1
|
Balliau T, Ashenafi M, Blein-Nicolas M, Turc O, Zivy M, Marchadier E. A Moderate Water Deficit Induces Profound Changes in the Proteome of Developing Maize Ovaries. Biomolecules 2024; 14:1239. [PMID: 39456174 PMCID: PMC11506675 DOI: 10.3390/biom14101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Water deficit is a major cause of yield loss for maize (Zea mays), leading to ovary abortion when applied at flowering time. To help understand the mechanisms involved in this phenomenon, the proteome response to water deficit has been analysed in developing ovaries at the silk emergence stage and five days later. Differential analysis, abundance pattern clustering and co-expression networks were performed in order to draw a general picture of the proteome changes all along ovary development and under the effect of water deficit. The results show that even mild water deficit has a major impact on ovary proteome, but this impact is very different from a response to stress. A part of the changes can be related to a slowdown of ovary development, while another part cannot. In particular, ovaries submitted to water deficit show an increase in proteins involved in protein biosynthesis and in vesicle transport together with a decrease in proteins involved in amino acid metabolism and proteolysis. According to the functions of increased proteins, the changes may be linked to auxin, brassinosteroids and jasmonate signalling but not abscisic acid.
Collapse
Affiliation(s)
- Thierry Balliau
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Mariamawit Ashenafi
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Mélisande Blein-Nicolas
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Olivier Turc
- LEPSE, INRAE, Montpellier SupAgro, Université Montpellier, 34293 Montpellier, France;
| | - Michel Zivy
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Elodie Marchadier
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| |
Collapse
|
2
|
Liu H, Yao X, Fan J, Lv L, Zhao Y, Nie J, Guo Y, Zhang L, Huang H, Shi Y, Zhang Q, Li J, Sui X. Cell wall invertase 3 plays critical roles in providing sugars during pollination and fertilization in cucumber. PLANT PHYSIOLOGY 2024; 195:1293-1311. [PMID: 38428987 DOI: 10.1093/plphys/kiae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lidong Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Hongyu Huang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Yuzi Shi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiawang Li
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Li Y, Huang S, Meng Q, Li Z, Fritschi FB, Wang P. Pre-silking water deficit in maize induced kernel loss through impaired silk growth and ovary carbohydrate dynamics. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10141. [PMID: 38586117 PMCID: PMC10998497 DOI: 10.1002/pei3.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Both carbon limitation and developmentally driven kernel failure occur in the apical region of maize (Zea mays L.) ears. Failed kernel development in the basal and middle regions of the ear often is neglected because their spaces usually are occupied by adjacent ovaries at harvest. We tested the spatial distribution of kernel losses and potential underlying reasons, from perspectives of silk elongation and carbohydrate dynamics, when maize experienced water deficit during silk elongation. Kernel loss was distributed along the length of the ear regardless of water availability, with the highest kernel set in the middle region and a gradual reduction toward the apical and basal ends. Water deficit limited silk elongation in a manner inverse to the temporal pattern of silk initiation, more strongly in the apical and basal regions of the ear than in the middle region. The limited recovery of silk elongation, especially at the apical and basal regions following rescue irrigation was probably due to water potentials below the threshold for elongation and lower growth rates of the associated ovaries. While sugar concentrations increased or did not respond to water deficit in ovaries and silks, the calculated sugar flux into the developing ovaries was impaired and diverged among ovaries at different positions under water deficit. Water deficit resulted in 58% kernel loss, 68% of which was attributable to arrested silks within husks caused by lower water potentials and 32% to ovaries with emerged silks possibly due to impaired carbohydrate metabolism.
Collapse
Affiliation(s)
- Yebei Li
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Shoubing Huang
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qingfeng Meng
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zongxin Li
- Shandong Academy of Agricultural ScienceJinanChina
| | - Felix B. Fritschi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Pu Wang
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Zhang F, Ma J, Liu Y, Fang J, Wei S, Xie R, Han P, Zhao X, Bo S, Lu Z. A Multi-Omics Analysis Revealed the Diversity of the MYB Transcription Factor Family's Evolution and Drought Resistance Pathways. Life (Basel) 2024; 14:141. [PMID: 38255756 PMCID: PMC10820167 DOI: 10.3390/life14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor family can regulate biological processes such as ABA signal transduction to cope with drought stress, but its evolutionary mechanism and the diverse pathways of response to drought stress in different species are rarely reported. In this study, a total of 4791 MYB family members were identified in 908,757 amino acid sequences from 12 model plants or crops using bioinformatics methods. It was observed that the number of MYB family members had a linear relationship with the chromosome ploidy of species. A phylogenetic analysis showed that the MYB family members evolved in subfamily clusters. In response to drought stress, the pathways of MYB transcription factor families exhibited species-specific diversity, with closely related species demonstrating a higher resemblance. This study provides abundant references for drought resistance research and the breeding of wheat, soybean, and other plants.
Collapse
Affiliation(s)
- Fan Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Ying Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Jing Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Shuli Wei
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| |
Collapse
|
5
|
Li Y, Zhang P, Sheng W, Zhang Z, Rose RJ, Song Y. Securing maize reproductive success under drought stress by harnessing CO 2 fertilization for greater productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221095. [PMID: 37860252 PMCID: PMC10582713 DOI: 10.3389/fpls.2023.1221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Securing maize grain yield is crucial to meet food and energy needs for the future growing population, especially under frequent drought events and elevated CO2 (eCO2) due to climate change. To maximize the kernel setting rate under drought stress is a key strategy in battling against the negative impacts. Firstly, we summarize the major limitations to leaf source and kernel sink in maize under drought stress, and identified that loss in grain yield is mainly attributed to reduced kernel set. Reproductive drought tolerance can be realized by collective contribution with a greater assimilate import into ear, more available sugars for ovary and silk use, and higher capacity to remobilize assimilate reserve. As such, utilization of CO2 fertilization by improved photosynthesis and greater reserve remobilization is a key strategy for coping with drought stress under climate change condition. We propose that optimizing planting methods and mining natural genetic variation still need to be done continuously, meanwhile, by virtue of advanced genetic engineering and plant phenomics tools, the breeding program of higher photosynthetic efficiency maize varieties adapted to eCO2 can be accelerated. Consequently, stabilizing maize production under drought stress can be achieved by securing reproductive success by harnessing CO2 fertilization.
Collapse
Affiliation(s)
- Yangyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengpeng Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenjing Sheng
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zixiang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Tang Q, Ren J, Du X, Niu S, Liu S, Wei D, Zhang Y, Bian D, Cui Y, Gao Z. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. FRONTIERS IN PLANT SCIENCE 2022; 13:1035254. [PMID: 36340386 PMCID: PMC9632278 DOI: 10.3389/fpls.2022.1035254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Enhancing maize lodging resistance with plant growth retardants (PGRs) is common in maize production. However, the underlying mechanisms of yield formation as affected by PGRs are still poorly understood. A field experiment contained PGR application (a mixture of ethephon and cycocel, EC) with normal (T1) and double (T2) doses and water control (CK) was conducted at four maize plant densities (4.5, 6.0, 7.5, and 9.0 plants m-2) in 2020 and 2021. In this two-year study, the grain yield and kernel number per ear (KNE) of EC treatments were reduced by 4.8-9.0% and 3.3-12.2%, respectively, compared with CK under densities of 4.5, 6.0, and 7.5 plants m-2 without lodging. However, under the density of 9.0 plants m-2, EC treatments had no pronounced effects on grain yield and yield components. Across all densities, EC significantly decreased the leaf area index (LAI), and the lowest LAI was recorded in T2. The concentrations of nonstructural carbohydrates (NSCs; starch and soluble sugar) in the stem were significantly decreased by 9.9-10.2% in T2 averaged all densities. The sucrose and starch concentrations in grains also declined in the EC treatments. The key enzymes (cell wall acid invertase, sucrose synthase, and adenosine diphosphate pyrophosphorylase) and grain polyamine concentrations showed a slight downward trend under EC treatments compared to CK. NSCs in stems and grains, kernel enzyme activities, and polyamines in grains presented significant positive correlations with KNE. Additionally, structural carbohydrate (SC; including cellulose, hemicellulose, and lignin) concentrations in stems were improved with enhanced lodging resistance by spraying EC. Significant negative relationships were observed between SC with kernel number m-2 (KNM) and yield, suggesting that improved SC in stems might affect the availability of NSCs for kernel set. Although the lowest kernel weight and KNE were obtained at 9.0 plant m-2, relatively high LAI still ensured high KNM and high yield. Collectively, EC treatment increased SC in stems, enhanced lodging resistance of maize and reduced NSC availability for kernels, ultimately presenting adverse effects on maize kernel number and yield under relative low density.
Collapse
Affiliation(s)
| | | | - Xiong Du
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| | | | | | | | | | | | - Yanhong Cui
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| | - Zhen Gao
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| |
Collapse
|
7
|
Ma WF, Li YB, Nai GJ, Liang GP, Ma ZH, Chen BH, Mao J. Changes and response mechanism of sugar and organic acids in fruits under water deficit stress. PeerJ 2022; 10:e13691. [PMID: 36039369 PMCID: PMC9419716 DOI: 10.7717/peerj.13691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/16/2022] [Indexed: 01/19/2023] Open
Abstract
The content and the ratio of soluble sugars and organic acids in fruits are significant indicators for fruit quality. They are affected by multiple environmental factors, in which water-deficient is the most concern. Previous studies found that the content of soluble sugars and organic acids in fruit displayed great differences under varied water stress. It is important to clarify the mechanism of such difference and to provide researchers with systematic knowledge about the response to drought stress and the mechanism of sugar and acid changes in fruits, so that they can better carry out the study of fruit quality under drought stress. Therefore, the researchers studied dozens of research articles about the content of soluble sugar and organic acid, the activity of related metabolic enzymes, and the expression of related metabolic genes in fruits under water stress, and the stress response of plants to water stress. We found that after plants perceived and transmitted the signal of water deficit, the expression of genes related to the metabolism of soluble sugars and organic acids changed. It was then affected the synthesis of metabolic enzymes and changed their metabolic rate, ultimately leading to changes in soluble sugar and organic acid content. Based on the literature review, we described the pathway diagrams of sugar metabolism, organic acid metabolism, mainly malic acid, tartaric acid, and citric acid metabolism, and of the response to drought stress. From many aspects including plants' perception of water stress signal, signal conversion and transmission, induced gene expression, the changes in soluble sugar and the enzyme activities of organic acids, as well as the final sugar and acid content in fruits, this thesis summarized previous studies on the influence of water stress on soluble sugars and the metabolism of organic acids in fruits.
