1
|
Navarri X, Robertson DN, Charfi I, Wünnemann F, Sâmia Fernandes do Nascimento A, Trottier G, Leclerc S, Andelfinger GU, Di Cristo G, Richer L, Pike GB, Pausova Z, Piñeyro G, Paus T. Cells and Molecules Underpinning Cannabis-Related Variations in Cortical Thickness during Adolescence. J Neurosci 2024; 44:e2256232024. [PMID: 39214708 PMCID: PMC11466068 DOI: 10.1523/jneurosci.2256-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to Δ-9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization.
Collapse
Affiliation(s)
- Xavier Navarri
- Department of Neuroscience, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
| | | | - Iness Charfi
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Florian Wünnemann
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | | | - Giacomo Trottier
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sévérine Leclerc
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Gregor U Andelfinger
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Graziella Di Cristo
- Department of Neuroscience, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, Quebec G7H 2B1, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Zdenka Pausova
- Departments of Physiology and Nutritional Sciences, Hospital for Sick Children, University of Toronto, Peter Gilgan Centre for Research and Learning, Toronto, Ontario M5G 0A4, Canada
| | - Graciela Piñeyro
- Department of Neuroscience, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Tomáš Paus
- Department of Neuroscience, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Centre, Montréal, Quebec H3T 1C5, Canada
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
2
|
Martinez MX, Alizo Vera V, Ruiz CM, Floresco SB, Mahler SV. Adolescent THC impacts on mPFC dopamine-mediated cognitive processes in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588937. [PMID: 38826339 PMCID: PMC11142049 DOI: 10.1101/2024.04.12.588937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. Objective We determined how 14 daily THC injections (5mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. Methods In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impacts probabilistic discounting. Results AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. Conclusions These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine neurons or their projections to mPFC.
Collapse
Affiliation(s)
- Maricela X. Martinez
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| | - Christina M. Ruiz
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| | - Stan B. Floresco
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| |
Collapse
|
3
|
Hubbard E, Galinato VM, Derdeyn P, Bartas K, Mahler SV, Beier KT. Neural circuit basis of adolescent THC-induced potentiation of opioid responses in adult mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590773. [PMID: 38712160 PMCID: PMC11071376 DOI: 10.1101/2024.04.23.590773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Use of one drug of abuse typically influences the behavioral response to other drugs, either administered at the same time or a subsequent time point. The nature of the drugs being used, as well as the timing and dosing, also influence how these drugs interact. Here, we tested the effects of adolescent THC exposure on the development of morphine-induced behavioral adaptations following repeated morphine exposure during adulthood. We found that adolescent THC administration impacted morphine-induced behaviors across several dimensions, including potentiating reward and paradoxically impairing the development of morphine reward. We then mapped the whole-brain response to a reinstatement dose of morphine, finding that adolescent THC administration led to increased activity in the basal ganglia and increased functional connectivity between frontal cortical regions and the ventral tegmental area. Last, we show using rabies virus-based circuit mapping that adolescent THC exposure triggers a long-lasting elevation in connectivity from the frontal cortex regions onto ventral tegmental dopamine cells that has the potential to influence dopaminergic response to morphine administration during adulthood. Our study adds to the rich literature on the interaction between drugs of abuse and provides potential circuit substates by which adolescent THC exposure influences responses to morphine later in life.
Collapse
|
4
|
Lee YK, Gold MS, Blum K, Thanos PK, Hanna C, Fuehrlein BS. Opioid use disorder: current trends and potential treatments. Front Public Health 2024; 11:1274719. [PMID: 38332941 PMCID: PMC10850316 DOI: 10.3389/fpubh.2023.1274719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Opioid use disorder (OUD) is a major public health threat, contributing to morbidity and mortality from addiction, overdose, and related medical conditions. Despite our increasing knowledge about the pathophysiology and existing medical treatments of OUD, it has remained a relapsing and remitting disorder for decades, with rising deaths from overdoses, rather than declining. The COVID-19 pandemic has accelerated the increase in overall substance use and interrupted access to treatment. If increased naloxone access, more buprenorphine prescribers, greater access to treatment, enhanced reimbursement, less stigma and various harm reduction strategies were effective for OUD, overdose deaths would not be at an all-time high. Different prevention and treatment approaches are needed to reverse the concerning trend in OUD. This article will review the recent trends and limitations on existing medications for OUD and briefly review novel approaches to treatment that have the potential to be more durable and effective than existing medications. The focus will be on promising interventional treatments, psychedelics, neuroimmune, neutraceutical, and electromagnetic therapies. At different phases of investigation and FDA approval, these novel approaches have the potential to not just reduce overdoses and deaths, but attenuate OUD, as well as address existing comorbid disorders.
Collapse
Affiliation(s)
- Yu Kyung Lee
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mark S. Gold
- Department of Psychiatry, Washington University in St. Louis Euclid Ave, St. Louis, MO, United States
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, United States
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, Clinical Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, Clinical Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | | |
Collapse
|
5
|
Steinfeld MR, Torregrossa MM. Consequences of adolescent drug use. Transl Psychiatry 2023; 13:313. [PMID: 37802983 PMCID: PMC10558564 DOI: 10.1038/s41398-023-02590-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023] Open
Abstract
Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall, consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks which can have enduring effects on behavior, emotion, and cognition.
Collapse
Affiliation(s)
- Michael R Steinfeld
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
6
|
Ferland JMN, Ellis RJ, Rompala G, Landry JA, Callens JE, Ly A, Frier MD, Uzamere TO, Hurd YL. Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Mol Psychiatry 2023; 28:2583-2593. [PMID: 35236956 DOI: 10.1038/s41380-022-01467-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023]
Abstract
Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Randall J Ellis
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Joseph A Landry
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - James E Callens
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Annie Ly
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Micah D Frier
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Teddy O Uzamere
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Yinka OS, Olubunmi OP, Zabdiel AA, Oladele OJ, Taiye AS, Ayodele A, Adetutu FO, Afees OJ, Kayode AA. Peroral Exposure to Cannabis Sativa Ethanol Extract Caused Neuronal Degeneration and Astrogliosis in Wistar Rats' Prefrontal Cortex. Ann Neurosci 2023; 30:84-95. [PMID: 37706104 PMCID: PMC10496793 DOI: 10.1177/09727531221120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/25/2022] [Indexed: 09/15/2023] Open
Abstract
Background Despite widespread concerns about its possible side effects, notably on the prefrontal cortex (PFC), which mediates cognitive processes, the use of Cannabis sativa as a medicinal and recreational drug is expanding exponentially. This study evaluated possible behavioral alterations, neurotransmitter levels, histological, and immunohistochemical changes in the PFC of Wistar rats exposed to Cannabis sativa. Purpose To evaluate the effect of graded doses of Cannabis sativa on the PFC using behavioural, histological, and immunohistochemical approaches. Methods Twenty-eight juvenile male Wistar rats weighing between 70 g and 100 g were procured and assigned into groups A-D (n = 7 each). Group A served as control which received distilled water only as a placebo; rats in groups B, C, and D which were the treatment groups were orally exposed to graded doses of Cannabis sativa (10 mg/kg, 50 mg/kg, and 100 mg/kg, respectively). Rats in all experimental groups were exposed to Cannabis sativa for 21 days, followed by behavioral tests using the open field test for locomotor, anxiety, and exploratory activities, while the Y-maze test was for spatial memory assessment. Rats for biochemical analysis were cervically dislocated and rats for tissue processing were intracardially perfused following neurobehavioral tests. Sequel to sacrifice, brain tissues were excised and prefrontal cortices were obtained for the neurotransmitter (glutamate, acetylcholine, and dopamine) and enzymatic assay (Cytochrome C oxidase (CcO) and Glucose 6- Phosphate Dehydrogenase-G-6-PDH). Brain tissues were fixed in 10% Neutral Buffered Formalin (NBF) for histological demonstration of the PFC cytoarchitecture using H&E and glial fibrillary acidic protein (GFAP) for astrocyte evaluation. Results Glutamate and dopamine levels were significantly increased (F = 24.44, P = .0132) in groups D, and B, C, and D, respectively, compared to control; likewise, the activities of CcO and G-6-PDH were also significantly elevated (F = 96.28, P = .0001) (F = 167.5, P = .0001) in groups C and D compared to the control. Cannabis sativa impaired locomotor activity and spatial memory in B and D and D, respectively. All Cannabis sativa exposed groups demonstrated evidence of neurodegeneration in the exposed groups; GFAP immunoexpression was evident in all groups with a marked increase in group D. Conclusion Cannabis sativa altered neurotransmitter levels, energy metabolism, locomotor, and exploratory activity, and spatial working memory, with neuronal degeneration as well as reactive astrogliosis in the PFC.
Collapse
Affiliation(s)
- Olatunji Sunday Yinka
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
- Anatomy Department, Adventist School of Medicine of East-Central Africa, Adventist University of Central Africa, Kigali, Rwanda
| | - Ogunnaike Philip Olubunmi
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Abijo Ayodeji Zabdiel
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Owolabi Joshua Oladele
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
- Anatomy Department, Division of Basic Medical Sciences, University of Global Health Equity, Kigali, Rwanda
| | - Adelodun Stephen Taiye
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Adeoye Ayodele
- Department of Education, School of Education and Humanities, Babcock University, Ilisan-Remo, Ogun State, Nigeria
| | - Fasesan Oluwatoyin Adetutu
- Department of Psychiatry, Ben Carson School of Medicine, Babcock University, Ilisan-Remo, Ogun State, Nigeria
| | - Olanrewaju John Afees
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Adegbite Ademola Kayode
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| |
Collapse
|
8
|
Effects of endocannabinoid system modulation on social behaviour: A systematic review of animal studies. Neurosci Biobehav Rev 2022; 138:104680. [PMID: 35513169 DOI: 10.1016/j.neubiorev.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
Abstract
There is a clear link between psychiatric disorders and social behaviour, and evidence suggests the involvement of the endocannabinoid system (ECS). A systematic review of preclinical literature was conducted using MEDLINE (PubMed) and PsychINFO databases to examine whether pharmacological and/or genetic manipulations of the ECS alter social behaviours in wildtype (WT) animals or models of social impairment (SIM). Eighty studies were included. Risk of bias (RoB) was assessed using SYRCLE's RoB tool. While some variability was evident, studies most consistently found that direct cannabinoid receptor (CBR) agonism decreased social behaviours in WT animals, while indirect CBR activation via enzyme inhibition or gene-knockout increased social behaviours. Direct and, more consistently, indirect CBR activation reversed social deficits in SIM. These CBR-mediated effects were often sex- and developmental-phase-dependent and blocked by CBR antagonism. Overall, ECS enzyme inhibition may improve social behaviour in SIM, suggesting the potential usefulness of ECS enzyme inhibition as a therapeutic approach for social deficits. Future research should endeavour to elucidate ECS status in neuropsychiatric disorders characterized by social deficits.
