1
|
Bouros I, Hill EM, Keeling MJ, Moore S, Thompson RN. Prioritising older individuals for COVID-19 booster vaccination leads to optimal public health outcomes in a range of socio-economic settings. PLoS Comput Biol 2024; 20:e1012309. [PMID: 39116038 PMCID: PMC11309497 DOI: 10.1371/journal.pcbi.1012309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The rapid development of vaccines against SARS-CoV-2 altered the course of the COVID-19 pandemic. In most countries, vaccinations were initially targeted at high-risk populations, including older individuals and healthcare workers. Now, despite substantial infection- and vaccine-induced immunity in host populations worldwide, waning immunity and the emergence of novel variants continue to cause significant waves of infection and disease. Policy makers must determine how to deploy booster vaccinations, particularly when constraints in vaccine supply, delivery and cost mean that booster vaccines cannot be administered to everyone. A key question is therefore whether older individuals should again be prioritised for vaccination, or whether alternative strategies (e.g. offering booster vaccines to the individuals who have most contacts with others and therefore drive infection) can instead offer indirect protection to older individuals. Here, we use mathematical modelling to address this question, considering SARS-CoV-2 transmission in a range of countries with different socio-economic backgrounds. We show that the population structures of different countries can have a pronounced effect on the impact of booster vaccination, even when identical booster vaccination targeting strategies are adopted. However, under the assumed transmission model, prioritising older individuals for booster vaccination consistently leads to the most favourable public health outcomes in every setting considered. This remains true for a range of assumptions about booster vaccine supply and timing, and for different assumed policy objectives of booster vaccination.
Collapse
Affiliation(s)
- Ioana Bouros
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Edward M. Hill
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sam Moore
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Robin N. Thompson
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Hu WH, Cai HL, Yan HC, Wang H, Sun HM, Wei YY, Hao YT. Protective effectiveness of previous infection against subsequent SARS-Cov-2 infection: systematic review and meta-analysis. Front Public Health 2024; 12:1353415. [PMID: 38966699 PMCID: PMC11222391 DOI: 10.3389/fpubh.2024.1353415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Background The protective effectiveness provided by naturally acquired immunity against SARS-CoV-2 reinfection remain controversial. Objective To systematically evaluate the protective effect of natural immunity against subsequent SARS-CoV-2 infection with different variants. Methods We searched for related studies published in seven databases before March 5, 2023. Eligible studies included in the analysis reported the risk of subsequent infection for groups with or without a prior SARS-CoV-2 infection. The primary outcome was the overall pooled incidence rate ratio (IRR) of SARS-CoV-2 reinfection/infection between the two groups. We also focused on the protective effectiveness of natural immunity against reinfection/infection with different SARS-CoV-2 variants. We used a random-effects model to pool the data, and obtained the bias-adjusted results using the trim-and-fill method. Meta-regression and subgroup analyses were conducted to explore the sources of heterogeneity. Sensitivity analysis was performed by excluding included studies one by one to evaluate the stability of the results. Results We identified 40 eligible articles including more than 20 million individuals without the history of SARS-CoV-2 vaccination. The bias-adjusted efficacy of naturally acquired antibodies against reinfection was estimated at 65% (pooled IRR = 0.35, 95% CI = 0.26-0.47), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.15, 95% CI = 0.08-0.26) than asymptomatic infection (pooled IRR = 0.40, 95% CI = 0.29-0.54). Meta-regression revealed that SARS-CoV-2 variant was a statistically significant effect modifier, which explaining 46.40% of the variation in IRRs. For different SARS-CoV-2 variant, the pooled IRRs for the Alpha (pooled IRR = 0.11, 95% CI = 0.06-0.19), Delta (pooled IRR = 0.19, 95% CI = 0.15-0.24) and Omicron (pooled IRR = 0.61, 95% CI = 0.42-0.87) variant were higher and higher. In other subgroup analyses, the pooled IRRs of SARS-CoV-2 infection were statistically various in different countries, publication year and the inclusion end time of population, with a significant difference (p = 0.02, p < 0.010 and p < 0.010), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. Despite the heterogeneity in included studies, sensitivity analyses showed stable results. Conclusion Previous SARS-CoV-2 infection provides protection against pre-omicron reinfection, but less against omicron. Ongoing viral mutation requires attention and prevention strategies, such as vaccine catch-up, in conjunction with multiple factors.
Collapse
Affiliation(s)
- Wei-Hua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Huan-Le Cai
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huan-Chang Yan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Han Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Min Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yong-Yue Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yuan-Tao Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Kahn F, Bonander C, Moghaddassi M, Christiansen CB, Bennet L, Malmqvist U, Inghammar M, Björk J. Previous SARS-CoV-2 infections and their impact on the protection from reinfection during the Omicron BA.5 wave - a nested case-control study among vaccinated adults in Sweden. IJID REGIONS 2024; 10:235-239. [PMID: 38532742 PMCID: PMC10964055 DOI: 10.1016/j.ijregi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Objectives We evaluated the protection afforded by SARS-CoV-2 infection-induced immunity against reinfection among working-age vaccinated individuals during a calendar period from June to December 2022 when Omicron BA.5 was the dominating subvariant in Scania County, Sweden. Methods The study cohort (n = 71,592) mainly consisted of health care workers. We analyzed 4144 infected cases during the Omicron BA.5 dominance and 41,440 sex- and age-matched controls with conditional logistic regression. Results The average protection against reinfection was marginal (16%, 95% confidence interval [CI] 7-23%) during the study period but substantially higher for recent infections. Recent infection (3-6 months) with Omicron BA.2 and BA.5 offered strong protection (86%, 95% CI 68-94% and 78%, 95% CI 69-84%), whereas more distant infection (6-12 months) with Omicron BA.1, BA.2, and the variants before Omicron offered marginal or no protection. Conclusions These findings suggest that infection-induced immunity contributes to short-term population protection against infection with the subvariant BA.5 among working-age vaccinated individuals but wanes considerably with time, independent of the virus variant.
Collapse
Affiliation(s)
- Fredrik Kahn
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Carl Bonander
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Moghaddassi
- Department of Clinical Sciences Malmö, Section for Social Medicine and Global Health, Lund University, Malmö, Sweden
| | - Claus Bohn Christiansen
- Department of Clinical Microbiology and Infection Prevention and Control, Skåne University Hospital, Lund, Sweden
| | - Louise Bennet
- Department of Clinical Sciences Malmö, Section for Family Medicine, Lund University, Malmö, Sweden
- Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Ulf Malmqvist
- Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Malin Inghammar
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Jonas Björk
- Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Hitchings MDT, Patel EU, Khan R, Srikrishnan AK, Anderson M, Kumar KS, Wesolowski AP, Iqbal SH, Rodgers MA, Mehta SH, Cloherty G, Cummings DAT, Solomon SS. A Mixture Model for Estimating SARS-CoV-2 Seroprevalence in Chennai, India. Am J Epidemiol 2023; 192:1552-1561. [PMID: 37084085 PMCID: PMC10472327 DOI: 10.1093/aje/kwad103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/01/2022] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
Serological assays used to estimate the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often rely on manufacturers' cutoffs established on the basis of severe cases. We conducted a household-based serosurvey of 4,677 individuals in Chennai, India, from January to May 2021. Samples were tested for SARS-CoV-2 immunoglobulin G (IgG) antibodies to the spike (S) and nucleocapsid (N) proteins. We calculated seroprevalence, defining seropositivity using manufacturer cutoffs and using a mixture model based on measured IgG level. Using manufacturer cutoffs, there was a 5-fold difference in seroprevalence estimated by each assay. This difference was largely reconciled using the mixture model, with estimated anti-S and anti-N IgG seroprevalence of 64.9% (95% credible interval (CrI): 63.8, 66.0) and 51.5% (95% CrI: 50.2, 52.9), respectively. Age and socioeconomic factors showed inconsistent relationships with anti-S and anti-N IgG seropositivity using manufacturer cutoffs. In the mixture model, age was not associated with seropositivity, and improved household ventilation was associated with lower seropositivity odds. With global vaccine scale-up, the utility of the more stable anti-S IgG assay may be limited due to the inclusion of the S protein in several vaccines. Estimates of SARS-CoV-2 seroprevalence using alternative targets must consider heterogeneity in seroresponse to ensure that seroprevalence is not underestimated and correlates are not misinterpreted.
Collapse
Affiliation(s)
- Matt D T Hitchings
- Correspondence to Dr. Matt Hitchings, Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Clinical and Translational Research Building, 5th Floor, 2004 Mowry Road, Gainesville, FL 32603 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Elhadidy T, Abdelwahab HW, Shahin D, Hewidy A, Khashaba E, Elmorsey RA, Abo El Kheir N, Eid EA, El-Mesery A, Elmaria MO. Immunological changes in a cohort of COVID-19 survivors: Mansoura University experience. F1000Res 2023; 12:793. [PMID: 37767022 PMCID: PMC10521065 DOI: 10.12688/f1000research.134565.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Background: COVID-19 is a global pandemic that has affected millions of people all over the world since 2019. Infection with COVID-19 initiates a humoral immune response that produces antibodies against specific viral antigens, which in turn is supposed to provide immunity against reinfection for a period of time. The aim of this research was to study the kinetics of IgM and IgG antibodies against SARS-CoV-2. Methods: One hundred and seventeen post-COVID-19 participants were enrolled in the study. Qualitative assessment of IgM and IgG antibodies over six months (three visits) post recovery was conducted. Results: The current study revealed a significant reduction in IgM and IgG titers between the first and second visits (p <0.001). After six months, the antibody titer had declined by 78.8% from the first visit for IgM and by 49.2% for IgG antibodies. Regarding younger age and male sex, statistically significant persistence of IgM antibodies was noticed at the six months follow up. Also, statistically significant persistent IgG immunity was found in male patients and diabetics by the end of the six months follow up. Conclusions: We observed a significant waning of IgM and IgG titers over a period of six months follow up.. The persistence of positive IgM and IgG antibodies by the end of six months was variable due to differences in age, gender and presence of diabetes mellitus.
Collapse
Affiliation(s)
- Tamer Elhadidy
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Heba Wagih Abdelwahab
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Doaa Shahin
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Asem Hewidy
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Eman Khashaba
- Public Health & Community Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Rehab Ahmad Elmorsey
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Nermin Abo El Kheir
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Elsayed A. Eid
- Medicine and Endocrinology, Faculty of Medicine, Delta University for Science and Technology, Belkas, Dakahlia Governorate, 7730103, Egypt
| | - Ahmed El-Mesery
- Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Marwa O. Elmaria
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| |
Collapse
|
6
|
Franchi M, Pellegrini G, Cereda D, Bortolan F, Leoni O, Pavesi G, Galli M, Valenti G, Corrao G. Natural and vaccine-induced immunity are equivalent for the protection against SARS-CoV-2 infection. J Infect Public Health 2023; 16:1137-1141. [PMID: 37267680 DOI: 10.1016/j.jiph.2023.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
OBJECTIVES To compare the long-term cumulative risk of SARS-CoV-2 infection associated with natural and vaccine-induced immunity. METHODS Retrospective population-based cohort study based on registry of COVID-19 vaccinations and SARS-CoV-2 infections among 9.1 million citizens of Lombardy, Italy, eligible for vaccination on 27th December 2020. Those who developed SARS-CoV-2 infection from 24th May to 14th September 2021, provided they did not yet receive the COVID-19 vaccine when infection was confirmed, and those who received the second mRNA vaccine dose, provided they had not yet developed the infection, were selected to be 1:1 matched for sex, age and index date. The latter corresponded to 90 days after confirmed infection or 14 days after vaccine administration. A control cohort including citizens who, on the index date, had neither developed infection nor received vaccination was also selected. Kaplan-Meier curves were used for comparing the cumulative incidence of new SARS-CoV-2 infection from the index date until 22nd June 2022. RESULTS Overall, 19,418 1:1:1 risk-sets were included. After 9 months of follow-up, the cumulative risk of new SARS-CoV-2 infection was 21.8%, 22.0%, and 25.9%, respectively, among exposed to natural immunity, vaccine-induced immunity and unexposed. CONCLUSIONS Equivalent potential for protecting against new SARS-CoV-2 infection was observed.
