Skåne University Hospital, Department of Gastroenterology and Nutrition, Lund University, Malmö, Sweden
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- University of Cambridge, School of Clinical Medicine, Clinical Gerontology Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Joseph A Rothwell
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Institut Gustave Roussy, Villejuif, France
| | - Marc Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
24
|
Xu J, Liu G, Hegde SM, Palta P, Boerwinkle E, Gabriel KP, Yu B. Physical Activity-Related Metabolites Are Associated with Mortality: Findings from the Atherosclerosis Risk in Communities (ARIC) Study. Metabolites 2021; 11:metabo11010059. [PMID: 33477977 PMCID: PMC7835806 DOI: 10.3390/metabo11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Habitual physical activity can diminish the risk of premature death. Identifying a pattern of metabolites related to physical activity may advance our understanding of disease etiology. We quantified 245 serum metabolites in 3802 participants from the Atherosclerosis Risk in Communities (ARIC) study using chromatography-mass spectrometry. We regressed self-reported moderate-to-vigorous intensity leisure-time physical activity (LTPA) against each metabolite, adjusting for traditional risk factors. A standardized metabolite risk score (MRS) was constructed to examine its association with all-cause mortality using the Cox proportional hazard model. We identified 10 metabolites associated with LTPA (p < 2.04 × 10-4) and established that an increase of one unit of the metabolic equivalent of task-hours per week (MET·hr·wk-1) in LTPA was associated with a 0.012 SD increase in MRS. During a median of 27.5 years of follow-up, we observed 1928 deaths. One SD increase of MRS was associated with a 10% lower risk of death (HR = 0.90, 95% CI: 0.85-0.95). The highest vs. the lowest MRS quintile rank was associated with a 22% reduced risk of death (HR = 0.78, 95% CI: 0.62-0.94). The effects were consistent across race and sex groups. In summary, we identified a set of metabolites associated with LTPA and an MRS associated with a lower risk of death. Our study provides novel insights into the potential mechanisms underlying the health impacts of physical activity.
Collapse
Affiliation(s)
- Jun Xu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Guning Liu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Sheila M. Hegde
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Human Genome Sequencing Center, Balor College of Medicine, Houston, TX 77030, USA
| | - Kelley P. Gabriel
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Correspondence:
| |
Collapse
|
25
|
Andrade FDO, Liu F, Zhang X, Rosim MP, Dani C, Cruz I, Wang TTY, Helferich W, Li RW, Hilakivi-Clarke L. Genistein Reduces the Risk of Local Mammary Cancer Recurrence and Ameliorates Alterations in the Gut Microbiota in the Offspring of Obese Dams. Nutrients 2021; 13:nu13010201. [PMID: 33440675 PMCID: PMC7827465 DOI: 10.3390/nu13010201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The risk of recurrence of estrogen receptor-positive breast cancer remains constant, even 20 years after diagnosis. Recurrence may be more likely in patients pre-programmed for it already in the womb, such as in the daughters born to obese mothers. Maternal obesity persistently alters offspring’s gut microbiota and impairs tumor immune responses. To investigate if the gut dysbiosis is linked to increased risk of mammary cancer recurrence in the offspring of obese rat dams, we fed adult offspring genistein which is known to have beneficial effects on the gut bacteria. However, the effects of genistein on breast cancer remain controversial. We found that genistein intake after tamoxifen response prevented the increased risk of local recurrence in the offspring of obese dams but had no effect on the control offspring. A significant increase in the abundance of inflammatory Prevotellaceae and Enterobacteriaceae, and a reduction in short-chain fatty acid producing Clostridiaceae was observed in the offspring of obese dams. Genistein supplementation reversed these changes as well as reversed increased gut metabolite N-acetylvaline levels which are linked to increased all-cause mortality. Genistein supplementation also reduced genotoxic tyramine levels, increased metabolites improving pro-resolving phase of inflammation, and reversed the elevated tumor mRNA expression of multiple immunosuppressive genes in the offspring of obese dams. If translatable to breast cancer patients, attempts to prevent breast cancer recurrences might need to focus on dietary modifications which beneficially modify the gut microbiota.