Collapse
|
9
|
Gogulski HY, Craft RM. Adolescent THC exposure: effects on pain-related, exploratory, and consummatory behaviors in adult male vs. female rats. Psychopharmacology (Berl) 2022; 239:1563-1578. [PMID: 35266035 DOI: 10.1007/s00213-022-06094-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/13/2022] [Indexed: 01/01/2023]
Abstract
RATIONALE Adolescent cannabinoid exposure has been shown to alter cognitive, reward-related, and motor behaviors as well as mesocorticolimbic dopamine (DA) function in adult animals. Pain is also influenced by mesocorticolimbic DA function, but it is not known whether pain or cannabinoid analgesia in adults is altered by early exposure to cannabinoids. OBJECTIVE To determine whether adolescent Δ9-tetrahydrocannabinol (THC) exposure alters pain-related behaviors before and after induction of persistent inflammatory pain, and whether it influences antinociceptive of THC, in adult rats, and to compare the impact of adolescent THC exposure on pain to its effects on known DA-dependent behaviors such as exploration and consumption of a sweet solution. METHODS Vehicle or THC (2.5 to 10 mg/kg s.c.) was administered daily to male and female rats on post-natal day (PND) 30-43. In adulthood (PND 80-88), sensitivity to mechanical and thermal stimuli before and after intraplantar injection of complete Freund's adjuvant (CFA) was determined. Antinociceptive, exploratory, and consummatory effects of 2.0 mg/kg THC were then examined. RESULTS Adolescent THC exposure did not significantly alter adult sensitivity to non-noxious or noxious stimuli either before or after CFA injection, nor did it alter the antinociceptive effect of THC. In contrast, adolescent THC exposure altered adult exploratory and consummatory behaviors in a sex-dependent manner: when tested as adults, adolescent THC-treated males showed less hedonic drinking than adolescent vehicle-treated males, and females but not males that had been THC-exposed as adolescents showed reduced sensitivity to THC-induced suppression of activity and THC-induced hedonic drinking as adults. CONCLUSIONS Adolescent THC exposure that altered both exploratory and consummatory behaviors in adults did not alter pain-related behaviors either before or after induction of inflammatory pain, suggesting that cannabinoid exposure during adolescence is not likely to substantially alter pain or cannabinoid analgesia in adulthood.
Collapse
Affiliation(s)
- Hannah Y Gogulski
- Psychology Department, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Rebecca M Craft
- Psychology Department, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA.
| |
Collapse
|
10
|
Anxiety and cognitive-related effects of Δ 9-tetrahydrocannabinol (THC) are differentially mediated through distinct GSK-3 vs. Akt-mTOR pathways in the nucleus accumbens of male rats. Psychopharmacology (Berl) 2022; 239:509-524. [PMID: 34860284 DOI: 10.1007/s00213-021-06029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Δ9-tetrahydrocannabinol (THC) is the primary psychoactive compound in cannabis and is responsible for cannabis-related neuropsychiatric side effects, including abnormal affective processing, cognitive and sensory filtering deficits and memory impairments. A critical neural region linked to the psychotropic effects of THC is the nucleus accumbens shell (NASh), an integrative mesocorticolimbic structure that sends and receives inputs from multiple brain areas known to be dysregulated in various disorders, including schizophrenia and anxiety-related disorders. Considerable evidence demonstrates functional differences between posterior vs. anterior NASh sub-regions in the processing of affective and cognitive behaviours influenced by THC. Nevertheless, the neuroanatomical regions and local molecular pathways responsible for these psychotropic effects are not currently understood. OBJECTIVES The objectives of this study were to characterize the effects of intra-accumbens THC in the anterior vs. posterior regions of the NASh during emotional memory formation, sensorimotor gating and anxiety-related behaviours. METHODS We performed an integrative series of translational behavioural pharmacological studies examining anxiety, sensorimotor gating and fear-related associative memory formation combined with regionally specific molecular signalling analyses in male Sprague Dawley rats. RESULTS We report that THC in the posterior NASh causes distortions in emotional salience attribution, impaired sensory filtering and memory retention and heightened anxiety, through a glycogen-synthase-kinase-3 (GSK-3)-β-catenin dependent signalling pathway. In contrast, THC in the anterior NASh produces anxiolytic effects via modulation of protein kinase B (Akt) phosphorylation states. CONCLUSIONS These findings reveal critical new insights into the neuroanatomical and molecular mechanisms associated with the differential neuropsychiatric side effects of THC in dissociable nucleus accumbens sub-regions.
Collapse
|
11
|
Blum K, Bowirrat A, Baron D, Badgaiyan RD, Thanos PK, Elman I, Braverman ER, Gold MS. Understanding that Addiction Is a Brain Disorder Offers Help and Hope. Health (London) 2022. [DOI: 10.4236/health.2022.146050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Stollenwerk TM, Hillard CJ. Adolescent THC Treatment Does Not Potentiate the Behavioral Effects in Adulthood of Maternal Immune Activation. Cells 2021; 10:3503. [PMID: 34944011 PMCID: PMC8700174 DOI: 10.3390/cells10123503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Both in utero exposure to maternal immune activation and cannabis use during adolescence have been associated with increased risk for the development of schizophrenia; however, whether these exposures exert synergistic effects on brain function is not known. In the present study, mild maternal immune activation (MIA) was elicited in mice with prenatal exposure to polyinosinic-polycytidylic acid (poly(I:C)), and ∆9-tetrahydrocannabinol (THC) was provided throughout adolescence in cereal (3 mg/kg/day for 5 days). Neither THC nor MIA pretreatments altered activity in assays used to characterize hyperdopaminergic states in adulthood: amphetamine hyperlocomotion and prepulse inhibition of the acoustic startle reflex. Adolescent THC treatment elicited deficits in spatial memory and enhanced spatial reversal learning in adult female mice in the Morris water maze, while exposure to MIA elicited female-specific deficits in fear extinction learning in adulthood. There were no effects in these assays in adult males, nor were there interactions between THC and MIA in adult females. While doses of poly(I:C) and THC were sufficient to elicit behavioral effects, particularly relating to cognitive performance in females, there was no evidence that adolescent THC exposure synergized with the risk imposed by MIA to worsen behavioral outcomes in adult mice of either sex.
Collapse
Affiliation(s)
| | - Cecilia J. Hillard
- Neuroscience Research Center, Department of Pharmacology and Toxicology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA;
| |
Collapse
|
13
|
Ruiz CM, Torrens A, Lallai V, Castillo E, Manca L, Martinez MX, Justeson DN, Fowler CD, Piomelli D, Mahler SV. Pharmacokinetic and pharmacodynamic properties of aerosolized ("vaped") THC in adolescent male and female rats. Psychopharmacology (Berl) 2021; 238:3595-3605. [PMID: 34495367 PMCID: PMC8665923 DOI: 10.1007/s00213-021-05976-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Adolescent exposure to ∆9-tetrahydrocannabinol (THC), the psychotropic constituent of cannabis, might affect brain development, and in rodent models leads to long-term behavioral and physiological alterations. Yet, the basic pharmacology of this drug in adolescent rodents, especially when ingested via ecologically relevant routes like aerosol inhalation, commonly referred to as "vaping," is still poorly characterized. Moreover, sex differences exist in THC metabolism, kinetics, and behavioral effects, but these have not been rigorously examined after vapor dosing in adolescents. OBJECTIVES We investigated the pharmacokinetics and pharmacodynamics of aerosolized THC (30 min inhalation exposure, 25 or 100 mg/ml) in adolescent Wistar rats of both sexes. METHODS Liquid chromatography/mass spectrometry analysis of THC and its major metabolites was conducted on blood plasma and brain tissue at 5, 30, 60, and 120 min following a 30-min aerosol dosing session. Effects on activity in a novel environment for 120 min after aerosol, and temperature, were measured in separate rats. RESULTS We found sex-dependent differences in the pharmacokinetics of THC and its active (11-OH-THC) and inactive (11-COOH-THC) metabolites in the blood and brain, along with dose- and sex-dependent effects on anxiety-like and exploratory behaviors; namely, greater 11-OH-THC levels accompanied by greater behavioral effects in females at the low dose but similar hypothermic effects in both sexes at the high dose. CONCLUSIONS These results provide a benchmark for dosing adolescent rats with aerosolized (or "vaped") THC, which could facilitate adoption by other labs of this potentially human-relevant THC exposure model to understand cannabis effects on the developing brain.