Collapse
|
8
|
Pipatsitee P, Theerawitaya C, Tiasarum R, Samphumphuang T, Singh HP, Datta A, Cha-Um S. Physio-morphological traits and osmoregulation strategies of hybrid maize (Zea mays) at the seedling stage in response to water-deficit stress. PROTOPLASMA 2022; 259:869-883. [PMID: 34581924 DOI: 10.1007/s00709-021-01707-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/16/2021] [Indexed: 05/27/2023]
Abstract
Drought has been identified as a major factor restricting maize productivity worldwide, especially in the rainfed areas. The objective of the present study was to investigate the physiological adaptation strategies and sugar-related gene expression levels in three maize (Zea mays L.) genotypes with different drought tolerance abilities (Suwan4452, drought tolerant as a positive check; S7328, drought susceptible as a negative check; Pac339, drought susceptible) at the seedling stage. Ten-day old seedlings of maize genotypes were subjected to (i) well-watered (WW) or control and (ii) water-deficit (WD) conditions. Leaf osmotic potential of cv. S7328 under WD was significantly decreased by 1.35-1.45 folds compared with cv. Pac339 under WW, whereas it was retained in cv. Suwan4452, which utilized total soluble sugars as the major osmolytes for maintaining leaf greenness, Fv/Fm, ΦPSII, and stomatal function (Pn, net photosynthetic rate; gs, stomatal conductance; and E, transpiration rate). Interestingly, sucrose degradation (65% over the control) in cv. Pac339 under WD was evident in relation to the downregulation of the ZmSPS1 level, whereas glucose enrichment (1.65 folds over the control) was observed in relation to the upregulation of ZmSPS1 and ZmSUS1. Moreover, CWSI (crop water stress index), calculated from leaf temperature of stressed plants, was negatively correlated with E, gs, and Pn. Overall, growth characteristics, aboveground and belowground parts, in the drought-susceptible cv. Pac339 and cv. S7328, were significantly decreased (> 25% over the control), whereas these parameters in the drought-tolerant cv. Suwan4452 were unaffected. The study validates the use of leaf temperature, CWSI, Pn, gs, and E as sensitive parameters and overall growth characters as effective indices for drought tolerance screening in maize genotypes at the seedling stage. However, further experiments are required to validate the results observed in this study under field conditions.
Collapse
Affiliation(s)
- Piyanan Pipatsitee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Rujira Tiasarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
9
|
Chavez Mendoza K, Peña-Valdivia CB, Hernández Rodríguez M, Vázquez Sánchez M, Morales Elías NC, Jiménez Galindo JC, García Esteva A, Padilla Chacón D. Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction. PLANTS 2022; 11:plants11131622. [PMID: 35807573 PMCID: PMC9268661 DOI: 10.3390/plants11131622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
The common bean (Phaseolus vulgaris L.) pod wall is essential for seed formation and to protect seeds. To address the effect of water restriction on sugar metabolism in fruits differing in sink strength under light–dark cycles, we used plants of cv. OTI at 100% field capacity (FC) and at 50% FC over 10 days at the beginning of pod filling. Water restriction intensified the symptoms of leaf senescence. However, pods maintained a green color for several days longer than leaves did. In addition, the functionality of pods of the same raceme was anatomically demonstrated, and no differences were observed between water regimes. The glucose and starch concentrations were lower than those of sucrose, independent of pod wall size. Remarkably, the fructose concentration decreased only under water restriction. The cell wall invertase activity was twofold higher in the walls of small pods than in those of large ones in both water regimes; similar differences were not evident for cytosolic or vacuolar invertase. Using bioinformatics tools, six sequences of invertase genes were identified in the P. vulgaris genome. The PvINVCW4 protein sequence contains substitutions for conserved residues in the sucrose-binding site, while qPCR showed that transcript levels were induced in the walls of small pods under stress. The findings support a promising strategy for addressing sink strength under water restriction.
Collapse
Affiliation(s)
- Karla Chavez Mendoza
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Cecilia Beatriz Peña-Valdivia
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Martha Hernández Rodríguez
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico;
| | - Monserrat Vázquez Sánchez
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Norma Cecilia Morales Elías
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | | | - Antonio García Esteva
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Daniel Padilla Chacón
- CONACYT-Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico
- Correspondence: ; Tel.: +52-595-952-0200 (ext. 1344)
| |
Collapse
|
10
|
Shen S, Ma S, Chen XM, Yi F, Li BB, Liang XG, Liao SJ, Gao LH, Zhou SL, Ruan YL. A transcriptional landscape underlying sugar import for grain set in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:228-242. [PMID: 35020972 DOI: 10.1111/tpj.15668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/12/2023]
Abstract
Developing seed depends on sugar supply for its growth and yield formation. Maize (Zea mays L.) produces the largest grains among cereals. However, there is a lack of holistic understanding of the transcriptional landscape of genes controlling sucrose transport to, and utilization within, maize grains. By performing in-depth data mining of spatio-temporal transcriptomes coupled with histological and heterologous functional analyses, we identified transporter genes specifically expressed in the maternal-filial interface, including (i) ZmSWEET11/13b in the placento-chalazal zone, where sucrose is exported into the apoplasmic space, and (ii) ZmSTP3, ZmSWEET3a/4c (monosaccharide transporters), ZmSUT1, and ZmSWEET11/13a (sucrose transporters) in the basal endosperm transfer cells for retrieval of apoplasmic sucrose or hexoses after hydrolysis by extracellular invertase. In the embryo and its surrounding regions, an embryo-localized ZmSUT4 and a cohort of ZmSWEETs were specifically expressed. Interestingly, drought repressed those ZmSWEETs likely exporting sucrose but enhanced the expression of most transporter genes for uptake of apoplasmic sugars. Importantly, this drought-induced fluctuation in gene expression was largely attenuated by an increased C supply via controlled pollination, indicating that the altered gene expression is conditioned by C availability. Based on the analyses above, we proposed a holistic model on the spatio-temporal expression of genes that likely govern sugar transport and utilization across maize maternal and endosperm and embryo tissues during the critical stage of grain set. Collectively, the findings represent an advancement towards a holistic understanding of the transcriptional landscape underlying post-phloem sugar transport in maize grain and indicate that the drought-induced changes in gene expression are attributable to low C status.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xian-Min Chen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fei Yi
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin-Bin Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Research Center on Ecological Science, Jiangxi Agricultural University, Nanchang, China
| | - Sheng-Jin Liao
- Research Center of Agricultural Information & Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100193, China
| | - Li-Hong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, The University of Newcastle, New South Wales, 2308, Australia
| |
Collapse
|
11
|
Tapia G, Méndez J, Inostroza L, Lozano C. Water Shortage Affects Vegetative and Reproductive Stages of Common Bean ( Phaseolus vulgaris) Chilean Landraces, Differentially Impacting Grain Yield Components. PLANTS (BASEL, SWITZERLAND) 2022; 11:749. [PMID: 35336629 PMCID: PMC8948600 DOI: 10.3390/plants11060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Water availability for agricultural use is currently a global problem that worsens with climate change in several regions of the world. Among grain legumes, common bean (Phaseolus vulgaris) is the most cultivated in the worldwide. The Chilean germplasm of common bean is characterized by tolerance to water stress. Here, we analyzed a selection of nine ancient Chilean landraces in regard to their drought tolerance, simulating optimal (OW) and restricted watering (RW) in a Mediterranean environment. Phenological, growth, and yield traits were recorded, and correlation analysis was performed. Accordingly, leaf temperature and osmotic potential were higher under RW, while the leaf chlorophyll content decreased in all landraces. Physiological maturity days and seed-filling days were lower in RW than in OW. This similarly occurred with the grain yield. The % yield reduction was negatively correlated with the % pod reduction and the relative rate of leaf expansion (RLAE) reduction. However, the 100-seed weight value was not significantly modified by water treatment (p > 0.05). For instance, landraces that preferred to fill the grain with a lower rate of leaf expansion showed a lower loss in grain yield under drought conditions. These results suggest that the resource partitioning between growing leaves, flowers, and developing pods in Chilean landraces is variable, affecting the common bean drought tolerance.
Collapse
|
12
|
Zhou J, Tian L, Wang S, Li H, Zhao Y, Zhang M, Wang X, An P, Li C. Ovary Abortion Induced by Combined Waterlogging and Shading Stress at the Flowering Stage Involves Amino Acids and Flavonoid Metabolism in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:778717. [PMID: 34887895 PMCID: PMC8649655 DOI: 10.3389/fpls.2021.778717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Maize (Zea mays L.) crops on the North China Plain are often subject to continuous overcast rain at the flowering stage. This causes waterlogging and shading stresses simultaneously and leads to huge yield losses, but the causes of these yield losses remain largely unknown. To explore the factors contributing to yield loss caused by combined waterlogging and shading stress at the flowering stage, we performed phenotypic, physiological, and quasi-targeted metabolomics analyses of maize plants subjected to waterlogging, shading, and combined waterlogging and shading (WS) treatments. Analyses of phenotypic and physiological indexes showed that, compared with waterlogging or shading alone, WS resulted in lower source strength, more severe inhibition of ovary and silk growth at the ear tip, a reduced number of emerged silks, and a higher rate of ovary abortion. Changes in carbon content and enzyme activity could not explain the ovary abortion in our study. Metabolomic analyses showed that the events occurred in ovaries and silks were closely related to abortion, WS forced the ovary to allocate more resources to the synthesis of amino acids involved in the stress response, inhibited the energy metabolism, glutathione metabolism and methionine salvage pathway, and overaccumulation of H2O2. In silks, WS led to lower accumulation levels of specific flavonoid metabolites with antioxidant capacity, and to over accumulation of H2O2. Thus, compared with each single stress, WS more seriously disrupted the normal metabolic process, and resulted more serious oxidative stress in ovaries and silks. Amino acids involved in the stress response in ovaries and specific flavonoid metabolites with antioxidant capacity in silks play important roles during ovary abortion. These results identify novel traits for selection in breeding programs and targets for genome editing to increase maize yield under WS stress.