Collapse
Affiliation(s)
- Matteo Franchi
- National Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy.
| | - Giacomo Pellegrini
- National Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy; ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
| | - Danilo Cereda
- Directorate General for Health, Lombardy Region, Milan, Italy
| | | | - Olivia Leoni
- Directorate General for Health, Lombardy Region, Milan, Italy
| | - Giovanni Pavesi
- Directorate General for Health, Lombardy Region, Milan, Italy
| | - Massimo Galli
- Infectious Diseases Unit, Luigi Sacco Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Giovanni Corrao
- National Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy; Directorate General for Health, Lombardy Region, Milan, Italy
| |
Collapse
|
7
|
Ukwishaka J, Ndayishimiye Y, Destine E, Danwang C, Kirakoya-Samadoulougou F. Global prevalence of coronavirus disease 2019 reinfection: a systematic review and meta-analysis. BMC Public Health 2023; 23:778. [PMID: 37118717 PMCID: PMC10140730 DOI: 10.1186/s12889-023-15626-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/07/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged with a high transmissibility rate and resulted in numerous negative impacts on global life. Preventive measures such as face masks, social distancing, and vaccination helped control the pandemic. Nonetheless, the emergence of SARS-CoV-2 variants, such as Omega and Delta, as well as coronavirus disease 2019 (COVID-19) reinfection, raise additional concerns. Therefore, this study aimed to determine the overall prevalence of reinfection on global and regional scales. METHODS A systematic search was conducted across three databases, PubMed, Scopus, and ProQuest Central, including all articles pertaining to COVID-19 reinfection without language restriction. After critical appraisal and qualitative synthesis of the identified relevant articles, a meta-analysis considering random effects was used to pool the studies. RESULTS We included 52 studies conducted between 2019 and 2022, with a total sample size of 3,623,655 patients. The overall prevalence of COVID-19 reinfection was 4.2% (95% confidence interval [CI]: 3.7-4.8%; n = 52), with high heterogeneity between studies. Africa had the highest prevalence of 4.7% (95% CI: 1.9-7.5%; n = 3), whereas Oceania and America had lower estimates of 0.3% (95% CI: 0.2-0.4%; n = 1) and 1% (95% CI: 0.8-1.3%; n = 7), respectively. The prevalence of reinfection in Europe and Asia was 1.2% (95% CI: 0.8-1.5%; n = 8) and 3.8% (95% CI: 3.4-4.3%; n = 43), respectively. Studies that used a combined type of specimen had the highest prevalence of 7.6% (95% CI: 5.8-9.5%; n = 15) compared with those that used oropharyngeal or nasopharyngeal swabs only that had lower estimates of 6.7% (95% CI: 4.8-8.5%; n = 8), and 3.4% (95% CI: 2.8-4.0%; n = 12) respectively. CONCLUSION COVID-19 reinfection occurs with varying prevalence worldwide, with the highest occurring in Africa. Therefore, preventive measures, including vaccination, should be emphasized to ensure control of the pandemic.
Collapse
Affiliation(s)
- Joyeuse Ukwishaka
- Maternal Child and Community Health Division, Rwanda Bio-Medical Center, Kigali, Rwanda.
- IntraHealth International, Kigali, Rwanda.
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium.
| | - Yves Ndayishimiye
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Esmeralda Destine
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fati Kirakoya-Samadoulougou
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Turbett SE, Tomkins-Tinch CH, Anahtar MN, Dugdale CM, Hyle EP, Shenoy ES, Shaw B, Egbuonu K, Bowman KA, Zachary KC, Adams GC, Hooper DC, Ryan ET, LaRocque RC, Bassett IV, Triant VA, Siddle KJ, Rosenberg E, Sabeti PC, Schaffner SF, MacInnis BL, Lemieux JE, Charles RC. Distinguishing Severe Acute Respiratory Syndrome Coronavirus 2 Persistence and Reinfection: A Retrospective Cohort Study. Clin Infect Dis 2023; 76:850-860. [PMID: 36268576 PMCID: PMC9619827 DOI: 10.1093/cid/ciac830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection is poorly understood, partly because few studies have systematically applied genomic analysis to distinguish reinfection from persistent RNA detection related to initial infection. We aimed to evaluate the characteristics of SARS-CoV-2 reinfection and persistent RNA detection using independent genomic, clinical, and laboratory assessments. METHODS All individuals at a large academic medical center who underwent a SARS-CoV-2 nucleic acid amplification test (NAAT) ≥45 days after an initial positive test, with both tests between 14 March and 30 December 2020, were analyzed for potential reinfection. Inclusion criteria required having ≥2 positive NAATs collected ≥45 days apart with a cycle threshold (Ct) value <35 at repeat testing. For each included subject, likelihood of reinfection was assessed by viral genomic analysis of all available specimens with a Ct value <35, structured Ct trajectory criteria, and case-by-case review by infectious diseases physicians. RESULTS Among 1569 individuals with repeat SARS-CoV-2 testing ≥45 days after an initial positive NAAT, 65 (4%) met cohort inclusion criteria. Viral genomic analysis characterized mutations present and was successful for 14/65 (22%) subjects. Six subjects had genomically supported reinfection, and 8 subjects had genomically supported persistent RNA detection. Compared to viral genomic analysis, clinical and laboratory assessments correctly distinguished reinfection from persistent RNA detection in 12/14 (86%) subjects but missed 2/6 (33%) genomically supported reinfections. CONCLUSIONS Despite good overall concordance with viral genomic analysis, clinical and Ct value-based assessments failed to identify 33% of genomically supported reinfections. Scaling-up genomic analysis for clinical use would improve detection of SARS-CoV-2 reinfections.
Collapse
Affiliation(s)
- Sarah E Turbett
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Christopher H Tomkins-Tinch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Melis N Anahtar
- Department of Pathology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Caitlin M Dugdale
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emily P Hyle
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erica S Shenoy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Infection Control Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bennett Shaw
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | | | - Kathryn A Bowman
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Kimon C Zachary
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Infection Control Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gordon C Adams
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - David C Hooper
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Infection Control Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ingrid V Bassett
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Virginia A Triant
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katherine J Siddle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Eric Rosenberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Harvard University, Boston, Massachusetts, USA
| | - Stephen F Schaffner
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Bronwyn L MacInnis
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Jacob E Lemieux
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Andeweg SP, Vennema H, Veldhuijzen I, Smorenburg N, Schmitz D, Zwagemaker F, van Gageldonk-Lafeber AB, Hahné SJM, Reusken C, Knol MJ, Eggink D. Elevated risk of infection with SARS-CoV-2 Beta, Gamma, and Delta variants compared with Alpha variant in vaccinated individuals. Sci Transl Med 2023; 15:eabn4338. [PMID: 35862508 PMCID: PMC9580257 DOI: 10.1126/scitranslmed.abn4338] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/08/2022] [Indexed: 12/22/2022]
Abstract
The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) break through infection- or vaccine-induced immunity is not well understood. We analyzed 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We found evidence of an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared with the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14 to 59 days after complete vaccination compared with ≥60 days. In contrast to vaccine-induced immunity, there was no increased risk for reinfection with Beta, Gamma, or Delta variants relative to the Alpha variant in individuals with infection-induced immunity.
Collapse
Affiliation(s)
- Stijn P. Andeweg
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Harry Vennema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Irene Veldhuijzen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Naomi Smorenburg
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Dennis Schmitz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Florian Zwagemaker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Arianne B. van Gageldonk-Lafeber
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Susan J. M. Hahné
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Mirjam J. Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - Dirk Eggink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | - SeqNeth Molecular surveillance group†
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Netherlands
| | | |
Collapse
|
10
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
11
|
Wang Y, Li J, Zhang W, Liu S, Miao L, Li Z, Fu A, Bao J, Huang L, Zheng L, Li E, Zhang Y, Yu J. Extending the dosing interval of COVID-19 vaccination leads to higher rates of seroconversion in people living with HIV. Front Immunol 2023; 14:1152695. [PMID: 36936952 PMCID: PMC10017959 DOI: 10.3389/fimmu.2023.1152695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an effective way of protecting individuals from severe coronavirus disease 2019 (COVID-19). However, immune responses to vaccination vary considerably. This study dynamically assessed the neutralizing antibody (NAb) responses to the third dose of the inactivated COVID-19 vaccine administered to people living with human immunodeficiency virus (HIV; PLWH) with different inoculation intervals. Methods A total of 171 participants were recruited: 63 PLWH were placed in cohort 1 (with 3-month interval between the second and third doses), while 95 PLWH were placed in cohort 2 (with 5-month interval between the second and third doses); 13 individuals were enrolled as healthy controls (HCs). And risk factors associated with seroconversion failure after vaccination were identified via Cox regression analysis. Results At 6 months after the third vaccination, PLWH in cohort 2 had higher NAb levels (GMC: 64.59 vs 21.99, P < 0.0001) and seroconversion rate (68.42% vs 19.05%, P < 0.0001). A weaker neutralizing activity against the SARSCoV-2 Delta variant was observed (GMT: 3.38 and 3.63, P < 0.01) relative to the wildtype strain (GMT: 13.68 and 14.83) in both cohorts. None of the participants (including HCs or PLWH) could mount a NAb response against Omicron BA.5.2. In the risk model, independent risk factors for NAb seroconversion failure were the vaccination interval (hazed ration [HR]: 0.316, P < 0.001) and lymphocyte counts (HR: 0.409, P < 0.001). Additionally, PLWH who exhibited NAb seroconversion after vaccination had fewer initial COVID-19 symptoms when infected with Omicron. Discussion This study demonstrated that the third vaccination elicited better NAb responses in PLWH, when a longer interval was used between vaccinations. Since post-vaccination seroconversion reduced the number of symptoms induced by Omicron, efforts to protect PLWH with risk factors for NAb seroconversion failure may be needed during future Omicron surges. Clinical trial registration https://beta.clinicaltrials.gov/study/NCT05075070, identifier NCT05075070.