Collapse
Affiliation(s)
- C M Ruiz
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - A Torrens
- Department of Anatomy & Neurobiology, University of California Irvine, 1244 Gillespie Hall, Irvine, CA, 92697, USA
| | - V Lallai
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - E Castillo
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - L Manca
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - M X Martinez
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - D N Justeson
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - C D Fowler
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - D Piomelli
- Department of Anatomy & Neurobiology, University of California Irvine, 1244 Gillespie Hall, Irvine, CA, 92697, USA
| | - S V Mahler
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
14
|
Slotkin TA, Levin ED, Seidler FJ. Paternal Cannabis Exposure Prior to Mating, but Not Δ9-Tetrahydrocannabinol, Elicits Deficits in Dopaminergic Synaptic Activity in the Offspring. Toxicol Sci 2021; 184:252-264. [PMID: 34590702 DOI: 10.1093/toxsci/kfab117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The legalization and increasing availability of cannabis products raises concerns about the impact on offspring of users, and little has appeared on the potential contribution of paternal use. We administered cannabis extract to male rats prior to mating, with two different 28-day exposures, one where there was a 56-day interval between the end of exposure and mating ("Early Cannabis"), and one just prior to mating ("Late Cannabis"); the extract delivered 4 mg/kg/day of the main psychoactive component, Δ9-tetrahydrocannabinol. We then assessed the impact on dopamine (DA) systems in the offspring from the onset of adolescence (postnatal day 30) through middle age (postnatal day 150), measuring the levels of DA and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) in various brain regions. Paternal cannabis with either regimen elicited a profound and persistent deficit in DA utilization (DOPAC/DA ratio) in the offspring, indicative of subnormal presynaptic activity. However, the two regimens differed in the underlying mechanism, with Early Cannabis reducing DOPAC whereas Late Cannabis increased DA and elicited a smaller reduction in DOPAC. Effects were restricted to male offspring. The effects of cannabis were not reproduced by equivalent exposure to its Δ9-tetrahydrocannabinol, nor did we see the effects with perinatal exposure to tobacco smoke or some of its fetotoxic contributors (benzo[a]pyrene without or with nicotine). Our studies provide some of the first evidence for adverse effects of paternal cannabis administration on neurodevelopment in the offspring, and reinforce the important consequences of paternal drug use in the preconception period.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Edward D Levin
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
15
|
Gobira PH, Roncalho AL, Silva NR, Silote GP, Sales AJ, Joca SR. Adolescent cannabinoid exposure modulates the vulnerability to cocaine-induced conditioned place preference and DNMT3a expression in the prefrontal cortex in Swiss mice. Psychopharmacology (Berl) 2021; 238:3107-3118. [PMID: 34328516 DOI: 10.1007/s00213-021-05926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/06/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Cannabis sativa is the most widely used drug by adolescents globally. The recreational use of synthetic cannabinoids by teenagers has also grown in recent years. Despite the wrong perception that exposure to these drugs does not cause harm, repeated exposure to cannabinoids at early stages of life compromises important maturation processes and brain development. Chronic early cannabinoid use has been related to a higher risk of psychiatric outcomes, including cocaine addiction. Evidence suggests that exposure to natural and synthetic cannabinoids during adolescence modifies molecular and behavioral effects of cocaine in adulthood. Responses to cocaine are regulated by epigenetic mechanisms, such as DNA methylation, in the brain's reward regions. However, the involvement of these processes in modulation of the vulnerability to the effects of cocaine induced by prior exposure to cannabinoids remains poorly understood. OBJECTIVES Investigate whether exposure to the synthetic cannabinoid WIN55,212-2 during adolescence modulates anxiety- and depression-like behavior, memory, and cocaine reward in adult mice. We also evaluated whether exposure to cannabinoids during adolescence modulates the expression of enzymes that are involved in DNA methylation. RESULTS Exposure to WIN55,212-2 during adolescence did not alter anxiety- or depressive-like behavior. However, prior exposure to cannabinoids inhibited cocaine-induced conditioned place preference without modulating cocaine-induced hyperlocomotion, accompanied by an increase in expression of the enzyme DNA methyltransferase 3a (DNMT3a) in the prefrontal cortex. CONCLUSIONS Our findings suggest that exposure to WIN55,212-2 during adolescence leads to changes in DNMT3a expression, and this pathway appears to be relevant to modulating the rewarding effects of cocaine.
Collapse
Affiliation(s)
- P H Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| | - A L Roncalho
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - N R Silva
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - G P Silote
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - A J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Café Av, s/n, Ribeirão Preto, SP, 14040-903, Brazil. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Reversing the Psychiatric Effects of Neurodevelopmental Cannabinoid Exposure: Exploring Pharmacotherapeutic Interventions for Symptom Improvement. Int J Mol Sci 2021; 22:ijms22157861. [PMID: 34360626 PMCID: PMC8346164 DOI: 10.3390/ijms22157861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental exposure to psychoactive compounds in cannabis, specifically THC, is associated with a variety of long-term psychopathological outcomes. This increased risk includes a higher prevalence of schizophrenia, mood and anxiety disorders, and cognitive impairments. Clinical and pre-clinical research continues to identify a wide array of underlying neuropathophysiological sequelae and mechanisms that may underlie THC-related psychiatric risk vulnerability, particularly following adolescent cannabis exposure. A common theme among these studies is the ability of developmental THC exposure to induce long-term adaptations in the mesocorticolimbic system which resemble pathological endophenotypes associated with these disorders. This narrative review will summarize recent clinical and pre-clinical evidence that has elucidated these THC-induced developmental risk factors and examine how specific pharmacotherapeutic interventions may serve to reverse or perhaps prevent these cannabis-related risk outcomes.
Collapse
|
18
|
Netzahualcoyotzi C, Rodríguez-Serrano LM, Chávez-Hernández ME, Buenrostro-Jáuregui MH. Early Consumption of Cannabinoids: From Adult Neurogenesis to Behavior. Int J Mol Sci 2021; 22:7450. [PMID: 34299069 PMCID: PMC8306314 DOI: 10.3390/ijms22147450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/31/2023] Open
Abstract
The endocannabinoid system (ECS) is a crucial modulatory system in which interest has been increasing, particularly regarding the regulation of behavior and neuroplasticity. The adolescent-young adulthood phase of development comprises a critical period in the maturation of the nervous system and the ECS. Neurogenesis occurs in discrete regions of the adult brain, and this process is linked to the modulation of some behaviors. Since marijuana (cannabis) is the most consumed illegal drug globally and the highest consumption rate is observed during adolescence, it is of particular importance to understand the effects of ECS modulation in these early stages of adulthood. Thus, in this article, we sought to summarize recent evidence demonstrating the role of the ECS and exogenous cannabinoid consumption in the adolescent-young adulthood period; elucidate the effects of exogenous cannabinoid consumption on adult neurogenesis; and describe some essential and adaptive behaviors, such as stress, anxiety, learning, and memory. The data summarized in this work highlight the relevance of maintaining balance in the endocannabinoid modulatory system in the early and adult stages of life. Any ECS disturbance may induce significant modifications in the genesis of new neurons and may consequently modify behavioral outcomes.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Laboratorio de Neurobiología de la alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| |
Collapse
|
19
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
20
|
Bara A, Ferland JMN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci 2021; 22:423-438. [PMID: 34021274 DOI: 10.1038/s41583-021-00465-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Anissa Bara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Jacqueline-Marie N Ferland
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Gregory Rompala
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Henrietta Szutorisz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA. .,Friedman Brain Institute, Mount Sinai, NY, USA.
| |
Collapse
|
21
|
De Felice M, Renard J, Hudson R, Szkudlarek HJ, Pereira BJ, Schmid S, Rushlow WJ, Laviolette SR. l-Theanine Prevents Long-Term Affective and Cognitive Side Effects of Adolescent Δ-9-Tetrahydrocannabinol Exposure and Blocks Associated Molecular and Neuronal Abnormalities in the Mesocorticolimbic Circuitry. J Neurosci 2021; 41:739-750. [PMID: 33268546 PMCID: PMC7842745 DOI: 10.1523/jneurosci.1050-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic adolescent exposure to Δ-9-tetrahydrocannabinol (THC) is linked to elevated neuropsychiatric risk and induces neuronal, molecular and behavioral abnormalities resembling neuropsychiatric endophenotypes. Previous evidence has revealed that the mesocorticolimbic circuitry, including the prefrontal cortex (PFC) and mesolimbic dopamine (DA) pathway are particularly susceptible to THC-induced pathologic alterations, including dysregulation of DAergic activity states, loss of PFC GABAergic inhibitory control and affective and cognitive abnormalities. There are currently limited pharmacological intervention strategies capable of preventing THC-induced neuropathological adaptations. l-Theanine is an amino acid analog of l-glutamate and l-glutamine derived from various plant sources, including green tea leaves. l-Theanine has previously been shown to modulate levels of GABA, DA, and glutamate in various neural regions and to possess neuroprotective properties. Using a preclinical model of adolescent THC exposure in male rats, we report that l-theanine pretreatment before adolescent THC exposure is capable of preventing long-term, THC-induced dysregulation of both PFC and VTA DAergic activity states, a neuroprotective effect that persists into adulthood. In addition, pretreatment with l-theanine blocked THC-induced downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways directly in the PFC, two biomarkers previously associated with cannabis-related psychiatric risk and subcortical DAergic dysregulation. Finally, l-theanine powerfully blocked the development of both affective and cognitive abnormalities commonly associated with adolescent THC exposure, further demonstrating functional and long-term neuroprotective effects of l-theanine in the mesocorticolimbic system.SIGNIFICANCE STATEMENT With the increasing trend of cannabis legalization and consumption during adolescence, it is essential to expand knowledge on the potential effects of adolescent cannabis exposure on brain development and identify potential pharmacological strategies to minimize Δ-9-tetrahydrocannabinol (THC)-induced neuropathology. Previous evidence demonstrates that adolescent THC exposure induces long-lasting affective and cognitive abnormalities, mesocorticolimbic dysregulation, and schizophrenia-like molecular biomarkers that persist into adulthood. We demonstrate for the first time that l-theanine, an amino acid analog of l-glutamate and l-glutamine, is capable of preventing long-term THC side effects. l-Theanine prevented the development of THC-induced behavioral aberrations, blocked cortical downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways, and normalized dysregulation of both PFC and VTA DAergic activity, demonstrating powerful and functional neuroprotective effects against THC-induced developmental neuropathology.