Collapse
|
13
|
Niu S, Du X, Wei D, Liu S, Tang Q, Bian D, Zhang Y, Cui Y, Gao Z. Heat Stress After Pollination Reduces Kernel Number in Maize by Insufficient Assimilates. Front Genet 2021; 12:728166. [PMID: 34691151 PMCID: PMC8532994 DOI: 10.3389/fgene.2021.728166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Global warming has increased the occurrence of high temperature stress in plants, including maize, resulting in decreased the grain number and yield. Previous studies indicate that heat stress mainly damages the pollen grains and thus lowered maize grain number. Other field studies have shown that heat stress after pollination results in kernel abortion. However, the mechanism by which high temperature affect grain abortion following pollination remains unclear. Hence, this study investigated the field grown heat-resistant maize variety “Zhengdan 958” (ZD958) and heat-sensitive variety “Xianyu 335” (XY335) under a seven-day heat stress treatment (HT) after pollination. Under HT, the grain numbers of XY335 and ZD958 were reduced by 10.9% (p = 0.006) and 5.3% (p = 0.129), respectively. The RNA sequencing analysis showed a higher number of differentially expressed genes (DEGs) between HT and the control in XY335 compared to ZD958. Ribulose diphosphate carboxylase (RuBPCase) genes were downregulated by heat stress, and RuBPCase activity was significantly lowered by 14.1% (p = 0.020) in XY335 and 5.3% (p = 0.436) in ZD958 in comparison to CK. The soluble sugar and starch contents in the grains of XY335 were obviously reduced by 26.1 and 58.5%, respectively, with no distinct change observed in ZD958. Heat stress also inhibited the synthesis of grain starch, as shown by the low activities of metabolism-related enzymes. Under HT, the expression of trehalose metabolism genes in XY335 were upregulated, and these genes may be involved in kernel abortion at high temperature. In conclusion, this study revealed that post-pollination heat stress in maize mainly resulted in reduced carbohydrate availability for grain development, though the heat-resistant ZD958 was nevertheless able to maintain growth.
Collapse
Affiliation(s)
- Shiduo Niu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Xiong Du
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Dejie Wei
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Shanshan Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Qian Tang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Dahong Bian
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Yarong Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Yanhong Cui
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Zhen Gao
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| |
Collapse
|
14
|
Zhu C, Yang K, Li G, Li Y, Gao Z. Identification and Expression Analyses of Invertase Genes in Moso Bamboo Reveal Their Potential Drought Stress Functions. Front Genet 2021; 12:696300. [PMID: 34527019 PMCID: PMC8435750 DOI: 10.3389/fgene.2021.696300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Invertases (INVs) can irreversibly hydrolyze sucrose into fructose and glucose, which play principal roles in carbon metabolism and responses to various stresses in plants. However, little is known about the INV family in bamboos, especially their potential function in drought stress. In this study, 29 PeINVs were identified in moso bamboo (Phyllostachys edulis). They were clustered into alkaline/neutral invertase (NINV) and acid invertase (AINV) groups based on the gene structures, conserved motifs, and phylogenetic analysis results. The collinearity analysis showed nine segmental duplication pairs within PeINVs, and 25 pairs were detected between PeINVs and OsINVs. PeINVs may have undergone strong purification selection during evolution, and a variety of stress and phytohormone-related regulatory elements were found in the promoters of PeINVs. The tissue-specific expression analysis showed that PeINVs were differentially expressed in various moso bamboo tissues, which suggested that they showed functional diversity. Both the RNA-seq and quantitative real-time PCR results indicated that four PeINVs were significantly upregulated under drought stress. Co-expression network and Pearson’s correlation coefficient analyses showed that these PeINVs co-expressed positively with sugar and water transport genes (SWTGs), and the changes were consistent with sugar content. Overall, we speculate that the identified PeINVs are spatiotemporally expressed, which enables them to participate in moso bamboo growth and development. Furthermore, PeINVs, together with SWTGs, also seem to play vital roles in the response to drought stress. These results provide a comprehensive information resource for PeINVs, which will facilitate further study of the molecular mechanism underlying PeINVs involvement in the response to drought stress in moso bamboo.
Collapse
Affiliation(s)
- Chenglei Zhu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Kebin Yang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Guangzhu Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Ying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Zhimin Gao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China.,Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| |
Collapse
|
15
|
Messina C, McDonald D, Poffenbarger H, Clark R, Salinas A, Fang Y, Gho C, Tang T, Graham G, Hammer GL, Cooper M. Reproductive resilience but not root architecture underpins yield improvement under drought in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5235-5245. [PMID: 34037765 PMCID: PMC8272564 DOI: 10.1093/jxb/erab231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Because plants capture water and nutrients through roots, it was proposed that changes in root systems architecture (RSA) might underpin the 3-fold increase in maize (Zea mays L.) grain yield over the last century. Here we show that both RSA and yield have changed with decades of maize breeding, but not the crop water uptake. Results from X-ray phenotyping in controlled environments showed that single cross (SX) hybrids have smaller root systems than double cross (DX) hybrids for root diameters between 2465 µm and 181µm (P<0.05). Soil water extraction measured under field conditions ranged between 2.6 mm d-1 and 2.9 mm d-1 but were not significantly different between SX and DX hybrids. Yield and yield components were higher for SX than DX hybrids across densities and irrigation (P<0.001). Taken together, the results suggest that changes in RSA were not the cause of increased water uptake but an adaptation to high-density stands used in modern agriculture. This adaptation may have contributed to shift in resource allocation to the ear and indirectly improved reproductive resilience. Advances in root physiology and phenotyping can create opportunities to maintain long-term genetic gain in maize, but a shift from ideotype to crop and production system thinking will be required.
Collapse
Affiliation(s)
- Carlos Messina
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Dan McDonald
- Phenotype Screening Corporation, 4028 Papermill Road, Knoxville, TN 37909, USA
| | | | - Randy Clark
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Andrea Salinas
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Yinan Fang
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Carla Gho
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Tom Tang
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Geoff Graham
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Graeme L Hammer
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD 4072, Australia
| | - Mark Cooper
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
17
|
Wu X, Feng H, Wu D, Yan S, Zhang P, Wang W, Zhang J, Ye J, Dai G, Fan Y, Li W, Song B, Geng Z, Yang W, Chen G, Qin F, Terzaghi W, Stitzer M, Li L, Xiong L, Yan J, Buckler E, Yang W, Dai M. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol 2021; 22:185. [PMID: 34162419 PMCID: PMC8223302 DOI: 10.1186/s13059-021-02377-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Drought threatens the food supply of the world population. Dissecting the dynamic responses of plants to drought will be beneficial for breeding drought-tolerant crops, as the genetic controls of these responses remain largely unknown. RESULTS Here we develop a high-throughput multiple optical phenotyping system to noninvasively phenotype 368 maize genotypes with or without drought stress over a course of 98 days, and collected multiple optical images, including color camera scanning, hyperspectral imaging, and X-ray computed tomography images. We develop high-throughput analysis pipelines to extract image-based traits (i-traits). Of these i-traits, 10,080 were effective and heritable indicators of maize external and internal drought responses. An i-trait-based genome-wide association study reveals 4322 significant locus-trait associations, representing 1529 quantitative trait loci (QTLs) and 2318 candidate genes, many that co-localize with previously reported maize drought responsive QTLs. Expression QTL (eQTL) analysis uncovers many local and distant regulatory variants that control the expression of the candidate genes. We use genetic mutation analysis to validate two new genes, ZmcPGM2 and ZmFAB1A, which regulate i-traits and drought tolerance. Moreover, the value of the candidate genes as drought-tolerant genetic markers is revealed by genome selection analysis, and 15 i-traits are identified as potential markers for maize drought tolerance breeding. CONCLUSION Our study demonstrates that combining high-throughput multiple optical phenotyping and GWAS is a novel and effective approach to dissect the genetic architecture of complex traits and clone drought-tolerance associated genes.
Collapse
Affiliation(s)
- Xi Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Di Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shijuan Yan
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Pei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoxin Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Fan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weikun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baoxing Song
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Zedong Geng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanli Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoxin Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Michelle Stitzer
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Edward Buckler
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14850, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14850, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, 14850, USA
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan laboratory, Wuhan, 430070, China.
| |
Collapse
|
18
|
Alsamir M, Mahmood T, Trethowan R, Ahmad N. An overview of heat stress in tomato ( Solanum lycopersicum L.). Saudi J Biol Sci 2021; 28:1654-1663. [PMID: 33732051 PMCID: PMC7938145 DOI: 10.1016/j.sjbs.2020.11.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Heat stress has been defined as the rise of temperature for a period of time higher than a threshold level, thereby permanently affecting the plant growth and development. Day or night temperature is considered as the major limiting factor for plant growth. Earlier studies reported that night temperature is an important factor in the heat reaction of the plants. Tomato cultivars capable of setting viable fruits under night temperatures above 21 °C are considered as heat-tolerant cultivars. The development of breeding objectives is generally summarized in four points: (a) cultivars with higher yield, (b) disease resistant varieties in the 1970s, (c) long shelf-life in 1980s, and (d) nutritive and taste quality during 1990s. Some unique varieties like the dwarf "Micro-Tom", and the first transgenic tomato (FlavrSavr) were developed through breeding; they were distributed late in the 1980s. High temperature significantly affects seed, pollen viability and root expansion. Researchers have employed different parameters to evaluate the tolerance to heat stress, including membrane thermo stability, floral characteristics (Stigma exertion and antheridia cone splitting), flower number, and fruit yield per plant. Reports on pollen viability and fruit set/plant under heat stress by comparing the pollen growth and tube development in heat-treated and non-heat-stressed conditions are available in literature. The electrical conductivity (EC) have been used to evaluate the tolerance of some tomato cultivars in vitro under heat stress conditions as an indication of cell damage due to electrolyte leakage; they classified the cultivars into three groups: (a) heat tolerant, (b) moderately heat tolerant, and (c) heat sensitive. It is important to determine the range in genetic diversity for heat tolerance in tomatoes. Heat stress experiments under field conditions offer breeders information to identify the potentially heat tolerant germplasm.