Collapse
Affiliation(s)
- Yi Wang
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Li
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention (CDC), Hangzhou, China
| | - Wenhui Zhang
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shourong Liu
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangbin Miao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoyi Li
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai Fu
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Bao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Huang
- Medical Laboratory, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Zheng
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Er Li
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention (CDC), Hangzhou, China
- *Correspondence: Jianhua Yu, ; Yanjun Zhang,
| | - Jianhua Yu
- Department of Infection, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jianhua Yu, ; Yanjun Zhang,
| |
Collapse
|
12
|
Carazo S, Skowronski DM, Brisson M, Barkati S, Sauvageau C, Brousseau N, Gilca R, Fafard J, Talbot D, Ouakki M, Gilca V, Carignan A, Deceuninck G, De Wals P, De Serres G. Protection against omicron (B.1.1.529) BA.2 reinfection conferred by primary omicron BA.1 or pre-omicron SARS-CoV-2 infection among health-care workers with and without mRNA vaccination: a test-negative case-control study. THE LANCET. INFECTIOUS DISEASES 2023; 23:45-55. [PMID: 36152671 PMCID: PMC9491856 DOI: 10.1016/s1473-3099(22)00578-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND There is a paucity of data on vaccine-induced or infection-induced (hybrid or natural) immunity against omicron (B.1.1.529) subvariant BA.2, particularly in comparing the effects of previous SARS-CoV-2 infection with the same or different genetic lineage. We aimed to estimate the protection against omicron BA.2 associated with previous primary infection with omicron BA.1 or pre-omicron SARS-CoV-2, among health-care workers with and without mRNA vaccination. METHODS We conducted a test-negative case-control study among health-care workers aged 18 years or older who were tested for SARS-CoV-2 in Quebec, Canada, between March 27 and June 4, 2022, when BA.2 was the predominant variant and was presumptively diagnosed with a positive test result. We identified cases (positive test during study period) and controls (negative test during study period) using the provincial laboratory database that records all nucleic acid amplification testing for SARS-CoV-2 in Quebec, and used the provincial immunisation registry to determine vaccination status. Logistic regression models compared the likelihood of BA.2 infection or reinfection (second positive test ≥30 days after primary infection) among health-care workers who had previous primary infection and none to three mRNA vaccine doses versus unvaccinated health-care workers with no primary infection. FINDINGS 258 007 SARS-CoV-2 tests were done during the study period. Among those with a valid result and that met the inclusion criteria, there were 37 732 presumed BA.2 cases (2521 [6·7%] reinfections following pre-omicron primary infection and 659 [1·7%] reinfections following BA.1 primary infection) and 73 507 controls (7360 [10·0%] had pre-omicron primary infection and 12 315 [16·8%] had BA.1 primary infection). Pre-omicron primary infection was associated with a 38% (95% CI 19-53) reduction in BA.2 infection risk, with higher BA.2 protection among those who had also received one (56%, 95% CI 47-63), two (69%, 64-73), or three (70%, 66-74) mRNA vaccine doses. Omicron BA.1 primary infection was associated with greater protection against BA.2 infection (risk reduction of 72%, 95% CI 65-78), and protection was increased further among those who had received two doses of mRNA vaccine (96%, 95-96), but was not improved with a third dose (96%, 95-97). INTERPRETATION Health-care workers who had received two doses of mRNA vaccine and had previous BA.1 infection were subsequently well protected for a prolonged period against BA.2 reinfection, with a third vaccine dose conferring no improvement to that hybrid protection. If this protection also pertains to future variants, there might be limited benefit from additional vaccine doses for people with hybrid immunity, depending on timing and variant. FUNDING Ministère de la Santé et des Services Sociaux du Québec.
Collapse
Affiliation(s)
- Sara Carazo
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada; Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada.
| | - Danuta M Skowronski
- Communicable Diseases and Immunization Services, BC Centre for Disease Control, Vancouver, BC, Canada
| | - Marc Brisson
- Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Sapha Barkati
- Department of Medicine, Division of Infectious Diseases, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Chantal Sauvageau
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada; Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Nicholas Brousseau
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada; Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Rodica Gilca
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada; Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Judith Fafard
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Quebec, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Denis Talbot
- Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Manale Ouakki
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada
| | - Vladimir Gilca
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada
| | - Alex Carignan
- Department of Microbiology and Infectious Diseases, Sherbrook University, Sherbrook, QC, Canada
| | - Geneviève Deceuninck
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Philippe De Wals
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada; Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Gaston De Serres
- Biological Risks Unit, Institut National de Santé Publique du Québec, Quebec, QC, Canada; Social and Preventive Medicine Department, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, QC, Canada
| |
Collapse
|
13
|
Deng L, Li P, Zhang X, Jiang Q, Turner D, Zhou C, Gao Y, Qian F, Zhang C, Lu H, Zou H, Vermund SH, Qian HZ. Risk of SARS-CoV-2 reinfection: a systematic review and meta-analysis. Sci Rep 2022; 12:20763. [PMID: 36456577 PMCID: PMC9714387 DOI: 10.1038/s41598-022-24220-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
This meta-analysis aims to synthesize global evidence on the risk of reinfection among people previously infected with SARS-CoV-2. We systematically searched PubMed, Scopus, Embase and Web of Science as of April 5, 2021. We conducted: (1) meta-analysis of cohort studies containing data sufficient for calculating the incidence rate of SARS-CoV-2 reinfection; (2) systematic review of case reports with confirmed SARS-CoV-2 reinfection cases. The reinfection incidence was pooled by zero-inflated beta distribution. The hazard ratio (HR) between reinfection incidence among previously infected individuals and new infection incidence among infection-naïve individuals was calculated using random-effects models. Of 906 records retrieved and reviewed, 11 studies and 11 case reports were included in the meta-analysis and the systematic review, respectively. The pooled SARS-CoV-2 reinfection incidence rate was 0.70 (standard deviation [SD] 0.33) per 10,000 person-days. The incidence of reinfection was lower than the incidence of new infection (HR = 0.12, 95% confidence interval 0.09-0.17). Our meta-analysis of studies conducted prior to the emergency of the more transmissible Omicron variant showed that people with a prior SARS-CoV-2 infection could be re-infected, and they have a lower risk of infection than those without prior infection. Continuing reviews are needed as the reinfection risk may change due to the rapid evolution of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Luojia Deng
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peiqi Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuezhixing Zhang
- Yale School of Public Health, Yale University, 300 George Street, New Haven, CT, USA
| | - Qianxue Jiang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Chao Zhou
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanxiao Gao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Frank Qian
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ci Zhang
- Xiangya Nursing School, Central South University, Changsha, China
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huachun Zou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Sten H Vermund
- Yale School of Public Health, Yale University, 300 George Street, New Haven, CT, USA
| | - Han-Zhu Qian
- Yale School of Public Health, Yale University, 300 George Street, New Haven, CT, USA.
- GSK plc, Rockville, MD, USA.
| |
Collapse
|
14
|
Chen Q, Zhu K, Liu X, Zhuang C, Huang X, Huang Y, Yao X, Quan J, Lin H, Huang S, Su Y, Wu T, Zhang J, Xia N. The Protection of Naturally Acquired Antibodies Against Subsequent SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. Emerg Microbes Infect 2022; 11:793-803. [PMID: 35195494 PMCID: PMC8920404 DOI: 10.1080/22221751.2022.2046446] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 01/18/2023]
Abstract
The specific antibodies induced by SARS-CoV-2 infection may provide protection against a subsequent infection. However, the efficacy and duration of protection provided by naturally acquired immunity against subsequent SARS-CoV-2 infection remain controversial. We systematically searched for the literature describing COVID-19 reinfection published before 07 February 2022. The outcomes were the pooled incidence rate ratio (IRR) for estimating the risk of subsequent infection. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included studies. Statistical analyses were conducted using the R programming language 4.0.2. We identified 19 eligible studies including more than 3.5 million individuals without the history of COVID-19 vaccination. The efficacy of naturally acquired antibodies against reinfection was estimated at 84% (pooled IRR = 0.16, 95% CI: 0.14-0.18), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.09, 95% CI = 0.07-0.12) than asymptomatic infection (pooled IRR = 0.28, 95% CI = 0.14-0.54). In the subgroup analyses, the pooled IRRs of COVID-19 infection in health care workers (HCWs) and the general population were 0.22 (95% CI = 0.16-0.31) and 0.14 (95% CI = 0.12-0.17), respectively, with a significant difference (P = 0.02), and those in older (over 60 years) and younger (under 60 years) populations were 0.26 (95% CI = 0.15-0.48) and 0.16 (95% CI = 0.14-0.19), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. In conclusion, naturally acquired antibodies against SARS-CoV-2 can significantly reduce the risk of subsequent infection, with a protection efficacy of 84%.Registration number: CRD42021286222.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Kongxin Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xiaohui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingcheng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yue Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingmei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jiali Quan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Hongyan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen City, Fujian Province, People's Republic of China
| |
Collapse
|
15
|
Ando W, Horii T, Jimbo M, Uematsu T, Atsuda K, Hanaki H, Otori K. Smoking cessation in the elderly as a sign of susceptibility to symptomatic COVID-19 reinfection in the United States. Front Public Health 2022; 10:985494. [PMID: 36504971 PMCID: PMC9733529 DOI: 10.3389/fpubh.2022.985494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background We aimed to clarify the relationship between coronavirus disease 2019 (COVID-19) reinfection and basic disease and smoking status. Methods The electronic health records of 165,320 patients with COVID-19 from January 1, 2020, to August 27, 2021, were analyzed. Data on age, race, sex, smoking status (never, current, former), and basic disease were analyzed using Cox proportional hazard models. Results In total, 6,133 patients (3.7%) were reinfected. The overall reinfection rate for never, current, and former smokers was 4.2, 3.5, and 5.7%, respectively. Although the risk of reinfection was highest among former smokers aged ≥65 years (7.7% [422/5,460]), the reinfection rate among current smokers aged ≥65 years was 6.2% (341/5,543). Among reinfected patients, the number of basic diseases was higher in former smokers (2.41 ± 1.16) than in current (2.28 ± 1.07, P = 0.07) and never smokers (2.07 ± 1.05, P < 0.001). Former smokers who are older may have been exposed to factors that increase their risk of symptomatic COVID-19 reinfection.
Collapse
Affiliation(s)
- Wataru Ando
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, Shirokane, Japan,Department of Pharmacy, Kitasato University Medical Center, Kitamoto, Japan,*Correspondence: Wataru Ando
| | - Takeshi Horii
- Laboratory of Pharmacy Practice and Science 1, Division of Clinical Pharmacy, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Sagamihara, Japan
| | - Mitsuki Jimbo
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, Shirokane, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Koichiro Atsuda
- Laboratory of Pharmacy Practice and Science 1, Division of Clinical Pharmacy, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Sagamihara, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Omura Satoshi Memorial Institute, Kitasato University, Shirokane, Japan
| | - Katsuya Otori
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, Shirokane, Japan,Department of Pharmacy, Kitasato University Medical Center, Kitamoto, Japan
| |
Collapse
|
16
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
17
|
Flacco ME, Acuti Martellucci C, Baccolini V, De Vito C, Renzi E, Villari P, Manzoli L. Risk of reinfection and disease after SARS-CoV-2 primary infection: Meta-analysis. Eur J Clin Invest 2022; 52:e13845. [PMID: 35904405 PMCID: PMC9353414 DOI: 10.1111/eci.13845] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A precise estimate of the frequency and severity of SARS-CoV-2 reinfections would be critical to optimize restriction and vaccination policies for the hundreds of millions previously infected subjects. We performed a meta-analysis to evaluate the risk of reinfection and COVID-19 following primary infection. METHODS We searched MedLine, Scopus and preprint repositories for cohort studies evaluating the onset of new infections among baseline SARS-CoV-2-positive subjects. Random-effect meta-analyses of proportions were stratified by gender, exposure risk, vaccination status, viral strain, time between episodes, and reinfection definition. RESULTS Ninety-one studies, enrolling 15,034,624 subjects, were included. Overall, 158,478 reinfections were recorded, corresponding to a pooled rate of 0.97% (95% CI: 0.71%-1.27%), with no substantial differences by definition criteria, exposure risk or gender. Reinfection rates were still 0.66% after ≥12 months from first infection, and the risk was substantially lower among vaccinated subjects (0.32% vs. 0.74% for unvaccinated individuals). During the first 3 months of Omicron wave, the reinfection rates reached 3.31%. Overall rates of severe/lethal COVID-19 were very low (2-7 per 10,000 subjects according to definition criteria) and were not affected by strain predominance. CONCLUSIONS A strong natural immunity follows the primary infection and may last for more than one year, suggesting that the risk and health care needs of recovered subjects might be limited. Although the reinfection rates considerably increased during the Omicron wave, the risk of a secondary severe or lethal disease remained very low. The risk-benefit profile of multiple vaccine doses for this subset of population needs to be carefully evaluated.