Collapse
Affiliation(s)
- Fabia de Oliveira Andrade
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266555, China;
| | - Xiyuan Zhang
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Mariana Papaleo Rosim
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Caroline Dani
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Idalia Cruz
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Thomas T. Y. Wang
- United States Department of Agriculture, Beltsville Human Nutrition Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA;
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 1801, USA;
| | - Robert W. Li
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA;
| | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
- Correspondence:
| |
Collapse
|
26
|
Nierenberg JL, He J, Li C, Gu X, Shi M, Razavi AC, Mi X, Li S, Bazzano LA, Anderson AH, He H, Chen W, Guralnik JM, Kinchen JM, Kelly TN. Serum metabolites associate with physical performance among middle-aged adults: Evidence from the Bogalusa Heart Study. Aging (Albany NY) 2020; 12:11914-11941. [PMID: 32482911 PMCID: PMC7343486 DOI: 10.18632/aging.103362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
Age-related declines in physical performance predict cognitive impairment, disability, chronic disease exacerbation, and mortality. We conducted a metabolome-wide association study of physical performance among Bogalusa Heart Study participants. Bonferroni corrected multivariate-adjusted linear regression was employed to examine cross-sectional associations between single metabolites and baseline gait speed (N=1,227) and grip strength (N=1,164). In a sub-sample of participants with repeated assessments of gait speed (N=282) and grip strength (N=201), significant metabolites from the cross-sectional analyses were tested for association with change in physical performance over 2.9 years of follow-up. Thirty-five and seven metabolites associated with baseline gait speed and grip strength respectively, including six metabolites that associated with both phenotypes. Three metabolites associated with preservation or improvement in gait speed over follow-up, including: sphingomyelin (40:2) (P=2.6×10-4) and behenoyl sphingomyelin (d18:1/22:0) and ergothioneine (both P<0.05). Seven metabolites associated with declines in gait speed, including: 1-carboxyethylphenylalanine (P=8.8×10-5), and N-acetylaspartate, N-formylmethionine, S-adenosylhomocysteine, N-acetylneuraminate, N2,N2-dimethylguanosine, and gamma-glutamylphenylalanine (all P<0.05). Two metabolite modules reflecting sphingolipid and bile acid metabolism associated with physical performance (minimum P=7.6×10-4). These results add to the accumulating evidence suggesting an important role of the human metabolome in physical performance and specifically implicate lipid, nucleotide, and amino acid metabolism in early physical performance decline.
Collapse
Affiliation(s)
- Jovia L Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.,Department of Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.,Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA 30606, USA
| | - Xiaoying Gu
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China
| | - Mengyao Shi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Alexander C Razavi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Hospitals and Clinics of Minnesota, MN 55404, USA
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Amanda H Anderson
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Hua He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jack M Guralnik
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
27
|
Chouvarine P, Giera M, Kastenmüller G, Artati A, Adamski J, Bertram H, Hansmann G. Trans-right ventricle and transpulmonary metabolite gradients in human pulmonary arterial hypertension. Heart 2020; 106:1332-1341. [PMID: 32079620 PMCID: PMC7476282 DOI: 10.1136/heartjnl-2019-315900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE While metabolic dysfunction occurs in several pulmonary arterial hypertension (PAH) animal models, its role in the human hypertensive right ventricle (RV) and lung is not well characterised. We investigated whether circulating metabolite concentrations differ across the hypertensive RV and/or the pulmonary circulation, and correlate with invasive haemodynamic/echocardiographic variables in patients