Collapse
Affiliation(s)
- Muhammed Alsamir
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Tariq Mahmood
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Richard Trethowan
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Nabil Ahmad
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| |
Collapse
|
19
|
Whole-Transcriptome RNA Sequencing Reveals the Global Molecular Responses and CeRNA Regulatory Network of mRNAs, lncRNAs, miRNAs and circRNAs in Response to Salt Stress in Sugar Beet ( Beta vulgaris). Int J Mol Sci 2020; 22:ijms22010289. [PMID: 33396637 PMCID: PMC7795855 DOI: 10.3390/ijms22010289] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sugar beet is an important sugar-yielding crop with some tolerance to salt, but the mechanistic basis of this tolerance is not known. In the present study, we have used whole-transcriptome RNA-seq and degradome sequencing in response to salt stress to uncover differentially expressed (DE) mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in both leaves and roots. A competitive endogenous RNA (ceRNA) network was constructed with the predicted DE pairs, which revealed regulatory roles under salt stress. A functional analysis suggests that ceRNAs are implicated in copper redistribution, plasma membrane permeability, glycometabolism and energy metabolism, NAC transcription factor and the phosphoinositol signaling system. Overall, we conducted for the first time a full transcriptomic analysis of sugar beet under salt stress that involves a potential ceRNA network, thus providing a basis to study the potential functions of lncRNAs/circRNAs.
Collapse
|
20
|
Braghiere RK, Gérard F, Evers JB, Pradal C, Pagès L. Simulating the effects of water limitation on plant biomass using a 3D functional-structural plant model of shoot and root driven by soil hydraulics. ANNALS OF BOTANY 2020; 126:713-728. [PMID: 32249296 PMCID: PMC7489072 DOI: 10.1093/aob/mcaa059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/02/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Improved modelling of carbon assimilation and plant growth to low soil moisture requires evaluation of underlying mechanisms in the soil, roots, and shoots. The feedback between plants and their local environment throughout the whole spectrum soil-root-shoot-environment is crucial to accurately describe and evaluate the impact of environmental changes on plant development. This study presents a 3D functional structural plant model, in which shoot and root growth are driven by radiative transfer, photosynthesis, and soil hydrodynamics through different parameterisation schemes relating soil water deficit and carbon assimilation. The new coupled model is used to evaluate the impact of soil moisture availability on plant productivity for two different groups of flowering plants under different spatial configurations. METHODS In order to address different aspects of plant development due to limited soil water availability, a 3D FSP model including root, shoot, and soil was constructed by linking three different well-stablished models of airborne plant, root architecture, and reactive transport in the soil. Different parameterisation schemes were used in order to integrate photosynthetic rate with root water uptake within the coupled model. The behaviour of the model was assessed on how the growth of two different types of plants, i.e. monocot and dicot, is impacted by soil water deficit under different competitive conditions: isolated (no competition), intra, and interspecific competition. KEY RESULTS The model proved to be capable of simulating carbon assimilation and plant development under different growing settings including isolated monocots and dicots, intra, and interspecific competition. The model predicted that (1) soil water availability has a larger impact on photosynthesis than on carbon allocation; (2) soil water deficit has an impact on root and shoot biomass production by up to 90 % for monocots and 50 % for dicots; and (3) the improved dicot biomass production in interspecific competition was highly related to root depth and plant transpiration. CONCLUSIONS An integrated model of 3D shoot architecture and biomass development with a 3D root system representation, including light limitation and water uptake considering soil hydraulics, was presented. Plant-plant competition and regulation on stomatal conductance to drought were able to be predicted by the model. In the cases evaluated here, water limitation impacted plant growth almost 10 times more than the light environment.
Collapse
Affiliation(s)
- Renato K Braghiere
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Joint Institute for Regional Earth System Science and Engineering, University of California at Los Angeles, Los Angeles, CA, USA
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, SupAgro, Montpellier, France
| | - Frédéric Gérard
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, SupAgro, Montpellier, France
| | - Jochem B Evers
- Centre for Crop Systems Analysis (CSA), Wageningen University, Wageningen, The Netherlands
| | - Christophe Pradal
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, SupAgro, Montpellier, France
- INRIA, Univ. Montpellier, France
| | | |
Collapse
|
21
|
Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:564917. [PMID: 32983216 PMCID: PMC7485278 DOI: 10.3389/fpls.2020.564917] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Collapse
Affiliation(s)
| | | | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
22
|
Liang XG, Gao Z, Shen S, Paul MJ, Zhang L, Zhao X, Lin S, Wu G, Chen XM, Zhou SL. Differential ear growth of two maize varieties to shading in the field environment: Effects on whole plant carbon allocation and sugar starvation response. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153194. [PMID: 32563766 DOI: 10.1016/j.jplph.2020.153194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The interception of irradiation by smog pollution and cloud cover associated with extreme rainfall events has become an increasingly important limiting factor in crop production in China. Little is known about the adaptation of carbon (C) allocation to periodic low irradiance in field conditions. The trehalose signaling pathway plays a critical role in adapting C allocation to the environment in crops but its importance in adaptation to low light in field conditions is not known. To determine the effects of low irradiance on C economy and maize yield, two commonly grown hybrids (LY-16 and ZD-958) were subject to three levels of shading (15 %, 50 %, and 97 %) for one week from V13 stage in two successive seasons. Shading led to yield loss mainly due to decreased kernel number, which was greater in LY-16 than ZD-958. Effects of shading on leaf area and photosynthesis were similar in both varieties. Starch levels in leaves were maintained, whereas total soluble carbohydrates were reduced up to fivefold by shading in both varieties. Shading increased the proportion of photoassimilate retained in leaves relative to reproductive organs. Carbohydrates in ears and stem were decreased by shading similarly in both varieties. Amongst the parameters measured, the main difference between LY-16 and ZD-958 associated with yield penalty was the expression of class II trehalose phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) genes which were increased due to shading in leaves and ears, particularly in ears of LY-16. It is concluded that altered C fixation and allocation by low irradiance limited ear growth at pre-anthesis. Activation of TPSII and TPP genes indicates that the trehalose pathway likely plays a role in ear development under low light and could be a target for yield improvement under such conditions as with other stresses.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhen Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Matthew J Paul
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Li Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xue Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shan Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Gong Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Scientific Observation and Experimental Station of Crop High Efficient Use of Water in Wuqiao, the Ministry of Agriculture and Rural Affairs, Wuqiao 061802, China; Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China.
| |
Collapse
|
23
|
Jammer A, Albacete A, Schulz B, Koch W, Weltmeier F, van der Graaff E, Pfeifhofer HW, Roitsch TG. Early-stage sugar beet taproot development is characterized by three distinct physiological phases. PLANT DIRECT 2020; 4:e00221. [PMID: 32766510 PMCID: PMC7395582 DOI: 10.1002/pld3.221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Alfonso Albacete
- Institute of BiologyUniversity of GrazGrazAustria
- Present address:
Department of Plant Production and AgrotechnologyInstitute for Agri‐Food Research and Development of Murcia (IMIDA)MurciaSpain
| | | | | | | | - Eric van der Graaff
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Present address:
Koppert Cress B.V.MonsterThe Netherlands
| | | | - Thomas G. Roitsch
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Department of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
24
|
Shen S, Liang XG, Zhang L, Zhao X, Liu YP, Lin S, Gao Z, Wang P, Wang ZM, Zhou SL. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. PLANT, CELL & ENVIRONMENT 2020; 43:903-919. [PMID: 31851373 DOI: 10.1111/pce.13704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xue Zhao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- School of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shan Lin
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Zhi-Min Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
25
|
Paponov IA, Paponov M, Sambo P, Engels C. Differential Regulation of Kernel Set and Potential Kernel Weight by Nitrogen Supply and Carbohydrate Availability in Maize Genotypes Contrasting in Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:586. [PMID: 32499807 PMCID: PMC7243938 DOI: 10.3389/fpls.2020.00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/17/2020] [Indexed: 05/15/2023]
Abstract
Sub-optimal nitrogen (N) conditions reduce maize yield due to a decrease in two sink components: kernel set and potential kernel weight. Both components are established during the lag phase, suggesting that they could compete for resources during this critical period. However, whether this competition occurs or whether different genotypic strategies exist to optimize photoassimilate use during the lag phase is not clear and requires further investigation. We have addressed this knowledge gap by conducting a nutrient solution culture experiment that allows abrupt changes in N level and light intensity during the lag phase. We investigated plant growth, dry matter partitioning, non-structural carbohydrate concentration, N concentration, and 15N distribution (applied 4 days before silking) in plant organs at the beginning and the end of the lag phase in two maize hybrids that differ in grain yield under N-limited conditions: one is a nitrogen-use-efficient (EFFI) genotype and the other is a control (GREEN) genotype that does not display high N use efficiency. We found that the two genotypes used different mechanisms to regulate kernel set. The GREEN genotype showed a reduction in kernel set associated with reduced dry matter allocation to the ear during the lag phase, indicating that the reduced kernel set under N-limited conditions was related to sink restrictions. This idea was supported by a negative correlation between kernel set and sucrose/total sugar ratios in the kernels, indicating that the capacity for sucrose cleavage might be a key factor defining kernel set in the GREEN genotype. By contrast, the kernel set of the EFFI genotype was not correlated with dry matter allocation to the ear or to a higher capacity for sucrose cleavage; rather, it showed a relationship with the different EFFI ear morphology with bigger kernels at the apex of the ear than in the GREEN genotype. The potential kernel weight was independent of carbohydrate availability but was related to the N flux per kernel in both genotypes. In conclusion, kernel set and potential kernel weight are regulated independently, suggesting the possibility of simultaneously increasing both sink components in maize.