Collapse
Affiliation(s)
- Maria Elena Flacco
- Department of Environmental and Preventive Sciences, University of Ferrara, Ferrara, Italy
| | | | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Erika Renzi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Lamberto Manzoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol Rev 2022; 310:27-46. [PMID: 35733376 PMCID: PMC9349657 DOI: 10.1111/imr.13089] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Immunological memory is the basis of protective immunity provided by vaccines and previous infections. Immunological memory can develop from multiple branches of the adaptive immune system, including CD4 T cells, CD8 T cells, B cells, and long-lasting antibody responses. Extraordinary progress has been made in understanding memory to SARS-CoV-2 infection and COVID-19 vaccines, addressing development; quantitative and qualitative features of different cellular and anatomical compartments; and durability of each cellular component and antibodies. Given the sophistication of the measurements; the size of the human studies; the use of longitudinal samples and cross-sectional studies; and head-to-head comparisons between infection and vaccines or between multiple vaccines, the understanding of immune memory for 1 year to SARS-CoV-2 infection and vaccines already supersedes that of any other acute infectious disease. This knowledge may help inform public policies regarding COVID-19 and COVID-19 vaccines, as well as the scientific development of future vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Bean DJ, Monroe J, Turcinovic J, Moreau Y, Connor JH, Sagar M. Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection Associates With Unstable Housing and Occurs in the Presence of Antibodies. Clin Infect Dis 2022; 75:e208-e215. [PMID: 34755830 PMCID: PMC8689949 DOI: 10.1093/cid/ciab940] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The factors associated with severe acute respiratory coronavirus 2 (SARS-CoV-2) reinfection remain poorly defined. METHODS We identified patients with SARS-CoV-2 infection and at least 1 repeat reverse transcription polymerase chain reaction result a minimum of 90 days after the initial positive test and before 21 January 2021. Those with a repeat positive test were deemed to have reinfection (n = 75), and those with only negative tests were classified as convalescents (n = 1594). Demographics, coronavirus disease 2019 (COVID-19) severity, and treatment histories were obtained from the Boston Medical Center electronic medical record. Humoral responses were analyzed using SARS-CoV-2-specific enzyme-linked immunosorbent assays and pseudovirus neutralizations in a subset of reinfection (n = 16) and convalescent samples (n = 32). Univariate, multivariate, and time to event analyses were used to identify associations. RESULTS Individuals with reinfection had more frequent testing at shorter intervals compared with the convalescents. Unstable housing was associated with more than 2-fold greater chance of reinfection. Preexisting comorbidities and COVID-19 severity after the initial infection were not associated with reinfection. SARS-CoV-2 immunoglobulin G levels and pseudovirus neutralization were not different within the early weeks after primary infection and at a timepoint at least 90 days later in the 2 groups. In the convalescents, but not in those with reinfection, the late as compared with early humoral responses were significantly higher. CONCLUSIONS Reinfection associates with unstable housing, which is likely a marker for virus exposure, and reinfection occurs in the presence of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- David J Bean
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Janet Monroe
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jacquelyn Turcinovic
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yvetane Moreau
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Manish Sagar
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Rothberg MB, Kim P, Shrestha NK, Kojima L, Tereshchenko LG. Protection Against the Omicron Variant Offered by Previous Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Retrospective Cohort Study. Clin Infect Dis 2022; 76:e142-e147. [PMID: 35867678 PMCID: PMC9384480 DOI: 10.1093/cid/ciac604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides strong protection against future infection. There is limited evidence on whether such protection extends to the Omicron variant. METHODS This retrospective cohort study included 635 341 patients tested for SARS-CoV-2 via polymerase chain reaction from 9 March 2020 to 1 March 2022. Patients were analyzed according to the wave in which they were initially infected. The primary outcome was reinfection during the Omicron period (20 December 2021-1 March 2022). We used a multivariable model to assess the effects of prior infection and vaccination on hospitalization. RESULTS Among the patients tested during the Omicron wave, 30.6% tested positive. Protection of prior infection against reinfection with Omicron ranged from 18.0% (95% confidence interval [CI], 13.0-22.7) for patients infected in wave 1 to 69.2% (95% CI, 63.4-74.1) for those infected in the Delta wave. In adjusted models, previous infection reduced hospitalization by 28.5% (95% CI, 19.1-36.7), whereas full vaccination plus a booster reduced it by 59.2% (95% CI, 54.8-63.1). CONCLUSIONS Previous infection offered less protection against Omicron than was observed in past waves. Immunity against future waves will likely depend on the degree of similarity between variants.
Collapse
Affiliation(s)
- Michael B Rothberg
- Corresponding Author: Michael B. Rothberg, MD, MPH Center for Value-Based Care Research 9500 Euclid Ave, Mail Code G10 Cleveland, OH 44195 United States of America
| | - Priscilla Kim
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Nabin K Shrestha
- Department of Infectious Disease, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lisa Kojima
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
21
|
Pilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JPA. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. ENVIRONMENTAL RESEARCH 2022; 209:112911. [PMID: 35149106 PMCID: PMC8824301 DOI: 10.1016/j.envres.2022.112911] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/13/2023]
Abstract
Seroprevalence surveys suggest that more than a third and possibly more than half of the global population has been infected with SARS-CoV-2 by early 2022. As large numbers of people continue to be infected, the efficacy and duration of natural immunity in terms of protection against SARS-CoV-2 reinfections and severe disease is of crucial significance for the future. This narrative review provides an overview on epidemiological studies addressing this issue. National surveys covering 2020-2021 documented that a previous SARS-CoV-2 infection is associated with a significantly reduced risk of reinfections with efficacy lasting for at least one year and only relatively moderate waning immunity. Importantly, natural immunity showed roughly similar effect sizes regarding protection against reinfection across different SARS-CoV-2 variants, with the exception of the Omicron variant for which data are just emerging before final conclusions can be drawn. Risk of hospitalizations and deaths was also reduced in SARS-CoV-2 reinfections versus primary infections. Observational studies indicate that natural immunity may offer equal or greater protection against SARS-CoV-2 infections compared to individuals receiving two doses of an mRNA vaccine, but data are not fully consistent. The combination of a previous SARS-CoV-2 infection and a respective vaccination, termed hybrid immunity, seems to confer the greatest protection against SARS-CoV-2 infections, but several knowledge gaps remain regarding this issue. Natural immunity should be considered for public health policy regarding SARS-CoV-2.
Collapse
Affiliation(s)
- Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria.
| | - Verena Theiler-Schwetz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036, Graz, Austria
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, Medical University of Graz, 8036, Graz, Austria
| | - John P A Ioannidis
- Departments of Medicine, Epidemiology and Population Health, Biomedical Data Science, and Statistics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Higdon MM, Wahl B, Jones CB, Rosen JG, Truelove SA, Baidya A, Nande AA, ShamaeiZadeh PA, Walter KK, Feikin DR, Patel MK, Deloria Knoll M, Hill AL. A Systematic Review of Coronavirus Disease 2019 Vaccine Efficacy and Effectiveness Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Disease. Open Forum Infect Dis 2022; 9:ofac138. [PMID: 35611346 PMCID: PMC9047227 DOI: 10.1093/ofid/ofac138] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023] Open
Abstract
Billions of doses of coronavirus disease 2019 (COVID-19) vaccines have been administered globally, dramatically reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence and severity in some settings. Many studies suggest vaccines provide a high degree of protection against infection and disease, but precise estimates vary and studies differ in design, outcomes measured, dosing regime, location, and circulating virus strains. In this study, we conduct a systematic review of COVID-19 vaccines through February 2022. We included efficacy data from Phase 3 clinical trials for 15 vaccines undergoing World Health Organization Emergency Use Listing evaluation and real-world effectiveness for 8 vaccines with observational studies meeting inclusion criteria. Vaccine metrics collected include protection against asymptomatic infection, any infection, symptomatic COVID-19, and severe outcomes including hospitalization and death, for partial or complete vaccination, and against variants of concern Alpha, Beta, Gamma, Delta, and Omicron. We additionally review the epidemiological principles behind the design and interpretation of vaccine efficacy and effectiveness studies, including important sources of heterogeneity.
Collapse
Affiliation(s)
- Melissa M Higdon
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Brian Wahl
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carli B Jones
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph G Rosen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shaun A Truelove
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anurima Baidya
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anjalika A Nande
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Parisa A ShamaeiZadeh
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Karoline K Walter
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daniel R Feikin
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Minal K Patel
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Maria Deloria Knoll
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Borras-Bermejo B, Piñana M, Andrés C, Zules R, González-Sánchez A, Esperalba J, Parés-Badell O, García-Cehic D, Rando A, Campos C, Codina MG, Martín MC, Castillo C, García-Comuñas K, Vásquez-Mercado R, Martins-Martins R, Colomer-Castell S, Pumarola T, Campins M, Quer J, Antón A. Characteristics of 24 SARS-CoV-2-Sequenced Reinfection Cases in a Tertiary Hospital in Spain. Front Microbiol 2022; 13:876409. [PMID: 35722299 PMCID: PMC9201979 DOI: 10.3389/fmicb.2022.876409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main concern is whether reinfections are possible, and which are the associated risk factors. This study aims to describe the clinical and molecular characteristics of 24 sequence-confirmed reinfection SARS-CoV-2 cases over 1 year in Barcelona (Catalonia, Spain). Methods Patients with > 45 days between two positive PCR tests regardless of symptoms and negative tests between episodes were initially considered as suspected reinfection cases from November 2020 to May 2021. Whole-genome sequencing (WGS) was performed to confirm genetic differences between consensus sequences and for phylogenetic studies based on PANGOLIN nomenclature. Reinfections were confirmed by the number of mutations, change in lineage, or epidemiological criteria. Results From 39 reported suspected reinfection cases, complete viral genomes could be sequenced from both episodes of 24 patients, all were confirmed as true reinfections. With a median age of 44 years (interquartile range [IQR] 32–65), 66% were women and 58% were healthcare workers (HCWs). The median days between episodes were 122 (IQR 72–199), occurring one-third within 3 months. Reinfection episodes were frequently asymptomatic and less severe than primary infections. The absence of seroconversion was associated with symptomatic reinfections. Only one case was reinfected with a variant of concern (VOC). Conclusion Severe acute respiratory syndrome coronavirus 2 reinfections can occur in a shorter time than previously reported and are mainly found in immunocompetent patients. Surveillance through WGS is useful to identify viral mutations associated with immune evasion.
Collapse
Affiliation(s)
- Blanca Borras-Bermejo
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Zules
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oleguer Parés-Badell
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Damir García-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ariadna Rando
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Carla Castillo
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Karen García-Comuñas
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Rodrigo Vásquez-Mercado
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Reginald Martins-Martins
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Josep Quer,
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Andrés Antón,
| |
Collapse
|
24
|
Perry J, Osman S, Wright J, Richard-Greenblatt M, Buchan SA, Sadarangani M, Bolotin S. Does a humoral correlate of protection exist for SARS-CoV-2? A systematic review. PLoS One 2022; 17:e0266852. [PMID: 35395052 PMCID: PMC8993021 DOI: 10.1371/journal.pone.0266852] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A correlate of protection (CoP) is an immunological marker associated with protection against infection. Despite an urgent need, a CoP for SARS-CoV-2 is currently undefined. OBJECTIVES Our objective was to review the evidence for a humoral correlate of protection for SARS-CoV-2, including variants of concern. METHODS We searched OVID MEDLINE, EMBASE, Global Health, Biosis Previews and Scopus to January 4, 2022 and pre-prints (using NIH iSearch COVID-19 portfolio) to December 31, 2021, for studies describing SARS-CoV-2 re-infection or breakthrough infection with associated antibody measures. Two reviewers independently extracted study data and performed quality assessment. RESULTS Twenty-five studies were included in our systematic review. Two studies examined the correlation of antibody levels to VE, and reported values from 48.5% to 94.2%. Similarly, several studies found an inverse relationship between antibody levels and infection incidence, risk, or viral load, suggesting that both humoral immunity and other immune components contribute to protection. However, individual level data suggest infection can still occur in the presence of high levels of antibodies. Two studies estimated a quantitative CoP: for Ancestral SARS-CoV-2, these included 154 (95% confidence interval (CI) 42, 559) anti-S binding antibody units/mL (BAU/mL), and 28.6% (95% CI 19.2, 29.2%) of the mean convalescent antibody level following infection. One study reported a CoP for the Alpha (B.1.1.7) variant of concern of 171 (95% CI 57, 519) BAU/mL. No studies have yet reported an Omicron-specific CoP. CONCLUSIONS Our review suggests that a SARS-CoV-2 CoP is likely relative, where higher antibody levels decrease the risk of infection, but do not eliminate it completely. More work is urgently needed in this area to establish a SARS-CoV-2 CoP and guide policy as the pandemic continues.