Collapse
Affiliation(s)
- Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Justine Renard
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Brian J Pereira
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Susanne Schmid
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
22
|
Stringfield SJ, Torregrossa MM. Disentangling the lasting effects of adolescent cannabinoid exposure. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110067. [PMID: 32791165 DOI: 10.1016/j.pnpbp.2020.110067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Cannabis is the most widely used illicit substance among adolescents, and adolescent cannabis use is associated with various neurocognitive deficits that can extend into adulthood. A growing body of evidence supports the hypothesis that adolescence encompasses a vulnerable period of development where exposure to exogenous cannabinoids can alter the normative trajectory of brain maturation. In this review, we present an overview of studies of human and rodent models that examine lasting effects of adolescent exposure. We include evidence from meta-analyses, longitudinal, or cross-sectional studies in humans that consider age of onset as a factor that contributes to the behavioral dysregulation and altered structural or functional development in cannabis users. We also discuss evidence from preclinical rodent models utilizing well-characterized or innovative routes of exposure, investigating the effects of dose and timing to produce behavioral deficits or alterations on a neuronal and behavioral level. Multiple studies from both humans and animals provide contrasting results regarding the magnitude of residual effects. Combined evidence suggests that exposure to psychoactive cannabinoids during adolescence has the potential to produce subtle, but lasting, alterations in neurobiology and behavior.
Collapse
Affiliation(s)
- Sierra J Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Zinski AL, Carrion S, Michal JJ, Gartstein MA, Quock RM, Davis JF, Jiang Z. Genome-to-phenome research in rats: progress and perspectives. Int J Biol Sci 2021; 17:119-133. [PMID: 33390838 PMCID: PMC7757052 DOI: 10.7150/ijbs.51628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023] Open
Abstract
Because of their relatively short lifespan (<4 years), rats have become the second most used model organism to study health and diseases in humans who may live for up to 120 years. First-, second- and third-generation sequencing technologies and platforms have produced increasingly greater sequencing depth and accurate reads, leading to significant advancements in the rat genome assembly during the last 20 years. In fact, whole genome sequencing (WGS) of 47 strains have been completed. This has led to the discovery of genome variants in rats, which have been widely used to detect quantitative trait loci underlying complex phenotypes based on gene, haplotype, and sweep association analyses. DNA variants can also reveal strain, chromosome and gene functional evolutions. In parallel, phenome programs have advanced significantly in rats during the last 15 years and more than 10 databases host genome and/or phenome information. In order to discover the bridges between genome and phenome, systems genetics and integrative genomics approaches have been developed. On the other hand, multiple level information transfers from genome to phenome are executed by differential usage of alternative transcriptional start (ATS) and polyadenylation (APA) sites per gene. We used our own experiments to demonstrate how alternative transcriptome analysis can lead to enrichment of phenome-related causal pathways in rats. Development of advanced genome-to-phenome assays will certainly enhance rats as models for human biomedical research.
Collapse
Affiliation(s)
- Amy L. Zinski
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Shane Carrion
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Raymond M. Quock
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| |
Collapse
|
24
|
Paraíso-Luna J, Aguareles J, Martín R, Ayo-Martín AC, Simón-Sánchez S, García-Rincón D, Costas-Insua C, García-Taboada E, de Salas-Quiroga A, Díaz-Alonso J, Liste I, Sánchez-Prieto J, Cappello S, Guzmán M, Galve-Roperh I. Endocannabinoid signalling in stem cells and cerebral organoids drives differentiation to deep layer projection neurons via CB 1 receptors. Development 2020; 147:226034. [PMID: 33168583 DOI: 10.1242/dev.192161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.
Collapse
Affiliation(s)
- Juan Paraíso-Luna
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - José Aguareles
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ricardo Martín
- Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ane C Ayo-Martín
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Samuel Simón-Sánchez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Daniel García-Rincón
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Carlos Costas-Insua
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Elena García-Taboada
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Adán de Salas-Quiroga
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Javier Díaz-Alonso
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - José Sánchez-Prieto
- Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | | | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| |
Collapse
|
25
|
De Gregorio D, Dean Conway J, Canul ML, Posa L, Bambico FR, Gobbi G. Effects of chronic exposure to low doses of Δ9- tetrahydrocannabinol in adolescence and adulthood on serotonin/norepinephrine neurotransmission and emotional behaviors. Int J Neuropsychopharmacol 2020; 23:pyaa058. [PMID: 32725198 PMCID: PMC7745253 DOI: 10.1093/ijnp/pyaa058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic exposure to the Δ9-tetrahydrocannabinol (THC), the main cannabis pharmacological component, during adolescence has been shown to be associated with an increased risk of depression and suicidality in humans. AIMS Little is known about the impact of the long-term effects of chronic exposure to low doses of THC in adolescent compared to adult rodents. METHODS THC (1mg/kg i.p., once a day) or vehicle was administered for 20 days in both adolescent (post-natal day, PND 30-50) and young adult rats (PND 50-70). After a long washout period (20 days), several behavioral paradigms and electrophysiological recordings of serotonin (5-HT) and norepinephrine (NE) neurons were carried out. RESULTS Adolescent THC exposure resulted in depressive lbehaviors: a significant decrease in latency to first immobility in the forced swim test, increased anhedonia in the sucrose preference test. Decrease entries in the open arm were observed in the elevated plus maze after adolescent and adult exposure, indicating anxiousphenotype. A significant reduction in dorsal raphe serotonergic neural activity without changing locus coeruleus noradrenergic neural activity was found in THC adolescent and adult exposure. CONCLUSIONS Altogether, these findings suggest that low doses of chronic THC exposure during the developmental period and adulthood could result in increased vulnerability of the 5-HT system and anxiety symptoms; however, depressive phenotypes occur only after adolescent, but not adult exposure, underscoring the higher vulnerability of young ages to the mental effects of cannabis.
Collapse
Affiliation(s)
- Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Joshua Dean Conway
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Martha-Lopez Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health, Toronto, ON, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Pérez-Valenzuela EJ, Andrés Coke ME, Grace AA, Fuentealba Evans JA. Adolescent Exposure to WIN 55212-2 Render the Nigrostriatal Dopaminergic Pathway Activated During Adulthood. Int J Neuropsychopharmacol 2020; 23:626-637. [PMID: 32710782 PMCID: PMC7710918 DOI: 10.1093/ijnp/pyaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND During adolescence, neuronal circuits exhibit plasticity in response to physiological changes and to adapt to environmental events. Nigrostriatal dopaminergic pathways are in constant flux during development. Evidence suggests a relationship between early use of cannabinoids and psychiatric disorders characterized by altered dopaminergic systems, such as schizophrenia and addiction. However, the impact of adolescent exposure to cannabinoids on nigrostriatal dopaminergic pathways in adulthood remains unclear. The aim of this research was to determine the effects of repeated activation of cannabinoid receptors during adolescence on dopaminergic activity of nigrostriatal pathways and the mechanisms underlying this impact during adulthood. METHODS Male Sprague-Dawley rats were treated with 1.2 mg/kg WIN 55212-2 daily from postnatal day 40 to 65. Then no-net flux microdialysis of dopamine in the dorsolateral striatum, electrophysiological recording of dopaminergic neuronal activity, and microdialysis measures of gamma-aminobutyric acid (GABA) and glutamate in substantia nigra par compacta were carried out during adulthood (postnatal days 72-78). RESULTS Repeated activation of cannabinoid receptors during adolescence increased the release of dopamine in dorsolateral striatum accompanied by increased population activity of dopamine neurons and decreased extracellular GABA levels in substantia nigra par compacta in adulthood. Furthermore, perfusion of bicuculline, a GABAa antagonist, into the ventral pallidum reversed the increased dopamine neuron population activity in substantia nigra par compacta induced by adolescent cannabinoid exposure. CONCLUSIONS These results suggest that adolescent exposure to cannabinoid agonists produces disinhibition of nigrostriatal dopamine transmission during adulthood mediated by decreased GABAergic input from the ventral pallidum.
Collapse
Affiliation(s)
- Enzo Javier Pérez-Valenzuela
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile,Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - María Estela Andrés Coke
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - José Antonio Fuentealba Evans
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile,Correspondence: José Antonio Fuentealba, PhD, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile ()
| |
Collapse
|
27
|
Berthoux C, Hamieh AM, Rogliardo A, Doucet EL, Coudert C, Ango F, Grychowska K, Chaumont‐Dubel S, Zajdel P, Maldonado R, Bockaert J, Marin P, Bécamel C. Early 5-HT 6 receptor blockade prevents symptom onset in a model of adolescent cannabis abuse. EMBO Mol Med 2020; 12:e10605. [PMID: 32329240 PMCID: PMC7207164 DOI: 10.15252/emmm.201910605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Cannabis abuse during adolescence confers an increased risk for developing later in life cognitive deficits reminiscent of those observed in schizophrenia, suggesting common pathological mechanisms that remain poorly characterized. In line with previous findings that revealed a role of 5-HT6 receptor-operated mTOR activation in cognitive deficits of rodent developmental models of schizophrenia, we show that chronic administration of ∆9-tetrahydrocannabinol (THC) to mice during adolescence induces a long-lasting activation of mTOR in prefrontal cortex (PFC), alterations of excitatory/inhibitory balance, intrinsic properties of layer V pyramidal neurons, and long-term depression, as well as cognitive deficits in adulthood. All are prevented by administrating a 5-HT6 receptor antagonist or rapamycin, during adolescence. In contrast, they are still present 2 weeks after the same treatments delivered at the adult stage. Collectively, these findings suggest a role of 5-HT6 receptor-operated mTOR signaling in abnormalities of cortical network wiring elicited by THC at a critical period of PFC maturation and highlight the potential of 5-HT6 receptor antagonists as early therapy to prevent cognitive symptom onset in adolescent cannabis abusers.