Collapse
Affiliation(s)
- Ivan A. Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research, Ås, Norway
- *Correspondence: Ivan A. Paponov,
| | - Martina Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paolo Sambo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Christof Engels
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Plant Nutrition and Fertilisation, Humboldt-Universitat zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Chen L, Liu X, Huang X, Luo W, Long Y, Greiner S, Rausch T, Zhao H. Functional Characterization of a Drought-Responsive Invertase Inhibitor from Maize ( Zea mays L.). Int J Mol Sci 2019; 20:E4081. [PMID: 31438536 PMCID: PMC6747265 DOI: 10.3390/ijms20174081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023] Open
Abstract
Invertases (INVs) play essential roles in plant growth in response to environmental cues. Previous work showed that plant invertases can be post-translationally regulated by small protein inhibitors (INVINHs). Here, this study characterizes a proteinaceous inhibitor of INVs in maize (Zm-INVINH4). A functional analysis of the recombinant Zm-INVINH4 protein revealed that it inhibited both cell wall and vacuolar invertase activities from maize leaves. A Zm-INVINH4::green fluorescent protein fusion experiment indicated that this protein localized in the apoplast. Transcript analysis showed that Zm-INVINH4 is specifically expressed in maize sink tissues, such as the base part of the leaves and young kernels. Moreover, drought stress perturbation significantly induced Zm-INVINH4 expression, which was accompanied with a decrease of cell wall invertase (CWI) activities and an increase of sucrose accumulation in both base parts of the leaves 2 to 7 days after pollinated kernels. In summary, the results support the hypothesis that INV-related sink growth in response to drought treatment is (partially) caused by a silencing of INV activity via drought-induced induction of Zm-INVINH4 protein.
Collapse
Affiliation(s)
- Lin Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojia Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Soltani A, Weraduwage SM, Sharkey TD, Lowry DB. Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019; 20:312. [PMID: 31014227 PMCID: PMC6480737 DOI: 10.1186/s12864-019-5669-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Climate change models predict more frequent incidents of heat stress worldwide. This trend will contribute to food insecurity, particularly for some of the most vulnerable regions, by limiting the productivity of crops. Despite its great importance, there is a limited understanding of the underlying mechanisms of variation in heat tolerance within plant species. Common bean, Phaseolus vulgaris, is relatively susceptible to heat stress, which is of concern given its critical role in global food security. Here, we evaluated three genotypes of P. vulgaris belonging to kidney market class under heat and control conditions. The Sacramento and NY-105 genotypes were previously reported to be heat tolerant, while Redhawk is heat susceptible. RESULTS We quantified several morpho-physiological traits for leaves and found that photosynthetic rate, stomatal conductance, and leaf area all increased under elevated temperatures. Leaf area expansion under heat stress was greatest for the most susceptible genotype, Redhawk. To understand gene regulatory responses among the genotypes, total RNA was extracted from the fourth trifoliate leaves for RNA-sequencing. Several genes involved in the protection of PSII (HSP21, ABA4, and LHCB4.3) exhibited increased expression under heat stress, indicating the importance of photoprotection of PSII. Furthermore, expression of the gene SUT2 was reduced in heat. SUT2 is involved in the phloem loading of sucrose and its distal translocation to sinks. We also detected an almost four-fold reduction in the concentration of free hexoses in heat-treated beans. This reduction was more drastic in the susceptible genotype. CONCLUSIONS Overall, our data suggests that while moderate heat stress does not negatively affect photosynthesis, it likely interrupts intricate source-sink relationships. These results collectively suggest a physiological mechanism for why pollen fertility and seed set are negatively impacted by elevated temperatures. Identifying the physiological and transcriptome dynamics of bean genotypes in response to heat stress will likely facilitate the development of varieties that can better tolerate a future of elevated temperatures.
Collapse
Affiliation(s)
- Ali Soltani
- Department of Plant Biology, Michigan State University, East Lansing, MI USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI USA
| | | | - Thomas D. Sharkey
- Plant Resilience Institute, Michigan State University, East Lansing, MI USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - David B. Lowry
- Department of Plant Biology, Michigan State University, East Lansing, MI USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI USA
| |
Collapse
|
28
|
Shen S, Ma S, Liu Y, Liao S, Li J, Wu L, Kartika D, Mock HP, Ruan YL. Cell Wall Invertase and Sugar Transporters Are Differentially Activated in Tomato Styles and Ovaries During Pollination and Fertilization. FRONTIERS IN PLANT SCIENCE 2019; 10:506. [PMID: 31057596 PMCID: PMC6482350 DOI: 10.3389/fpls.2019.00506] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 05/05/2023]
Abstract
Flowering plants depend on pollination and fertilization to activate the transition from ovule to seed and ovary to fruit, namely seed and fruit set, which are key for completing the plant life cycle and realizing crop yield potential. These processes are highly energy consuming and rely on the efficient use of sucrose as the major nutrient and energy source. However, it remains elusive as how sucrose imported into and utilizated within the female reproductive organ is regulated in response to pollination and fertilization. Here, we explored this issue in tomato by focusing on genes encoding cell wall invertase (CWIN) and sugar transporters, which are major players in sucrose phloem unloading, and sink development. The transcript level of a major CWIN gene, LIN5, and CWIN activity were significantly increased in style at 4 h after pollination (HAP) in comparison with that in the non-pollination control, and this was sustained at 2 days after pollination (DAP). In the ovaries, however, CWIN activity and LIN5 expression did not increase until 2 DAP when fertilization occurred. Interestingly, a CWIN inhibitor gene INVINH1 was repressed in the pollinated style at 2 DAP. In response to pollination, the style exhibited increased expressions of genes encoding hexose transporters, SlHT1, 2, SlSWEET5b, and sucrose transporters SlSUT1, 2, and 4 from 4 HAP to 2 DAP. Upon fertilization, SlSUT1 and SlHT1 and 2, but not SlSWEETs, were also stimulated in fruitlets at 2 DAP. Together, the findings reveal that styles respond promptly and more broadly to pollination for activation of CWIN and sugar transporters to fuel pollen tube elongation, whereas the ovaries do not exhibit activation for some of these genes until fertilization occurs. HIGHLIGHTS Expression of genes encoding cell wall invertases and sugar transporters was stimulated in pollinated style and fertilized ovaries in tomato.
Collapse
Affiliation(s)
- Si Shen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Ma
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yonghua Liu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shengjin Liao
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jun Li
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Limin Wu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dewi Kartika
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
29
|
Li Y, Tao H, Zhang B, Huang S, Wang P. Timing of Water Deficit Limits Maize Kernel Setting in Association With Changes in the Source-Flow-Sink Relationship. FRONTIERS IN PLANT SCIENCE 2018; 9:1326. [PMID: 30405644 PMCID: PMC6204571 DOI: 10.3389/fpls.2018.01326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/23/2018] [Indexed: 05/29/2023]
Abstract
The kernel setting of maize varies greatly because of the timing and intensity of water deficits. This variation can limit leaf productivity (source), the translocation of assimilated sugars (flow), and yield formation (sink). To explain the decline in kernel setting of maize under water deficits from the perspective of source-flow-sink, a 3-year experiment was conducted under a rain shelter. Five water regimes were studied. One regime included well-irrigated (CK) treatment. Four regimes involved water deficits: irrigation was withheld during the 6- to 8-leaf stage (V6-8), the 9- to 12-leaf stage (V9-12), the 13-leaf stage to tasseling stage (V13-T), and the silking stage to blister stage (R1-2). Water deficit effects on kernel setting began when the water deficit occurred at V9 and became more significant with time. Kernel weight was reduced by 12 and 11% when there were water deficits during V9-12 and V13-T, respectively. This was the result of reduced leaf area (limited source) and an altered vascular bundle in the ear peduncles (limited assimilate flow). The reduced vascular bundle number, rather than the ear peduncle cross-sectional area, significantly affected the final kernel weight when exposed to a water deficit prior to the silking stage. The water deficits prior to and close to the flowering stage significantly reduced ear kernel number; that is, 14 and 19% less during V13-T and R1-2, respectively, compared with the kernel number during the CK treatment. This reflects a smaller sink under water deficit conditions. Additionally, ovary size was reduced the most in the V13-T water deficit compared with other treatments. After rewatering, the water deficit before or during flowering stage continued to have residual effects on grain-filling in the late growth period. The grain-filling rate decreased under the V9-12 water deficit; the grain-filling duration shortened under the R1-2 water deficit; and both negative effects occurred under the V13-T water deficit. This study clearly indicated that (1) the water deficit during the vegetative organ rapid growth period both limited leaf source development and assimilate flow and slowed down kernel development, and (2) the water deficit just before and during flowering reduced kernel sink. Deficits at both times could retard grain-filling and reduce maize yield. The results of the present study might guide irrigation practices in irrigated maize or inform the management of sowing time in rainfed maize, to desynchronize the water deficit and the plant's reactions to such deficits at different stages.
Collapse
Affiliation(s)
| | | | | | | | - Pu Wang
- *Correspondence: Shoubing Huang, Pu Wang,
| |
Collapse
|
30
|
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:228. [PMID: 30309330 PMCID: PMC6182829 DOI: 10.1186/s12870-018-1456-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove β-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.