Collapse
Affiliation(s)
- Julie Perry
- Public Health Ontario, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Selma Osman
- Public Health Ontario, Toronto, Ontario, Canada
| | | | | | - Sarah A. Buchan
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Centre for Vaccine Preventable Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Shelly Bolotin
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Centre for Vaccine Preventable Diseases, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Qaseem A, Yost J, Etxeandia-Ikobaltzeta I, Forciea MA, Abraham GM, Miller MC, Obley AJ, Humphrey LL, Akl EA, Andrews R, Dunn A, Haeme R, Kansagara DL, Tschanz MP. What Is the Antibody Response and Role in Conferring Natural Immunity After SARS-CoV-2 Infection? Rapid, Living Practice Points From the American College of Physicians (Version 2). Ann Intern Med 2022; 175:556-565. [PMID: 35073153 PMCID: PMC8803138 DOI: 10.7326/m21-3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DESCRIPTION The Scientific Medical Policy Committee (SMPC) of the American College of Physicians (ACP) developed these living, rapid practice points to summarize the current best available evidence on the antibody response to SARS-CoV-2 infection and protection against reinfection with SARS-CoV-2. This is version 2 of the ACP practice points, which serves to update version 1, published on 16 March 2021. These practice points do not evaluate vaccine-acquired immunity or cellular immunity. METHODS The SMPC developed this version of the living, rapid practice points based on an updated living, rapid, systematic review conducted by the Portland VA Research Foundation and funded by the Agency for Healthcare Research and Quality. PRACTICE POINT 1 Do not use SARS-CoV-2 antibody tests for the diagnosis of SARS-CoV-2 infection. PRACTICE POINT 2 Do not use SARS-CoV-2 antibody tests to predict the degree or duration of natural immunity conferred by antibodies against reinfection, including natural immunity against different variants. RETIREMENT FROM LIVING STATUS Although natural immunity remains a topic of scientific interest, this topic is being retired from living status given the availability of effective vaccines for SARS-CoV-2 and widespread recommendations for and prevalence of their use. Currently, vaccination is the best clinical recommendation for preventing infection, reinfection, and serious illness from SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Amir Qaseem
- American College of Physicians, Philadelphia, Pennsylvania (A.Q., I.E.)
| | - Jennifer Yost
- American College of Physicians, Philadelphia, and Villanova University, Villanova, Pennsylvania (J.Y.)
| | | | | | - George M Abraham
- University of Massachusetts Medical School/Saint Vincent Hospital, Worcester, Massachusetts (G.M.A.)
| | | | - Adam J Obley
- Portland Veterans Affairs Medical Center and Oregon Health & Science University, Portland, Oregon (A.J.O., L.L.H.)
| | - Linda L Humphrey
- Portland Veterans Affairs Medical Center and Oregon Health & Science University, Portland, Oregon (A.J.O., L.L.H.)
| | | | | | | | | | | | | |
Collapse
|
26
|
Helfand M, Fiordalisi C, Wiedrick J, Ramsey KL, Armstrong C, Gean E, Winchell K, Arkhipova-Jenkins I. Risk for Reinfection After SARS-CoV-2: A Living, Rapid Review for American College of Physicians Practice Points on the Role of the Antibody Response in Conferring Immunity Following SARS-CoV-2 Infection. Ann Intern Med 2022; 175:547-555. [PMID: 35073157 PMCID: PMC8791447 DOI: 10.7326/m21-4245] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The strength and duration of immunity from infection with SARS-CoV-2 are important for public health planning and clinical practice. PURPOSE To synthesize evidence on protection against reinfection after SARS-CoV-2 infection. DATA SOURCES MEDLINE (Ovid), the World Health Organization global literature database, ClinicalTrials.gov, COVID19reviews.org, and reference lists. STUDY SELECTION Longitudinal studies that compared the risk for reinfection after SARS-CoV-2 infection versus infection risk in individuals with no prior infection. DATA EXTRACTION Two investigators sequentially extracted study data and rated quality. DATA SYNTHESIS Across 18 eligible studies, reinfection risk ranged from 0% to 2.2%. In persons with recent SARS-CoV-2 infection compared with unvaccinated, previously uninfected individuals, 80% to 98% of symptomatic infections with wild-type or Alpha variants were prevented (high strength of evidence). In the meta-analysis, previous infection reduced risk for reinfection by 87% (95% CI, 84% to 90%), equaling 4.3 fewer infections per 100 persons in both the general population (risk difference, -0.043 [CI, -0.071 to -0.015]) and health care workers (risk difference, -0.043 [CI, -0.069 to -0.016]), and 26.6 fewer infections per 100 persons in care facilities (risk difference, -0.266 [CI, -0.449 to -0.083]). Protection remained above 80% for at least 7 months, but no study followed patients after the emergence of the Delta or Omicron variant. Results for the elderly were conflicting. LIMITATION Methods to ascertain and diagnose infections varied. CONCLUSION Before the emergence of the Delta and Omicron variants, persons with recent infection had strong protection against symptomatic reinfections for 7 months compared with unvaccinated, previously uninfected individuals. Protection in immunocompromised persons, racial and ethnic subgroups, and asymptomatic index case patients is unclear. The durability of protection in the setting of the Delta and Omicron variants is unknown. PRIMARY FUNDING SOURCE Agency for Healthcare Research and Quality. (PROSPERO: CRD42020207098).
Collapse
Affiliation(s)
- Mark Helfand
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, VA Portland Healthcare System, Portland, Oregon (M.H., C.F., C.A., E.G., K.W., I.A.)
| | - Celia Fiordalisi
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, VA Portland Healthcare System, Portland, Oregon (M.H., C.F., C.A., E.G., K.W., I.A.)
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, Oregon (J.W., K.L.R.)
| | - Katrina L Ramsey
- Biostatistics & Design Program, Oregon Health & Science University, Portland, Oregon (J.W., K.L.R.)
| | - Charlotte Armstrong
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, VA Portland Healthcare System, Portland, Oregon (M.H., C.F., C.A., E.G., K.W., I.A.)
| | - Emily Gean
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, VA Portland Healthcare System, Portland, Oregon (M.H., C.F., C.A., E.G., K.W., I.A.)
| | - Kara Winchell
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, VA Portland Healthcare System, Portland, Oregon (M.H., C.F., C.A., E.G., K.W., I.A.)
| | - Irina Arkhipova-Jenkins
- Scientific Resource Center for the AHRQ Evidence-based Practice Center Program, Portland VA Research Foundation, VA Portland Healthcare System, Portland, Oregon (M.H., C.F., C.A., E.G., K.W., I.A.)
| |
Collapse
|
27
|
Evaluation of the analytical performance of anti-SARS-CoV-2 antibody test kits distributed or developed in Japan. Bioanalysis 2022; 14:325-340. [PMID: 35234530 PMCID: PMC8890363 DOI: 10.4155/bio-2021-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: With the spread of COVID-19, anti-SARS-CoV-2 antibody tests have been utilized. Herein we evaluated the analytical performance of anti-SARS-CoV-2 antibody test kits using a new reference standard prepared from COVID-19 patient sera. Methods: Fifty-seven kits in total (16 immunochromatography types, 11 ELISA types and 30 types for automated analyzers) were examined. By measuring serially diluted reference standards, the maximum dilution factor showing a positive result and its precision were investigated. Results: The measured cut-off titers varied largely depending on the antibody kit; however, the variability was small, with the titers obtained by each kit being within twofold in most cases. Conclusion: The current results suggest that a suitable kit should be selected depending on the intended purpose.
Collapse
|
28
|
Lin L, Zhao Y, Chen B, He D. Multiple COVID-19 Waves and Vaccination Effectiveness in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2282. [PMID: 35206474 PMCID: PMC8871705 DOI: 10.3390/ijerph19042282] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023]
Abstract
(1) Background: The coronavirus 2019 (COVID-19) pandemic has caused multiple waves of cases and deaths in the United States (US). The wild strain, the Alpha variant (B.1.1.7) and the Delta variant (B.1.617.2) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were the principal culprits behind these waves. To mitigate the pandemic, the vaccination campaign was started in January 2021. While the vaccine efficacy is less than 1, breakthrough infections were reported. This work aims to examine the effects of the vaccination across 50 US states and the District of Columbia. (2) Methods: Based on the classic Susceptible-Exposed-Infectious-Recovered (SEIR) model, we add a delay class between infectious and death, a death class and a vaccinated class. We compare two special cases of our new model to simulate the effects of the vaccination. The first case expounds the vaccinated individuals with full protection or not, compared to the second case where all vaccinated individuals have the same level of protection. (3) Results: Through fitting the two approaches to reported COVID-19 deaths in all 50 US states and the District of Columbia, we found that these two approaches are equivalent. We calculate that the death toll could be 1.67-3.33 fold in most states if the vaccine was not available. The median and mean infection fatality ratio are estimated to be approximately 0.6 and 0.7%. (4) Conclusions: The two approaches we compared were equivalent in evaluating the effectiveness of the vaccination campaign in the US. In addition, the effect of the vaccination campaign was significant, with a large number of deaths averted.
Collapse
Affiliation(s)
| | | | | | - Daihai He
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China; (L.L.); (Y.Z.); (B.C.)
| |
Collapse
|
29
|
Longitudinal analysis of antibody dynamics in COVID-19 convalescents reveals neutralizing responses up to 16 months after infection. Nat Microbiol 2022; 7:423-433. [PMID: 35132197 DOI: 10.1038/s41564-021-01051-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the dynamics of the neutralizing antibody (nAb) response in coronavirus disease 2019 (COVID-19) convalescents is crucial in controlling the pandemic and informing vaccination strategies. Here we measured nAb titres across 411 sequential plasma samples collected during 1-480 d after illness onset or laboratory confirmation (d.a.o.) from 214 COVID-19 convalescents, covering the clinical spectrum of disease and without additional exposure history after recovery or vaccination against SARS-CoV-2, using authentic SARS-CoV-2 microneutralization (MN) assays. Forty-eight samples were also tested for neutralizing activities against the circulating variants using pseudotyped neutralization assay. Results showed that anti-RBD IgG and MN titres peaked at ~120 d.a.o. and subsequently declined, with significantly reduced nAb responses found in 91.67% of COVID-19 convalescents (≥50% decrease in current MN titres compared with the paired peak MN titres). Despite this decline, majority of the COVID-19 convalescents maintained detectable anti-RBD IgG and MN titres at 400-480 d.a.o., with undetectable neutralizing activity found in 14.41% (16/111) of the mild and 50% (5/10) of the asymptomatic infections at 330-480 d.a.o. Persistent antibody-dependent immunity could provide protection against circulating variants after one year, despite significantly decreased neutralizing activities against Beta, Delta and Mu variants. In conclusion, these data show that despite a marked decline in neutralizing activity over time, nAb responses persist for up to 480 d in most convalescents of symptomatic COVID-19, whereas a high rate of undetectable nAb responses was found in convalescents from asymptomatic infections.