Collapse
Affiliation(s)
| | | | | | | | - Camille Coudert
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
- Department of Adult PsychiatryMontpellier University HospitalMontpellierFrance
| | - Fabrice Ango
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| | - Katarzyna Grychowska
- Department of Medicinal ChemistryJagiellonian University Medical CollegeKrakówPoland
| | | | - Pawel Zajdel
- Department of Medicinal ChemistryJagiellonian University Medical CollegeKrakówPoland
| | - Rafael Maldonado
- Neuropharmacology LaboratoryDepartment of Experimental and Health SciencesPompeu Fabra UniversityBarcelonaSpain
| | - Joël Bockaert
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| | - Philippe Marin
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| | - Carine Bécamel
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| |
Collapse
|
28
|
Hammond CJ, Chaney A, Hendrickson B, Sharma P. Cannabis use among U.S. adolescents in the era of marijuana legalization: a review of changing use patterns, comorbidity, and health correlates. Int Rev Psychiatry 2020; 32:221-234. [PMID: 32026735 PMCID: PMC7588219 DOI: 10.1080/09540261.2020.1713056] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decriminalization, medicalization, and legalization of cannabis use by a majority of U.S. states over the past 25 years have dramatically shifted societal perceptions and use patterns among Americans. How marijuana policy changes have affected population-wide health of U.S. youth and what the downstream public health implications of marijuana legalization are topics of significant debate. Cannabis remains the most commonly used federally illicit psychoactive drug by U.S. adolescents and is the main drug for which U.S. youth present for substance use treatment. Converging evidence indicates that adolescent-onset cannabis exposure is associated with short- and possibly long-term impairments in cognition, worse academic/vocational outcomes, and increased prevalence of psychotic, mood, and addictive disorders. Odds of negative developmental outcomes are increased in youth with early-onset, persistent, high frequency, and high-potency Δ-9-THC cannabis use, suggesting dose-dependent relationships. Cannabis use disorders are treatable conditions with clear childhood antecedents that respond to targeted prevention and early intervention strategies. This review indicates that marijuana policy changes have had mixed effects on U.S. adolescent health including potential benefits from decriminalization and negative health outcomes evidenced by increases in cannabis-related motor vehicle accidents, emergency department visits, and hospitalizations. Federal and state legislatures should apply a public health framework and consider the possible downstream effects of marijuana policy change on paediatric health.
Collapse
Affiliation(s)
- Christopher J. Hammond
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Corresponding Author address: Christopher Hammond, MD PhD, Johns Hopkins Bayview, 5500 Lombard Street, Baltimore, MD 21224, , Phone: 410-550-0048
- Fax: 410-550-0030
| | - Aldorian Chaney
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian Hendrickson
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pravesh Sharma
- Department of Psychiatry, Mayo Clinic Health System and University of Wisconsin-Eau Claire, Eau Claire, WI
| |
Collapse
|
29
|
Flores Á, Maldonado R, Berrendero F. THC exposure during adolescence does not modify nicotine reinforcing effects and relapse in adult male mice. Psychopharmacology (Berl) 2020; 237:801-809. [PMID: 31858159 DOI: 10.1007/s00213-019-05416-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE Cannabis use is typically initiated during adolescence, and different studies suggest that adolescent cannabinoid exposure may increase the risk for drug addiction in adulthood. OBJECTIVES This study investigated the effects of adolescent exposure to the main psychoactive component of cannabis, ∆9-tetrahydrocannabinol (THC), in the reinforcing properties of nicotine in adult male mice. Possible alterations in relapse to nicotine-seeking behaviour in adult animals due to THC adolescent exposure were also evaluated. METHODS Adolescent mice were exposed to escalating doses of THC from PND35 to PND49. When mice reached adulthood (PND70), surgical procedures were applied for further behavioural evaluation. Nicotine self-administration sessions were conducted consecutively for 10 days. Following extinction, mice were tested for cue- and stress-induced reinstatement of nicotine-seeking behaviour. RESULTS Adolescent THC treatment did not modify acquisition and extinction of nicotine self-administration in adulthood. Moreover, THC exposure did not alter relapse to nicotine seeking induced by stress or nicotine-associated cues. CONCLUSIONS These results suggest that a history of exposure to THC during adolescence under these particular conditions does not modify the reinforcing effects and seeking behaviour of nicotine in the adult period.
Collapse
Affiliation(s)
- África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003, Barcelona, Spain.,Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003, Barcelona, Spain.
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003, Barcelona, Spain. .,Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, 28223, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
30
|
Blest-Hopley G, Colizzi M, Giampietro V, Bhattacharyya S. Is the Adolescent Brain at Greater Vulnerability to the Effects of Cannabis? A Narrative Review of the Evidence. Front Psychiatry 2020; 11:859. [PMID: 33005157 PMCID: PMC7479242 DOI: 10.3389/fpsyt.2020.00859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cannabis use during the critical neurodevelopmental period of adolescence, may lead to brain structural, functional, and histological alterations that may underpin some of the longer-term behavioral and psychological harms associated with it. The endocannabinoid system performs a key regulatory and homeostatic role, that undergoes developmental changes during adolescence making it potentially more susceptible to the effects of exposure to cannabis during adolescence. Here, we synthesize evidence from human studies of adolescent cannabis users showing alterations in cognitive performance as well as in brain structure and function with relevant preclinical evidence to summarize the current state of knowledge. We also focus on the limited evidence that speaks to the hypothesis that cannabis use during adolescence, may pose a greater risk than use during adulthood, identify gaps in current evidence and suggest directions for new research. Existing literature is consistent with the association of cannabis use during adolescence and neurological changes. Adolescence cannabis users show altered functional connectivity within known functional circuits, that may underlie inefficient recruitment of brain regions, as largely increased functional activation has been observed compared to controls. This disruption in some cases may contribute to the development of adverse mental health conditions; increasing the chances or accelerating the onset, of their development. Preclinical evidence, further supports disruption from cannabis use being specific to the developmental period. Future studies are required to better investigate adolescent cannabis use with more accuracy using better defined groups or longitudinal studies and examine the permanency of these changes following caseation of use. Furthermore, research is required to identify heritable risk factors to cannabis use. There is a need for caution when considering the therapeutic potential of cannabis for adolescence and particularly in public discourse leading to potential trivialization of possible harm from cannabis use in adolescence. Current evidence indicates that adolescence is a sensitive period during which cannabis use may result in adverse neurocognitive effects that appear to show a level of permanency into adulthood.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Vincent Giampietro
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
31
|
Nashed MG, Hardy DB, Laviolette SR. Prenatal Cannabinoid Exposure: Emerging Evidence of Physiological and Neuropsychiatric Abnormalities. Front Psychiatry 2020; 11:624275. [PMID: 33519564 PMCID: PMC7841012 DOI: 10.3389/fpsyt.2020.624275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Clinical reports of cannabis use prevalence during pregnancy vary widely from 3% to upwards of 35% in North America; this disparity likely owing to underestimates from self-reporting in many cases. The rise in cannabis use is mirrored by increasing global legalization and the overall perceptions of safety, even during pregnancy. These trends are further compounded by a lack of evidence-based policy and guidelines for prenatal cannabis use, which has led to inconsistent messaging by healthcare providers and medically licensed cannabis dispensaries regarding prenatal cannabis use for treatment of symptoms, such as nausea. Additionally, the use of cannabis to self-medicate depression and anxiety during pregnancy is a growing medical concern. This review aims to summarize recent findings of clinical and preclinical data on neonatal outcomes, as well as long-term physiological and neurodevelopmental outcomes of prenatal cannabis exposure. Although many of the outcomes under investigation have produced mixed results, we consider these data in light of the unique challenges facing cannabis research. In particular, the limited longitudinal clinical studies available have not previously accounted for the exponential increase in (-)-Δ9- tetrahydrocannabinol (Δ9-THC; the psychoactive compound in cannabis) concentrations found in cannabis over the past two decades. Polydrug use and the long-term effects of individual cannabis constituents [Δ9-THC vs. cannabidiol (CBD)] are also understudied, along with sex-dependent outcomes. Despite these limitations, prenatal cannabis exposure has been linked to low birth weight, and emerging evidence suggests that prenatal exposure to Δ9-THC, which crosses the placenta and impacts placental development, may have wide-ranging physiological and neurodevelopmental consequences. The long-term effects of these changes require more rigorous investigation, though early reports suggest Δ9-THC increases the risk of cognitive impairment and neuropsychiatric disease, including psychosis, depression, anxiety, and sleep disorders. In light of the current trends in the perception and use of cannabis during pregnancy, we emphasize the social and medical imperative for more rigorous investigation of the long-term effects of prenatal cannabis exposure.