with PAH. METHODS Prospective EDTA blood collection during cardiac catheterisation from the superior vena cava (SVC), pulmonary artery (PA) and ascending aorta (AAO) in children with PAH (no shunt) and non-PAH controls (Con), followed by unbiased screens of 427 metabolites and 836 lipid species and fatty acids (FAs) in blood plasma (Metabolon and Lipidyzer platforms). Metabolite concentrations were correlated with echocardiographic and invasive haemodynamic variables. RESULTS Metabolomics/lipidomics analysis of differential concentrations (false discovery rate<0.15) revealed several metabolite gradients in the trans-RV (PA vs SVC) setting. Notably, dicarboxylic acids (eg, octadecanedioate: fold change (FC)_Control=0.77, FC_PAH=1.09, p value=0.044) and acylcarnitines (eg, stearoylcarnitine: FC_Control=0.74, FC_PAH=1.21, p value=0.058). Differentially regulated metabolites were also found in the transpulmonary (AAO vs PA) setting and between-group comparisons, that is, in the SVC (PAH-SVC vs Con-SVC), PA and AAO. Importantly, the differential PAH-metabolite concentrations correlated with numerous outcome-relevant variables (e.g., tricuspid annular plane systolic excursion, pulmonary vascular resistance). CONCLUSIONS In PAH, trans-RV and transpulmonary metabolite gradients exist and correlate with haemodynamic determinants of clinical outcome. The most pronounced differential trans-RV gradients are known to be involved in lipid metabolism/lipotoxicity, that is, accumulation of long chain FAs. The identified accumulation of dicarboxylic acids and acylcarnitines likely indicates impaired β-oxidation in the hypertensive RV and represents emerging biomarkers and therapeutic targets in PAH.
Collapse
Affiliation(s)
- Philippe Chouvarine
- Department of Pediatric Cardiology and Critical care, Hannover Medical School, Hannover, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Anna Artati
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.,Department of Biochemistry, National University Singapore Yong Loo Lin School of Medicine, Singapore
| | - Harald Bertram
- Department of Pediatric Cardiology and Critical care, Hannover Medical School, Hannover, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical care, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Balasubramanian R, Paynter NP, Giulianini F, Manson JE, Zhao Y, Chen JC, Vitolins MZ, Albert CA, Clish C, Rexrode KM. Metabolomic profiles associated with all-cause mortality in the Women's Health Initiative. Int J Epidemiol 2020; 49:289-300. [PMID: 31651959 PMCID: PMC7124492 DOI: 10.1093/ije/dyz211] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metabolomics profiling has shown promise in elucidating the biological pathways underpinning mortality, but there are limited data in female populations. METHODS We applied a liquid chromatography-tandem mass spectrometry metabolomics platform to EDTA-plasma to measure 470 metabolites at baseline in a discovery set of 943 postmenopausal women (including 417 incident deaths, median time to death of 10.6 years) with validation in an independent set of 1355 postmenopausal women (including 685 deaths, median time to death of 9.1 years) in the Women's Health Initiative. RESULTS Eight new metabolites were discovered to be associated with all-cause mortality. Findings included protective effects of increased levels of three amino acids (asparagine, homoarginine and tryptophan) and docosatrienoic acid; and detrimental effects of increased levels of C4-OH-carnitine, hexadecanedioate and two purine/pyrimidines (N2, N2-dimethylguanosine and N4-acetylcytidine). In addition, a set of nine previously published metabolite associations were replicated. A metabolite score comprising 17 metabolites was associated with mortality (P < 10-8) after adjustment for risk factors, with a hazard ratio of 1.95 (95% CI: 1.46-2.62) for women in the highest quartile compared with the lowest quartile of metabolite score. The score was robust among younger women and older women, for both cardiovascular and non-cardiovascular mortality, and associated with both early deaths (within the first 10 years of baseline) and later deaths. CONCLUSIONS Our study fills a gap in the literature by identifying eight novel metabolite associations with all-cause mortality in women, using a robust study design involving independent discovery and validation datasets.