Collapse
Affiliation(s)
- Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong China
| | - Bin Xiao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Chuan Yue
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Hongli Cao
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Yuchun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Youben Yu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
31
|
Gustin JL, Boehlein SK, Shaw JR, Junior W, Settles AM, Webster A, Tracy WF, Hannah LC. Ovary abortion is prevalent in diverse maize inbred lines and is under genetic control. Sci Rep 2018; 8:13032. [PMID: 30158664 PMCID: PMC6115450 DOI: 10.1038/s41598-018-31216-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/14/2018] [Indexed: 11/23/2022] Open
Abstract
Crop improvement programs focus on characteristics that are important for plant productivity. Typically genes underlying these traits are identified and stacked to create improved cultivars. Hence, identification of valuable traits for plant productivity is critical for plant improvement. Here we describe an important characteristic for maize productivity. Despite the fact mature maize ears are typically covered with kernels, we find that only a fraction of ovaries give rise to mature kernels. Non-developed ovaries degenerate while neighboring fertilized ovaries produce kernels that fill the ear. Abortion occurs throughout the ear, not just at the tip. We show that the fraction of aborted ovaries/kernels is genetically controlled and varies widely among maize lines, and low abortion genotypes are rare. Reducing or eliminating ovary abortion could substantially increase yield, making this characteristic a new target for selection in maize improvement programs.
Collapse
Affiliation(s)
- Jeffery L Gustin
- Program in Plant Molecular and Cellular Biology, Genetics Institute and Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Susan K Boehlein
- Program in Plant Molecular and Cellular Biology, Genetics Institute and Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Janine R Shaw
- Program in Plant Molecular and Cellular Biology, Genetics Institute and Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Weschester Junior
- Florida Agricultural and Mechanical University, Tallahassee, FL, 32301, USA
| | - A Mark Settles
- Program in Plant Molecular and Cellular Biology, Genetics Institute and Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ashley Webster
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - William F Tracy
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - L Curtis Hannah
- Program in Plant Molecular and Cellular Biology, Genetics Institute and Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
32
|
Zheng J, Huang C, Yang B, Kallio H, Liu P, Ou S. Regulation of phytochemicals in fruits and berries by environmental variation-Sugars and organic acids. J Food Biochem 2018; 43:e12642. [PMID: 31353611 DOI: 10.1111/jfbc.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/07/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Sugars and organic acids are important phytochemicals contributing to the nutrition and sensory properties of fruits and berries. Their contents are closely correlated to the genetic background of plants as well as to the environmental conditions during growth. This review focuses on the recent researches on the metabolism of these compounds in fruits and berries in response to the variation of environmental conditions, including temperature, radiation, and water supply. A great deal of investigations indicates that the influence of environmental factors on the composition of fruits/berries depended largely on the genetic background. Moreover, the metabolic regulation in response to environmental changes also varies between different plant developmental stages. Nevertheless, some general trends, like the positive correlation between light intensity and sugar content, were observed in most investigations. In grapes (Vitis vinifera L.), the content of malic acid always decreases as light intensity increases, and as the water supply decreases. PRACTICAL APPLICATIONS: The contents of sugars and organic acids, and especially their relative ratio, are important indicators determining the taste and quality of fruits and fruit products. In this review, we summarized the investigations carried out on the regulation of these sensory contributing primary metabolites in fruits and berries in relation to the variation of environmental conditions. It was indicated that various factors, such as plant genotype, growing period, and interaction between environmental factors, might contribute to the impact of environmental changes on the composition of fruits/berries. The article not only provides comprehensive knowledges in food chemistry and plant physiology but also provide important background knowledge for berry cultivation and breeding, as well as useful guidelines for utilization of fruits and berries in food industry.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China.,Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Turc O, Tardieu F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3245-3254. [PMID: 29546424 DOI: 10.1093/jxb/ery078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/21/2018] [Indexed: 05/18/2023]
Abstract
Abortion of reproductive organs is a major limiting factor of yield under water deficit, but is also a trait selected for by evolutionary processes. The youngest reproductive organs must be prone to abortion so older organs can finish their development in case of limited resources. Water deficit increases natural abortion via two developmentally driven processes, namely a signal from the first fertilized ovaries and a simultaneous arrest of the expansive growth of all ovaries at a precise stage. In maize (Zea mays) subjected to water deficits typically encountered in dryland agriculture, these developmental mechanisms account for 90% of drought-associated abortion and are irreversible 3 d after silk emergence. Consistently, transcripts and enzyme activities suggest that the molecular events associated with abortion affect expansive growth in silks whereas ovaries maintain a favourable carbon status. Abortion due to carbon starvation is only observed for severe drought scenarios occurring after silking. Both kinetic and genetic evidence indicates that vegetative and reproductive structures share a partly common hydraulic control of expansive growth. Hence, the control of expansive growth of reproductive structures probably has a prominent effect on abortion for mild water deficits occurring at flowering time, while carbon starvation dominates in severe post-flowering drought scenarios.
Collapse
Affiliation(s)
- Olivier Turc
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - François Tardieu
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
34
|
Shen S, Zhang L, Liang XG, Zhao X, Lin S, Qu LH, Liu YP, Gao Z, Ruan YL, Zhou SL. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1599-1613. [PMID: 29365129 PMCID: PMC5888920 DOI: 10.1093/jxb/ery013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/09/2018] [Indexed: 05/05/2023]
Abstract
Selective seed abortion is a survival strategy adopted by many species that sacrifices some seeds to allow the remaining ones to set. While in evolutionary terms this is a successful approach, it causes huge losses to crop yields. A pollination time gap (PTG) has been suggested to be associated with position-related grain abortion. To test this hypothesis, we developed a novel approach to alter the natural pattern of maize (Zea mays L.) pollination and to examine the impact of PTGs on kernel growth and the underlying physiological basis. When apical and basal kernels were synchronously pollinated, the basal kernels set and matured but the apical kernels were aborted at an early stage. Delaying pollination to the basal ovaries suppressed their development and reduced invertase activity and sugar levels, which allowed the apical kernels to set and grow normally. In situ localization revealed normal cell wall invertase activity in apical and basal kernels under synchronous pollination but reduced activity in the delayed-pollinated kernels independent of their position. Starch, which was abundant in basal kernel areas, was absent in the apical kernel regions under synchronous pollination but apparent with delayed pollination. Our analyses identified PTG-related sink strength and a low level of local assimilates as the main causes of grain abortion.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xue Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shan Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ling-Hua Qu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Scientific Observation and Experimental Station of Crop High Efficient Use of Water in Wuqiao, Ministry of Agriculture, Wuqiao, China
| |
Collapse
|
35
|
Cagnola JI, Dumont de Chassart GJ, Ibarra SE, Chimenti C, Ricardi MM, Delzer B, Ghiglione H, Zhu T, Otegui ME, Estevez JM, Casal JJ. Reduced expression of selected FASCICLIN-LIKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds. PLANT, CELL & ENVIRONMENT 2018; 41:661-674. [PMID: 29314044 DOI: 10.1111/pce.13136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 05/29/2023]
Abstract
Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well-watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2-6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN-LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain- and loss-of-function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress-induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis.
Collapse
Affiliation(s)
- Juan Ignacio Cagnola
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1417DSE, Argentina
| | - Gonzalo Javier Dumont de Chassart
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1417DSE, Argentina
| | - Silvia Elizabeth Ibarra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1417DSE, Argentina
| | - Claudio Chimenti
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1417DSE, Argentina
| | - Martiniano María Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, CP 1428, Argentina
| | - Brent Delzer
- Syngenta Seeds, Inc., 11055 Wayzata Blvd, Minnetonka, MN, 55305, USA
| | - Hernán Ghiglione
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1417DSE, Argentina
| | - Tong Zhu
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, Durham, NC, 27709, USA
| | - María Elena Otegui
- Departamento de Producción Vegetal, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, C1417DSE, Argentina
- CONICET-INTA Pergamino, Ruta 32, Km 4.5, Pergamino, Buenos Aires, 2700, Argentina
| | - José Manuel Estevez
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, CP 1428, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, C1405BWE, Argentina
| | - Jorge José Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1417DSE, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
36
|
Zhang J, Wu Z, Hu F, Liu L, Huang X, Zhao J, Wang H. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. HORTICULTURE RESEARCH 2018; 5:39. [PMID: 30083354 PMCID: PMC6068106 DOI: 10.1038/s41438-018-0042-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 05/08/2023]
Abstract
Cell wall invertase (CWIN) are known to play important roles in seed development. However, most reports to date have focused on a single gene family member, and have mainly investigated CWIN functions during the filling stage of seed development. In this study, we found significant lower levels of CWIN protein and activity associated with seed abortion in the Litchi chinensis cultivar "Nuomici." We identified five litchi CWIN genes and observed that the expression of LcCWIN5 was limited to the flower tissues and decreased sharply with fruit development. Silencing of LcCWIN5 expression before 28 DAA (cell division stage) resulted in perturbed liquid endosperm development, smaller seeds, and higher seed abortion rate, while silencing after 28 DAA (filling stage) had no effect on seed development. In contrast, LcCWIN2 was mostly expressed in the funicle and seed coat, and increased with fruit development. Decreased LcCWIN2 expression and CWIN activity during early seed filling coincided with smaller seeds in the cultivar "Feizixiao." Silencing of LcCWIN2 caused a reduction in the seed size without inducing seed abortion. We propose that CWIN activity in seed maternal tissues during cell division stage is likely due to LcCWIN5 expression, which regulates early seed development. On the other hand, CWIN activity during the filling stage is due to the expression of LcCWIN2, which may promote carbon import by creating a sucrose gradient. Comparable LcCWIN5 expression, but much lower CWIN activity, detected in the funicle of "Nuomici" is consistent with post-translational regulation.
Collapse
Affiliation(s)
- Jieqiong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Present Address: Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Zichen Wu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Fuchu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key laboratory of tropical fruit tree biology of Hainan Province, Hainan Academy of Agricultural Science, Haikou, 571100 China
| | - Lian Liu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuming Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huicong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Department of Life Sciences and Technology, Yangtze Normal University, Chongqing, China
| |
Collapse
|
37
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|
38
|
Wu L, Li M, Tian L, Wang S, Wu L, Ku L, Zhang J, Song X, Liu H, Chen Y. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention. PLoS One 2017; 12:e0185838. [PMID: 28973044 PMCID: PMC5626513 DOI: 10.1371/journal.pone.0185838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.