Collapse
|
30
|
Rahman S, Rahman MM, Miah M, Begum MN, Sarmin M, Mahfuz M, Hossain ME, Rahman MZ, Chisti MJ, Ahmed T, Arifeen SE, Rahman M. COVID-19 reinfections among naturally infected and vaccinated individuals. Sci Rep 2022; 12:1438. [PMID: 35082344 PMCID: PMC8792012 DOI: 10.1038/s41598-022-05325-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
The protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited due to the current vaccination or natural infection is a global concern. We aimed to investigate the rate of SARS-CoV-2 infection and its clinical features among infection-naïve, infected, vaccinated, and post-infection-vaccinated individuals. A cohort was designed among icddr,b staff registered for COVID-19 testing by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). Reinfection cases were confirmed by whole-genome sequencing. From 19 March 2020 to 31 March 2021, 1644 (mean age, 38.4 years and 57% male) participants were enrolled; where 1080 (65.7%) were tested negative and added to the negative cohort. The positive cohort included 750 positive patients (564 from baseline and 186 from negative cohort follow-up), of whom 27.6% were hospitalized and 2.5% died. Among hospitalized patients, 45.9% had severe to critical disease and 42.5% required oxygen support. Hypertension and diabetes mellitus were found significantly higher among the hospitalised patients compared to out-patients; risk ratio 1.3 and 1.6 respectively. The risk of infection among positive cohort was 80.2% lower than negative cohort (95% CI 72.6-85.7%; p < 0.001). Genome sequences showed that genetically distinct SARS-CoV-2 strains were responsible for reinfections. Naturally infected populations were less likely to be reinfected by SARS-CoV-2 than the infection-naïve and vaccinated individuals. Although, reinfected individuals did not suffer severe disease, a remarkable proportion of naturally infected or vaccinated individuals were (re)-infected by the emerging variants.
Collapse
Affiliation(s)
- Sezanur Rahman
- Virology Laboratory, Infectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - M Mahfuzur Rahman
- Virology Laboratory, Infectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mojnu Miah
- Virology Laboratory, Infectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mst Noorjahan Begum
- Virology Laboratory, Infectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Monira Sarmin
- Nutrition and Clinical Services Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Enayet Hossain
- Virology Laboratory, Infectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- Virology Laboratory, Infectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammod Jobayer Chisti
- Nutrition and Clinical Services Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Shams El Arifeen
- Maternal and Child Health Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mustafizur Rahman
- Virology Laboratory, Infectious Diseases Division, icddr,b: International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
31
|
SARS-COV-2 Memory B and T Cells Profile in Mild COVID-19 Convalescents subjects. Int J Infect Dis 2021; 115:208-214. [PMID: 34896265 PMCID: PMC8653411 DOI: 10.1016/j.ijid.2021.12.309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES . Antiviral adaptive immunity involves memory B-(MBC) and T-cells (MTC), however their dynamics in SARS-CoV-2 convalescents warrant further investigation. METHODS . In the cross-sectional and longitudinal study, we evaluated blood-derived MBC- and MTC-responses in 68 anti-spike IgG-positive mild-COVID-19 convalescents at visit 1 between 1-7 months (median 4.1 months) after disease onset. SARS-CoV-2 anti-spike IgG was performed by ELISA, MBC by SARS-COV-2 specific receptor binding domain (RBD) Elispot and Interferon gamma (IFNg), interleukin 2 (IL2) and IFNg+IL2 secreting MTC by IFNg and IL2 SARS-CoV-2 FluoroSpot. For 24 patients sampled at first visit, the IgG, MBC and MTC analysis were also performed 3 months later at second visit. RESULTS . Seventy two percent were both MBC- and MTC-positive, 18 % - MBC-positive and MTC-negative, and 10% - MTC-positive and MBC-negative. The peak of MBC-response level was detected at 3 months after COVID-19 onset and persisted up to 7 months post infection. A significant MTC-levels were detected one month after onset in response to S1, S2_N and SNMO peptide pools. The frequency and magnitude of MTC response to SNMO was higher than to S1 and S2_N. Longitudinal analysis demonstrated that even when specific humoral immunity declined, the cellular immunity persisted. CONCLUSION . Our findings demonstrate durability of adaptive cellular immunity at least for 7-months after SARS-CoV-2 infection that suggest long-lasting protection.
Collapse
|
32
|
Leidi A, Berner A, Dumont R, Dubos R, Koegler F, Piumatti G, Vuilleumier N, Kaiser L, Balavoine JF, Trono D, Pittet D, Chappuis F, Kherad O, Courvoisier DS, Azman AS, Zaballa ME, Guessous I, Stringhini S. Occupational risk of SARS-CoV-2 infection and reinfection during the second pandemic surge: a cohort study. Occup Environ Med 2021; 79:116-119. [PMID: 34880045 DOI: 10.1136/oemed-2021-107924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/18/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES This cohort study including essential workers, assessed the risk and incidence of SARS-CoV-2 infection during the second surge of COVID-19 according to baseline serostatus and occupational sector. METHODS Essential workers were selected from a seroprevalence survey cohort in Geneva, Switzerland and were linked to a state centralised registry compiling SARS-CoV-2 infections. Primary outcome was the incidence of virologically confirmed infections from serological assessment (between May and September 2020) to 25 January 2021, according to baseline antibody status and stratified by three predefined occupational groups (occupations requiring sustained physical proximity, involving brief regular contact or others). RESULTS 10 457 essential workers were included (occupations requiring sustained physical proximity accounted for 3057 individuals, those involving regular brief contact, 3645 and 3755 workers were classified under 'Other essential occupations'). After a follow-up period of over 27 weeks, 5 (0.6%) seropositive and 830 (8.5%) seronegative individuals had a positive SARS-CoV-2 test, with an incidence rate of 0.2 (95% CI 0.1 to 0.6) and 3.2 (95% CI 2.9 to 3.4) cases per person-week, respectively. Incidences were similar across occupational groups. Seropositive essential workers had a 93% reduction in the hazard (HR of 0.07, 95% CI 0.03 to 0.17) of having a positive test during the follow-up with no significant between-occupational group difference. CONCLUSIONS A 10-fold reduction in the hazard of being virologically tested positive was observed among anti-SARS-CoV-2 seropositive essential workers regardless of their sector of occupation, confirming the seroprotective effect of a previous SARS-CoV2 exposure at least 6 months after infection.
Collapse
Affiliation(s)
- Antonio Leidi
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Amandine Berner
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Roxane Dumont
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard Dubos
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Flora Koegler
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni Piumatti
- Faculty of BioMedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Pittet
- Infection Control Program and World Health Organization Collaborating Center on Patient Safety, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - François Chappuis
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Omar Kherad
- Division of Internal Medicine, La Tour Hopital, Geneva, Switzerland
| | | | - Andrew S Azman
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maria Eugenia Zaballa
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Silvia Stringhini
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | |
Collapse
|
33
|
Kojima N, Shrestha NK, Klausner JD. A Systematic Review of the Protective Effect of Prior SARS-CoV-2 Infection on Repeat Infection. Eval Health Prof 2021; 44:327-332. [PMID: 34592838 PMCID: PMC8564250 DOI: 10.1177/01632787211047932] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We systematically reviewed studies to estimate the risk of SARS-CoV-2 reinfection among those previously infected with SARS-CoV-2. For this systematic review, we searched scientific publications on PubMed and MedRxiv, a pre-print server, through August 18, 2021. Eligible studies were retrieved on August 18, 2021. The following search term was used on PubMed: ((("Cohort Studies"[Majr]) AND ("COVID-19"[Mesh] OR "SARS-CoV-2"[Mesh])) OR "Reinfection"[Majr]) OR "Reinfection"[Mesh]. The following search term was used on MedRxiv: "Cohort Studies" AND "COVID-19" OR "SARS-CoV-2" AND "Reinfection". The search terms were broad to encompass all applicable studies. There were no restrictions on the date of publication. Studies that did not describe cohorts with estimates of the risk of SARS-CoV-2 reinfection among those with previous infection were excluded. Studies that included vaccinated participants were either excluded or limited to sub-groups of non-vaccinated individuals. To identify relevant studies with appropriate control groups, we developed the following criteria for studies to be included in the systematic analysis: (1) baseline polymerase chain reaction (PCR) testing, (2) a uninfected comparison group, (3) longitudinal follow-up, (4) a cohort of human participants, i.e. not a case report or case series, and (5) outcome determined by PCR. The review was conducted following PRISMA guidelines. We assessed for selection, information, and analysis bias, per PRISMA guidelines. We identified 1,392 reports. Of those, 10 studies were eligible for our systematic review. The weighted average risk reduction against reinfection was 90.4% with a standard deviation of 7.7% (p-value: <0.01). Protection against SARS-CoV-2 reinfection was observed for up to 10 months. Studies had potential information, selection, and analysis biases. The protective effect of prior SARS-CoV-2 infection on re-infection is high and similar to the protective effect of vaccination. More research is needed to characterize the duration of protection and the impact of different SARS-CoV-2 variants.
Collapse
Affiliation(s)
- N. Kojima
- Department of Medicine, University of California Los
Angeles, CA, USA
| | - N. K. Shrestha
- Department of Infectious Diseases, Cleveland Clinic, OH,
USA
| | - J. D. Klausner
- Departments of Medicine and Population and Public Health
Sciences and the COVID-19 Pandemic Research Center, USC, Keck School of
Medicine, University Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Genecand C, Mongin D, Koegler F, Lebowitz D, Regard S, Falcone JL, Nehme M, Braillard O, Grira M, Joubert D, Chopard P, Delaporte E, Stirnemann J, Guessous I, Tardin A, Courvoisier DS. Cohort profile: Actionable Register of Geneva Outpatients and inpatients with SARS-CoV-2 (ARGOS). BMJ Open 2021; 11:e048946. [PMID: 34848509 PMCID: PMC8634627 DOI: 10.1136/bmjopen-2021-048946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE The Actionable Register of Geneva Outpatients and inpatients with SARS-CoV-2 (ARGOS) is an ongoing prospective cohort created by the Geneva Directorate of Health. It consists of an operational database compiling all SARS-CoV-2 test results recorded in the Geneva area since late February 2020. This article aims at presenting this comprehensive cohort, in light of some of the varying public health measures in Geneva, Switzerland, since March 2020. PARTICIPANTS As of 1 June 2021, the database included 360 525 patients, among which 65 475 had at least one positive test result for SARS-CoV-2. Among all positive patients, 37.6% were contacted only once, 10.6% had one follow-up call, 8.5% had two and 27.7% had three or more follow-up calls. Participation rate among positive patients is 94%. Data collection is ongoing. FINDINGS TO DATE ARGOS data illustrates the magnitude of COVID-19 pandemic in Geneva, Switzerland, and details a variety of population factors and outcomes. The content of the cohort includes demographic data, comorbidities and risk factors for poor clinical outcome, self-reported COVID-19 symptoms, environmental and socioeconomic factors, prospective and retrospective contact tracing data, travel quarantine data and deaths. The registry has already been used in several publications focusing on symptoms and long COVID-19, infection fatality rate and re-infection. FUTURE PLANS The data of this large real-world registry provides a valuable resource for various types of research, such as clinical research, epidemiological research or policy assessment as it illustrates the impact of public health policies and overall disease burden of COVID-19.