Collapse
Affiliation(s)
- Mina G Nashed
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Obstetrics & Gynecology, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
32
|
Hudson R, Renard J, Norris C, Rushlow WJ, Laviolette SR. Cannabidiol Counteracts the Psychotropic Side-Effects of Δ-9-Tetrahydrocannabinol in the Ventral Hippocampus through Bidirectional Control of ERK1-2 Phosphorylation. J Neurosci 2019; 39:8762-8777. [PMID: 31570536 PMCID: PMC6820200 DOI: 10.1523/jneurosci.0708-19.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022] Open
Abstract
Evidence suggests that the phytocannabinoids Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) differentially regulate salience attribution and psychiatric risk. The ventral hippocampus (vHipp) relays emotional salience via control of dopamine (DA) neuronal activity states, which are dysregulated in psychosis and schizophrenia. Using in vivo electrophysiology in male Sprague Dawley rats, we demonstrate that intra-vHipp THC strongly increases ventral tegmental area (VTA) DA neuronal frequency and bursting rates, decreases GABA frequency, and amplifies VTA beta, gamma and ε oscillatory magnitudes via modulation of local extracellular signal-regulated kinase phosphorylation (pERK1-2). Remarkably, whereas intra-vHipp THC also potentiates salience attribution in morphine place-preference and fear conditioning assays, CBD coadministration reverses these changes by downregulating pERK1-2 signaling, as pharmacological reactivation of pERK1-2 blocked the inhibitory properties of CBD. These results identify vHipp pERK1-2 signaling as a critical neural nexus point mediating THC-induced affective disturbances and suggest a potential mechanism by which CBD may counteract the psychotomimetic and psychotropic side effects of THC.SIGNIFICANCE STATEMENT Strains of marijuana with high levels of delta-9-tetrahydrocannabinol (THC) and low levels of cannabidiol (CBD) have been shown to underlie neuropsychiatric risks associated with high-potency cannabis use. However, the mechanisms by which CBD mitigates the side effects of THC have not been identified. We demonstrate that THC induces cognitive and affective abnormalities resembling neuropsychiatric symptoms directly in the hippocampus, while dysregulating dopamine activity states and amplifying oscillatory frequencies in the ventral tegmental area via modulation of the extracellular signal-regulated kinase (ERK) signaling pathway. In contrast, CBD coadministration blocked THC-induced ERK phosphorylation, and prevented THC-induced behavioral and neural abnormalities. These findings identify a novel molecular mechanism that may account for how CBD functionally mitigates the neuropsychiatric side effects of THC.
Collapse
Affiliation(s)
- Roger Hudson
- Addiction Research Group
- Department of Anatomy and Cell Biology, and
| | - Justine Renard
- Addiction Research Group
- Department of Anatomy and Cell Biology, and
| | | | - Walter J Rushlow
- Addiction Research Group
- Department of Anatomy and Cell Biology, and
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | - Steven R Laviolette
- Addiction Research Group,
- Department of Anatomy and Cell Biology, and
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 3K7
| |
Collapse
|
33
|
Kruse LC, Cao JK, Viray K, Stella N, Clark JJ. Voluntary oral consumption of Δ 9-tetrahydrocannabinol by adolescent rats impairs reward-predictive cue behaviors in adulthood. Neuropsychopharmacology 2019; 44:1406-1414. [PMID: 30965351 PMCID: PMC6785709 DOI: 10.1038/s41386-019-0387-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
Few preclinical approaches are available to study the health impact of voluntary consumption of edibles containing the psychoactive drug Δ9-tetrahydrocannabinol (THC). We developed and validated such approach by measuring voluntary oral consumption of THC-containing gelatin by rats and used it to study if and how THC consumption during adolescence impacts adult behavior. We found that adolescent rats of both sexes consumed enough THC to trigger acute hypothermia, analgesic, and locomotor responses, and that 15 days of access to THC-gelatin in adolescence resulted in the down-regulation of cannabinoid 1 receptors (CB1Rs) in adulthood in a sex and brain area specific manner. Remarkably, THC consumption by adolescent male rats and not female rats led to impaired Pavlovian reward-predictive cue behaviors in adulthood consistent with a male-specific loss of CB1R-expressing vGlut-1 synaptic terminals in the ventral tegmental area (VTA). Thus, voluntary oral consumption of THC during adolescence is associated with sex-dependent behavioral impairment in adulthood.
Collapse
Affiliation(s)
- Lauren C. Kruse
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Jessica K. Cao
- 0000000122986657grid.34477.33Department of Pharmacology, University of Washington, Seattle, WA USA
| | - Katie Viray
- 0000000122986657grid.34477.33Department of Pharmacology, University of Washington, Seattle, WA USA
| | - Nephi Stella
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, Seattle, WA USA
| | - Jeremy J. Clark
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| |
Collapse
|
34
|
Abela AR, Rahbarnia A, Wood S, Lê AD, Fletcher PJ. Adolescent exposure to Δ9-tetrahydrocannabinol delays acquisition of paired-associates learning in adulthood. Psychopharmacology (Berl) 2019; 236:1875-1886. [PMID: 30694374 DOI: 10.1007/s00213-019-5171-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
RATIONALE AND OBJECTIVES Adolescence is a sensitive period of brain development, during which there may be a heightened vulnerability to the effects of drug use. Despite this, the long-term effects of cannabis use during this developmental period on cognition are poorly understood. METHODS We exposed adolescent rats to escalating doses of Δ9-tetrahydrocannabinol (THC)-the primary psychoactive component of cannabis-or vehicle solution during postnatal days (PND) 35-45, a period of development that is analogous to human adolescence (THC doses: PND 35-37, 2.5 mg/kg; PND 38-41, 5 mg/kg; PND 42-45, 10 mg/kg). After a period of abstinence, in adulthood, rats were tested on an automated touchscreen version of a paired-associates learning (PAL) task to assess their ability to learn and recall object-location associations. Prepulse inhibition (PPI) of the startle response was also measured at three time points (5 days, 4 months, and 6 months after exposure) to assess sensorimotor gating, the ability to filter out insignificant sensory information from the environment. RESULTS Compared to rats exposed to vehicle alone, rats exposed to THC during adolescence took longer to learn the PAL task when tested in adulthood, even when trials contained visually identical stimuli that differed only in location. Despite this, no differences were observed later in testing, when trials contained visually distinct stimuli in different locations. Rats exposed to THC also displayed impairments in sensorimotor gating, as measured by prepulse inhibition of the startle response, though this deficit did appear to decrease over time. CONCLUSION Taken together, THC exposure during adolescence produces long-term deficits in associative learning and sensorimotor gating, though the impact of these deficits seems to diminish with time. Thus, adolescence may represent a period of neurocognitive development that is vulnerable to the harms of cannabis use, though the stability of such harms is uncertain.
Collapse
Affiliation(s)
- Andrew R Abela
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Neuroscience, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, M5T 1R8, Canada.
| | - Arya Rahbarnia
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Suzanne Wood
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Δ-9-Tetrahydrocannabinol and Cannabidiol produce dissociable effects on prefrontal cortical executive function and regulation of affective behaviors. Neuropsychopharmacology 2019; 44:817-825. [PMID: 30538288 PMCID: PMC6372719 DOI: 10.1038/s41386-018-0282-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/19/2018] [Accepted: 11/16/2018] [Indexed: 11/08/2022]
Abstract
The use of cannabis for therapeutic and recreational purposes is growing exponentially. Nevertheless, substantial questions remain concerning the potential cognitive and affective side-effects associated with cannabis exposure. In particular, the effects of specific marijuana-derived phytocannabinoids on neural regions such as the prefrontal cortex (PFC) are of concern, given the role of the PFC in both executive cognitive function and affective processing. The main biologically active phytocannabinoids, ∆-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), interact with multiple neurotransmitter systems important for these processes directly within the PFC. Considerable evidence has demonstrated that acute or chronic THC exposure may induce psychotomimetic effects, whereas CBD has been shown to produce potentially therapeutic effects for both psychosis and/or anxiety-related symptoms. Using an integrative combination of cognitive and affective behavioral pharmacological assays in rats, we report that acute intra-PFC infusions of THC produce anxiogenic effects while producing no impairments in executive function. In contrast, acute infusions of intra-PFC CBD impaired attentional set-shifting and spatial working memory, without interfering with anxiety or sociability behaviors. In contrast, intra-PFC CBD reversed the cognitive impairments induced by acute glutamatergic antagonism within the PFC, and blocked the anxiogenic properties of THC, suggesting that the therapeutic properties of CBD within the PFC may be present only during pathologically aberrant states within the PFC. Interestingly, the effects of PFC THC vs. CBD were found to be mediated through dissociable CB1 vs. 5-HT1A-dependent receptor signaling mechanisms, directly in the PFC.
Collapse
|
36
|
Yan P, Xu D, Ji Y, Yin F, Cui J, Su R, Wang Y, Zhu Y, Wei S, Lai J. LiCl Pretreatment Ameliorates Adolescent Methamphetamine Exposure-Induced Long-Term Alterations in Behavior and Hippocampal Ultrastructure in Adulthood in Mice. Int J Neuropsychopharmacol 2019; 22:303-316. [PMID: 30649326 PMCID: PMC6441133 DOI: 10.1093/ijnp/pyz001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adolescent methamphetamine exposure causes a broad range of neurobiological deficits in adulthood. Glycogen synthase kinase-3β is involved in various cognitive and behavioral processes associated with methamphetamine exposure. This study aims to investigate the protective effects of the glycogen synthase kinase-3β inhibitor lithium chloride on adolescent methamphetamine exposure-induced long-term alterations in emotion, cognition, behavior, and molecule and hippocampal ultrastructure in adulthood. METHODS A behavioral test battery was used to investigate the protective effects of lithium chloride on adolescent methamphetamine exposure-induced long-term emotional, cognitive, and behavioral impairments in mice. Western blotting and immunohistochemistry were used to detect glycogen synthase kinase-3β activity levels in the medial prefrontal cortex and dorsal hippocampus. Electron microscopy was used to analyze changes in synaptic ultrastructure in the dorsal hippocampus. Locomotor sensitization with a methamphetamine (1 mg/kg) challenge was examined 80 days after adolescent methamphetamine exposure. RESULTS Adolescent methamphetamine exposure induced long-term alterations in locomotor activity, novel spatial exploration, and social recognition memory; increases in glycogen synthase kinase-3β activity in dorsal hippocampus; and decreases in excitatory synapse density and postsynaptic density thickness in CA1. These changes were ameliorated by lithium chloride pretreatment. Adolescent methamphetamine exposure-induced working memory deficits in Y-maze spontaneous alternation test and anxiety-like behavior in elevated-plus maze test spontaneously recovered after long-term methamphetamine abstinence. No significant locomotor sensitization was observed after long-term methamphetamine abstinence. CONCLUSIONS Hyperactive glycogen synthase kinase-3β contributes to adolescent chronic methamphetamine exposure-induced behavioral and hippocampal impairments in adulthood. Our results suggest glycogen synthase kinase-3β may be a potential target for the treatment of deficits in adulthood associated with adolescent methamphetamine abuse.