Collapse
Affiliation(s)
- Liancheng Wu
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Mingna Li
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Lei Tian
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shunxi Wang
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Liuji Wu
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jun Zhang
- 3Cereal Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Xiaoheng Song
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Haiping Liu
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Yanhui Chen
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
39
|
Zhang L, Li XH, Gao Z, Shen S, Liang XG, Zhao X, Lin S, Zhou SL. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:1-10. [PMID: 28544894 DOI: 10.1016/j.jplph.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100μM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100μM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development.
Collapse
Affiliation(s)
- Li Zhang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu-Hui Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Gao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xue Zhao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shan Lin
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Ru L, Osorio S, Wang L, Fernie AR, Patrick JW, Ruan YL. Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4263-4279. [PMID: 28922759 PMCID: PMC5853505 DOI: 10.1093/jxb/erx219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fruit set is a developmental transition from ovaries to fruitlets that determines yield potential. Cell wall invertase (CWIN) is essential for fruit and seed set, but the underlying molecular basis remains elusive. We addressed this issue by using CWIN-elevated transgenic tomato, focusing on ovaries and fruitlets at 2 d before and after anthesis, respectively. RNAseq analyses revealed that ovaries and fruitlets exhibited remarkable differences in their transcriptomic responses to elevated CWIN activity. Ovaries 2 d before anthesis were far more responsive to elevated CWIN activity compared with the fruitlets. We identified several previously unknown pathways that were up-regulated by elevated CWIN activity during fruit set. The most notable of these were expression of genes for defence, ethylene synthesis and the cell cycle along with a large number of cell wall-related genes. By contrast, expression of photosynthetic, protein degradation and some receptor-like kinase genes were generally decreased as compared with the wild type ovaries. GC-MS analyses revealed that 22 out of 24 amino acids exhibited reduced levels in the RNAi ovaries as compared with that in the wild type, probably owing to a down-regulated expression of protein degradation genes. Overall, the data indicate that (i) ovaries are much more sensitive to metabolic intervention than fruitlets; (ii) high CWIN activity could promote fruit set by improving resistance against pathogens and altering cell cycle and cell wall synthesis.
Collapse
Affiliation(s)
- Lei Ru
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Sonia Osorio
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
- Correspondence:
| |
Collapse
|
41
|
Dong B, Zheng X, Liu H, Able JA, Yang H, Zhao H, Zhang M, Qiao Y, Wang Y, Liu M. Effects of Drought Stress on Pollen Sterility, Grain Yield, Abscisic Acid and Protective Enzymes in Two Winter Wheat Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1008. [PMID: 28676806 PMCID: PMC5476748 DOI: 10.3389/fpls.2017.01008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/26/2017] [Indexed: 05/24/2023]
Abstract
Drought stress induced pollen sterility is a detrimental factor reducing grain number in wheat. Exploring the mechanisms underlying pollen fertility under drought conditions could assist breeding high-yielding wheat cultivars with stress tolerance. Here, by using two Chinese wheat cultivars subjected to different levels of polyethylene glycol (PEG)-induced drought stress, possible links between pollen fertility and stress tolerance were analyzed under different levels of drought stress at the young microspore stage. In both cultivars, higher grain number reduction was observed under condition of lower water availability. Overall, the drought tolerant cultivar (Jinmai47) exhibited less grain number reduction than the drought sensitive cultivar (Shiluan02-1) under all stress conditions. Compared with Shiluan02-1, Jinmai47 exhibited superior physiological performance in terms of leaf photosynthetic rate, ear carbohydrate accumulation, pollen sink strength, pollen development and fertility under stress. Moreover, Jinmai47 showed a lower increase in endogenous abscisic acid in ears than Shiluan02-1. Furthermore, higher levels of superoxide dismutase (SOD) and peroxidase (POD) activities were also found in the drought tolerant cultivar Jinmai47 under PEG stress, compared with the drought sensitive cultivar Shiluan02-1. Changes in these physiological traits could contribute to better pollen development and male fertility, ultimately leading to the maintenance of grain number under drought stress.
Collapse
Affiliation(s)
- Baodi Dong
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Xin Zheng
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Haipei Liu
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, AdelaideSA, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, AdelaideSA, Australia
| | - Hong Yang
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Huan Zhao
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Mingming Zhang
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Yunzhou Qiao
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Yakai Wang
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Mengyu Liu
- Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences and Hebei Key Laboratory of Water-Saving Agriculture, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| |
Collapse
|
42
|
Bledsoe SW, Henry C, Griffiths CA, Paul MJ, Feil R, Lunn JE, Stitt M, Lagrimini LM. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. BMC PLANT BIOLOGY 2017; 17:74. [PMID: 28403831 PMCID: PMC5389189 DOI: 10.1186/s12870-017-1018-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified. Field and greenhouse drought studies with maize are expensive and it can be difficult to reproduce results; therefore, an in vitro kernel culture method is presented as a proxy for drought stress occurring at the time of flowering in maize (3 days after pollination). This method is used to focus on the effects of drought on kernel metabolism, and the role of trehalose 6-phosphate (Tre6P) and the sucrose non-fermenting-1-related kinase (SnRK1) as potential regulators of this response. RESULTS A precipitous drop in Tre6P is observed during the first two hours after removing the kernels from the plant, and the resulting changes in transcript abundance are indicative of an activation of SnRK1, and an immediate shift from anabolism to catabolism. Once Tre6P levels are depleted to below 1 nmol∙g-1 FW in the kernel, SnRK1 remained active throughout the 96 h experiment, regardless of the presence or absence of sucrose in the medium. Recovery on sucrose enriched medium results in the restoration of sucrose synthesis and glycolysis. Biosynthetic processes including the citric acid cycle and protein and starch synthesis are inhibited by excision, and do not recover even after the re-addition of sucrose. It is also observed that excision induces the transcription of the sugar transporters SUT1 and SWEET1, the sucrose hydrolyzing enzymes CELL WALL INVERTASE 2 (INCW2) and SUCROSE SYNTHASE 1 (SUSY1), the class II TREHALOSE PHOSPHATE SYNTHASES (TPS), TREHALASE (TRE), and TREHALOSE PHOSPHATE PHOSPHATASE (ZmTPPA.3), previously shown to enhance drought tolerance (Nuccio et al., Nat Biotechnol (October 2014):1-13, 2015). CONCLUSIONS The impact of kernel excision from the ear triggers a cascade of events starting with the precipitous drop in Tre6P levels. It is proposed that the removal of Tre6P suppression of SnRK1 activity results in transcription of putative SnRK1 target genes, and the metabolic transition from biosynthesis to catabolism. This highlights the importance of Tre6P in the metabolic response to starvation. We also present evidence that sugars can mediate the activation of SnRK1. The precipitous drop in Tre6P corresponds to a large increase in transcription of ZmTPPA.3, indicating that this specific enzyme may be responsible for the de-phosphorylation of Tre6P. The high levels of Tre6P in the immature embryo are likely important for preventing kernel abortion.
Collapse
Affiliation(s)
- Samuel W Bledsoe
- EAG Laboratories, 4780 Discovery Drive, Columbia, MO, 65201, USA
| | - Clémence Henry
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Cara A Griffiths
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Matthew J Paul
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Regina Feil
- Max Planck Institut fϋr Moleckulare Pflanzenphysiologie, Potsdam (OT) Golm, Germany
| | - John E Lunn
- Max Planck Institut fϋr Moleckulare Pflanzenphysiologie, Potsdam (OT) Golm, Germany
| | - Mark Stitt
- Max Planck Institut fϋr Moleckulare Pflanzenphysiologie, Potsdam (OT) Golm, Germany
| | - L Mark Lagrimini
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 377I Plant Science, Lincoln, NE, 68583-0915, USA.
| |
Collapse
|
43
|
Smith AR, Zhao D. Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains. FRONTIERS IN PLANT SCIENCE 2016; 7:1503. [PMID: 27790226 PMCID: PMC5064672 DOI: 10.3389/fpls.2016.01503] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Natural floral organ degeneration or abortion results in unisexual or fully sterile flowers, while abiotic stresses lead to sterility after initiation of floral reproductive organs. Since normal flower development is essential for plant sexual reproduction and crop yield, it is imperative to have a better understanding of plant sterility under regular and stress conditions. Here, we review the functions of ABC genes together with their downstream genes in floral organ degeneration and the formation of unisexual flowers in Arabidopsis and several agriculturally significant cereal grains. We further explore the roles of hormones, including auxin, brassinosteroids, jasmonic acid, gibberellic acid, and ethylene, in floral organ formation and fertility. We show that alterations in genes affecting hormone biosynthesis, hormone transport and perception cause loss of stamens/carpels, abnormal floral organ development, poor pollen production, which consequently result in unisexual flowers and male/female sterility. Moreover, abiotic stresses, such as heat, cold, and drought, commonly affect floral organ development and fertility. Sterility is induced by abiotic stresses mostly in male floral organ development, particularly during meiosis, tapetum development, anthesis, dehiscence, and fertilization. A variety of genes including those involved in heat shock, hormone signaling, cold tolerance, metabolisms of starch and sucrose, meiosis, and tapetum development are essential for plants to maintain normal fertility under abiotic stress conditions. Further elucidation of cellular, biochemical, and molecular mechanisms about regulation of fertility will improve yield and quality for many agriculturally valuable crops.