Collapse
Affiliation(s)
- Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nina P Paynter
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yibai Zhao
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Mara Z Vitolins
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christine A Albert
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary Clish
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Kathryn M Rexrode
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- Division of Women's Health, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Iwahashi N, Inai Y, Minakata S, Sakurai S, Manabe S, Ito Y, Ino K, Ihara Y. C-Mannosyl tryptophan increases in the plasma of patients with ovarian cancer. Oncol Lett 2019; 19:908-916. [PMID: 31885719 PMCID: PMC6924205 DOI: 10.3892/ol.2019.11161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer survival is poor, in part, because there are no specific biomarkers for early diagnosis. C-Mannosyl tryptophan (CMW) is a structurally unique glycosylated amino acid recently identified as a novel biomarker of renal dysfunction. The present study investigated whether blood CMW is altered in patients with ovarian cancer and whether differences in blood CMW can distinguish benign from malignant ovarian tumors. Plasma samples were obtained from 49 patients with malignant, borderline or benign ovarian tumors as well as from seven age-matched healthy women. CMW was identified and quantified in these samples using ultra-performance liquid chromatography with fluorometry. Plasma CMW was significantly higher in the malignant tumor group than in the borderline and benign tumor groups, and higher in the combined tumor group (malignant, borderline or benign) compared with healthy controls. Receiver operating characteristic curve analysis of plasma CMW distinguished malignant tumors from borderline/benign tumors [area under the curve (AUC)=0.905]. Discrimination performance was greater than that of cancer antigen (CA) 125 (AUC=0.835), and CMW + CA125 combined achieved even greater discrimination (AUC=0.913, 81.8% sensitivity, 87.5% specificity, 93.1% positive predictive value and 70.0% negative predictive value). Plasma CMW differentiates malignant ovarian cancer from borderline or benign ovarian tumors with high accuracy, and performance is further improved by combined CMW and CA125 measurement.
Collapse
Affiliation(s)
- Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sho Sakurai
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), Saitama 351-0198, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
30
|
Ottosson F, Smith E, Gallo W, Fernandez C, Melander O. Purine Metabolites and Carnitine Biosynthesis Intermediates Are Biomarkers for Incident Type 2 Diabetes. J Clin Endocrinol Metab 2019; 104:4921-4930. [PMID: 31502646 PMCID: PMC6804288 DOI: 10.1210/jc.2019-00822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT Metabolomics has the potential to generate biomarkers that can facilitate understanding relevant pathways in the pathophysiology of type 2 diabetes (T2DM). METHODS Nontargeted metabolomics was performed, via liquid chromatography-mass spectrometry, in a discovery case-cohort study from the Malmö Preventive Project (MPP), which consisted of 698 metabolically healthy participants, of whom 202 developed T2DM within a follow-up time of 6.3 years. Metabolites that were significantly associated with T2DM were replicated in the population-based Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) (N = 3423), of whom 402 participants developed T2DM within a follow-up time of 18.2 years. RESULTS Using nontargeted metabolomics, we observed alterations in nine metabolite classes to be related to incident T2DM, including 11 identified metabolites. N2,N2-dimethylguanosine (DMGU) (OR = 1.94; P = 4.9e-10; 95% CI, 1.57 to 2.39) was the metabolite most strongly associated with an increased risk, and beta-carotene (OR = 0.60; P = 1.8e-4; 95% CI, 0.45 to 0.78) was the metabolite most strongly associated with a decreased risk. Identified T2DM-associated metabolites were replicated in MDC-CC. Four metabolites were significantly associated with incident T2DM in both the MPP and the replication cohort MDC-CC, after adjustments for traditional diabetes risk factors. These included associations between three metabolites, DMGU, 7-methylguanine (7MG), and 3-hydroxytrimethyllysine (HTML), and incident T2DM. CONCLUSIONS We used nontargeted metabolomics in two Swedish prospective cohorts comprising >4000 study participants and identified independent, replicable associations between three metabolites, DMGU, 7MG, and HTML, and future risk of T2DM. These findings warrant additional studies to investigate a potential functional connection between these metabolites and the onset of T2DM.
Collapse
Affiliation(s)
- Filip Ottosson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Correspondence and Reprint Requests: Filip Ottosson, PhD, Lund University, Jan Waldenströms Gata 35, Malmö 21421, Sweden. E-mail:
| | - Einar Smith
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Widet Gallo
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|