Collapse
Affiliation(s)
- Peng Yan
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Xu
- Traditional Chinese Medicine Department, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuanyuan Ji
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jingjing Cui
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Rui Su
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yunpeng Wang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yongsheng Zhu
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuguang Wei
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| |
Collapse
|
37
|
Spechler PA, Allgaier N, Chaarani B, Whelan R, Watts R, Orr C, Albaugh MD, D'Alberto N, Higgins ST, Hudson KE, Mackey S, Potter A, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Cattrell A, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Smolka MN, Walter H, Schumann G, Althoff RR, Garavan H. The initiation of cannabis use in adolescence is predicted by sex-specific psychosocial and neurobiological features. Eur J Neurosci 2018; 50:2346-2356. [PMID: 29889330 DOI: 10.1111/ejn.13989] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Cannabis use initiated during adolescence might precipitate negative consequences in adulthood. Thus, predicting adolescent cannabis use prior to any exposure will inform the aetiology of substance abuse by disentangling predictors from consequences of use. In this prediction study, data were drawn from the IMAGEN sample, a longitudinal study of adolescence. All selected participants (n = 1,581) were cannabis-naïve at age 14. Those reporting any cannabis use (out of six ordinal use levels) by age 16 were included in the outcome group (N = 365, males n = 207). Cannabis-naïve participants at age 14 and 16 were included in the comparison group (N = 1,216, males n = 538). Psychosocial, brain and genetic features were measured at age 14 prior to any exposure. Cross-validated regularized logistic regressions for each use level by sex were used to perform feature selection and obtain prediction error statistics on independent observations. Predictors were probed for sex- and drug-specificity using post-hoc logistic regressions. Models reliably predicted use as indicated by satisfactory prediction error statistics, and contained psychosocial features common to both sexes. However, males and females exhibited distinct brain predictors that failed to predict use in the opposite sex or predict binge drinking in independent samples of same-sex participants. Collapsed across sex, genetic variation on catecholamine and opioid receptors marginally predicted use. Using machine learning techniques applied to a large multimodal dataset, we identified a risk profile containing psychosocial and sex-specific brain prognostic markers, which were likely to precede and influence cannabis initiation.
Collapse
Affiliation(s)
- Philip A Spechler
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Bader Chaarani
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Richard Watts
- Department of Radiology, University of Vermont, Burlington, VT, USA
| | - Catherine Orr
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Matthew D Albaugh
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Stephen T Higgins
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Kelsey E Hudson
- Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Alexandra Potter
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Tobias Banaschewski
- Medical Faculty Mannheim, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Anna Cattrell
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia J Conrod
- Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Montreal, Canada
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Herta Flor
- Medical Faculty Mannheim, Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Jean-Luc Martinot
- DIGITEO Labs, Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - University Paris Saclay, Gif sur Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - Paris Saclay, University Paris Descartes, Paris, France.,Department of Adolescent Psychopathology and Medicine, AP-HP, Maison de Solenn, Cochin Hospital, Paris, France
| | - Frauke Nees
- Medical Faculty Mannheim, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Medical Faculty Mannheim, Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | | | - Tomáš Paus
- Baycrest and Departments of Psychology and Psychiatry, Rotman Research Institute, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, 37075, Göttingen, Germany.,Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert R Althoff
- Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Hugh Garavan
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
38
|
Hudson R, Rushlow W, Laviolette SR. Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: implications for neuropsychiatric pathology. Psychopharmacology (Berl) 2018; 235:447-458. [PMID: 29063964 DOI: 10.1007/s00213-017-4766-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Abstract
Growing clinical and preclinical evidence suggests a potential role for the phytocannabinoid cannabidiol (CBD) as a pharmacotherapy for various neuropsychiatric disorders. In contrast, delta-9-tetrahydrocannabinol (THC), the primary psychoactive component in cannabis, is associated with acute and neurodevelopmental propsychotic side effects through its interaction with central cannabinoid type 1 receptors (CB1Rs). CB1R stimulation in the ventral hippocampus (VHipp) potentiates affective memory formation through inputs to the mesolimbic dopamine (DA) system, thereby altering emotional salience attribution. These changes in DA activity and salience attribution, evoked by dysfunctional VHipp regulatory actions and THC exposure, could predispose susceptible individuals to psychotic symptoms. Although THC can accelerate the onset of schizophrenia, CBD displays antipsychotic properties, can prevent the acquisition of emotionally irrelevant memories, and reverses amphetamine-induced neuronal sensitization through selective phosphorylation of the mechanistic target of rapamycin (mTOR) molecular signaling pathway. This review summarizes clinical and preclinical evidence demonstrating that distinct phytocannabinoids act within the VHipp and associated corticolimbic structures to modulate emotional memory processing through changes in mesolimbic DA activity states, salience attribution, and signal transduction pathways associated with schizophrenia-related pathology.
Collapse
Affiliation(s)
- Roger Hudson
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Walter Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 3K7, Canada. .,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
39
|
Adolescent cannabinoid exposure effects on natural reward seeking and learning in rats. Psychopharmacology (Berl) 2018; 235:121-134. [PMID: 29022083 PMCID: PMC5790819 DOI: 10.1007/s00213-017-4749-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
RATIONALE Adolescence is characterized by endocannabinoid (ECB)-dependent refinement of neural circuits underlying emotion, learning, and motivation. As a result, adolescent cannabinoid receptor stimulation (ACRS) with phytocannabinoids or synthetic agonists like "Spice" cause robust and persistent changes in both behavior and circuit architecture in rodents, including in reward-related regions like medial prefrontal cortex and nucleus accumbens (NAc). OBJECTIVES AND METHODS Here, we examine persistent effects of ACRS with the cannabinoid receptor 1/2 specific agonist WIN55-212,2 (WIN; 1.2 mg/kg/day, postnatal day (PD) 30-43), on natural reward-seeking behaviors and ECB system function in adult male Long Evans rats (PD 60+). RESULTS WIN ACRS increased palatable food intake, and altered attribution of incentive salience to food cues in a sign-/goal-tracking paradigm. ACRS also blunted hunger-induced sucrose intake, and resulted in increased anandamide and oleoylethanolamide levels in NAc after acute food restriction not seen in controls. ACRS did not affect food neophobia or locomotor response to a novel environment, but did increase preference for exploring a novel environment. CONCLUSIONS These results demonstrate that ACRS causes long-term increases in natural reward-seeking behaviors and ECB system function that persist into adulthood, potentially increasing liability to excessive natural reward seeking later in life.
Collapse
|
40
|
Renard J, Rushlow WJ, Laviolette SR. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front Psychiatry 2018; 9:281. [PMID: 30013490 PMCID: PMC6036125 DOI: 10.3389/fpsyt.2018.00281] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Marijuana is the most commonly used drug of abuse among adolescents. Considerable clinical evidence supports the hypothesis that adolescent neurodevelopmental exposure to high levels of the principal psychoactive component in marijuana, -delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is believed to be related to increasing levels of THC found within commonly used marijuana strains. Adolescence is a highly vulnerable period for the development of the brain, where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory control mechanisms in the central nervous system (CNS). Specifically, adolescent neurodevelopment represents a critical period wherein regulatory connectivity between higher-order cortical regions and sub-cortical emotional processing circuits such as the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence demonstrates that adolescent exposure to THC selectively targets schizophrenia-related molecular and neuropharmacological signaling pathways in both cortical and sub-cortical regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology. This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This review summarizes preclinical evidence demonstrating that reduced prefrontal cortical GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation and schizophrenia-like behaviors observed following adolescent THC exposure.
Collapse
Affiliation(s)
- Justine Renard
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
41
|
Renard J, Szkudlarek HJ, Kramar CP, Jobson CEL, Moura K, Rushlow WJ, Laviolette SR. Adolescent THC Exposure Causes Enduring Prefrontal Cortical Disruption of GABAergic Inhibition and Dysregulation of Sub-Cortical Dopamine Function. Sci Rep 2017; 7:11420. [PMID: 28900286 PMCID: PMC5595795 DOI: 10.1038/s41598-017-11645-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic adolescent marijuana use has been linked to the later development of psychiatric diseases such as schizophrenia. GABAergic hypofunction in the prefrontal cortex (PFC) is a cardinal pathological feature of schizophrenia and may be a mechanism by which the PFC loses its ability to regulate sub-cortical dopamine (DA) resulting in schizophrenia-like neuropsychopathology. In the present study, we exposed adolescent rats to Δ-9-tetra-hydrocannabinol (THC), the psychoactive component in marijuana. At adulthood, we characterized the functionality of PFC GABAergic neurotransmission and its regulation of sub-cortical DA function using molecular, behavioral and in-vivo electrophysiological analyses. Our findings revealed a persistent attenuation of PFC GABAergic function combined with a hyperactive neuronal state in PFC neurons and associated disruptions in cortical gamma oscillatory activity. These PFC abnormalities were accompanied by hyperactive DAergic neuronal activity in the ventral tegmental area (VTA) and behavioral and cognitive abnormalities similar to those observed in psychiatric disorders. Remarkably, these neuronal and behavioral effects were reversed by pharmacological activation of GABAA receptors in the PFC. Together, these results identify a mechanistic link between dysregulated frontal cortical GABAergic inhibition and sub-cortical DAergic dysregulation, characteristic of well-established neuropsychiatric endophenotypes.