Collapse
Affiliation(s)
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, MilwaukeeWI, USA
| |
Collapse
|
44
|
Zhi T, Zhou Z, Huang Y, Han C, Liu Y, Zhu Q, Ren C. Sugar suppresses cell death caused by disruption of fumarylacetoacetate hydrolase in Arabidopsis. PLANTA 2016; 244:557-571. [PMID: 27097641 DOI: 10.1007/s00425-016-2530-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Sugar negatively regulates cell death resulting from the loss of fumarylacetoacetate hydrolase that catalyzes the last step in the Tyr degradation pathway in Arabidopsis . Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Previously, we first found that the Tyr degradation pathway plays an important role in plants. Mutation of the SSCD1 gene encoding FAH in Arabidopsis leads to spontaneous cell death under short-day conditions. In this study, we presented that the lethal phenotype of the short-day sensitive cell death1 (sscd1) seedlings was suppressed by sugars including sucrose, glucose, fructose, and maltose in a dose-dependent manner. Real-time quantitative PCR (RT-qPCR) analysis showed the expression of Tyr degradation pathway genes homogentisate dioxygenase and maleylacetoacetate isomerase, and sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G, was up-regulated in the sscd1 mutant, however, this up-regulation could be repressed by sugar. In addition, a high concentration of sugar attenuated cell death of Arabidopsis wild-type seedlings caused by treatment with exogenous succinylacetone, an abnormal metabolite resulting from the loss of FAH in the Tyr degradation pathway. These results indicated that (1) sugar could suppress cell death in sscd1, which might be because sugar supply enhances the resistance of Arabidopsis seedlings to toxic effects of succinylacetone and reduces the accumulation of Tyr degradation intermediates, resulting in suppression of cell death; and (2) sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G might be involved in the cell death in sscd1. Our work provides insights into the relationship between sugar and sscd1-mediated cell death, and contributes to elucidation of the regulation of cell death resulting from the loss of FAH in plants.
Collapse
Affiliation(s)
- Tiantian Zhi
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhou Zhou
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Huang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chengyun Han
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Natural Active Pharmaceutical Constituents, College of Chemistry and Biology Engineering, Yichun University, Yichun, 336000, Jiangxi, China
| | - Yan Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Zhu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chunmei Ren
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
45
|
Oury V, Caldeira CF, Prodhomme D, Pichon JP, Gibon Y, Tardieu F, Turc O. Is Change in Ovary Carbon Status a Cause or a Consequence of Maize Ovary Abortion in Water Deficit during Flowering? PLANT PHYSIOLOGY 2016; 171:997-1008. [PMID: 27208256 PMCID: PMC4902574 DOI: 10.1104/pp.15.01130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/15/2016] [Indexed: 05/19/2023]
Abstract
Flower or grain abortion causes large yield losses under water deficit. In maize (Zea mays), it is often attributed to a carbon limitation via the disruption of sucrose cleavage by cell wall invertases in developing ovaries. We have tested this hypothesis versus another linked to the expansive growth of ovaries and silks. We have measured, in silks and ovaries of well-watered or moderately droughted plants, the transcript abundances of genes involved in either tissue expansion or sugar metabolism, together with the concentrations and amounts of sugars, and with the activities of major enzymes of carbon metabolism. Photosynthesis and indicators of sugar export, measured during water deprivation, suggested sugar export maintained by the leaf. The first molecular changes occurred in silks rather than in ovaries and involved genes affecting expansive growth rather than sugar metabolism. Changes in the concentrations and amounts of sugars and in the activities of enzymes of sugar metabolism occurred in apical ovaries that eventually aborted, but probably after the switch to abortion of these ovaries. Hence, we propose that, under moderate water deficits corresponding to most European drought scenarios, changes in carbon metabolism during flowering time are a consequence rather than a cause of the beginning of ovary abortion. A carbon-driven ovary abortion may occur later in the cycle in the case of carbon shortage or under very severe water deficits. These findings support the view that, until the end of silking, expansive growth of reproductive organs is the primary event leading to abortion, rather than a disruption of carbon metabolism.
Collapse
Affiliation(s)
- Vincent Oury
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Cecilio F Caldeira
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Duyên Prodhomme
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Jean-Philippe Pichon
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Yves Gibon
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - François Tardieu
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Olivier Turc
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| |
Collapse
|
46
|
Oury V, Tardieu F, Turc O. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize. PLANT PHYSIOLOGY 2016; 171:986-96. [PMID: 26598464 PMCID: PMC4902573 DOI: 10.1104/pp.15.00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/21/2015] [Indexed: 05/21/2023]
Abstract
Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit.
Collapse
Affiliation(s)
- Vincent Oury
- INRA, UMR 759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, F-34060 Montpellier, France
| | - François Tardieu
- INRA, UMR 759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, F-34060 Montpellier, France
| | - Olivier Turc
- INRA, UMR 759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, F-34060 Montpellier, France
| |
Collapse
|
47
|
Lauxmann MA, Annunziata MG, Brunoud G, Wahl V, Koczut A, Burgos A, Olas JJ, Maximova E, Abel C, Schlereth A, Soja AM, Bläsing OE, Lunn JE, Vernoux T, Stitt M. Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth. PLANT, CELL & ENVIRONMENT 2016; 39:745-67. [PMID: 26351840 DOI: 10.1111/pce.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 05/21/2023]
Abstract
The impact of transient carbon depletion on reproductive growth in Arabidopsis was investigated by transferring long-photoperiod-grown plants to continuous darkness and returning them to a light-dark cycle. After 2 days of darkness, carbon reserves were depleted in reproductive sinks, and RNA in situ hybridization of marker transcripts showed that carbon starvation responses had been initiated in the meristem, anthers and ovules. Dark treatments of 2 or more days resulted in a bare-segment phenotype on the floral stem, with 23-27 aborted siliques. These resulted from impaired growth of immature siliques and abortion of mature and immature flowers. Depolarization of PIN1 protein and increased DII-VENUS expression pointed to rapid collapse of auxin gradients in the meristem and inhibition of primordia initiation. After transfer back to a light-dark cycle, flowers appeared and formed viable siliques and seeds. A similar phenotype was seen after transfer to sub-compensation point irradiance or CO2 . It also appeared in a milder form after a moderate decrease in irradiance and developed spontaneously in short photoperiods. We conclude that Arabidopsis inhibits primordia initiation and aborts flowers and very young siliques in C-limited conditions. This curtails demand, safeguarding meristem function and allowing renewal of reproductive growth when carbon becomes available again.
Collapse
Affiliation(s)
- Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Maria G Annunziata
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Géraldine Brunoud
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, Lyon, 69364, France
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Andrzej Koczut
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Asdrubal Burgos
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Justyna J Olas
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Eugenia Maximova
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Christin Abel
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Aleksandra M Soja
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Oliver E Bläsing
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Metanomics GmbH, Tegeler Weg 33, Berlin, 10589, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, Lyon, 69364, France
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
48
|
Domingos S, Fino J, Paulo OS, Oliveira CM, Goulao LF. Molecular candidates for early-stage flower-to-fruit transition in stenospermocarpic table grape (Vitis vinifera L.) inflorescences ascribed by differential transcriptome and metabolome profiles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 244:40-56. [PMID: 26810452 DOI: 10.1016/j.plantsci.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 05/23/2023]
Abstract
Flower-to-fruit transition depends of nutrient availability and regulation at the molecular level by sugar and hormone signalling crosstalk. However, in most species, the identities of fruit initiation regulators and their targets are largely unknown. To ascertain the main pathways involved in stenospermocarpic table grape fruit set, comprehensive transcriptional and metabolomic analyses were conducted specifically targeting the early phase of this developmental stage in 'Thompson Seedless'. The high-throughput analyses performed disclosed the involvement of 496 differentially expressed genes and 28 differently accumulated metabolites in the sampled inflorescences. Our data show broad transcriptome reprogramming of molecule transporters, globally down-regulating gene expression, and suggest that regulation of sugar- and hormone-mediated pathways determines the downstream activation of berry development. The most affected gene was the SWEET14 sugar transporter. Hormone-related transcription changes were observed associated with increased indole-3-acetic acid, stimulation of ethylene and gibberellin metabolisms and cytokinin degradation, and regulation of MADS-box and AP2-like ethylene-responsive transcription factor expression. Secondary metabolism, the most representative biological process at transcriptome level, was predominantly repressed. The results add to the knowledge of molecular events occurring in grapevine inflorescence fruit set and provide a list of candidates, paving the way for genetic manipulation aimed at model research and plant breeding.
Collapse
Affiliation(s)
- Sara Domingos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal; BioTrop, Instituto de Investigação Científica Tropical I.P. (IICT), Lisbon, Portugal
| | - Joana Fino
- Computational Biology and Population Genomics Group, cE3c-Centre for Ecology, Evolution, and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, cE3c-Centre for Ecology, Evolution, and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina M Oliveira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| | - Luis F Goulao
- BioTrop, Instituto de Investigação Científica Tropical I.P. (IICT), Lisbon, Portugal.
| |
Collapse
|
49
|
Reyes A, Messina CD, Hammer GL, Liu L, van Oosterom E, Lafitte R, Cooper M. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7339-46. [PMID: 26428065 PMCID: PMC4765797 DOI: 10.1093/jxb/erv430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake.
Collapse
Affiliation(s)
- Andres Reyes
- DuPont Pioneer, 18369 County Rd 96, Woodland, CA, USA
| | | | - Graeme L Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lu Liu
- DuPont Pioneer, 7200 NW Avenue, Johnston, IA 50310, USA
| | - Erik van Oosterom
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Renee Lafitte
- DuPont Pioneer, 18369 County Rd 96, Woodland, CA, USA
| | - Mark Cooper
- DuPont Pioneer, 7200 NW Avenue, Johnston, IA 50310, USA
| |
Collapse
|
50
|
Jagadish KSV, Kavi Kishor PB, Bahuguna RN, von Wirén N, Sreenivasulu N. Staying Alive or Going to Die During Terminal Senescence-An Enigma Surrounding Yield Stability. FRONTIERS IN PLANT SCIENCE 2015; 6:1070. [PMID: 26648957 PMCID: PMC4663250 DOI: 10.3389/fpls.2015.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.
Collapse
Affiliation(s)
| | | | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute, Metro Manila, Philippines
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|