Collapse
Affiliation(s)
- Camille Genecand
- Division of General Surgeon, Republic and Canton of Geneva Directorate of Health, Geneva, Switzerland
- Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Denis Mongin
- Division of General Surgeon, Republic and Canton of Geneva Directorate of Health, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flora Koegler
- Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Dan Lebowitz
- Infection Control Program, Geneva University Hospitals, Geneva, Switzerland
| | - Simon Regard
- Division of General Surgeon, Republic and Canton of Geneva Directorate of Health, Geneva, Switzerland
- Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Luc Falcone
- Department of Informatics, University of Geneva, Geneva, Switzerland
| | - Mayssam Nehme
- Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Olivia Braillard
- Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Marwène Grira
- Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Dominique Joubert
- Quality of Care Service, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Chopard
- Quality of Care Service, Geneva University Hospitals, Geneva, Switzerland
| | - Elisabeth Delaporte
- Division of General Surgeon, Republic and Canton of Geneva Directorate of Health, Geneva, Switzerland
| | - Jérôme Stirnemann
- Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Aglaé Tardin
- Division of General Surgeon, Republic and Canton of Geneva Directorate of Health, Geneva, Switzerland
| | - Delphine S Courvoisier
- Division of General Surgeon, Republic and Canton of Geneva Directorate of Health, Geneva, Switzerland
- Quality of Care Service, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
35
|
Maier HE, Balmaseda A, Ojeda S, Cerpas C, Sanchez N, Plazaola M, van Bakel H, Kubale J, Lopez R, Saborio S, Barilla C, Harris E, Kuan G, Gordon A. An immune correlate of SARS-CoV-2 infection and severity of reinfections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.11.23.21266767. [PMID: 34845458 PMCID: PMC8629202 DOI: 10.1101/2021.11.23.21266767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background An immune correlate of protection from SARS-CoV-2 infection is urgently needed. Methods We used an ongoing household cohort with an embedded transmission study that closely monitors participants regardless of symptom status. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and Enzyme-linked immunosorbent assays (ELISAs) were used to measure infections and seropositivity. Sequencing was performed to determine circulating strains of SARS-CoV-2. We investigated the protection associated with seropositivity resulting from prior infection, the anti-spike antibody titers needed for protection, and we compared the severity of first and second infections. Results In March 2021, 62.3% of the cohort was seropositive. After March 2021, gamma and delta variants predominated. Seropositivity was associated with 69.2% protection from any infection (95% CI: 60.7%-75.9%), with higher protection against moderate or severe infection (79.4%, 95% CI: 64.9%-87.9%). Anti-spike titers of 327 and 2,551 were associated with 50% and 80% protection from any infection; titers of 284 and 656 were sufficient for protection against moderate or severe disease. Second infections were less severe than first infections (Relative Risk (RR) of moderated or severe disease: 0.6, 95% CI: 0.38-0.98; RR of subclinical disease:1.9, 95% CI: 1.33-2.73). Conclusions Prior infection-induced immunity is protective against infection when predominantly gamma and delta SARS-CoV-2 circulated. The protective antibody titers presented may be useful for vaccine policy and control measures. While second infections were somewhat less severe, they were not as mild as ideal. A strategy involving vaccination will be needed to ease the burden of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Hannah E. Maier
- Department of Epidemiology, School of Public Health, University of Michigan in Ann Arbor, Michigan, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas at the Ministry of Health, Managua, Nicaragua
| | - Cristiam Cerpas
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | | | | | - John Kubale
- Department of Epidemiology, School of Public Health, University of Michigan in Ann Arbor, Michigan, USA
| | - Roger Lopez
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | - Saira Saborio
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro Nacional de Diagnóstico y Referencia at the Ministry of Health, Managua, Nicaragua
| | | | | | | | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas at the Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan in Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Halperin DT, Hearst N, Hodgins S, Bailey RC, Klausner JD, Jackson H, Wamai RG, Ladapo JA, Over M, Baral S, Escandón K, Gandhi M. Revisiting COVID-19 policies: 10 evidence-based recommendations for where to go from here. BMC Public Health 2021; 21:2084. [PMID: 34774012 PMCID: PMC8590121 DOI: 10.1186/s12889-021-12082-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Strategies to control coronavirus 2019 disease (COVID-19) have often been based on preliminary and limited data and have tended to be slow to evolve as new evidence emerges. Yet knowledge about COVID-19 has grown exponentially, and the expanding rollout of vaccines presents further opportunity to reassess the response to the pandemic more broadly. MAIN TEXT We review the latest evidence concerning 10 key COVID-19 policy and strategic areas, specifically addressing: 1) the expansion of equitable vaccine distribution, 2) the need to ease restrictions as hospitalization and mortality rates eventually fall, 3) the advantages of emphasizing educational and harm reduction approaches over coercive and punitive measures, 4) the need to encourage outdoor activities, 5) the imperative to reopen schools, 6) the far-reaching and long-term economic and psychosocial consequences of sustained lockdowns, 7) the excessive focus on surface disinfection and other ineffective measures, 8) the importance of reassessing testing policies and practices, 9) the need for increasing access to outpatient therapies and prophylactics, and 10) the necessity to better prepare for future pandemics. CONCLUSIONS While remarkably effective vaccines have engendered great hope, some widely held assumptions underlying current policy approaches call for an evidence-based reassessment. COVID-19 will require ongoing mitigation for the foreseeable future as it transforms from a pandemic into an endemic infection, but maintaining a constant state of emergency is not viable. A more realistic public health approach is to adjust current mitigation goals to be more data-driven and to minimize unintended harms associated with unfocused or ineffective control efforts. Based on the latest evidence, we therefore present recommendations for refining 10 key policy areas, and for applying lessons learned from COVID-19 to prevent and prepare for future pandemics.
Collapse
Affiliation(s)
- Daniel T Halperin
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Norman Hearst
- Department of Family and Community Medicine, School of Medicine, University of California, San Francisco, CA, USA
| | - Stephen Hodgins
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Robert C Bailey
- School of Public Health, University of Illinois, Chicago, IL, USA
| | - Jeffrey D Klausner
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Richard G Wamai
- Integrated Initiative for Global Health, Northeastern University, Boston, MA, USA
- School of Public Health, University of Nairobi, Nairobi, Kenya
| | - Joseph A Ladapo
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Mead Over
- Center for Global Development, Washington, D.C, USA
| | - Stefan Baral
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Kevin Escandón
- School of Medicine, Universidad del Valle, Cali, Colombia.
- Department of Microbiology, Universidad del Valle, Grupo de Investigación en Virus Emergentes VIREM, Cali, Colombia.
| | - Monica Gandhi
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Mateus J, Dan JM, Zhang Z, Rydyznski Moderbacher C, Lammers M, Goodwin B, Sette A, Crotty S, Weiskopf D. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science 2021; 374:eabj9853. [PMID: 34519540 PMCID: PMC8542617 DOI: 10.1126/science.abj9853] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Vaccine-specific CD4+ T cell, CD8+ T cell, binding antibody, and neutralizing antibody responses to the 25-μg Moderna messenger RNA (mRNA)–1273 vaccine were examined over the course of 7 months after immunization, including in multiple age groups, with a particular interest in assessing whether preexisting cross-reactive T cell memory affects vaccine-generated immunity. Vaccine-generated spike-specific memory CD4+ T cells 6 months after the second dose of the vaccine were comparable in quantity and quality to COVID-19 cases, including the presence of T follicular helper cells and interferon-γ–expressing cells. Spike-specific CD8+ T cells were generated in 88% of subjects, with equivalent memory at 6 months post-boost compared with COVID-19 cases. Lastly, subjects with preexisting cross-reactive CD4+ T cell memory exhibited stronger CD4+ T cell and antibody responses to the vaccine, demonstrating the biological relevance of severe acute respiratory syndrome coronavirus 2–cross-reactive CD4+ T cells.
Collapse
Affiliation(s)
- Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Zeli Zhang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Carolyn Rydyznski Moderbacher
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Marshall Lammers
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Benjamin Goodwin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Lo Muzio L, Ambosino M, Lo Muzio E, Quadri MFA. SARS-CoV-2 Reinfection Is a New Challenge for the Effectiveness of Global Vaccination Campaign: A Systematic Review of Cases Reported in Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11001. [PMID: 34682746 PMCID: PMC8535385 DOI: 10.3390/ijerph182011001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Reinfection with SARS-CoV-2 seems to be a rare phenomenon. The objective of this study is to carry out a systematic search of literature on the SARS-CoV-2 reinfection in order to understand the success of the global vaccine campaigns. A systematic search was performed. Inclusion criteria included a positive RT-PCR test of more than 90 days after the initial test and the confirmed recovery or a positive RT-PCR test of more than 45 days after the initial test that is accompanied by compatible symptoms or epidemiological exposure, naturally after the confirmed recovery. Only 117 articles were included in the final review with 260 confirmed cases. The severity of the reinfection episode was more severe in 92/260 (35.3%) with death only in 14 cases. The observation that many reinfection cases were less severe than initial cases is interesting because it may suggest partial protection from disease. Another interesting line of data is the detection of different clades or lineages by genome sequencing between initial infection and reinfection in 52/260 cases (20%). The findings are useful and contribute towards the role of vaccination in response to the COVID-19 infections. Due to the reinfection cases with SARS-CoV-2, it is evident that the level of immunity is not 100% for all individuals. These data highlight how it is necessary to continue to observe all the prescriptions recently indicated in the literature in order to avoid new contagion for all people after healing from COVID-19 or becoming asymptomatic positive.
Collapse
Affiliation(s)
- Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
- Consorzio Interuniversitario Nazionale per la Bio-Oncologia (C.I.N.B.O.), 66100 Chieti, Italy
| | - Mariateresa Ambosino
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
| | - Eleonora Lo Muzio
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Mir Faeq Ali Quadri
- Department of Preventive Dental Sciences, Jazan University, Jazan 82511, Saudi Arabia;
| |
Collapse
|
39
|
Kohler P, Güsewell S, Seneghini M, Egger T, Leal O, Brucher A, Lemmenmeier E, Möller JC, Rieder P, Ruetti M, Stocker R, Vuichard-Gysin D, Wiggli B, Besold U, Kuster SP, McGeer A, Risch L, Friedl A, Schlegel M, Vernazza P, Kahlert CR. Impact of baseline SARS-CoV-2 antibody status on syndromic surveillance and the risk of subsequent COVID-19-a prospective multicenter cohort study. BMC Med 2021; 19:270. [PMID: 34649585 PMCID: PMC8514323 DOI: 10.1186/s12916-021-02144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In a prospective healthcare worker (HCW) cohort, we assessed the risk of SARS-CoV-2 infection according to baseline serostatus. METHODS Baseline serologies were performed among HCW from 23 Swiss healthcare institutions between June and September 2020, before the second COVID-19 wave. Participants answered weekly electronic questionnaires covering information about nasopharyngeal swabs (PCR/rapid antigen tests) and symptoms compatible with coronavirus disease 2019 (COVID-19). Screening of symptomatic staff by nasopharyngeal swabs was routinely performed in participating facilities. We compared numbers of positive nasopharyngeal tests and occurrence of COVID-19 symptoms between HCW with and without anti-nucleocapsid antibodies. RESULTS A total of 4812 HCW participated, wherein 144 (3%) were seropositive at baseline. We analyzed 107,807 questionnaires with a median follow-up of 7.9 months. Median number of answered questionnaires was similar (24 vs. 23 per person, P = 0.83) between those with and without positive baseline serology. Among 2712 HCW with ≥ 1 SARS-CoV-2 test during follow-up, 3/67 (4.5%) seropositive individuals reported a positive result (one of whom asymptomatic), compared to 547/2645 (20.7%) seronegative participants, 12 of whom asymptomatic (risk ratio [RR] 0.22; 95% confidence interval [CI] 0.07 to 0.66). Seropositive HCWs less frequently reported impaired olfaction/taste (6/144, 4.2% vs. 588/4674, 12.6%, RR 0.33, 95% CI 0.15-0.73), chills (19/144, 13.2% vs. 1040/4674, 22.3%, RR 0.59, 95% CI 0.39-0.90), and limb/muscle pain (28/144, 19.4% vs. 1335/4674, 28.6%, RR 0.68 95% CI 0.49-0.95). Impaired olfaction/taste and limb/muscle pain also discriminated best between positive and negative SARS-CoV-2 results. CONCLUSIONS Having SARS-CoV-2 anti-nucleocapsid antibodies provides almost 80% protection against SARS-CoV-2 re-infection for a period of at least 8 months.