Collapse
Affiliation(s)
- Justine Renard
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Hanna J Szkudlarek
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Cecilia P Kramar
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Christina E L Jobson
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Kyra Moura
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Walter J Rushlow
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.,Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Steven R Laviolette
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
42
|
Grant KS, Petroff R, Isoherranen N, Stella N, Burbacher TM. Cannabis use during pregnancy: Pharmacokinetics and effects on child development. Pharmacol Ther 2017; 182:133-151. [PMID: 28847562 DOI: 10.1016/j.pharmthera.2017.08.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The broad-based legalization of cannabis use has created a strong need to understand its impact on human health and behavior. The risks that may be associated with cannabis use, particularly for sensitive subgroups such as pregnant women, are difficult to define because of a paucity of dose-response data and the recent increase in cannabis potency. Although there is a large body of evidence detailing the mode of action of Δ9-tetrahydrocannabinol (THC) in adults, little work has focused on understanding how cannabis use during pregnancy may impact the development of the fetal nervous system and whether additional plant-derived cannabinoids might participate. This manuscript presents an overview of the historical and contemporary literature focused on the mode of action of THC in the developing brain, comparative pharmacokinetics in both pregnant and nonpregnant model systems and neurodevelopmental outcomes in exposed offspring. Despite growing public health significance, pharmacokinetic studies of THC have focused on nonpregnant adult subjects and there are few published reports on disposition parameters during pregnancy. Data from preclinical species show that THC readily crosses the placenta although fetal exposures appear lower than maternal exposures. The neurodevelopmental data in humans and animals suggest that prenatal exposure to THC may lead to subtle, persistent changes in targeted aspects of higher-level cognition and psychological well-being. There is an urgent need for well-controlled studies in humans and preclinical models on THC as a developmental neurotoxicant. Until more information is available, pregnant women should not assume that using cannabis during pregnancy is safe.
Collapse
Affiliation(s)
- Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| | - Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Nephi Stella
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway. J Neurosci 2017; 36:5160-9. [PMID: 27147666 DOI: 10.1523/jneurosci.3387-15.2016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway.
Collapse
|
44
|
Cannabinoid reward and aversion effects in the posterior ventral tegmental area are mediated through dissociable opiate receptor subtypes and separate amygdalar and accumbal dopamine receptor substrates. Psychopharmacology (Berl) 2017; 234:2325-2336. [PMID: 28669034 DOI: 10.1007/s00213-017-4669-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE The ventral tegmental area (VTA) and its projections to the basolateral amygdala (BLA) and nucleus accumbens (NAc) are critical for cannabinoid-related motivational effects. Cannabinoid CB1 receptor (CB1R) transmission modulates VTA dopamine (DA) neuron activity and previous reports demonstrate anatomically segregated effects of CB1R transmission in the VTA. However, the underlying pharmacological and anatomical regions responsible for these effects are currently unknown. OBJECTIVES The objective of the study is to characterize the motivational effects of localized anterior vs. posterior intra-VTA activation vs. blockade of CB1R transmission and the potential role of intra-BLA and intra-NAc DA transmission in these phenomena. METHODS Using a conditioned place preference (CPP) procedure, we administered a CB1 agonist (WIN-55,212-2) or antagonist (AM 251) into the posterior VTA (pVTA) or anterior VTA (aVTA) of rats, combined with intra-BLA or intra-NAc DA receptor blockade and intra-VTA co-administration of selective mu vs. kappa opiate-receptor antagonists. RESULTS Intra-pVTA CB1R activation produced robust rewarding effects through a mu-opiate receptor mechanism whereas CB1R blockade produced conditioned place aversions (CPA) through a kappa-opiate receptor substrate. In contrast, modulation of aVTA CB1R transmission produced no observable effects. Intra-BLA DA receptor blockade prevented the rewarding effects of pVTA CB1R activation, but had no effects on CB1R blockade-induced aversions. In contrast, intra-NAc DA receptor blockade selectively blocked the aversive effects of pVTA CB1R antagonism. CONCLUSIONS Activation vs. blockade of CB1R transmission in the posterior VTA produces bivalent rewarding or aversive effects through separate mu vs. kappa-opiate receptor substrates. These dissociable effects depend on separate DA receptor transmission substrates in the BLA or NAc, respectively.
Collapse
|
45
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
46
|
Łaba-Stefanek A, Dziwota E, Olajossy M. Genetic and environmental factors in the etiology of schizophrenia - towards mainstreaming. CURRENT PROBLEMS OF PSYCHIATRY 2017. [DOI: 10.1515/cpp-2016-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The prevalence of schizophrenia in a population is about 1%. Many efforts are constantly made to find the cause of this mental illness. Authors of this article provide groups of factors influencing the development of the disease. Among these factors, genetics seems to be an interesting and reasonable trend of exploration. GWAS research studies allow not only determining the point mutations in the genome, but also try to give an answer to the question about the biological mechanisms of disease. A microRNA MIR137, which is involved in neurogenesis and maturation of neurons may be an example. However, the genetic component may not always be sufficient to trigger symptoms. Definitely, a large group of environmental factors has an important role. Schizophrenia is a complex disease in which many genes interact with the environment. This article is a presentation of genes and the impact of various external environmental factors, leading to the onset of schizophrenia. Interrelationship between polygenic determinant of disease and the impact of both environmental and social factors in future will certainly become the field of interest for research concerning the etiology and course of schizophrenia-spectrum disorders.
Collapse
Affiliation(s)
| | - Ewelina Dziwota
- II Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin
| | - Marcin Olajossy
- II Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin
| |
Collapse
|
47
|
Goodman MS, Bridgman AC, Rabin RA, Blumberger DM, Rajji TK, Daskalakis ZJ, George TP, Barr MS. Differential effects of cannabis dependence on cortical inhibition in patients with schizophrenia and non-psychiatric controls. Brain Stimul 2016; 10:275-282. [PMID: 27964871 DOI: 10.1016/j.brs.2016.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cannabis is the most commonly used illicit substance among patients with schizophrenia. Cannabis exacerbates psychotic symptoms and leads to poor functional outcomes. Dysfunctional cortical inhibition has been implicated in the pathophysiology of schizophrenia; however, the effects of cannabis on this mechanism have been relatively unexamined. The goal of this study was to index cortical inhibition from the motor cortex among 4 groups: schizophrenia patients and non-psychiatric controls dependent on cannabis as well as cannabis-free schizophrenia patients and non-psychiatric controls. METHODS In this cross-sectional study, GABA-mediated cortical inhibition was index with single- and paired-pulse transcranial magnetic stimulation (TMS) paradigms to the left motor cortex in 12 cannabis dependent and 11 cannabis-free schizophrenia patients, and in 10 cannabis dependent and 13 cannabis-free controls. RESULTS Cannabis-dependent patients with schizophrenia displayed greater short-interval cortical inhibition (SICI) compared to cannabis-free schizophrenia patients (p = 0.029), while cannabis-dependent controls displayed reduced SICI compared to cannabis-free controls (p = 0.004). SICI did not differ between cannabis dependent patients and cannabis-free controls, or between dependent schizophrenia patients compared to dependent controls. No significant differences were found for long-interval cortical inhibition (LICI) or intra-cortical facilitation (ICF) receptor function, suggesting a selective effect on SICI. CONCLUSION These findings suggest that cannabis dependence may have selective and differing effects on SICI in schizophrenia patients compared to controls, which may provide insight into the pathophysiology of co-morbid cannabis dependence in schizophrenia.
Collapse
Affiliation(s)
- Michelle S Goodman
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto M5T 1R8, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, 1001 Queen Street West, Toronto M6J 1H4 ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada
| | - Alanna C Bridgman
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto M5T 1R8, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, 1001 Queen Street West, Toronto M6J 1H4 ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada
| | - Rachel A Rabin
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto M5T 1R8, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada
| | - Daniel M Blumberger
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, 250 College Street, Toronto M5T 1R8, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, 1001 Queen Street West, Toronto M6J 1H4 ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada; Division of Geriatric Psychiatry, CAMH and Department of Psychiatry, University of Toronto, 80 Workman Way, Toronto M6J 1H4, ON, Canada
| | - Tarek K Rajji
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, 250 College Street, Toronto M5T 1R8, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, 1001 Queen Street West, Toronto M6J 1H4 ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada; Division of Geriatric Psychiatry, CAMH and Department of Psychiatry, University of Toronto, 80 Workman Way, Toronto M6J 1H4, ON, Canada
| | - Zafiris J Daskalakis
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, 250 College Street, Toronto M5T 1R8, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, 1001 Queen Street West, Toronto M6J 1H4 ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada
| | - Tony P George
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto M5T 1R8, ON, Canada; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, 250 College Street, Toronto M5T 1R8, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada
| | - Mera S Barr
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto M5T 1R8, ON, Canada; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, 250 College Street, Toronto M5T 1R8, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, 1001 Queen Street West, Toronto M6J 1H4 ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle Room 2374, Toronto M5S 1A8, ON, Canada.
| |
Collapse
|
48
|
Norris C, Loureiro M, Kramar C, Zunder J, Renard J, Rushlow W, Laviolette SR. Cannabidiol Modulates Fear Memory Formation Through Interactions with Serotonergic Transmission in the Mesolimbic System. Neuropsychopharmacology 2016; 41:2839-2850. [PMID: 27296152 PMCID: PMC5061893 DOI: 10.1038/npp.2016.93] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAcVTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling.
Collapse
Affiliation(s)
- Christopher Norris
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Michael Loureiro
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia Kramar
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jordan Zunder
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Justine Renard
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 468 Medical Science Building, London, ON, Canada N6A 5C1, Tel: +1 519 661 2111, ext 80302, Fax: +1 519 661 3936, E-mail:
| |
Collapse
|
49
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
50
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|