Collapse
Affiliation(s)
- Philipp Kohler
- Cantonal Hospital St. Gallen, Division of Infectious Diseases and Hospital Epidemiology, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland.
| | - Sabine Güsewell
- Cantonal Hospital St. Gallen, Clinical Trials Unit, St. Gallen, Switzerland
| | - Marco Seneghini
- Cantonal Hospital St. Gallen, Division of Infectious Diseases and Hospital Epidemiology, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland
| | - Thomas Egger
- Cantonal Hospital St. Gallen, Division of Infectious Diseases and Hospital Epidemiology, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland
| | - Onicio Leal
- Epitrack, Recife, Brazil.,Department of Economics, University of Zurich, Zurich, Switzerland
| | - Angela Brucher
- Psychiatry Services of the Canton of St. Gallen (South), St. Gallen, Switzerland
| | - Eva Lemmenmeier
- Clienia Littenheid AG, Private Clinic for Psychiatry and Psychotherapy, Littenheid, Switzerland
| | - J Carsten Möller
- Center for Neurological Rehabilitation, Zihlschlacht, Switzerland
| | | | - Markus Ruetti
- Fuerstenland Toggenburg Hospital Group, Wil, Switzerland
| | | | - Danielle Vuichard-Gysin
- Thurgau Hospital Group, Division of Infectious Diseases and Hospital Epidemiology, Münsterlingen, Switzerland
| | - Benedikt Wiggli
- Cantonal Hospital Baden, Division of Infectious Diseases and Hospital Epidemiology, Baden, Switzerland
| | - Ulrike Besold
- Geriatric Clinic St. Gallen, St. Gallen, Switzerland
| | | | | | - Lorenz Risch
- Labormedizinisches Zentrum Dr Risch, Schaan, Liechtenstein.,Clienia Littenheid AG, Private Clinic for Psychiatry and Psychotherapy, Littenheid, Switzerland.,Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - Andrée Friedl
- Cantonal Hospital Baden, Division of Infectious Diseases and Hospital Epidemiology, Baden, Switzerland
| | - Matthias Schlegel
- Cantonal Hospital St. Gallen, Division of Infectious Diseases and Hospital Epidemiology, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland
| | - Pietro Vernazza
- Cantonal Hospital St. Gallen, Division of Infectious Diseases and Hospital Epidemiology, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland
| | - Christian R Kahlert
- Cantonal Hospital St. Gallen, Division of Infectious Diseases and Hospital Epidemiology, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland. .,Children's Hospital of Eastern Switzerland, Division of Infectious Diseases and Hospital Epidemiology, St. Gallen, Switzerland.
| |
Collapse
|
40
|
Shenai MB, Rahme R, Noorchashm H. Equivalency of Protection From Natural Immunity in COVID-19 Recovered Versus Fully Vaccinated Persons: A Systematic Review and Pooled Analysis. Cureus 2021; 13:e19102. [PMID: 34868754 PMCID: PMC8627252 DOI: 10.7759/cureus.19102] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
We present a systematic review and pooled analysis of clinical studies to date that (1) specifically compare the protection of natural immunity in the COVID-recovered versus the efficacy of complete vaccination in the COVID-naive, and (2) the added benefit of vaccination in the COVID-recovered, for prevention of subsequent SARS-CoV-2 infection. Using the PRISMA 2020 guidance, we first conducted a systematic review of available literature on PubMed, MedRxIV and FDA briefings to identify clinical studies either comparing COVID vaccination to natural immunity or delineating the benefit of vaccination in recovered individuals. After assessing eligibility, studies were qualitatively appraised and formally graded using the NOS system for observational, case-control and RCTs. Incidence rates were tabulated for the following groups: never infected (NI) and unvaccinated (UV), NI and vaccinated (V), previously infected (PI) and UV, PI and V. Pooling were performed by grouping the RCTs and observational studies separately, and then all studies in total. Risk ratios and differences are reported for individual studies and pooled groups, in 1) NPI/V vs PI/UV and 2) PI/UV vs PI/V analysis. In addition, the number needed to treat (NNT) analysis was performed for vaccination in naïve and previously infected cohorts. Nine clinical studies were identified, including three randomized controlled studies, four retrospective observational cohorts, one prospective observational cohort, and a case-control study. The NOS quality appraisals of these articles ranged from four to nine (out of nine stars). All of the included studies found at least statistical equivalence between the protection of full vaccination and natural immunity; and, three studies found superiority of natural immunity. Four observational studies found a statistically significant incremental benefit to vaccination in the COVID-recovered individuals. In a total pooled analysis, the incidence in NPI/V trended higher than PI/UV groups (RR=1.86 [95%CI 0.77-4.51], P=0.17). Vaccination in COVID-recovered individuals provided modest protection from reinfection (RR=1.82 [95%CI 1.21-2.73], P=0.004), but the absolute risk difference was extremely small (AR= 0.004 person-years [95% CI 0.001-0.007], P=0.02). The NNT to prevent one annual case of infection in COVID-recovered patients was 218, compared to 6.5 in COVID-naïve patients, representing a 33.5-fold difference in benefit between the two populations. COVID-recovered individuals represent a distinctly different benefit-risk calculus. While vaccinations are highly effective at protecting against infection and severe COVID-19 disease, our review demonstrates that natural immunity in COVID-recovered individuals is, at least, equivalent to the protection afforded by complete vaccination of COVID-naïve populations. There is a modest and incremental relative benefit to vaccination in COVID-recovered individuals; however, the net benefit is marginal on an absolute basis. Therefore, vaccination of COVID-recovered individuals should be subject to clinical equipoise and individual preference.
Collapse
Affiliation(s)
| | - Ralph Rahme
- Neurosurgery, St. Barnabas Hospital, New York City, USA
| | - Hooman Noorchashm
- Cardiac/Thoracic/Vascular Surgery • Immunology, American Patient Defense Union, Yardley, USA
| |
Collapse
|
41
|
Petráš M. Highly Effective Naturally Acquired Protection Against COVID-19 Persists for at Least 1 Year: A Meta-Analysis. J Am Med Dir Assoc 2021; 22:2263-2265. [PMID: 34582779 PMCID: PMC8443339 DOI: 10.1016/j.jamda.2021.08.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 10/27/2022]
Affiliation(s)
- Marek Petráš
- Department of Epidemiology and Biostatistics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
42
|
Lawandi A, Warner S, Sun J, Demirkale CY, Danner RL, Klompas M, Gundlapalli A, Datta D, Harris AM, Morris SB, Natarajan P, Kadri SS. Suspected SARS-CoV-2 Reinfections: Incidence, Predictors, and Healthcare Use among Patients at 238 U.S. Healthcare Facilities, June 1, 2020- February 28, 2021. Clin Infect Dis 2021; 74:1489-1492. [PMID: 34351392 PMCID: PMC8436398 DOI: 10.1093/cid/ciab671] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
In a retrospective cohort study, among 131,773 patients with previous COVID19, reinfection with SARS-CoV-2 was suspected in 253(0.2%) patients at 238 U.S. healthcare facilities between June 1, 2020- February 28, 2021. Women displayed a higher cumulative reinfection risk. Healthcare burden and illness severity were similar between index and reinfection encounters.
Collapse
Affiliation(s)
- Alexander Lawandi
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sarah Warner
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Junfeng Sun
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Robert L Danner
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Michael Klompas
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Adi Gundlapalli
- CDC COVID-19 Response Team, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Deblina Datta
- CDC COVID-19 Response Team, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Aaron M Harris
- CDC COVID-19 Response Team, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Sapna Bamrah Morris
- CDC COVID-19 Response Team, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Pavithra Natarajan
- CDC COVID-19 Response Team, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Sameer S Kadri
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
43
|
Escandón K, Rasmussen AL, Bogoch II, Murray EJ, Escandón K, Popescu SV, Kindrachuk J. COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infect Dis 2021; 21:710. [PMID: 34315427 PMCID: PMC8314268 DOI: 10.1186/s12879-021-06357-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Scientists across disciplines, policymakers, and journalists have voiced frustration at the unprecedented polarization and misinformation around coronavirus disease 2019 (COVID-19) pandemic. Several false dichotomies have been used to polarize debates while oversimplifying complex issues. In this comprehensive narrative review, we deconstruct six common COVID-19 false dichotomies, address the evidence on these topics, identify insights relevant to effective pandemic responses, and highlight knowledge gaps and uncertainties. The topics of this review are: 1) Health and lives vs. economy and livelihoods, 2) Indefinite lockdown vs. unlimited reopening, 3) Symptomatic vs. asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 4) Droplet vs. aerosol transmission of SARS-CoV-2, 5) Masks for all vs. no masking, and 6) SARS-CoV-2 reinfection vs. no reinfection. We discuss the importance of multidisciplinary integration (health, social, and physical sciences), multilayered approaches to reducing risk ("Emmentaler cheese model"), harm reduction, smart masking, relaxation of interventions, and context-sensitive policymaking for COVID-19 response plans. We also address the challenges in understanding the broad clinical presentation of COVID-19, SARS-CoV-2 transmission, and SARS-CoV-2 reinfection. These key issues of science and public health policy have been presented as false dichotomies during the pandemic. However, they are hardly binary, simple, or uniform, and therefore should not be framed as polar extremes. We urge a nuanced understanding of the science and caution against black-or-white messaging, all-or-nothing guidance, and one-size-fits-all approaches. There is a need for meaningful public health communication and science-informed policies that recognize shades of gray, uncertainties, local context, and social determinants of health.
Collapse
Affiliation(s)
- Kevin Escandón
- School of Medicine, Universidad del Valle, Cali, Colombia.
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Georgetown Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
| | - Isaac I Bogoch
- Division of Infectious Diseases, University of Toronto, Toronto General Hospital, Toronto, Canada
| | - Eleanor J Murray
- Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | - Karina Escandón
- Department of Anthropology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Saskia V Popescu
- Georgetown Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
- Schar School of Policy and Government, George Mason University, Fairfax, VA, USA
| | - Jason Kindrachuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
44
|
Abstract
The rapid and remarkably successful development, manufacture, and deployment of several effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is now tempered by three key challenges. First, reducing virus transmission will require prevention of asymptomatic and mild infections in addition to severe symptomatic infections. Second, the emergence of variants of concern with mutations in the S protein's receptor binding domain increases the likelihood that vaccines will have to be updated because some of these mutations render variants less optimally targeted by current vaccines. This will require coordinated global SARS-CoV-2 surveillance to link genotypes to phenotypes, potentially using the WHO's global influenza surveillance program as a guide. Third, concerns about the longevity of vaccine-induced immunity highlight the potential need for re-vaccination, depending on the extent to which the virus has been controlled and whether re-vaccination can target those at greatest risk of severe illness. Fortunately, as I discuss in this review, these challenges can be addressed.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
45
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|